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Abstract

This work presents a deep learning surrogate model
for the fast simulation of high-dimensional frequency
selective surfaces. We consider unit-cells which are
built as multiple concatenated stacks of screens and
their design requires the control over many geomet-
rical degrees of freedom. Thanks to the introduction
of physical insight into the model, it can produce ac-
curate predictions of the S-parameters of a certain
structure after training with a reduced dataset. The
proposed model is highly versatile and it can be used
with any kind of frequency selective surface, based on
either perforations or patches of any arbitrary geome-
try. Numeric examples are presented here for the case
of frequency selective surfaces composed of screens
with rectangular perforations, showing an excellent
agreement between the predicted performance and
such obtained with a full-wave simulator.

1 Introduction

Artificial intelligence is currently revolutionising the
way information is processed. In particular, deep
learning (DL) techniques have proven to be powerful
tools to embrace the modelling of high-dimensional
datasets in a very efficient way [1, 2]. These tech-
niques have enabled the treatment of scenarios of
great complexity such as natural language processing
[3], image generation [4] or protein folding prediction

[5], just to mention a few.

An emerging trend in DL consists in using a priori
knowledge of the problem under study to help over-
coming the main drawbacks of training a DL model
(e.g. requirement of massive data sets, computational
burden of training...). This is referred to in the liter-
ature as model-based DL [6, 7, 8]. It can be seen as a
way to make existing models data-adaptive, and has
been applied with success to several aspects of the
physical layer of wireless communication systems [9],
including MIMO channel estimation [10] and detec-
tion [11].

The design of radio-frequency (RF) structures can
also benefit significantly from the use of DL, spe-
cially when considering architectures of high com-
plexity (e.g. time-reconfigurable three-dimensional
structures with high number of degrees of freedom).
Tllustrative examples are emerging recently showing
that the assistance from DL can be key for the
successful design of reflectarrays and metasurfaces
[12, 13, 14, 15, 16).

Classically, these structures have been developed
based on equivalent models. In particular, different
solutions are available these days that allow to drive
the design based on physical insight on the device
electromagnetic (EM) behavior [17, 18, 19, 20]. The
complexity of such models may increase drastically
when the geometry of the unit cell presents a high
number of degrees of freedom. This leads to a drastic
increment on the time required for their development.



Figure 1: Unit cell of a multi-stacked FSS with per-
forated screens of arbitrary geometry.

Such is the case of frequency selective surfaces (FSS)
based on multiple stacking. In [21] an approach for
their efficient characterization by means of an equiva-
lent circuit is proposed. However, this approach lim-
its the structure degrees of freedom, since it can only
consider screens of equal geometry.

The goal of this work is to illustrate the great po-
tential of using model-based DL for the characteri-
zation of high-dimensional periodic structures (which
can be used as FSS, polarizers, field-shaping radomes,
phased arrays...). More specifically, we consider unit
cells as the one illustrated in Fig. 1, composed of mul-
tiple stacks of perforated screens with a high number
of geometrical degrees of freedom. We propose to
combine DL with prior knowledge about the physical
phenomena taking place in such type of RF structure,
and we build a surrogate model (SM). For a certain
FSS geometry and a set of frequency points, the goal
of this SM is to predict associated S-parameters with-
out the need of making a full-wave (FW) simulation.
SMs can be coarsely divided in two groups: func-
tion approximation models, which approximate sam-
ples corresponding to FW simulation results [22], and
physical-based models, which are based on some kind
of lower-fidelity representation of the EM phenomena
involved in the problem. The later group, to which
the SM presented in this work belongs, typically show
better generalization capabilities than function ap-
proximation models [23, 24].

Figure 2: Different approaches to create a DL SM for
characterizing a F'SS. The dashed line depicts a model
that directly relates the geometry (Geom) of the FSS
to its scattering parameters (), without making use
of a priori knowledge. The solid line represents a SM
that makes use of knowledge about the EM problem
under study to establish an equivalent circuit as an
intermediate step in the calculation of S.

