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ABSTRACT

The research community has produced many successful self-
supervised speech representation learning methods over the past few
years. Discrete units have been utilized in various self-supervised
learning frameworks, such as VQ-VAE [1], wav2vec 2.0 [2], Hu-
BERT [3], and Wav2Seq [4]. This paper studies the impact of
altering the granularity and improving the quality of these discrete
acoustic units for pre-training encoder-only and encoder-decoder
models. We systematically study the current proposals of using
Byte-Pair Encoding (BPE) and new extensions that use cluster
smoothing and Brown clustering. The quality of learned units is
studied intrinsically using zero speech metrics and on the down-
stream speech recognition (ASR) task. Our results suggest that
longer-range units are helpful for encoder-decoder pre-training;
however, encoder-only masked-prediction models cannot yet benefit
from self-supervised word-like targets.

Index Terms— self-supervision, representation learning, unit
discovery

1. INTRODUCTION

Self-supervised speech representation learning has dramatically im-
proved over the past few years [5], showing impact for multiple
downstream tasks [6] in (ultra) low-resource conditions. During
their training, many approaches benefited from auxiliary discrete
acoustic units derived from latent continuous representations to fa-
cilitate learning, e.g., VQ-VAE [1], Wav2vec 2.0 [2], HuBERT [3].
Although they were proposed for just model pre-training with no
downstream use, these discrete units ,in later works, used as pseudo-
language for Textless speech and dialogue generation [7, 8], speech
compression [9] and translation [10]. Given the crucial role of
discrete acoustic units during self-supervsied learning, there have
been multiple proposals for refining such units; for example [3]
interleaved high-level feature learning with updating the learned
units, [11] added a duration constraint during k-means inference
to control the granularity of inferred units, [4] applied temporal
smoothing of learned representation, and [12] applied byte-pair
encoding to discrete units.

Another open area of investigation arises from the dependence
of most speech representation methods on encoder-only training,
which mainly captures acoustic and phonetic information. How can
the linguistic content and broader syntactic constraints be integrated
to impact learned representations? Would the discovered pseudo-
language capture syntactic and semantic information, demonstrated
in probing tasks and generated audio content? A recent study [13]
showed that feeding word boundary information to a speech repre-
sentation model leads to better semantics modeling of the spoken
audio. An Encoder-decoder self-supervised model would fill this
gap where the decoder module would model the regularities of the

pseudo-language units, even fixing some of their associated labeling
noise [4, 12].

This work systematically evaluates different proposals to im-
prove representation learning, the discovered acoustic units, and
the downstream model performance. We use the HuBERT self-
supervised approach [3] as our test bed in this paper, both with
encoder-only and encoder-decoder pre-training setups. We use some
of the zero-speech metrics [14, 15] to describe the quality of discov-
ered discrete acoustic units quantitively. The paper is organized as
follows: first, we introduce the zero-speech metrics we used, then
dive into different proposals for improving the learned discrete to-
kens. Our experimental section presents apple-to-apple comparisons
between different discrete units on the downstream ASR task. We
also study the interplay between the granularity of the discovered
units and adopting an encoder-decoder pre-training approach.

2. RELATED WORK

Self-supervised approaches made remarkable progress in Com-
puter Vision (CV) and Natural Language Processing (NLP). NLP
models such as BERT [16], and RoBERTa [17] used a Masked Lan-
guage Model (MLM) loss on top of a Transformer encoder [18]. CV
approaches like MoCo [19] and SimCLR [20] relied on contrastive
losses for learning representation. Ideas from those models made
their way to speech representation learning. Contrastive Predictive
Coding (CPC) [21] and Wav2Vec [22] contrasted near-by frames
from further away ones. Wav2vec 2.0 [2] used a bidirectional trans-
former encoder and defined a contrastive loss between the discrete
representation of masked segments in the current position and other
masked segments in the same utterance. The Hidden Unit BERT
(HuBERT) model [3] discretizes the input audio first, then apply the
MLM to predict the audio tokens given masked continuous input
representations. The WavLM model [23] extends HuBERT by mix-
ing speakers and different types of noise to the input while extending
the model to denoise inputs in addition to the masked prediction.
For a full discussion of self-supervised approaches for speech pro-
cessing, we refer the reader to this recent review article [5].
Learned discrete acoustic units were developed both for serving
representation learning approaches and for their own sake as pseudo-
language to work with in subsequent speech and audio applications.
In [11], Dynamic Programming (DP) is employed to constrain unit
durations in k-means inference. Using an order of magnitude more
discrete units, compared to the HuBERT model, [24] showed that
the masked prediction loss would still yield competitive performance
with randomly assigned and fixed clusters. Acoustic piece [25] pro-
posed to learn longer-range units by applying the SentencePiece al-
gorithm [26] on top of learned HuBERT units.
Seq2seq pretraining was introduced for speech data following its
success with text input with the BART model [27]. [4] extended
the encoder-only HuBERT model and showed a solid performanceIC
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for speech translation and other NLP tasks. Similarly, [12] proposed
a seq2seq extension with a dual loss on both the encoder and the
decoder sides during pretraining, fine-tuning, and inference.

