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BIALGEBRA COHOMOLOGY AND EXACT SEQUENCES

JULIEN BICHON

Abstract. We show how the bialgebra cohomologies of two Hopf algebras involved in
an exact sequence are related, when the third factor is finite-dimensional cosemisimple.
As an application, we provide a short proof of the computation of the bialgebra coho-
mology of the universal cosovereign Hopf algebras in the generic (cosemisimple) case,
done recently by Baraquin, Franz, Gerhold, Kula and Tobolski.

1. introduction

Gerstenhaber-Schack cohomology, which includes bialgebra cohomology as a special
instance, is a cohomology theory adapted to Hopf algebras. It was introduced in [16, 17]
by means of an explicit bicomplex modeled on the Hochschild complex of the underlying
algebra and the Cartier complex of the underlying coalgebra, with deformation theory
as a motivation. See [22] for an exposition, with the original coefficients being Hopf
bimodules, but in view of the equivalence between Hopf bimodules and Yetter-Drinfeld
modules [21], one can work in the simpler framework of Yetter-Drinfeld modules.

Gerstenhaber-Schack cohomology has been useful in proving some fundamental results
in Hopf algebra theory [23, 15], but few concrete computations were known (see [20, 22])
until it was shown by Taillefer [24] that Gerstenhaber-Schack cohomology can be identified
with the Ext functor on the category of Yetter-Drinfeld modules: if A is a Hopf algebra,
V is a Yetter-Drinfeld module over A and k is the trivial Yetter-Drinfeld module, one has

H∗
GS(A, V ) ≃ Ext∗

YDA

A

(k, V )

The bialgebra cohomology of A is then defined by H∗
b (A) = H∗

GS(A, k). We will use this
Ext description, which opens the way to use classical tools of homological algebra, as
a definition. Note that the category YDA

A has enough injective objects [12, 24], so the
above Ext spaces can be studied using injective resolutions of V , and when YDA

A has
enough projective objects (for example if A is cosemisimple, or more generally if A is
co-Frobenius), they can also be computed by using projective resolutions of the trivial
module.

This note is a contribution to the study of Gerstenhaber-Schack cohomology: we show
how the bialgebra (and Gerstenhaber-Schack) cohomologies of two Hopf algebras in-
volved in an exact sequence of Hopf algebras are related when the third factor is a
finite-dimensional cosemisimple Hopf algebra, see Theorem 3.3. When the third factor is
the semisimple group algebra of a finite abelian group, the result even takes a nicer form,
see Corollary 3.4.

We apply our result to provide a computation of the bialgebra cohomology of the
universal cosovereign Hopf algebras [9] in the generic (cosemisimple) case, a class of Hopf
algebras that we believe to be of particular interest in view of their universal property,
see [5]. Such a computation has just been done by Baraquin, Franz, Gerhold, Kula and
Tobolski [3], but the present proof is shorter.
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2. Preliminaries

We work over an algebraically closed field k, and use standard notation from Hopf
algebra theory, for which a standard reference is [19].

2.1. Exact sequences of Hopf algebras. Recall that a sequence of Hopf algebra maps

k → B
i

→ A
p

→ L → k

is said to be exact [1] if the following conditions hold:

(1) i is injective and p is surjective,
(2) Ker(p) = Ai(B)+ = i(B)+A, where i(B)+ = i(B) ∩ Ker(ε),
(3) i(B) = AcoL = {a ∈ A : (id ⊗p)∆(a) = a⊗ 1} = coLA = {a ∈ A : (p⊗ id)∆(a) =

1 ⊗ a}.

Note that condition (2) implies pi = ε1.
In an exact sequence as above, we can assume, without loss of generality, that B is

Hopf subalgebra and i is the inclusion map.

A Hopf algebra exact sequence k → B
i

→ A
p

→ L → k is said to be cocentral if the Hopf
algebra map p is cocentral, that is for any a ∈ A, we have p(a(1)) ⊗ a(2) = p(a(2)) ⊗ a(1).