2 Surrogate Model for FSS

When facing the problem of creating a DL SM that
characterizes a F'SS, the first idea that comes to mind
is trying to establish a direct relationship between the
geometry of the FSS and its scattering parameters.
This approach is depicted in Fig. 2 by the dashed
arrow, and although it has been applied with success
in the past [22], it requires an elevated amount of
computational resources. Hence, it will be extremely
costly (or directly impossible) to employ this kind of
approach for establishing a SM of a high-dimensional
FSS.

Alternatively, it is possible to benefit from a pri-
ori knowledge of the electromagnetic problem under
study to establish a SM with a higher computational
efficiency [23, 24]. For the scenario under study of
modelling a FSS, an approach like that depicted by
the solid arrow in Fig. 2 can be followed. It is possi-
ble to establish an equivalent circuit that models the
frequency response of the FSS with good accuracy.
Given a set of values for the circuit parameters, the
S-parameters of the circuit (and consequently those
of the corresponding FSS) can be obtained with a
negligible computational cost. Therefore, instead of
developing a DL model that relates the geometry of
the FSS to its frequency response, it is possible to
develop a DL model that establishes a relationship
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Figure 3: Block diagram of the proposed surrogate
model (SM) with physical insight.

between the geometry of the FSS and its equivalent
circuit. Since the number of parameters to predict
will be much smaller (only a few circuit element val-
ues, instead of several samples of the S-parameters
over the frequency band of interest), the complexity
and therefore the computational burden of training
such SM will be significantly smaller.

A block diagram of the proposed SM is depicted in
Fig. 3. The model presents two inputs, a geometry
(Geom) of the FSS and a vector of frequency points
(f). In this work the word geometry is used to refer
to the perforation shapes and the separation between
screens of a certain FSS realization. A classical Mul-
tilayer Perceptron (MLP) with Rectified Linear Unit
(ReLU) activations [25] is used to make a prediction
of the circuit parameters of an equivalent circuit cor-
responding to the input geometry. The topology of
this circuit is defined in the Physical Insight Topology
(PIT) module which is in charge of, given a certain
set of circuit parameters, calculate the S-parameters
(S, in Fig. 3) of that circuit at a certain input fre-
quency.

It is important to highlight that the PIT is tailored
for the specific FSS for which the SM is being devel-
oped. Each screen is represented by a certain num-
ber of lumped elements, and these sets of lumped
elements are cascaded by transmission lines repre-
senting the physical separation between the screens
(the electric permittivity and magnetic permeability
of the line are adjusted accordingly to the dielectric
between the screens). The more precisely the lumped

elements characterize each of the screens, the more
accurate the S-parameter predictions will be. Put in
other way, the more physical insight is put into the
SM, the more accurate the results will be.

Once that the circuit topology is defined, the PIT
can be implemented by computing the ABCD-matrix
of each circuit element, multiplying them all to obtain
the global matrix of the circuit and then transforming
the result to its equivalent S-matrix [26]. This pro-
cess is computationally very efficient since only basic
algebraic operations are involved.

It should be noted that all of the above is valid for
any multi-stacked FSS regardless of the number of
screens and the geometry of their perforations. More-
over, despite the discussion has been focused on FSSs
composed of perforated screens, this concept can also
be applied to FSS composed by a stacking of patches
(or even a combination of patches and perforations)
just by implementing the adequate PIT.

2.1 PIT for perforated screens

In order to produce numerical examples, for the rest
of the paper the PIT will be particularized for a stack-
ing of conductive screens with rectangular perfora-
tions (or slots) of width 1 mm. The length of the slots
is a design parameter (degree of freedom), along with
the distance between each pair of screens, to define
the geometry of the FSS. Additionally, the material
between the screens is considered as vacuum, and the
periodicity of the FSS is 18 mm both in the horizontal
and vertical dimensions.

