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Curvature properties and Shafarevich conjecture for

toroidal compacti�cations of ball quotients

William Sarem

September 14, 2023

Abstract

We study toroidal compacti�cations of �nite volume complex hyperbolic manifolds. We

obtain results on the existence or nonexistence of Kähler metrics satisfying certain nonpos-

itive curvature properties on these compacti�cations. Starting from quotients of complex

hyperbolic space by deep enough non-uniform arithmetic lattices, we also verify the Sha-

farevich conjecture for their compacti�cations, by showing that their universal covers are

Stein.

1 Introduction

This article is a contribution to the study of closed Kähler manifolds obtained by toroidal com-
pacti�cation of spaces of the form HnC/Γ, where HnC denotes the complex hyperbolic space of
dimension n and Γ a �deep enough� torsion-free non-uniform lattice of PU(n, 1). These compact-
i�cations, also called Mumford compacti�cation, were �rst described in [Mum75; Ash+10]. The
metric study of these manifolds was done by Hummel and Schroeder [HS96]. They showed:

Theorem ([HS96]). Let Γ0 be a non-uniform torsion-free lattice of PU(n, 1) for which the quo-
tient space HnC/Γ0 admits a toroidal compacti�cation XΓ0

. Then XΓ0
is a Kähler manifold.

Moreover, there exists a �nite index subgroup Γ′ < Γ0 such that for any �nite index subgroup
Γ < Γ′ the toroidal compacti�cation XΓ of HnC/Γ admits a Riemannian metric of nonpositive
sectional curvature.

The toroidal compacti�cation of the quotient space HnC/Γ will be denoted by XΓ, whenever
it exists: precise conditions ensuring its existence are given in Section 2, where we recall the
construction of XΓ. In fact, toroidal compacti�cations are projective manifolds [Mok12; DD15],
and several authors have studied their properties, from the point of view of algebraic geometry
[DD17; BT18; Cad21; Mem23], or from other points of view [Py17; DS18].

In this article, we �rst show that these manifolds XΓ do not admit a Kähler metric with non-
positive sectional curvature (Theorem 1), con�rming a claim from [HS96], but that they admit a
Kähler metric with nonpositive holomorphic bisectional curvature (Theorem 2). As a corollary,
we answer in the a�rmative a question raised by Diverio in [Div22] on the existence of a closed
complex manifold admitting a Kähler metric with quasi-negative holomorphic (bi)sectional cur-
vature but admitting no Kähler metric with negative holomorphic sectional curvature (Corollary
3). In another direction, we also show that the universal cover X̃Γ of XΓ is Stein when the lattice
Γ is arithmetic and deep enough. To do so, we study the properties of the Albanese map of the
manifolds obtained by compactifying �nite covers of HnC/Γ, and we obtain results concerning the
Albanese image of the tori added during the compacti�cation (Theorem 4), extending earlier
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work of Eyssidieux [Eys18]. This improvement allows us to prove that for deep enough �nite
index subgroups Γ′ of Γ, the universal cover of the toroidal compacti�cation of HnC/Γ′ is a Stein
manifold (Theorem 5). When n = 2 this result had been obtained earlier by Eyssidieux [Eys18].

Let us now describe more precisely and state these results. In [HS96], Hummel and Schroeder
assert that toroidal compacti�cations do not admit Kähler metrics with nonpositive sectional
curvature. A proof of this assertion has been given in complex dimension 2 for �deep enough�
lattices in [Di 12]. Generalizing it to any dimension, we prove:

Theorem 1. Let Γ be a non-uniform torsion-free lattice of PU(n, 1) for which the quotient space
HnC/Γ admits a toroidal compacti�cation XΓ. Then there is no Kähler metric with nonpositive
sectional curvature on XΓ.

In particular, the techniques for constructing Kähler metrics on XΓ developed in [HS96]
cannot provide a metric with nonpositive sectional curvature. However, a computation shows
that they are su�cient to construct a Kähler metric whose curvature veri�es a weaker condition
of nonpositivity, namely the nonpositivity of the holomorphic bisectional curvature:

Theorem 2. Let Γ0 be a non-uniform torsion-free lattice of PU(n, 1). There exists a �nite index
subgroup Γ′ < Γ0 such that for any �nite index subgroup Γ < Γ′, the toroidal compacti�cation
XΓ of HnC/Γ admits a Kähler metric with nonpositive holomorphic bisectional curvature.

The metric constructed in the proof of this theorem has negative holomorphic bisectional
curvature on the open set HnC/Γ ⊂ XΓ. In particular, it is quasi-negative in the sense of [DT19],
i.e. the holomorphic bisectional curvature is nonpositive everywhere and negative at a point. In
their article, Diverio and Trapani showed that every closed Kähler manifold with quasi-negative
holomorphic sectional curvature has ample canonical bundle, a result which was already known
under the assumption of negativity of the holomorphic sectional curvature [WY16; TY17]. This
answered a question of Yau. This situation naturally lead the �rst author to ask in [Div22]
whether there exist closed Kähler manifolds of quasi-negative holomorphic sectional curvature
but which do not admit a Kähler metric of negative holomorphic sectional curvature. Toroidal
compacti�cations contain tori, which are not Kobayashi hyperbolic, so they allow to answer this
question in the a�rmative:

Corollary 3. For Γ a deep enough non-uniform lattice as in Theorem 2, XΓ is an example of a
closed complex manifold which admits a Kähler metric of quasi-negative holomorphic bisectional
curvature, but which does not admit a Kähler metric of negative holomorphic sectional curvature.