2.2. Yetter-Drinfeld modules. Recall that a (right-right) Yetter-Drinfeld module over
a Hopf algebra A is a right A-comodule and right A-module V satisfying the condition,
∀v ∈ V , ∀a ∈ A,

(v · a)(0) ⊗ (v · a)(1) = v(0) · a(2) ⊗ S(a(1))v(1)a(3)

The category of Yetter-Drinfeld modules over A is denoted YDA
A: the morphisms are the

A-linear and A-colinear maps. The category YDA
A is obviously abelian, and, endowed

with the usual tensor product of modules and comodules, is a tensor category, with unit
the trivial Yetter-Drinfeld module, denoted k.

Example 2.1. Let B ⊂ A be a Hopf subalgebra, and consider the quotient coalgebra
L = A/B+A. Endow L with the right A-module structure induced by the quotient
map p : A → L, i.e p(a) · b = p(ab) and with the coadjoint A-comodule structure given
p(a) 7→ p(a(2)) ⊗ S(a(1))a(3). Then L, endowed with these two structures, is a Yetter-

Drinfeld module over A. In particular if k → B
i

→ A
p

→ L → k is an exact sequence of
Hopf algebras, then L inherits a Yetter-Drinfeld module structure over A.

Example 2.2. Let ψ : A → k be an algebra map satisfying ψ(a(1))a(2) = ψ(a(2))a(1) for any
a ∈ A. Endow k with the trivial A-comodule structure and with the A-module structure
induced by ψ. Then k, endowed with these two structures, is a Yetter-Drinfeld module
over A, that we denote kψ.

Examples 2.1 and 2.2 are related by the following lemma.

Lemma 2.3. Let p : A → kΓ be surjective cocentral Hopf algebra map, where Γ is a

group. For ψ ∈ Γ̂ = Hom(Γ, k∗), we still denote by ψ the composition of the unique

extension of ψ to kΓ with p. If Γ is finite abelian and |Γ| 6= 0 in k, the Fourier transform

is an isomorphism

kΓ ≃
⊕

ψ∈Γ̂

kψ

in the category YDA
A, where kΓ has the coadjoint Yetter-Drinfeld structure given in Ex-

ample 2.1, and the right-handed term has the Yetter-Drinfeld structure from Example

2.2.
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Proof. The Fourier transform is defined by

F : kΓ −→
⊕

ψ∈Γ̂

kψ, Γ ∋ g 7−→
∑

ψ∈Γ̂

ψ(g)eψ

where eψ denotes the basis element in kψ, and since k is algebraically closed, the assump-
tion |Γ| 6= 0 in k ensures that F is a linear isomorphism. The cocentrality assumption
on p ensures that the A-comodule structure on kΓ from Example 2.1 is trivial, so F is a
comodule map as well. To prove the A-linearity of F , recall first that p : A → kΓ induces
and algebra grading

A =
⊕

g∈Γ

Ag

where Ag = {a ∈ A | a(1) ⊗ p(a(2)) = a ⊗ g}, with for a ∈ Ag, p(a) = ε(a)g. For g ∈ Γ,
pick a ∈ Ag such that p(a) = g. For h ∈ Γ and a′ ∈ Ah, we have aa′ ∈ Agh and hence

F(g · a′) = F(p(aa′)) = F(ε(aa′)gh) = ε(a′)
∑

ψ∈Γ̂

ψ(gh)eψ = ε(a′)
∑

ψ∈Γ̂

ψ(g)ψ(h)eψ

=
∑

ψ∈Γ̂

ψ(g)ε(a′)ψ(h)eψ =
∑

ψ∈Γ̂

ψ(g)ψ(p(a′))eψ =
∑

ψ∈Γ̂

ψ(g)eψ · a′ = F(g) · a′

and this concludes the proof. �

3. Main results

The main tool to prove our main results will be induction and restriction of Yetter-
Drinfeld modules, that we first recall.

Let B ⊂ A be a Hopf subalgebra. Recall [13, 9] that we have a pair of adjoint functors

YDA
A −→ YDB

B YDB
B −→ YDA

A

X 7−→ X(B) V 7−→ V ⊗B A

constructed as follows:

(1) For an object X in YDA
A, X(B) = {x ∈ X | x(0) ⊗ x(1) ∈ X ⊗ B} is equipped

with the obvious B-comodule structure, and is a B-submodule of X. We have
X(B) ≃ X�AB, where the right term is the cotensor product, and we say that
B ⊂ A is (right) coflat when the above functor is exact.

