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Abstract

Although bulk transcriptomic analyses have greatly contributed to a better understanding of complex
diseases, their sensibility is hampered by the highly heterogeneous cellular compositions of biological
samples. To address this limitation, computational deconvolution methods have been designed to
automatically estimate the frequencies of the cellular components that make up tissues, typically using
reference samples of physically purified populations. However, they perform badly at differentiating
closely related cell populations.

We hypothesised that the integration of the covariance matrices of the reference samples could
improve the performance of deconvolution algorithms. We therefore developed a new tool, DeCovarT,
that integrates the structure of individual cellular transcriptomic network to reconstruct the bulk profile.
Specifically, we inferred the ratios of the mixture components by a standard maximum likelihood
estimation (MLE) method, using the Levenberg-Marquardt algorithm to recover the maximum from the
parametric convolutional distribution of our model. We then consider a reparametrisation of the
log-likelihood to explicitly incorporate the simplex constraint on the ratios. Preliminary numerical
simulations suggest that this new algorithm outperforms previously published methods, particularly
when individual cellular transcriptomic profiles strongly overlap.
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1 Introduction

The analysis of the bulk transcriptome provided new insights on the mechanisms underlying disease
development. However, such methods ignore the intrinsic cellular heterogeneity of complex biological
samples, by averaging measurements over several distinct cell populations. Failure to account for
changes of the cell composition is likely to result in a loss of specificity (genes mistakenly identified as
differentially expressed, while they only reflect an increase in the cell population naturally producing
them) and sensibility (genes expressed by minor cell populations are amenable being masked by highly
variable expression from major cell populations).

Accordingly, a range of computational methods have been developed to estimate cellular fractions,
but they perform poorly in discriminating cell types displaying high phenotypic proximity. Indeed, most
of them assume that purified cell expression profiles are fixed observations, omitting the variability and
intrinsically interconnected structure of the transcriptome. For instance, the gold-standard
deconvolution algorithm CIBERSORT [New15] applies nu-support vector regression (ν-SVR) to recover
the minimal subset of the most informative genes in the purified signature matrix. However, this
machine learning approach assumes that the transcriptomic expressions are independent.

In contrast to these approaches, we hypothesised that integrating the pairwise covariance of the
genes into the reference transcriptome profiles could enhance the performance of transcriptomic
deconvolution methods. The generative probabilistic model of our algorithm, DeCovarT (Deconvolution
using the Transcriptomic Covariance), implements this integrated approach.

2 Model

First, we introduce the following notations:

• (y = (ygi) ∈ RG×N
+ is the global bulk transcriptomic expression, measured in N individuals.

• X = (xgj) ∈ MRG×J the signature matrix of the mean expression of G genes in J purified cell
populations.

• p = (pji) ∈]0, 1[J×N the unknown relative proportions of cell populations in N samples

As in most traditional deconvolution models, we assume that the total bulk expression can be
reconstructed by summing the individual contributions of each cell population weighted by its frequency,
as stated explicitly in the following linear matricial relationship (Equation (1)):

y =X × p (1)

In addition, we consider unit simplex constraint on the cellular ratios, p (Equation (2)):{∑J
j=1 pj = 1

∀j ∈ J̃ pj ≥ 0
(2)

2.1 Standard linear deconvolution model

However, in real conditions with technical and environmental variability, strict linearity of the
deconvolution does not usually hold. Thus, an additional error term is usually considered, and without
further assumption on the distribution of this error term, the usual approach to retrieve the best of
parameters is by minimising the squared error term between the mixture expressions predicted by the
linear model and the actual observed response. This optimisation task is achieved through the ordinary
least squares (OLS) approach (Equation (3)),

p̂OLS
i ≡ argmin

pi

||ŷi − yi||2 = argmin
pi

||Xpi − yi||2 =

G∑
g=1

ygi −
J∑

j=1

xgjpji

 (3)
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If we additionally assume that the stochastic error term follows a homoscedastic zero-centred
Gaussian distribution and that the value of the observed covariates (here, the purified expression
profiles) is determined (see the corresponding graphical representation in Figure 1a and the set of
equations describing it Equation (4)),

ygi =

J∑
j=1

xgjpji + ϵi, ygi ∼ N

 J∑
j=1

xgjpji, σ
2
i

 , ϵi ∼ N (0, σ2
i ) (4)

then, the MLE is equal to the OLS, which, in this framework, is given explicitly by Equation (5):

p̂OLS
i = (X⊤X)−1X⊤yi (5)

and is known under the the Gauss-Markov theorem.