3. ACOUSTIC UNITS IMPROVEMENTS AND
EVALUATION METRICS

This section discusses different ideas for discrete acoustic unit im-
provements and unit evaluation metrics derived from zero-speech
and unsupervised clustering literature.

3.1. Zero Speech Metric

Different metrics have been introduced to evaluate automatic unit
discovery and automatic speech segmentation in zero-speech re-
search. Precision, Recall, and F-score have been used for evalu-
ating the quality of detected segmentation boundaries given gold
phonemes segmentation. Precision computes how many gold seg-
ment boundaries the system got out of all the predicted boundaries.
The Recall is how many gold segments the system got out of the
segments in the reference. Since Recall can be improved by adding
extra random boundaries, [15] proposed the Over-Segmentation
(OS) and R-value metrics. OS is defined as the ratio of the number
of predicted segments to the number of reference segments minus
one:

OS = 100× #Spanspred
#Spansref

− 1 (1)

By defining the Recall Error RE as (1−Recall)×100, The R-value
can be calculated as follows:

r1 =
√

OS2 +RE2 (2)

r2 =
RE +OS√

2
(3)

R = 1− |r1|+ |r2|
200

(4)

The R-value balances over-segmentation and recall, so lowering
the R-value amounts to detecting the right boundaries in the refer-
ence segmentation without proposing too many arbitrary spans. The
F-score aims at a similar balance by combining precision and recall,
but the R-value drops quicker when OS is greater than 1 [15].

The above metrics measure the quality of the segmentation
boundaries but not the nature and coherence of the assigned discrete
units, i.e., labels, for each detected audio span. The V-measure [14]
is the harmonic mean of the Homogeneity and Completeness of
unsupervised clustering. Homogeneity is based on the conditional
entropy (H) of the gold class distribution(C) given the clusters’
distribution (K) normalized by the gold class entropy. In the same
way, Completeness is based on the conditional entropy of clusters
K given classes C normalized by the clusters K entropy. Those
measures work on the segment level by aligning predicted segment
to the reference segment and take the label of segment with most
overlap as with the reference as the assigned cluster for this segment.

Homogeneity =

{
1, if H(C,K) = 0

1− H(C|K)
H(C)

, otherwise
(5)

Completeness =

{
1, if H(C,K) = 0

1− H(K|C)
H(K)

, otherwise
(6)

In the experiments, we reason about the learned HuBERT units
using these metrics rather than relying solely on the downstream
ASR performance. We used the clean validation set of the Lib-
rispeech dataset [28] for evaluating these zero-speech metrics. The
validation set ground-truth text is converted to phoneme sequences
and was aligned to the raw speech using a baseline ASR model.
These alignments serve as our reference for metric computation.

3.2. Encoder-Decoder Models

Conducting seq2seq pretraining through adding an autoregressive
decoder to the HuBERT model was proposed in [4, 12] as an ex-
tension of the standard encoder-only Hubert pretraining. The pri-
mary motivation for adding a decoder during pretraining is to cap-
ture long-range linguistic relations between acoustic units, leading to
better input semantics modeling. Both proposals rely on a baseline
HuBERT model to estimate discrete acoustic units for each input ut-
terance. They then deduplicate units to represent an input segment
rather than a 20ms frame (the output frame rate of baseline HuBERT
model) and use this unit sequence as the target for label-smoothed
cross-entropy loss of the decoder. However, these two proposals dif-
fer in two points: [4] uses average pooling as in Sec 3.3.2, dedupli-
cates units, then builds a large vocabulary using BPE on the resulted
units, which reduces the output sequence length even more. On the
other hand, [12] applies a dual loss on the encoder and the decoder.
Since this work aims to analyze the impact of units when used as
encoder and decoder targets, respectively, we do not consider dual
loss pre-training.