Along the way we observe that Theorem 2 combined with the main result of [DT19] provides
an alternative proof of [DD17, Theorem 1.3]: for Γ a deep enough non-uniform lattice as in
Theorem 2, XΓ has ample canonical bundle. For a more direct proof, we remark in Section 4
that the metric constructed in the proof of Theorem 2 has negative Ricci curvature. In addition,
applying [Gue22, Theorem 3.1], we get that any irreducible subvariety ofXΓ which is not included
in the complement of HnC/Γ is of general type.

We now state our results related to the Shafarevich conjecture for the compacti�cations
XΓ. This conjecture, stated in 1972 for projective manifolds, predicts that the universal cover
of any closed Kähler manifold is holomorphically convex. It is known in the case where the
fundamental group of the manifold is linear [Eys+12; CCE15]. It is also known for speci�c
examples [EM15]. See also [Kat97; KR98; Eys04] for earlier results, and [Eys11] for a survey
article on this conjecture.

For toroidal compacti�cations, if the lattice Γ of PU(n, 1) is deep enough, then by the theorem
of Hummel and Schroeder recalled above, the universal cover X̃Γ of XΓ is di�eomorphic to R2n
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and can be endowed with a Kähler metric, thus it does not contain any compact analytic variety
of positive dimension. Therefore, X̃Γ is holomorphically convex if and only if it is Stein. When the
lattice is arithmetic, Eyssidieux proved that, up to taking a �nite index subgroup of the lattice,
the Albanese map of XΓ, denoted by AΓ : XΓ −→ Alb(XΓ), is an immersion on the complement
of the tori added during the compacti�cation [Eys18]. He then concluded in dimension 2 that
the universal cover of XΓ is holomorphically convex, using a result of [Nap90] valid only in this
dimension. To study the higher dimensional case, we make Eyssidieux's result about Albanese
mappings more precise. To do so, we analyse the behavior of the Albanese map on the tori
added during the compacti�cation, which we will call in the following �boundary tori of XΓ�.
More precisely, a boundary torus of XΓ is a connected component of the complement of HnC/Γ
in XΓ. With this terminology, we prove:

Theorem 4. Let Γ0 be a non-uniform torsion-free arithmetic lattice of PU(n, 1). There exists
a �nite index subgroup Γ′ < Γ0 such that for any �nite index subgroup Γ < Γ′, the toroidal
compacti�cation XΓ of HnC/Γ satis�es the following properties:

• Its Albanese map AΓ is an immersion on the open set HnC/Γ ⊂ XΓ and:

• For any boundary torus T of XΓ, the map AΓ |T is either an immersion or a constant.

The arithmeticity of Γ0 is used crucially in the proof of Theorem 4, as in [Eys18]. Deciding
whether for every boundary torus T of XΓ0

, there exists a �nite index subgroup Γ < Γ0 for
which the Albanese map AΓ of XΓ is an immersion when restricted to the tori above T seems
much more di�cult. However the weaker result of Theorem 4 is enough for our purpose. We
combine it with the arguments of [Nap90], valid in any dimension, about holomorphic convexity
with respect to a su�ciently positive line bundle, and we adapt the arguments given there in
dimension 2 in order to generalize Eyssidieux's result to all dimension:

Theorem 5. Let Γ0 be a non-uniform torsion-free arithmetic lattice of PU(n, 1) There exists a
�nite index subgroup Γ′ < Γ0 such that for any �nite index subgroup Γ < Γ′, the universal cover
X̃Γ of the toroidal compacti�cation XΓ of HnC/Γ is a Stein manifold.

This theorem is deduced from Proposition 13 stated in Section 6, which is a more general
result on projective manifolds which are the source of a generically �nite holomorphic map with
values in a compact manifold with Stein universal cover.

The article is organized as follows. In Section 2, we recall how toroidal compacti�cations
of spaces of the form HnC/Γ are constructed. Then, Sections 3, 4, 5, 6 contain respectively the
proofs of Theorems 1, 2, 4, 5. They use Section 2 and are independent of each other, except for
Section 6 which relies on Section 5.

Acknowledgments. I would like to express my deep gratitude to Pierre Py for his constant
support and help throughout this work. This project was carried out during research internships
at ETH Zürich and University of Rennes. I thank these institutions, and in particular Marc
Burger and Christophe Dupont, for welcoming me.

Contents
1 Introduction 1

2 Preliminaries 4

3 Nonpositively curved Kähler manifolds containing hypersurfaces with c1 = 0 7

4 A metric on XΓ with nonpositive holomorphic bisectional curvature 9

5 Commensurators, parabolic subgroups and Albanese maps 14

3



6 A strictly plurisubharmonic exhaustion function on the universal cover of XΓ 19

References 24

2 Preliminaries

The complex hyperbolic space HnC is the unique complete simply connected Kähler manifold
of dimension n with constant holomorphic sectional curvature equal to −4. Its Riemannian
sectional curvature is pinched between −4 and −1. To construct it, we �rst consider a Hermitian
form 〈·, ·〉 of signature (n, 1) on Cn+1. As a complex manifold, HnC is the projectivisation of the
set of negative vectors for this form; it is an open set of CPn. Its boundary ∂HnC can be de�ned
as its topological boundary in CPn. We do not recall the construction of the hyperbolic metric
on this space, and refer for example to [Gol99]. Its group of holomorphic isometries is the simple
Lie group PU(n, 1), and it also acts on ∂HnC. We will use the classical trichotomy of isometries
into elliptic, parabolic or hyperbolic type, for which we refer for instance to [BH99, section II.6].