2.2 Motivation of using a probabilistic convolution framework

In contrast to standard linear regression models, we relax in the DeCovarT modelling framework the
exogeneity assumption, by considering the set of covariates X as random variables rather than fixed
measures, in a process close to the approach of DSection algorithm and DeMixt algorithms. However, to
our knowledge, we are the first to weaken the independence assumption between observations by
explicitly considering a multivariate distribution and integrating the intrinsic covariance structure of the
transcriptome of each purified cell population.

To do so, we conjecture that the G-dimensional vector xj characterising the transcriptomic
expression of each cell population follows a multivariate Gaussian distribution, given by Equation (6):

Det(2πΣj)
− 1

2 exp

(
−1

2
(xj − µ.j)Σ

−1
j (xj − µ.j)

⊤
)

(6)

and parametrised by:

• µ.j , the mean purified transcriptomic expression of cell population j

• Σj , the positive-definite (see Definition definition A.2) covariance matrix of each cell population.
Precisely, we retrieve it from inferring its inverse, known as the precision matrix, through the
gLasso [Maz11] algorithm. We define Θj ≡ Σ−1

j the corresponding precision matrix, whose inputs,
after normalisation, store the partial correlation between two genes, conditioned on all the others.
Notably, pairwise gene interactions whose corresponding off-diagonal terms in the precision matrix
are null are considered statistically spurious, and discarded.

To derive the log-likelihood of our model, first we plugged-in the mean and covariance parameters
ζj =

(
µ.j ,Σj

)
estimated for each cell population in the previous step. Then, setting

ζ = (µ,Σ), µ = (µ.j)j∈J̃ ∈ MG×J , Σ ∈ MG×G the known parameters and p the unknown cellular
ratios, we show that the conditional distribution of the observed bulk mixture, conditioned on the
individual purified expression profiles and their ratios in the sample, y|(ζ,p), is the convolution of
pairwise independent multivariate Gaussian distributions. Using the affine invariance property of
Gaussian distributions, we can show that this convolution is also a multivariate Gaussian distribution,
given by Equation (7).

y|(ζ,p) ∼ NG(µp,Σ) with µ = (µ.j)j∈J̃ , p = (p1, . . . , pJ) and Σ =

J∑
j=1

p2jΣj (7)

. The DAG associated to this modelling framework is shown in Figure Figure 1b).
In the next section, we provide an explicit formula of the log-likelihood of our probabilistic

framework, its gradient and hessian, which in turn can be used to retrieve the MLE of our distribution.
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(a) Standard linear model representation.

(b) The generative model used for the DeCovarT framework.

Figure 1. We use the standard graphical convention of graphical models, as depicted in RevBayes webpage. For
identifiability reasons, we conjecture that all variability proceeds from the stochastic nature of the covariates.

2.3 Derivation of the log-likelihood

From Equation (7), the conditional log-likelihood is readily computed and given by Equation (8):

ℓy|ζ(p) = C + log

Det

 J∑
j=1

p2jΣj

−1
− 1

2
(y − pµ)⊤

 J∑
j=1

p2jΣj

−1

(y − pµ) (8)

2.4 First and second-order derivation of the unconstrained DeCovarT
log-likelihood function

The stationary points of a function and notably maxima, are given by the roots (the values at which the
function crosses the x-axis) of its gradient, in our context, the vector: ∇ℓ : RJ → RJ evaluated at point
∇ℓ(p) :]0, 1[J→ RJ . Since the computation is the same for any cell ratio pj , we give an explicit formula
for only one of them (Equation (9)):

∂ℓy|ζ(p)

∂pj
= ∂ log(Det(Θ))