Under these circumstances, the i-th screen of the
FSS can be characterized by the following equivalent
admittance:

Ntg

1
+ Z aL,iYTE7k(w)+
k=1

 jwLo,

qu,i(w)

Nrm

+jwCio + Z ac,i Yrm k(w),
=1

(1)

where the summations characterize the first Nog and
Nty Floquet harmonics with the lowest cutoff fre-
quencies, while the highest order harmonics are taken
into account by Lo ; and Cy; [27]. Since only normal



incidence will be considered in the examples, a single
high order Floquet harmonic will be considered ex-
plicitly and therefore Ntg = Nty = 1, which yields
the circuit depicted in Fig. 4 for the case of a FSS
with N perforated screens. However, it must be em-
phasized that the complexity of the PIT could be
increased to include more harmonics if necessary.

3 Surrogate Model Training

The dataset necessary for training the SM can be gen-
erated by means of a FW simulation. A parametric
sweep can be performed over the design parameters
to obtain the simulated S-parameters for different ge-
ometries. Specifically, in this work CST Microwave
Studio has been used for such task.

The training process has been performed by means
of an implementation of the Adam algorithm [28] (in
particular, that included in the PyTorch library [29]).
The weights and biases of the MLP are initialized at
random; however, for the case of the PIT better con-
vergence is obtained if more a priori knowledge is in-
troduced into the SM by performing an initial guess
of the circuit parameters. For each geometry in the
training dataset, each of its screens is simulated inde-
pendently using the FW simulator. Then, a numeric
fitting of the parameters in (1) can be done to ad-
just the results obtained by this partial simulation.
Of course, this approach completely neglects the in-
teractions between the screens, but the idea is that
this procedure allows to obtain a relatively accurate
initial guess of the circuit parameters without a sig-
nificant computational burden (since a single screen
is simulated at each time, these simulations take little
time to run).

To illustrate the validity of this approach, a nu-
meric example of the PIT training is presented.
In this case a FSS of N = 4 screens is consid-
ered. The length of each of the slots is lgot; =
{14.91,14.80,14.75,14.88} mm, and the separations
between them are d; = {10.3,8.79,10.3} mm. Table 1
presents both the initial guess of the circuit parame-
ters and also the final values after the training pro-
cess. It can be observed that their variation is quite
significant, arriving to more than 20% for several of

Table 1: Circuit parameters before and after the
training of the PIT for a certain geometry of a N = 4
FSS.

Parameter  Initial Final Variation (%)
Loi (H)  1.6129¢-09 1.8522e-09 +14.83
Cor (F)  2.7936e-13  2.9064e-13 +4.04

arl 2.2065e-07  2.4792e-07 +12.36
aci 4.1445e-11  4.2703e-11 +3.04
Loo (H)  1.4629e-09  1.5292-09 +4.53
Coo (F)  2.8419e-13  3.5589¢-13 42523
ar2 2.1672e-07  2.0562e-07 -5.12
ac2 4.1393e-11  4.9911e-11 +20.58
Los (H)  1.3657e-09 1.4612¢-09 +6.99
Cos (F)  2.8153e-13  3.7264e-13 +32.36
arLs 2.1577e-07  2.0361e-07 -5.64
acs 4.1400e-11  5.2064e-11 +25.76
Los (H)  1.6215e-09 1.7276-09 +6.54
Cos (F)  2.7925¢-13  3.4225¢-13 422,56
Qar4 2.1763e-07  2.1389e-07 -1.72
acy 4.1329¢-11  4.8811e-11 +18.10
d1 (mm) 10.3000 10.2788 -0.21
d2 (mm) 8.7904 8.2938 -5.65
ds (mm) 10.3000 9.9791 -3.12

them. Nevertheless, as illustrated by Fig. 5, they pro-
vide a good departure point which allows to obtain a
result that perfectly matches the target value.

It should be noted that the presented training ap-
proach requires to train the PIT independently prior
to the MLP training. This is necessary for the PIT to
be able to benefit from the a priori knowledge about
the circuit parameters. In a future work, it would
be possible to perform a fine tuning of the surrogate
model parameters by including an additional training
step were both models are trained simultaneously.