We �rst introduce some notations which are analogous to the ones used in [HS96; Mok12].
To every point ξ ∈ ∂HnC can be associated a nilpotent subgroup Nξ of PU(n, 1), which is the
unipotent radical of the stabiliser of ξ in PU(n, 1). This Lie group is isomorphic to the Heisenberg
group of dimension 2n − 1. The following calculations will be used in the proof of Proposition
6, they aim at expliciting global coordinates on the quotient of a horoball centered at ξ by the
action of a non-trivial element Z in the center of Nξ.

Let us �x a geodesic γ parametrized with unit speed such that limt→+∞ γ(t) = ξ. Denote also
o := γ(0) and ξ′ := limt→−∞ γ(t). Then ξ and ξ′ lift to vectors f1, f2 ∈ Cn+1 which are isotropic
for the Hermitian form de�ned above, non-collinear, and can be normalized so that 〈f1, f2〉 = 1
and o = [f1 − f2]. Here and in the sequel, [·] denotes the projection map Cn+1 \ {0} → CPn.
Let (f3, . . . , fn+1) be a basis of P := (Cf1 ⊕ Cf2)⊥, orthonormal for the Hermitian product
〈·, ·〉|P×P . We iden�ty (P, 〈·, ·〉|P×P ) with Cn−1 endowed with the standard Hermitian product
whose associated norm is denoted by ‖·‖. In the basis (f1, . . . , fn+1) of Cn+1, the form 〈·, ·〉 has
the following expression:

〈af1 + bf2 + v, af1 + bf2 + v〉 = 2<(ab̄) + ‖v‖2.

The group Nξ is made of the endomorphisms of Cn+1 whose matrices in the basis (f1, . . . , fn+1)
have the form:  1 −‖v‖

2

2 − is −〈·, v〉
0 1 0
0 v Idn−2

 ,

with (s, v) ∈ R × Cn−1. We call n(s,v) the element of PU(n, 1) de�ned by the matrix above. A
global chart of HnC, called Siegel model of HnC, is given by:

Ω̃ := {(a, v) ∈ C× Cn−1 | 2<(a) + ‖v‖2 < 0} −→ HnC
(a, v) 7−→ [af1 + f2 + v].

Denote by L̃ the coordinates de�ned by the inverse of this map. For any real number t,
let at be the hyperbolic isometry of axis γ de�ned in the basis (f1, . . . , fn+1) by the matrix
Diag(e−t, et, 1, . . . , 1). A calculation shows that the point n(s,v) · at · o has coordinates:

L̃
(
n(s,v) · at · o

)
=

(
−‖v‖

2

2
− is− e−2t, v

)
. (1)
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This shows in particular that the map Nξ ×R→ HnC which associates to each element (n(s,v), t)
the point n(s,v) · at · o of the hyperbolic space is a di�eomorphism.

If Z is an element of Nξ of the form Z := n(l,0) with l 6= 0, the group 〈Z〉 which it generates
acts freely and properly discontinuously on HnC. The action of Z is expressed in the coordinates
L̃ by the translation (a, u) 7→ (a, u)− (il, 0), thus the diagram of holomorphic maps:

HnC Ω̃

HnC/〈Z〉 Ω.

L̃

(exp( 2π•
l ),Id)

L

commutes, where the map L de�ned by the diagram is a biholomorphism on its image:

Ω := {(a, v) ∈ C× Cn−1 | 0 < |a| < e
−π‖v‖2

l }.

A horoball centered at ξ, denoted by Hξ or simply H in what follows, is a subset of HnC ' Nξ×R
of the form Nξ×(−∞, t0) for some real number t0. This de�nition does not depend on the choice
of the geodesic γ, for example because horoballs can also be de�ned as the sublevel sets of the
Busemann function [Gol99]. The action of Z on the hyperbolic space is identi�ed with its action
by left multiplication on the �rst factor of Nξ × R. In particular, it preserves the horoballs. In
coordinates L̃ and L respectively, a horoball Nξ × (−∞, t0) and its quotient by the action of Z
identify with the open sets:

Ω̃t0 := {(a, v) ∈ C× Cn−1 | <(a) < −‖v‖
2

2
− e−2t0} and

Ωt0 := {(a, v) ∈ C× Cn−1 | 0 < |a| < λ(t0)e
−π‖v‖2

l },

with λ(t0) := exp(−2πe−2t0

l ).
A non-uniform lattice Γ0 of PU(n, 1) is a discrete subgroup of PU(n, 1) for which the quotient

space HnC/Γ0 has �nite Riemannian volume, without being compact. Let Γ0 be a non-uniform
torsion-free lattice of PU(n, 1), and Γ a �nite index subgroup of Γ0. Then the quotient space
HnC/Γ is a complex manifold naturally endowed with a Kähler metric of constant holomorphic
sectional curvature −4. By Margulis' Lemma [BGS85] it admits a thick-thin decomposition with
a �nite number of cusps, which means that we can write:

HnC/Γ = Q ∪
k∐
i=1

Ci,

where Q is a compact subset of HnC/Γ, k ∈ N∗, and for any 1 ≤ i ≤ k, Ci is a cusp, i.e., there exists
a point ξi of the boundary of HnC and a su�ciently deep horoball Hi centered at ξi, globally �xed
by the stabiliser StabΓ(ξi) of ξi in Γ, such that Ci is biholomorphically isometric to Hi/ StabΓ(ξi)
[SY82]. The group StabΓ(ξi) contains no hyperbolic elements, thus it is a subgroup of Nξi oKi,
where Ki is the pointwise stabiliser in PU(n, 1) of a geodesic ray ending at ξi. In particular,
StabΓ(ξi) �xes each horosphere Nξi × {t}. Using the Auslander�Bieberbach's theorem, one can
show that there exists a �nite subset S ⊂ Γ0 such that for every �nite index normal subgroup
Γ of Γ0 which does not intersect S, the parabolic elements of Γ are purely unipotent [Hum98].
In this case, StabΓ(ξi) is a subgroup of Nξi for all i, and �nally the cusp Ci is isomorphic to
the product of the nilmanifold Nξi/(Γ ∩ Nξi) by the interval (−∞, t0) for some real number
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t0 [Hum98]. Furthermore, since Hi/(Γ ∩ Ni) has �nite volume, Fubini's theorem implies that
Nξi/(Γ ∩Nξi) also has �nite volume, and thus that Γ ∩Nξi is a lattice of Nξi .

We will say that Γ is a lattice for which the quotient space HnC/Γ admits a toroidal compact-
i�cation if Γ is non-uniform, torsion-free and all parabolic subgroups of Γ are purely unipotent,
as explained in the previous paragraph. This is justi�ed by the following proposition, which, for
such lattices Γ allows to compactify the manifold HnC/Γ by identifying each cusp to a holomorphic
punctured disk bundle over a complex torus of dimension n− 1. The compacti�cation can then
be done by adding the zero section of this bundle. This identi�cation is classical [Mok12], and
we include it for the reader's convenience.

Proposition 6. Let N be the (2n−1)-dimensional Heisenberg group, identi�ed with Nξ for some
point ξ ∈ ∂HnC, Λ a lattice of N , which acts on HnC ' N×R by left multiplication on the N -factor,
and let H := N×(−∞, t0) be a horoball of the complex hyperbolic space. Let ρ : N → Cn−1 be the
surjective group morphism n(s,v) 7→ v. Then the map π : H/Λ → Cn−1/ρ(Λ) is a holomorphic
punctured disk bundle over the torus T := Cn−1/ρ(Λ), which has negative curvature. More
precisely, there exists a holomorphic line bundle π̃ : L → T on the torus T , endowed with a
Hermitian metric h with negative curvature Θ := −i∂∂̄ log h, as well as a holomorphic embedding
i : H/Λ→ L whose image is the open set:

{v ∈ L | 0 < ‖v‖h < 1},

and such that π = π̃ ◦ i.

Proof. Since Λ is a lattice of N , ρ(Λ) is a lattice of Cn−1 and in particular T is a torus. The
discrete subgroup Λ ∩ [N,N ] is non-trivial, generated by an element Z := n(l,0) for some l > 0.
The map L de�ned above identi�es H/〈Z〉 to an open set Ωt0 of C × Cn−1. Through this
identi�cation, Λ acts on Ωt0 by:

n(s,v) · (t, w) =

(
e

2π
l

(
− ‖v‖

2

2 −is−〈w,v〉
)
t, v + w

)
.

The quotient space H/Λ can thus be identi�ed with the quotient of Ωt0 by this action. Notice
that this action naturally extends to an action of Λ on C× Cn−1. Let us endow the trivial line
bundle pr2 : C× Cn−1 → Cn−1 with the Hermitian metric:

h((a, v), (a′, v)) := λ(t0)−2 exp

(
2π‖v‖2

l

)
aā′,

so that the inclusion map j : Ωt0 → C× Cn−1 de�nes a holomorphic embedding whose image is
the open set:

{(a, v) ∈ C× Cn−1 | 0 < ‖(a, v)‖h < 1}.

Since Ωt0 is Λ-invariant, both the inclusion j and the bundle pr2 pass to the quotient, i.e. we
have the following commutative diagram:

Ωt0 Ωt0/Λ

C× Cn−1 L

Cn−1 T.

j i

pr2 π̃
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In this diagram, L := (C × Cn−1)/Λ, horizontal arrows are natural quotient maps and π̃ is the
only map making the bottom square of the diagram commute. Using the above expression for
the action of Λ on C×Cn−1, we see that π̃ : L→ T is a line bundle and L can be endowed with
the quotient Hermitian metric of h, still denoted by h, so that the image of i is the open set:

{v ∈ L | 0 < ‖v‖h < 1}.

The curvature of (L, h), locally given by the form − 2πi
l ∂∂̄‖·‖

2, is negative.

Let us denote by XΓ the toroidal compacti�cation of HnC/Γ obtained by the previous con-
struction. Recall that a line bundle L → X on a complex manifold X is negative if it admits a
Hermitian metric h whose curvature form is negative, i.e. if the Chern class c1(L) of the bundle
L can be represented by a negative (1, 1)-form. For each boundary torus T added during the
compacti�cation, the normal bundle of T in XΓ is identi�ed with the normal bundle (TL/TO)|O
of the zero section O in the total space of the bundle L, which is isomorphic to L. We deduce
that:

Corollary 7. For each boundary torus T ⊂ XΓ added during the compacti�cation, the normal
bundle of T in XΓ is negative.

3 Nonpositively curved Kähler manifolds containing hyper-

surfaces with c1 = 0

In this section, we prove that for any non-uniform torsion-free lattice Γ of PU(n, 1), the toroidal
compacti�cation XΓ, when de�ned, does not admit any Kähler metric with nonpositive sectional
curvature (Theorem 1). We will use that XΓ contains a torus of complex codimension 1 whose
normal bundle is negative (Corollary 7). The following proposition immediately implies the
theorem. It uses the fact that the holomorphic sectional curvature decreases when passing to
submanifolds, as well as relations between di�erent notions of curvature, some of which are valid
only for Kähler manifolds, and which are explained in [Div22].