(2) For an object V ∈ YDB
B, the induced A-module V ⊗B A has the A-comodule

structure given by the map

v ⊗B a 7→ v(0) ⊗B a(2) ⊗ S(a(1))v(1)a(3)

We then have the following result [9, Proposition 3.3], which follows from the general
machinery of pairs of adjoint functors.

Proposition 3.1. Let B ⊂ A be a Hopf subalgebra. If B ⊂ A is coflat and A is flat as

a left B-module, we have, for any object X in YDA
A and any object V in YDB

B, natural

isomorphisms

Ext∗

YDA

A

(V ⊗B A,X) ≃ Ext∗

YDB

B

(V,X(B))

Remark 3.2. Let B ⊂ A be a Hopf subalgebra, and consider the quotient coalgebra
L = A/B+A. Recall from Example 2.1 that L has a natural Yetter-Drinfeld module
structure over A. The induced Yetter-Drinfeld module k ⊗B A is isomorphic to L in
YDA

A.
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Theorem 3.3. Let k → B → A → L → k be an exact sequence of Hopf algebras, with L
finite-dimensional and cosemisimple. We have, for any X ∈ YDA

A,

H∗
GS(B,X(B)) ≃ H∗

GS(A,X ⊗ L∗)

and hence in particular

H∗
b (B) ≃ H∗

GS(A,L∗)

where L∗ is the dual Yetter-Drinfeld module of L

Proof. Since L = A/B+A is cosemisimple, B ⊂ A is coflat [9, Proposition 3.4]. Moreover,
still because L is cosemisimple, the quotient map A → L is faithfully coflat, and hence
A is (faithfully) flat as a B-module by the left version of [25, Theorem 2]. Hence we can
use Proposition 3.1, applied to V = k to get

Ext∗

YDA

A

(k ⊗B A,X) ≃ Ext∗

YDB

B

(k,X(B))

and hence, by Remark 3.2,

Ext∗

YDA

A

(L,X) ≃ Ext∗

YDB

B

(k,X(B))

Since L is assumed to be finite-dimensional, the usual adjunction between the exact
functors − ⊗ L and − ⊗ L∗ provides the announced isomorphism. �

Corollary 3.4. Let k → B → A → kΓ → k be a cocentral exact sequence of Hopf

algebras. If Γ is a finite abelian group with |Γ| 6= 0 in k, then we have, for any X ∈ YDA
A,

H∗
GS(B,X(B)) ≃

⊕

ψ∈Γ̂

H∗
GS(A,X ⊗ kψ)

and hence in particular

H∗
b (B) ≃

⊕

ψ∈Γ̂

H∗
GS(A, kψ)

Proof. We are in the situation of Theorem 3.3, hence

H∗
GS(B,X(B)) ≃ H∗

GS(A,X ⊗ L∗)

for L = kΓ. The assumption on Γ, ensures, by Lemma 2.3, that L ≃ ⊕
ψ∈Γ̂

kψ as Yetter-

Drinfeld modules over A, and hence in particular L ≃ L∗. The statement follows. �

Remark 3.5. Recall that the Gerstenhaber-Schack cohomological dimension of a Hopf
algebra A is defined by

cdGS(A) = sup{n : Hn
GS(A, V ) 6= 0 for some V ∈ YDA

A} ∈ N ∪ {∞}

Let k → B → A → kΓ → k be a cocentral exact sequence with Γ a finite abelian
group such |Γ| 6= 0. Then it follows from Corollary 3.4 that cdGS(B) ≥ cdGS(A). If A
is cosemisimple, then cdGS(B) = cdGS(A) by [9, Theorem 4.9]. We expect that equality
holds in general.