3.3. Ways to improve discrete acoustic units

3.3.1. DP Smoothing

After running the k-means algorithm to discover clusters in learned
representations, [11] replaces the greedy assignment of cluster IDs
to representation frames with a DP search constrained by the inferred
segment length. A segment score wseg(a, b) is defined for a segment
starts at a position a and ends at position b:

wseg(a, b) = minek∈Clusters Center

∑
i∈[a,b]

∥xi − ek∥ (7)

where xi is the continuous representation vector at time i. The du-
ration score wdur(a, b) is defined to penalize shorter segments (i.e
wdur(a, b) ∝ 1

(b−a+1)
). At inference time, a weighted sum of these

two scores is minimized:

w(a, b) = wseg(a, b) + λwdur(a, b) (8)

The minimum cost segmentation based on equation 8 is found by
running a dynamic program over possible segments (a, b) with a cost
O(N2) where N is the sequence length. This smoothing is expected
to impact the over-segmentation metric positively but could worsen
recall.

3.3.2. Time Averaging

Pooling continuous speech representations over time before cluster-
ing was used in [4] to reduce the sequence target length in seq2seq
pretraining when combined with byte-pair encoding (BPE) [26];
however, the impact of the temporal average of features on unit
segmentation was not studied. Like DP-smoothing, averaging fea-
tures over time would improve the detection precision of phonetic
segments and reduce over-segmentation. Although time-averaging
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n features is easier to tune and understand, DP-smoothing offers a
less aggressive alternative with its real-valued weighting between
segment and duration scores.

3.3.3. Layer Averaging

The original Hubert paper [3] used a single latent layer of repre-
sentations to train discrete codebooks; however, multiple layers of
representations were used in [29] to represent the distillation targets
of a HuBERT model. In the experiments, we examine an instance-
normalized average of multiple layers during the k-means training
steps for generating the discrete target tokens.

3.3.4. Longer-range Units

The discovered units by baseline HuBERT models are mainly at the
phonetic or sub-phonetic level. With the growing interest in the
textlessNLP research [7] and seq2seq pretraining, there were some
proposals for longer-range units [25, 4] which capture the linguistic
structure of the input beyond phonemes, with lengths reaching syl-
lables or sub-word textual representations. Byte-pair Encoding [26]
and Sentencepiece algorithm [30] were used to combine units into
larger sequential clusters. An order of magnitude larger dictionary
size would emerge with a much higher target length compression
ratio (r), which is preferable for training autoregressive decoders or
subsequent unit language models (ULM) [7]. The compression ratio
(r) is the ratio between the total number of frames in the raw data
(at 20ms rate) and the length of deduplicated and BPE-encoded se-
quence of units.

3.3.5. Brown Clustering

Brown Clustering (BC) [31] is a hierarchical clustering algorithm
used extensively in NLP applications. The basic intuition of BC
is that similar entities appear in a similar context, so given an ini-
tial clustering, BC iteratively merges similar clusters based on the
neighboring cluster IDs they keep. We use BC to reduce the size of
BPE-encoded vocabularies, e.g., Starting with 30k vocabulary down
to a smaller one of 2k units. BC, while helping to reduce noise in
the discovered units, enables the application of another BPE encod-
ing on the dictionary of reduced size, which extends the granularity
of the discrete units even more and provides a higher compression
ratio.

4. EXPERIMENTAL SETUP

We use librispeech 960h for all pretraining experiments, and the
10h supervised subset of the Libri-light dataset [32] for fine-tuning.
Since our focus is on analyzing the quality of learned represen-
tations, not reporting a single best number for a specific method,
we have opted to only use greedy frame-level decoding without an
external language model (LM) or lexicon constraints. Our clustering
experiments are performed using the kmeans++ algorithm with 500
clusters unless stated otherwise. Clustering is done using the public
HuBERT BASE model. We report the zero speech metric on the
dev clean subset and downstream ASR performance on dev other
and testother. We do all model selection based on dev other
WER. Since we use the public HuBERT model for generating units
with different strategies and using them for another round of pre-
training, we trained a baseline model which uses the default k-means
clustering for training. All these models represent third iterations
of HuBERT training. We stick to the HuBERT BASE architecture

for our encoders with the same training recipe for both pretraining
and fine-tuning. We add a 6-layer decoder for encoder-decoder
models and train the whole model for 100k updates for pretraining
(with encoder initialization from public HuBERT) and 10k updates
for fine-tuning. For BPE training, we use the BPE encoder from
Huggingface tokenizer vocabulary size of 30,000.