∂pj
− 1

2

[
∂(y−µp)⊤

∂pj
Θ(y−µp)+(y−µp)⊤ ∂Θ

∂pj
(y−µp)+(y−µp)⊤Θ

∂(y−µp)
∂pj

]
=−Tr

(
Θ ∂Σ

∂pj

)
− 1

2

[
−µ⊤

.jΘ(y−µp)−(y−µp)⊤Θ ∂Σ
∂pj

Θ(y−µp)−(y−µp)⊤Θµ.j

]
=−2pj Tr (ΘΣj) + (y − µp)⊤Θµ.j + pj(y − µp)⊤ΘΣjΘ(y − µp)

(9)

Since the solution to ∇
(
ℓy|ζ(p)

)
= 0 is not closed, we had to approximate the MLE using iterated

numerical optimisation methods. Some of them, such as the Levenberg–Marquardt algorithm, require a
second-order approximation of the function, which needs the computation of the Hessian matrix.
Deriving once more Equation (9) yields the Hessian matrix, H ∈ MJ×J is given by:

Hi,i =
∂2ℓ

∂2pi
= −2Tr (ΘΣi) + 4p2i Tr

(
(ΘΣi)

2
)
−2pi(y − µp)⊤ΘΣiΘµ.i − µ⊤

.iΘµ.i−

2pi(y − µp)⊤ΘΣiΘµ.i − (y − µp)⊤Θ
(
4p2iΣiΘΣi −Σi

)
Θ(y − µp), i ∈ J̃

Hi,j =
∂2ℓ

∂pi∂pj
= 4pjpi Tr (ΘΣjΘΣi)−2pi(y − µp)⊤ΘΣiΘµ.j − µ⊤

.iΘµ.j −

2pj(y − µp)⊤ΘΣjΘµ.i − 4pipj(y − µp)⊤ΘΣiΘΣjΘ(y − µp), (i, j) ∈ J̃2, i ̸= j

(10)
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in which the coloured sections pair one by one with the corresponding coloured sections of the gradient,
given in Equation (9). Matrix calculus can largely ease the derivation of complex algebraic expressions,
thus we remind in Appendix (Matrix calculus) relevant matrix properties and derivations 1.

However, the explicit formulas for the gradient and the hessian matrix of the log-likelihood function,
given in Equation (9) and Equation (10) respectively, do not take into account the simplex constraint
assigned to the ratios. While some optimisation methods use heuristic methods to solve this problem, we
consider alternatively a reparametrised version of the problem, detailed comprehensively in Appendix
Appendix A.4.

3 Simulations

3.1 Simulation of a convolution of multivariate Gaussian mixtures

To assert numerically the relevance of accounting the correlation between expressed transcripts, we
designed a simple toy example with two genes and two cell proportions. Hence, using the simplex
constraint (Equation (2)), we only have to estimate one free unconstrained parameter, θ1, and then uses
the mapping function Equation (13) to recover the ratios.

We simulated the bulk mixture, y ∈ MG×N , for a set of artificial samples N = 500, with the
following generative model:

• We have tested two levels of cellular ratios, one with equi-balanced proportions
(p = (p1, p2 = 1− p1) = (12 ,

1
2 ) and one with highly unbalanced cell populations: p = (0.95, 0.05).

• Then, each purified transcriptomic profile is drawn from a multivariate Gaussian distribution. We
compared two scenarios, playing on the mean distance of centroids, respectively
µ.1 = (20, 22), µ.2 = (22, 20) and µ.2 = (20, 40), µ.2 = (40, 20)) and building the covariance matrix,
Σ ∈ M2×2 by assuming equal individual variances for each gene (the diagonal terms of the
covariance matrix, Diag(Σ1) = Diag(Σ1) = I2) but varying the pairwise correlation between gene
1 and gene 2, Cov [x1,2], on the following set of values: {−0.8,−0.6, . . . , 0.8} for each of the cell
population.

• As stated in Equation (1), we assume that the bulk mixture, y.i could be directly reconstructed by
summing up the individual cellular contributions weighted by their abundance, without additional
noise.

3.2 Iterated optimisation

The extremum, and by extension the MLE, is a root of the gradient of the log-likelihood. However, in
our generative framework, the inverse function cancelling the gradient of Equation Equation (8) is
non-closed. Instead, iterated numerical optimisation algorithms that consider first or second-order
approximations of the function to optimise are used to approximate the roots.