4. Application to the bialgebra cohomology of universal cosovereign
Hopf algebras

4.1. Universal cosovereign Hopf algebras. Recall that for n ≥ 2 and F ∈ GLn(k),
the universal cosovereign Hopf algebra H(F ) is the algebra presented by generators
(uij)1≤i,j≤n and (vij)1≤i,j≤n, and relations:

uvt = vtu = In; vFutF−1 = FutF−1v = In,
4



where u = (uij), v = (vij) and In is the identity n × n matrix. The algebra H(F ) has a
Hopf algebra structure defined by

∆(uij) =
∑

k

uik ⊗ ukj, ∆(vij) =
∑

k

vik ⊗ vkj,

ε(uij) = ε(vij) = δij, S(u) = vt, S(v) = FutF−1.

We refer the reader to [5, 9] for more information and background on the Hopf algebras
H(F ). Recall from [5] that a matrix F ∈ GLn(k) is said to be

• normalizable if tr(F ) 6= 0 and tr(F−1) 6= 0 or tr(F ) = 0 = tr(F−1);

• generic if it is normalizable and the solutions of the equation q2−
√

tr(F )tr(F−1)q+1 =

0 are generic, i.e. are not roots of unity of order ≥ 3 (this property does not depend on
the choice of the above square root);

• an asymmetry if there exists E ∈ GLn(k) such that F = EtE−1.

4.2. Hopf algebras of bilinear forms. Let E ∈ GLn(k). The Hopf algebra B(E)
defined by Dubois-Violette and Launer [14] is presented by generators aij , 1 ≤ i, j ≤ n,
and relations E−1atEa = In = aE−1atE, where a is the matrix (aij). The Hopf algebra
structure is given by

∆(aij) =
∑

k

aik ⊗ akj , ε(aij) = δij , S(a) = E−1atE

For an appropriate matrix Eq, one has B(Eq) = Oq(SL2(k)), the coordinate algebra
on quantum SL2. The Hopf algebra B(E) is cosemisimple if and only if F = EtE−1 is
generic in the sense of the previous subsection: this follows from [4] and the classical
result for Oq(SL2(k)).

Denote by B+(E) the subalgebra of B(E) generated by the products aijakl, 1 ≤
i, j, k, l ≤ n. This is a Hopf subalgebra of B(E), that fits into a cocentral exact sequence

k → B+(E) → B(E) → kZ2 → k

where the projection on the right is given by p(aij) = δijg, with g being the generator
of the cyclic group Z2. By Example 2.1, kZ2 inherits a Yetter-Drinfeld module structure
over B(E), whose module structure is induced by p, and comodule structure is trivial.

The bialgebra cohomology of B(E) was computed in the cosemisimple case in [6, Theo-
rem 6.5] with C as a base field. We record and supplement the result here, taking care of
the characteristic of the base field, together with another computation of Gerstenhaber-
Schack cohomology, with coefficients in kZ2.

Theorem 4.1. Let E ∈ GLn(k), n ≥ 2, and assume that EtE−1 is generic.

(1) We have

Hp
GS(B(E), kZ2) ≃




k if p = 0, 3

{0} otherwise

(2) If char(k) 6= 2, then

Hp
b (B(E)) ≃




k if p = 0, 3

{0} otherwise

(3) If char(k) = 2, then

Hp
b (B(E)) ≃




k if p = 0, 1, 2, 3

{0} otherwise
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Proof. The resolution given in [6, Theorem 5.1] is valid over any field, and can be used
to compute the above cohomologies, since the involved Yetter-Drinfeld modules are free,
and hence projective by the cosemisimplicity assumption on B(E). The result is then
obtained by direct computations, which depend on whether k has, or not, characteristic
2. �

As a first application of the results of Section 3, we recover in a shorter way the
bialgebra cohomology computation of B+(E) in the cosemisimple case [8, Theorem 6.4],
that we supplement in the characteristic 2 case.

Corollary 4.2. Let E ∈ GLn(k), n ≥ 2, and assume that EtE−1 is generic. We have

Hp
b (B+(E)) ≃




k if p = 0, 3

{0} otherwise

Proof. The Yetter-Drinfeld module kZ2 is self dual, hence the result is the combination
of the first part of Theorem 4.1 and of Theorem 3.3, �

4.3. Relation between H(F ) and B(E). The first relation between H(F ) and B(E)
was observed by Banica in [2], when F = EtE−1 ∈ GLn(C) is positive matrix, and a key
result from [2] in that case is the existence of a Hopf algebra embedding

(4.1) H(F ) →֒ B(E) ∗ CZ

which, according to [26, Proposition 6.20], can be refined to an embedding

(4.2) H(F ) →֒ B(E) ∗ CZ2

This is strengthened in [3, Theorem 4.11], where it is shown that the embedding is still
valid for any generic asymmetry F .