5. RESULTS

5.1. Frame level units for encoder-only pretraining

Table 1 shows ASR and zero speech metrics for different types
of units on encoder-only models. Aside from the MFCC features,
which are expected to be a distant last, all other features yield com-
parable WER results except layer averaging. As found in other
studies [33], the topmost layers of HuBERT are not the best feature
representations. Averaging layers 6,7 and 8 led to slightly better
results. Although they show good trends in the quality of learned
representations, the zero speech metrics of discovered units are not
good indicators of the encoder-only downstream performance. The
best-performing system has the worst over-segmentation, R-value
and F-score. This is an interesting finding pointing to the ability
of the encoder transformer network to recover from noisy bound-
aries and over-segmentation as long as the units are packed with
information (the case of averaged features). The units of differ-
ent refinement proposals could lead to more costly mistakes than
slightly bad segmentation and lousy cluster labels.

5.2. Optimizing Units for the encoder-decoder models

To evaluate the correlation between zero-speech metrics and encoder
or encoder-decoder pretraining, we use the best-performing encoder-
only unit strategy from table 1 and search for optimal zero-speech
metrics over smoothing λ, number of km units and time averaging.
We select the best units according to either R-value, V-measure or
Compression Ratio. We then use the units to train encoder models
or build longer-range, coarser units to train encoder-decoder mod-
els. For BPE, we build a 30k dictionary tokenizer. For Table 2, we
picked the best DP smoothing λ and the number of k-means units
based on their V-measures, R-values or Compression ratio (CR). Al-
though improving zero speech metrics seems to hurt downstream
ASR WER for encoder-only pretraining, they do not hurtthe qual-
ity of the final pretrained encoder-decoder model with the best dev
number coming from the best CR units. Units with lower compres-
sion ratios achieve good final performances; however, this excludes
low compression ratios achieved trivially by using a higher λ dur-
ing the DP smoothing step, e.g., the 3rd and 4th rows in Table 2
artificially achieve low CR by over-smoothing initial units before
BPE. Our results suggest a correlation between zero-speech metrics
and compression ratio on one end and the performance of encoder-
decoder pretraining. Since encoder-only relies on masked LM loss
and encoder-decoder predicts the entire sequence of discrete targets,
units optimized for encoder-only pretraining do not necessarily gen-
eralize to other pretraining losses.

5.3. Long-range units using Brown Clustering

Table 3 shows the results of both encoder-only models and encoder-
decoder models using baseline units, best short units from Table 1
with and without Brown Clustering (BC) applied. It confirms our
earlier observation that longer-range units serve the encoder-decoder
pretraining better than the encoder-only one. We see an almost op-
posite trend for both systems concerning unit granularity.
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Table 1. Results showing zero speech metrics and WER using different unit creation approaches.
Units P ↑ R ↑ F ↑ OS ↓ R-value H ↑ C ↑ V ↑ Dev/Test WER ↓
MFCC 17.1 98.2 29.1 476.0 -306.9 24.1 5.9 9.5 20.8/21.3
Baseline (3rd iteration HuBERT) 34.7 96.4 51.1 177.7 -53.0 68.4 38.0 48.8 16.4/16.7
Instance Normalization 32.4 98.3 48.8 205.5 -75.7 69.5 38.3 49.3 15.9/16.1
Layers Avg 7-9 29.2 99.5 45.1 240.7 -105.7 60.1 33.2 42.8 15.6/16.0
Layers Avg 10-12 32.6 98.9 49.0 203.7 -74.4 69.2 38.1 15.7 15.7/16.0
Time Avg 48.7 92.2 63.7 89.4 20.7 68.8 38.3 49.2 16.0/16.3
BC 1k → 800 51.6 86.9 64.8 68.3 36.4 73.9 37.9 50.1 15.8/16.2
BC 1k → 500 51.8 86.6 64.8 67.3 37.3 69.5 38.2 49.3 15.9/16.3
DP Smoothing 51.6 86.9 64.7 68.4 36.3 75.0 37.7 50.1 16.2/16.2
DP Smoothing λ = 0.5
+ Time Avg 62.1 44.6 51.9 -28.1 59.3 70.4 39.4 50.5 16.4/16.1