Proposition 8. Let M be a complex manifold with a Kähler metric of nonpositive sectional
curvature. Suppose that M contains a codimension 1 compact submanifold V whose �rst Chern
class c1(TV ) is zero. Then V is totally geodesic and the Ricci curvature ofM is zero in restriction
to V . Moreover the �rst Chern class c1(NV ) of the normal bundle of V vanishes.

Before proving the Proposition, we state our curvature conventions. On a Riemannian man-
ifold (M, g), we de�ne:

R(X,Y ) := ∇[X,Y ] − [∇X ,∇Y ] and (2)

R(X,Y, Z, T ) := g(R(X,Y )Z, T ).

Thus (M, g) has nonpositive sectional curvature if and only if R(X,Y,X, Y ) ≤ 0 for all vectors
�elds X,Y ofM . Accordingly, if (f1, . . . , fn) is an orthonormal basis of TxM , the Ricci curvature
of M at x is de�ned by:

RicciM (X,Y ) :=

n∑
j=1

R(X, fj , Y, fj).

With these notations in mind, let us now turn to the proof of the Proposition:
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Proof of Proposition 8. The holomorphic sectional curvature of V is less than or equal to the one
ofM restricted to the tangent bundle of V , therefore, it is nonpositive. By [Div22, remark 2.8], in
the case of a compact Kähler manifold, the non-positivity of the holomorphic sectional curvature
implies the non-positivity of the scalar curvature, and the total scalar curvature (i.e. the integral
of the scalar curvature) is zero if the Chern class c1(TV ) of V is zero. Therefore, the scalar
curvature of V is identically zero. From [Div22, proposition 2.9], we deduce that the holomorphic
sectional curvature of V is identically zero. Because the latter determines the sectional curvature
of V [KN96, chapter IX, proposition 7.1], we deduce that the metric g restricted to V is �at.
The holomorphic sectional curvature of V also bounds from below the holomorphic sectional
curvature of M restricted to the tangent bundle of V , so the latter is identically zero. From
[KN96, chapter IX, proposition 9.2], we deduce that the second fundamental form of V is zero,
thus that V is totally geodesic.

Let us show that the Ricci curvature ofM restricted to TV is identically zero. Let (z1, . . . , zn)
be complex coordinates in the neighborhood of a point x of V , such that ( ∂

∂z1 , . . . ,
∂
∂zn ) forms

an orthonormal basis of T (1,0)
x M and ( ∂

∂z1 , . . . ,
∂

∂zn−1 ) an orthonormal basis of T (1,0)
x V . Then,

writing zi =: xi +
√
−1yi and ei := ∂

∂xi , we have that:

• (e1, Je1, . . . , en, Jen) is an orthonormal basis of the tangent space TxM ;

• (e1, Je1, . . . , en−1, Jen−1) is an orthonormal basis of the tangent space TxV .

It is su�cient to show that RicciM (ei, ei) = 0 for all i < n. Recall that the �rst Bianchi
identity gives for all vectors X,Y ∈ TxM :

R(X, JX, Y, JY ) = R(X,Y,X, Y ) +R(X, JY,X, JY ).

In particular, if the sectional curvature is nonpositive, so is the holomorphic bisectional curvature.
This formula also allows to express the Ricci curvature at x:

RicciM (ei, ei) =

n∑
j=1

R(ei, ej , ei, ej) +R(ei, Jej , ei, Jej)

=

n∑
j=1

R(ei, Jei, ej , Jej)

= R(ei, Jei, en, Jen) + RicciV (ei, ei)

= R(ei, Jei, en, Jen).

We assert that for all vectors v, w tangent to M at the same point, we have:

R(v, Jv, w, Jw)2 ≤ R(v, Jv, v, Jv)R(w, Jw,w, Jw). (3)

This inequality holds for all Kähler manifolds with nonpositive Riemannian sectional curvature.
Provided that it is true, we apply it to v = ei and w = en: since R(ei, Jei, ei, Jei) = 0 due to
the fact that the holomorphic sectional curvature of M restricted to TV is zero, this shows that
RicciM |TV = 0.

The proof of Inequality (3), coming from the articles [MS80; Di 12], consists in considering a
one-parameter family of tangent planes at the considered point, and in expressing the curvature
of these planes as a nonpositive function of the parameter. We use the fact that the metric is
Kählerian to simplify the expression of the curvature. More precisely, for any real number a, we
set: {

pa := av + w
qa := J(av − w).

8



Since p−a = Jqa and q−a = −Jpa, the map a 7→ R(pa, qa, pa, qa) is even. It can thus be
written as a polynomial P (a2) of degree at most 2 in a2:

P (a2) = R(pa, qa, pa, qa) = R(v, Jv, v, Jv)a4 +Aa2 +R(w, Jw,w, Jw),

with:

A :=R(v, Jv, w,−Jw) +R(v,−Jw, v,−Jw) +R(v,−Jw,w, Jv)+

R(w, Jv, v,−Jw) +R(w, Jv,w, Jv) +R(w,−Jw, v, Jv)

=−R(v, Jv, w, Jw) +R(v,−Jw, v,−Jw)−R(v,−Jw, v,−Jw)+

R(w, Jv, v,−Jw)−R(w, Jv, v,−Jw)−R(v, Jv, w, Jw)

=− 2R(v, Jv, w, Jw).

Thus:
P (a2) = R(v, Jv, v, Jv)a4 − 2R(v, Jv, w, Jw)a2 +R(w, Jw,w, Jw).