In fact, there is a simple proof of this result, valid over any field k and any asymmetry
F = EtE−1.

Proposition 4.3. Let E ∈ GLn(k) and let F = EtE−1. There exists a Z2-action on

H(F ) such one gets a Hopf algebra isomorphism

H(F ) ⋊ kZ2 ≃ B(E) ∗ kZ2

Proof. The announced Z2-action, from [11, Example 2.18], is provided by the order 2
Hopf algebra automorphism of H(F ) given in matrix form as follows

τ(u) = (Et)−1vEt, τ(v) = Etu(Et)−1

We therefore form the usual crossed product Hopf algebra H(F ) ⋊ kZ2. Denoting by g
the generator of Z2, it is a straightforward verification to check the existence of a Hopf
algebra map, written in matrix form

H(F ) ⋊ kZ2 −→ B(E) ∗ kZ2

u, v, g 7−→ ag, Etga(Et)−1, g

Similarly, it is straightforward to construct an inverse isomorphism

B(E) ∗ kZ2 −→ H(F ) ⋊ kZ2

a, g 7−→ ug, g

We leave the detailed verification to the reader. �
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4.4. Bialgebra cohomology of H(F ) in the generic case.

Theorem 4.4. Let F ∈ GLn(k), n ≥ 2, with F generic. The bialgebra cohomology of

H(F ) is

Hp
b (H(F )) ≃




k if p = 0, 1, 3

{0} otherwise

Proof. First notice that one always has H0
b (A) = k for any Hopf algebra, while the

computation of H1
b (H(F )) is extremely easy (see the complex in [8, Proposition 5.3]),

so we concentrate on degree p ≥ 2. First consider the asymmetry case: F = EtE−1.
Consider the Z2-action of Proposition 4.3 and the Hopf algebra map

ε⊗ id : H(F ) ⋊ kZ2 → kZ2

This is cocentral, and the associated Hopf subalgebra B is clearly the image of the natural
embedding H(F ) →֒ H(F ) ⋊ kZ2. Theorem 3.3 gives an isomorphism

H∗
b (H(F )) ≃ H∗

GS(H(F ) ⋊ kZ2, kZ2)

Considering now the isomorphism of Proposition 4.3, we obtain the isomorphism

H∗
b (H(F )) ≃ Hp

GS(B(E) ∗ kZ2, kZ2)

Since B(E) is cosemisimple as well, [9, Theorem 5.9] yields, for p ≥ 2,

Hp
b (H(F )) ≃ Hp

GS(B(E), kZ2) ⊕Hp
GS(kZ2, kZ2)

Since kZ2 is cosemisimple and cocommutative, we have Hp
GS(kZ2, kZ2) ≃ ExtpkZ2

(k, kZ2),
and the latter Ext-space is easily seen to vanish if p ≥ 1. We conclude by the first part
of Theorem 4.1.

For a general matrix F , by [5, Theorem 1.1] there always exists an asymmetry F (q) ∈
GL2(k) such that the tensor categories of comodules H(F ) and H(q) are equivalent, hence
the monoidal invariance of bialgebra cohomology (see e.g. [7, Theorem 7.10]) gives the
result. �

Remark 4.5. One can also compute the usual Hochschild cohomology for H(F ) in the
asymmetry case, for particular choices of coefficients, by combining Proposition 4.3 and
the usual adjunction relation for Ext (see e.g. [18, IV.12]). The computation is done in
greater generality in [3, Theorem B], and is valid for any normalizable F over any field,
since Proposition 4.3 is. Notice also that it follows from [3] that cd(H(F )) = 3 for any
normalizable F , which was only known for F an asymmetry [9] or F generic [10]. Here
cd is the cohomological dimension, i.e. the global dimension, which, for Hopf algebras,
coincides as well with the Hochschild cohomological dimension.
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