DP Smoothing λ = 0.5
+ Layers Avg 7-9 47.4 94.0 63.0 98.3 13.9 72.4 39.7 51.3 16.0/16.2

Time Avg +
+ Layers Avg 7-9 32.3 98.9 48.7 206.1 -76.3 69.3 38.2 49.3 16.1/16.3

Table 2. Results of units optimized for zero speech metrics and encoder-decoder pretraining.
Units P↑ R↑ F↑ OS ↓ R-value H↑ C↑ V ↑ CR ↓ Enc Dev/Test ↓ Enc-Dec Dev/Test ↓
Avg 7-9 29.2 99.5 45.1 240.7 -105.7 60.1 33.2 42.8 18.9 15.6/16.0 15.3/15.8
+ DP λ = 3 47.4 94.0 63.0 98.3 13.9 72.4 39.7 51.3 14.4 16.8/16.6 15.2/15.8
+ DP λ = 7 58.2 83.1 68.4 42.9 55.8 73.6 40.6 52.3 11.9 16.6/16.6 15.5/16.0
+ DP λ = 13 62.9 65.1 64.0 3.5 68.9 74.4 41.1 53.0 9.7 17.1/17.1 15.6/16.1
100 km baseline 39.6 96.4 56.1 143.6 -23.9 54.2 40.8 46.5 12.7 16.6/16.9 15.6/16.0
100 KM+ λ = 1.0 56.0 87.1 68.2 55.4 47.4 60.2 44.8 51.4 9.3 16.8/17.1 15.2/15.8

Table 3. Results of Applying BPE and/or Brown Clustering to frame
level units to obtain long range units

Dev/Test
Enc

Dev/Test
Enc-Dec

Baseline Hubert units 16.4/16.7 18.1/19.4
Best short units 15.6/16.0 17.9/19.0
baseline + BPE 17.7/18.2 15.9/16.7
Best short units + BPE 17.3/18.0 15.3/15.9

+ BC 2k + BPE 17.2/18.0 15.1/15.6
Best Short units + smoothed + BPE 17.4/18.1 15.2/15.8

+ BC 2k + BPE 17.7/18.3 15.3/15.8

5.4. How good is encoder-decoder pretraining?

Given the results in Table 3, encoder-decoder pretraining shows bet-
ter downstream WER than encoder-only pretraining. These gains
could come from better language modeling in the decoder or merely
due to their increased modeling capacity (6 more transformer lay-
ers). Table 4 compares the downstream ASR performance when
models of similar capacity are pretrained. There is no significant
performance difference between encoder-only and encoder-decoder
pretraining, given that we use the best discrete target units for each
system. The best systems achieve WER of about 15% (both sys-
tems do not use a lexicon nor an external LM during decoding). We
believe that the gains of encoder-decoder pretraining demonstrated
in [12] can be attributed to their use of a dual loss during fine tuning
and inference, which is known to improve the ASR results regardless
of the pretraining strategy.

Table 4. Results of baseline and best short and long units on
encoder-only and encoder-decoder models with comparable capaci-
ties

Units 12 Layers
(Enc)

12 Layers(Enc)
+6 layers(Dec)

18 Layers
(Enc)

baseline 16.4/16.7 18.1/19.4 15.4/15.9
Best Frame-level
Units 15.6/16.0 17.9/19.0 14.3/14.2

Best Long-range
Units 17.2/18.0 15.1/15.6 16.3/16.7

6. CONCLUSION AND FUTURE WORK

This paper focused on analyzing the performance of different tar-
get discrete acoustic units with increasing granularity for encoder-
only and encoder-decoder pretraining. We systematically built and
examined many proposals for acoustic unit smoothing and aggrega-
tion to cover an extended range of input audio. Encoder-only and
encoder-decoder pretraining benefit from different unit granularity.
Encoder-decoder pretraining was found to benefit more from long-
range units with large dictionaries. Our results show the comparable
performance of encoder-only and encoder-decoder pretraining when
adjusting for the model capacity and target units, contradicting pre-
vious work on encoder-decoder pretraining and long-range acoustic
units. Our future work includes a more in-depth study of the long-
range units for TextlessNLP and generative speech applications that
could benefit from its high target compression abilities.
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