Since the sectional curvature is nonpositive, the polynomial P is nonpositive on R+. Recall
also that R(X, JX, Y, JY ) ≤ 0 for all vectors X,Y ∈ TxM . We distinguish two cases:

• If the coe�cient R(v, Jv, v, Jv) vanishes, then when a becomes increasingly large, the
inequality R(pa, qa, pa, qa) ≤ 0 forces R(v, Jv, w, Jw) to vanish as well.

• Otherwise, we want to show that the discriminant of P is nonpositive. If it were positive,
then P would have two simple roots whose sum would be 2R(v,Jv,w,Jw)

R(v,Jv,v,Jv) ≥ 0, so at least
one of them would be positive. But on the neighbourhood of a simple root, the sign of
P would change, which would contradict the inequality R(pa, qa, pa, qa) ≤ 0. Hence the
discriminant of P is nonpositive.

In all cases, we get the desired inequality:

R(v, Jv, w, Jw)2 ≤ R(v, Jv, v, Jv)R(w, Jw,w, Jw).

Let us now show that the normal bundle of V has vanishing �rst Chern class. If ρ :=

RicciM (·, J ·) denotes the Ricci form of M , the class c1(KM ) is represented by
√
−1

2π ρ, which
vanishes in restriction to V . Since c1(KV ) = −c1(TV ) = 0 and NV = KV ⊗K−1

M |V , we deduce
that c1(NV ) = 0.

4 A metric on XΓ with nonpositive holomorphic bisectional

curvature

In this section, we prove that for any non-uniform torsion-free lattice Γ0 of PU(n, 1), there exists
a �nite index subgroup Γ′ < Γ0 such that for any �nite index subgroup Γ < Γ′, the toroidal
compacti�cation XΓ of HnC/Γ admits a Kähler metric with nonpositive holomorphic bisectional
curvature (Theorem 2). We will need the following lemma, whose proof we omit:

Lemma 9. There exists a constant C0 > 0 such that for every C ≥ C0, there is a smooth
function f : [0, C] → R+ which coincides with cosh on some neighborhood of 0, coincides with
exp on some neighborhood of C and such that the functions f, f ′, f ′′, f ′′′ are positive on (0, C].
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Proof of Theorem 2. The proof takes up Hummel and Schroeder's construction of a Kähler metric
on toroidal compacti�cations [HS96], adding the assumption of �nite index subgroups in order
to get space for the construction of a metric with nonpositive holomorphic bisectional curvature.
In a nutshell, the idea is to work separately in each cusp, and, provided that the cusp is �big
enough�, to patch there some compact manifold, endowed with a Kähler metric which glues to
the complex hyperbolic one, and whose bisectional curvature is nonpositive. For the reader's
convenience, we �rst provide a detailed description of the construction of the metric, as carried
out by Hummel and Schroeder, and then we come to the original part of the proof, which is the
computation of the holomorphic bisectional curvature.

First we �x some notations. Using the model (s, v) 7→ n(s,v) of the Heisenberg group N
described in Section 2, we endow N with the left-invariant metric µ expressed at the identity
point by:

µId := ds2 ⊕ dv2.

Let n be the Lie algebra of N , Z the generator of [n, n] ' R such that exp(Z) = n(1,0) and r the µ-
orthogonal of [n, n]. Assuming that Γ0 is a torsion-free non-uniform lattice of PU(n, 1) with purely
unipotent parabolic elements as explained in Section 2, any cusp in HnC/Γ0 is biholomorphically
isometric to:

((−∞, A0]×N/Λ0, µ0, J0),

where A0 is some real number and Λ0 a lattice in N which depend on the cusp; µ0 is the
N -invariant metric expressed at a point (t, Id mod Λ0) by:

µ0(t,Id mod Λ0) := dt2 ⊕ e2tµ|r×r ⊕ e4tµ|RZ×RZ ;

and J0 is the N -invariant complex structure de�ned at a point (t, Id mod Λ0) by:{
J0Z = e2t ∂

∂t ,
∀v ∈ Cn−1, exp ◦J0 ◦ exp−1(n(0,v)) = n(0,iv).

In fact this biholomorphism is, up to translating the parameter t by ln(
√

2), the quotient of the
map L̃ de�ned in Section 2. Avoiding for each cusp a �nite number of elements of Γ, there is
by Malcev's Theorem a �nite index subgroup Γ′ < Γ0 such that for any �nite index subgroup
Γ < Γ′, any cusp of HnC/Γ, which lies above some cusp ((−∞, A0] × N/Λ0, µ0, J0) of HnC/Γ0, is
biholomorphically isometric to ((−∞, A0]×N/Λ, µ0, J0) for some �nite index subgroup Λ < Λ0

such that the group Λ∩ [N,N ] is generated by n(l,0) with l > 2π exp2(C0−A0), where the constant
C0 is given by Lemma 9. Let Γ be a �nite index subgroup of Γ′. We will show that the toroidal
compacti�cation XΓ of HnC/Γ has a metric with nonpositive bisectional holomorphic curvature.

Let ((−∞, A0] × N/Λ, µ0, J0) be a cusp of HnC/Γ. To construct the desired metric on this
cusp, we �rst change slightly the model. Let ϕ be the automorphism of N given by:

ϕ(n(s,v)) = n 2π
l s,
√

2π
l v
,

and set C := ln
√

l
2π and A := A0 + C in order to de�ne the di�eomorphism:

Φ :

{
(−∞, A0]×N/Λ −→ (−∞, A]×N/ϕ(Λ)

(t, n mod Λ) 7−→ (t+ C,ϕ(n) mod ϕ(Λ)).