The Levenberg-Marquardt (LM) algorithm bridges the gap between between the steepest descent
method (first-order) and the Newton-Raphson method (second-order) by inflating the diagonal terms of
the Hessian matrix. Far from the endpoint, a second-order descent is favoured for its faster convergence
pace, while the steepest approach is privileged close to the extremum since it allows careful refinement of
the step size. Specially, we used the LM implementation of R package marqLevAlg to infer the ratios
p̂ from the bootstrap simulations, since it includes an additional convergence criteria, the relative
distance to the maximum (RDM), that sets apart extrema from spurious saddle points.

1The numerical consistency of these derivatives was asserted with the numDeriv package, using the more stable
Richardson’s extrapolation ([For81]).
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Figure 2. We used the package ComplexHeatmap to display the mean square error (MSE) of the estimated
cell ratios, comparing the NNLS output, as implemented in the deconRNASEQ algorithm ([Gon13]), in Panel A,
with our newly implemented DeCovarT algorithm, in Panel B. The lower the MSE, the least noisy and biased
the estimates. In addition, we added the two-dimensional density plot for the intermediate scenario, for which
each population is parameterised by a diagonal covariance matrix, and the most extreme scenarios (those with
the highest correlation between genes). The ellipsoids represent for each cell population the 95% confidence
region and the red spherical icon and the green triangular icon represent respectively the centroids (average
expression of gene 1 and gene 2) of cell population 1 and cell population 2.

3.3 Results

We compared the performance of DeCovarT algorithm with the outcome of a quadratic algorithm that
specifically addresses the unit simplex constraint: the negative least squares algorithm (NNLS, [HH81]).

Even with a limited toy example including two cell populations characterised only by two genes, we
observe that the overlap was a good proxy of the quality of the estimation: the less the overlap between
the two cell distributions, the better the quality of the estimation Figure 2.

The package used to generate the simulations and infer ratios from virtual or real biological mixtures
with the DeCovarT algorithm is implemented on my personal Github account DeCovarT.

4 Perspectives

The new deconvolution algorithm that we implemented, DeCovarT, is the first one based on a
multivariate generative model while complying explicitly the simplex constraint. Hence, it provides a
strong basis to further derive statistical tests to assert whether the proportion of a given cell population
differs significantly between two distinct biological conditions.

However, we still need to assert its performance in an extended simulation framework. In a numerical
setting, we could first increase the dimensionality of our purified datasets by using more realistic
parametrisations, using the mean and sparse covariance parameters inferred from purified cellular
datasets. Then, we need to evaluate our algorithm in a real-world experience, with both blood and
tumoral samples. The Kassandra project would be a good place to start, since the purified database
collects a compendium of 9,404 cellular transcriptomic profiles, annotated into 38 blood cellular
populations and the performance of Kassandra’s algorithm was benchmarked in N = 517 samples in 6
public datasets with both flow cytometry annotations and bulk RNA-seq expression, against 8 different
standard deconvolution algorithms: 5 reference profile deconvolution algorithms: EPIC [Rac17],
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CIBERSORT [New15], CIBERSORTx [New+19], quanTIseq [Fin19] and ABIS [Mon+19], and 3
marker-based deconvolution algorithms 2: MCPcounter [Bec+16] and xCell [Ara17].

Finally, the gLasso algorithm used to derive each purified cell accuracy matrix, like any penalty
regularisation approach, is subject to parameter shrinkage. Notably, in our setting, shrinkage leads to
systematically underestimate the non-zero partial correlations of the precision matrix. A way to
circumvent this problem is to only use the support (the non-null inputs) output of the gLasso and use
the associated topological constraints within a standard MLE approach to fine-tune the inputs of the
precision matrix. One way of doing so would be to infer a directed Gaussian Graphical Model (GGM),
however, except in really specific topological configurations, such as chordal graphs, there is no current
direct equivalence between the space of undirected Markov graphs, as returned by gLasso, and directed
Bayesian graphs ([DRV05]).
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A Optimisation and calculus