4 Results

To illustrate the capabilities of the proposed SM, a
numeric example of FSS with N = 2 is presented in
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Figure 4: Equivalent circuit of a multistacked FSS composed of N perforated screens.
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Figure 5: Scattering parameters provided by the PIT
for the circuit parameters in Table 1 compared with
the FW simulation (Target).

this section. The periodicity of the FSS is 18 mm and
the width of the slots is defined as 1 mm. There are
therefore three design parameters that will define the
FSS geometry: the length of each of the slots and
the distance between the two screens. The dataset is
generated by varying the length of the slots between
9.5mm and 15mm (9 samples) and the distance be-
tween the screens from 7mm to 15 mm (9 samples).
This yields a total of Nsgmpie = 729 samples, and for
each of them a FW simulation has been performed to
obtain its corresponding S-parameters at a given set

of Nfreq = 200 frequencies. This process produces
the following labeled dataset:

sample

goal Nyireq N

{giv {521,2' (fj)}j:l }i_l ) (2)
where g; is a vector containing the geometric param-
eters of the structure for the i-th sample and ngjl (f;)
is the associated S-parameter at the j-th frequency.
It should be noted that the size of this dataset is rel-
atively moderate for a DL problem. However, as it
is shown below, thanks to the aforementioned intro-
duction of physical insight the SM achieves accurate
predictions even with such a reduced dataset.

The samples are then randomized and 80% of them
are assigned to the train dataset and the other 20%
are reserved for the test dataset. The DL model al-
lows to predict S-parameters at each considered fre-
quency as a function of an input geometry. For the
i-th input and j-th frequency, the output is denoted
Smedel (g, f;). The SM is trained using the Adam
algorithm mentioned earlier along with the following
cost function:

Nsamp Nfreq

Cost = Z Z
i J

After the training, the SM is evaluated over the
test dataset to assess its performance. The cost val-
ues resulting from the different samples present a
mean of 0.036 and a standard deviation of 0.017.

Figure 6 presents the S-parameters produced by
the SM for the cases with the lowest and highest
cost value. As it can be observed, even for the case
with the highest cost value the agreement between
the curves produced by the SM and a FW simulator
(labeled as Target) is reasonably good.

|95 (g1 f3) — 5815 (£)]
Nsamprreq

, 3)
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Figure 6: Scattering parameters predicted by the SM
with the FW simulation for the test cases with the
lowest and highest cost value, and also for a typical
case.

It might seem that the response of these two cases
is strange in the sense that it does not present the
characteristic filtering response of a FSS. However,
it should be remarked that the training and tests
datasets have been generated by a systematic para-
metric sweep of the FSS to model. Therefore, many
of the samples do not present a combination of the
design parameters that yields an actual filtering re-
sponse. Nevertheless, it should be remarked that the

objective of the SM is to behave as similarly as pos-
sible to the FW simulator regardless of the input ge-
ometry.

Anyway, to demonstrate that the SM can be ef-
fectively used as a design tool, Fig. 6 also presents
the case of a geometry that was neither in the train-
ing nor in the test datasets which has been designed
to present a pass-band response (labeled as Typical).
As it can be seen, in this case the SM also arrives to
estimate the S-parameters of the structure with good
accuracy.

5 Conclusion

This work has presented a model-based deep learn-
ing (DL) surrogate model (SM) for multi-stacked fre-
quency selective surfaces (FSS), which is capable of
predicting the S-parameters of the FSS without the
need of making a full-wave (FW) simulation.

The SM is composed of a Multilayer Perceptron
(MLP) that works in combination with a Physical In-
sight Topology (PIT) module. The inclusion of phys-
ical insight into the model allows to obtain accurate
predictions with a reduced training dataset.

Although the numerical examples presented in this
work considered a F'SS with linear slots, this does not
reduce the generality of the proposed SM, which can
be applied to FSSs with any geometry. Moreover,
the good results obtained in this initial work show
the great potential of application that model-based
DL has for the characterization and design of peri-
odic structures with complex geometries and many
degrees of freedom.
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