Easy computations show that Φ∗µ0 = µ0 and Φ∗J0 = J0. In this new model, we have by
construction ϕ(n(l,0)) = n(2π,0) and A > C0.
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We now make a second change of model. First let f : [0, A] → R+ be the function given
by Lemma 9, g := ff ′ and ψ : (0, A] → (−∞, A] be the solution of the following di�erential
equation: {

ψ′(t) = e2ψ(t)

g(t)

ψ(A) = A

It is easily seen that ψ is a well de�ned di�eomorphism, and that ψ is the identity in a neigh-
borhood of A. Then let:

Ψ := ψ × Id : (0, A]×N/ϕ(Λ) −→ (−∞, A]×N/ϕ(Λ).

We compute that J := Ψ∗J0 is theN -invariant complex structure de�ned at a point (t, Id mod ϕ(Λ))
by: {

JZ = g(t) ∂∂t ,
∀v ∈ Cn−1, exp ◦J ◦ exp−1(n(0,v)) = n(0,iv).

Then we endow the complex manifold ((0, A]×N/ϕ(Λ), J) with the N -invariant hermitian metric
µf,g expressed at a point (t, Id mod ϕ(Λ)) by:

µf,g (t,Id mod ϕ(Λ)) := dt2 ⊕ f(t)2µ|r×r ⊕ g(t)2µ|RZ×RZ .

The metric µf,g coincides with Ψ∗µ0 on a neighborhood of the boundary of the manifold, hence
it glues back to the hyperbolic metric on the thick part of HnC/Γ. As explained in [HS96], the
toroidal compacti�cation of the cusp can be realized in this model in the following way: using
polar coordinates, we �rst identify (0, A)×N/〈n(2π,0)〉 with D∗(0, A)×Cn−1, where D∗(0, A) is
the punctured disk in C with radius A; then we take the quotient by the action of ϕ(Λ).

From [HS96], the equality g = ff ′ implies that the metric µf,g is Kählerian. The fact that
f = cosh in some neighborhood of 0 implies that f extends to an even function with f(0) 6= 0
and that g = ff ′ extends to an odd function with g′(0) = 1. From [HS96, Lemma 3.8], this
imply that µf,g extends to the compacti�cation of the cusp.

We now express the holomorphic bisectional curvature for the metric µf,g, and show that the
positivity conditions of Lemma 9 ensure that µf,g has negative holomorphic bisectional curvature
on the cusp, and thus nonpositive holomorphic bisectional curvature on the compacti�ed cusp.
As N acts by isometries on (0, A)×N/ϕ(Λ), we will work at a point of the form (t, Id mod ϕ(Λ))
with t ∈ (0, A). Let Y,Ξ be two tangent vectors at this point. Since n = r⊕RZ and JZ = g(t) ∂∂t ,

we can write Y =: aX+bZ+cJZ and Ξ =: αX̃+βZ+γJZ with a, b, c, α, β, γ ∈ R, andX, X̃ ∈ r of
norm µ(X,X) = µ(X̃, X̃) = 1. As in [HS96], we use the curvature convention given by Equation
(2), and the holomorphic bisectional curvature of Y and Ξ isR(Y, JY,Ξ, JΞ) =: R(Y ∧JY,Ξ∧JΞ).
We compute that:

Y ∧ JY =B1 +B2 +B3 with:

B1 = a2X ∧ JX + (b2 + c2)Z ∧ JZ,
B2 = −ac(X ∧ Z + JX ∧ JZ),

B3 = −ab(JX ∧ Z + (−X ∧ JZ)).

In the same way, Ξ ∧ JΞ = β1 + β2 + β3 with βi de�ned as Bi by replacing a, b, c by α, β, γ and
X by X̃. Following [HS96], we de�ne:

(E1, E2, E3, E4, E5, E6) :=

(
X ∧ JX
‖X ∧ JX‖

,
Z ∧ JZ
‖Z ∧ JZ‖

,
X ∧ Z
‖X ∧ Z‖

,
JX ∧ JZ
‖JX ∧ JZ‖

,
JX ∧ Z
‖JX ∧ Z‖

,
X ∧ JZ
‖X ∧ JZ‖

)
.
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When g = ff ′, Hummel and Schroeder's computations show that:

(R(Ei, Ej))1≤i,j≤6 =:

 G 0 0
0 F 0
0 0 F

 ,

where:

G =

 −4
(
f ′

f

)2

−2 f
′′

f

−2 f
′′

f −3 f
′′

f −
f ′′′

f ′

 =:

(
−h2

1 −2k
−2k −h2

2

)

F =

(
− f

′′

f − f
′′

f

− f
′′

f − f
′′

f

)
=:

(
−h2

3 −k
−k −h2

4

)
The functions hi : (0, A) → (0,+∞) de�ned through G and F are well de�ned because of the
positivity conditions for f and its derivatives. Here and in the sequel, the functions f, g, k, hi
shall implicitly be evaluated at t. Now we compute that:

R(B1, β1) = a2α2R(X ∧ JX, X̃ ∧ JX̃)− 2ka2(β2 + γ2)‖X ∧ JX‖‖Z ∧ JZ‖−

2kα2(b2 + c2)‖X̃ ∧ JX̃‖‖Z ∧ JZ‖ − h2
2(b2 + c2)(β2 + γ2)‖Z ∧ JZ‖2

= a2α2R(X ∧ JX, X̃ ∧ JX̃)− 2h2
3f

2g2
(
a2(β2 + γ2) + α2(b2 + c2)

)
− h2

2g
4(b2 + c2)(β2 + γ2).