A.1 Multivariate distributions and basic algebra properties

Definition A.1: Multivariate Gaussian distributions

If random vectorX of size G follows a random multivariate Gaussian distribution, X ∼ NG(µ,Σ),
then its distribution is given by:

Det(2πΣ)−
1
2 exp

(
−1

2
(x− µ)Σ−1(x− µ)⊤

)
in which:

• µ =X is the G-dimensional mean vector

• Σ is a G × G positive-definite definition A.2 covariance matrix, whose diagonal terms,
Diag(Σ) = [(Var [Xi,j ]), ∀(i, j) ∈ G̃2, i = j]⊤ are the individual variances of each purified

gene transcript in population j and off-diagonal terms, Σi,j = Cov [Xi, Xj ] , ∀(i, j) ∈ G̃2, i ̸=
j are the covariance between variables. We note Θ = Σ−1, the inverse of the covariance
matrix, called the precision matrix.

Property A.1: Affine invariance property of multivariate GMMs

The two following properties hold for a multivariate Gaussian distribution:

• if X ∼ NG(µ,Σ), then pX, with p a constant, follows itself a multivariate Gaussian
distribution, given by: pX ∼ NG(pµ, p

2Σ)

• given two independent random vectors X1 ∼ NG(µ1,Σ1) and X2 ∼ NG(µ2,Σ2) following
a multivariate Gaussian distribution, then the random variable X1 +X2 follows itself the
multivariate Gaussian distribution:

X + Y ∼ NG(µ1 + µ2,Σ1 +Σ2)

By induction, this property generalises to the sum of J independent random vectors of same
dimension RG.

Deriving the characteristic function of the multivariate GMM yields directly results reported in
property A.1.

Definition A.2: Definite matrix

A symmetric real matrix A of rank G is positive-definite if:

x⊤Ax > 0, x ∈ RG (11)

To gain a clearer grasp of the positive-definite constraint imposed on the covariance parameter of
a multivariate Gaussian distribution, let’s delve into the most straightforward scenario, in which
we assume that any of the individual features exhibit pairwise independence. This particular
setup is parametrised by a covariance matrix containing exclusively diagonal elements.
If the matrix is not strictly positive-definite, then some of the diagonal elements can display
negative values, otherwise that the individual variances for some of the covariates are negative. It
is not physically possible and leads to improper, degenerate probability distributions.
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A.2 Matrix and linear algebra

Property A.2: Determinant and trace

For a squared matrix A of rank G with defined inverse variance A−1 and a constant p, the
following properties hold:

(a) Det(pA) = pG Det(A) (b) Tr (pA) = pTr(A) (c) Det(A−1) = 1
Det(A)

The trace operator is additionally invariant under cyclic permutation, illustrated in Appendix A.2
for three matrices with matching dimensions:

Tr(ABC) = Tr(CAB) = Tr(BCA)

Property A.3: Transpose

Given two matrices A and B, the following properties hold when computing their transpose:

(a) (A⊤)⊤ = A (b) (AB)⊤ = B⊤A⊤
(c)

(
A−1

)⊤
= A−1

Given two vectors x and y in RG and A a symmetric matrix of rank G, using the properties
described above, we have Equation (12)

x⊤Ay = y⊤Ax (12)

with A a symmetric matrix.
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A.3 Matrix calculus

Fundamental algebra calculus formulas used to derive first-order (Equation (9)) and second-order
(Equation (10)) derivates are reported in property A.4 and property A.5, respectively.

Property A.4: First-order matrix calculus

Given two invertible matrices, A = A(p) and B = B(p), functions of a scalar variable p, the
following matrix calculus hold:

(a) ∂ Det(A)
∂p =

Det(A) Tr
(
A−1 ∂A

∂p

) (b) ∂UAV
∂p = U ∂A

∂p V (c) ∂A−1

∂p = −A−1 ∂A
∂pA

−1

From a) and fundamental linear algebra properties enumerated in Appendix A.2, we can readily
compute applying the chain rule property on the logarithm:

∂ log (Det(A))

∂p
= Tr

(
A−1 ∂A

∂p

)
∂ log

(
Det(A−1)

)
∂p

= −Tr

(
A−1 ∂A

∂p

)
Finally, injecting these first-order matrix derivatives with property A.3 we have:

∂(y − xp)⊤Θ(y − xp)
∂p

= −2(y − xp)⊤Θx

= −2x⊤Θ(y − xp)
with A =D = −x ∈ RG, b =e = y, C = Θ symmetric

Property A.5: Second-order matrix calculus

Given an invertible matrix A depending on a variable p, the following calculus formulas hold:

(a) ∂2A−1

∂pi∂pj
= A−1

(
∂A
∂pi
A−1 ∂A

∂pj
− ∂2A

∂pi∂pj
+ ∂A

∂pj
A−1 ∂A

∂pi

)
A−1 (b) ∂ Tr(A)

∂pi
= Tr

(
∂A
∂pi

)
Combining property A.4 with the linear property of the trace operator yields:

∂2 log
(
Det(A−1)

)
∂2p

= −Tr

[
A−1 ∂

2A

∂2pi

]
+Tr

[(
A−1 ∂A

∂pi

)2
]
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A.4 First and second-order derivation of the constrained DeCovarT
log-likelihood function

To reparametrise the log-likelihood function (Equation (8)) in order to explicitly handling the unit
simplex constraint (Equation (2)), we consider the following mapping function:
ψ : θ → p | θ ∈ RJ−1, p ∈]0, 1[J (Equation (13)):

1.

p = ψ(θ) =

pj =
eθj∑

k<J eθk +1
, j < J

pJ = 1∑
k<J eθj+1

(13)

2. θ = ψ−1(p) =
(
ln

(
pj

pJ

))
j∈{1,...,J−1}

that is a C2-diffeomorphism, since ψ is a bijection between p and θ twice differentiable.
Its Jacobian, Jψ ∈ MJ×(J−1) is given by Equation (14):

Ji,j =
∂pi
∂θj

=


eθiBi

A2 , i = j, i < J
−eθj eθi

A2 , i ̸= j, i < J
−eθj

A2 , i = J

(14)

with i indexing vector-valued p and j indexing the first-order order partial derivatives of the mapping
function, A =

∑
j′<J eθj′ + 1 the sum over exponential (denominator of the mapping function) and

B = A− eθi the sum over ratios minus the exponential indexed with the currently considered index i.
The Hessian of the multi-dimensional mapping function ψ(θ) exhibits symmetry for each cell ratio

component j, as anticipated in accordance with Schwarz’s theorem. It is is a third-order tensor of rank
(J − 1)(J − 1)J , given by Equation (15):

∂2pi
∂k∂j

=



eθieθl(−Bi+eθi)
A3 , (i < J) ∧ ((i ̸= j)⊕ (i ̸= k)) (a)

2eθieθj eθk
A3 , (i < J) ∧ (i ̸= j ̸= k) (b)

eθieθj (−A+2eθj )
A3 , (i < J) ∧ (j = k ̸= i) (c)

Bie
θi(Bi−eθi)

A3 , (i < J) ∧ (j = k = i) (d)
eθj (−A+2eθj )

A3 , (i = J) ∧ (j = k) (e)
2eθj eθk

A3 , (i = J) ∧ (j ̸= k) (f)

(15)

with i indexing p, j and k respectively indexing the first-order and second-order partial derivatives of
the mapping function with respect to θ. In line (a), ⊕ refers to the Boolean XOR operator, ∧ to the
AND operator and l = {j, k} \ i.

To derive the log-likelihood function in Equation (9), we reparametrise p to θ, using a standard
chain rule formula. Considering the original log-likelihood function, Equation (8), and the mapping
function, Equation (13), the differential at the first order and at the second order is given by
Equation (16) and Equation (17), respectively defined in RJ−1 and M(J−1)×(J−1):[

∂ℓy|ζ
∂θj

]
j<J

=

J∑
i=1

∂ℓy|ζ

∂pi

∂pi
∂θj

(16)

[
∂ℓ2y|ζ
∂θkθj

]
j<J, k<J

=

J∑
i=1

J∑
l=1

(
∂pi
∂θj

∂2ℓy|ζ

∂pi∂pl

∂pl
∂θk

)
+

J∑
i=1

(
∂ℓy|ζ

∂pi

∂2pi
∂θkθj

)
(d) (17)
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