R(B1, β2) = −2a2αγR(X ∧ JX, X̃ ∧ Z).

R(B1, β3) = −2a2αβR(X ∧ JX, JX̃ ∧ Z).

According to the computations of the appendix of [HS96], R(X, JX)Z is a multiple of JZ = g ∂∂t ,

which is orthogonal both to X̃ and JX̃. Therefore the two terms R(B1, β2) and R(B1, β3) vanish.
By symmetry, we also have R(B2, β1) = R(B3, β1) = 0. Then, using that the metric is Kählerian,
we �nd that:

R(B2, β2) = acαγR(X ∧ Z + JX ∧ JZ, X̃ ∧ Z + JX̃ ∧ JZ)

= 4acαγR(X ∧ Z, X̃ ∧ Z).

R(B3, β3) = 4abαβR(JX ∧ Z, JX̃ ∧ Z).

R(B2, β3) = 4acαβR(X ∧ Z, JX̃ ∧ Z).

R(B3, β2) = 4abαγR(JX ∧ Z, X̃ ∧ Z).

Let us compute these four terms. The application (U, Ũ) 7→ R(U∧Z, Ũ∧Z) is bilinear symmetric,
of quadratic form:

R(U ∧ Z,U ∧ Z) = −f2g2h2
3µ(U,U).

By splitting, we deduce that for all U, Ũ , we have R(U ∧ Z, Ũ ∧ Z) = −f2g2h2
3µ(U, Ũ). Hence:

R(JX ∧ Z, JX̃ ∧ Z) = −f2g2h2
3µ(JX, JX̃) = −f2g2h2

3µ(X, X̃),

R(X ∧ Z, JX̃ ∧ Z) = −f2g2h2
3µ(X, JX̃),

R(JX ∧ Z, X̃ ∧ Z) = −f2g2h2
3µ(JX, X̃) = f2g2h2

3µ(X, JX̃).
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Therefore:

−R(Y ∧ JY,Ξ ∧ JΞ) =− a2α2R(X ∧ JX, X̃ ∧ JX̃)+

h2
2g

4(b2 + c2)(β2 + γ2)+

2h2
3f

2g2
(
a2(β2 + γ2) + α2(b2 + c2)

)
+

f2g2h2
3µ(X, X̃)4aα(bβ + cγ)+

f2g2h2
3µ(X, JX̃)4aα(cβ − bγ).

It remains to compute R(X ∧JX, X̃ ∧JX̃). Let us write X̃ = dX + eJX +W with d, e ∈ R and
W a vector µ-orthogonal to X and JX (in fact d = µ(X, X̃) and e = µ(JX, X̃)). Then:

R(X ∧ JX, X̃ ∧ JX̃) = R(X, JX, dX + eJX +W,−eX + dJX + JW )

= (d2 + e2)R(X, JX,X, JX) + d(R(X,JX,X, JW ) +R(X, JX,W, JX))+

e(R(X, JX, JX, JW )−R(X, JX,W,X)) +R(X, JX,W, JW )

= (d2 + e2)R(X,JX,X, JX) + 2R(X, JX,X, eW + dJW ) +R(X, JX,W, JW )

= −(d2 + e2)f4h2
1 − 2(

3g2

f2
+ f ′2)〈JX, eW + dJW 〉+R(X, JX,W, JW )

= −(d2 + e2)f4h2
1 + 0 +R(X,JX,W, JW ).

Also:

R(X, JX,W, JW ) = 〈∇[X,JX]W −∇X∇JXW +∇JX∇XW,JW 〉
= 2〈∇ZW,JW 〉 because ∇XW = ∇JXW = 0 and [X, JX] = 2Z

=
−2g2

f2
‖W‖2 from [HS96, (3.2)]

Putting together the previous calculations, we obtain:

−R(Y ∧ JY,Ξ ∧ JΞ) = a2α2

(
(d2 + e2)f4h2

1 +
2g2

f2
‖W‖2

)
+ h2

2g
4(b2 + c2)(β2 + γ2)+

2f2g2h2
3

(
a2(β2 + γ2) + α2(b2 + c2) + 2aα(bβ + cγ)µ(X, X̃) + 2aα(cβ − bγ)µ(X, JX̃)

)
.

We now show that:∣∣∣2aα((bβ + cγ)µ(X, X̃) + (cβ − bγ)µ(X, JX̃)
)∣∣∣ ≤ a2(β2 + γ2) + α2(b2 + c2).

The two real numbers x := µ(X, X̃) and y := µ(X, JX̃) verify the inequality:

x2 + y2 = |x+ iy|2 = |µC(X, X̃)|2 ≤ µ(X,X)µ(X̃, X̃) ≤ 1,

where µC is the hermitian product associated to µ|r×r, de�ned by:

µC(U, Ũ) := µ(U, Ũ) + iµ(U, JŨ).

Using the triangle inequality and the inequality 2XY ≤ X2 + Y 2, we get that:

|2aα ((bβ + cγ)x+ (cβ − bγ)y)| ≤ 2|aα||bβx+ cβy|+ 2|aα||cγx− bγy|
≤ a2β2 + α2(bx+ cy)2 + a2γ2 + α2(cx− by)2

≤ a2(β2 + γ2) + α2(b2 + c2).
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This allows us to conclude that R(Y ∧JY,Ξ∧JΞ) is nonpositive. Easy case by case examinations
show that it vanishes only if Y = 0 or Ξ = 0.

Remark. In fact the metric constructed in the proof has negative Ricci curvature. The Ricci
curvature, being a sum of holomorphic bisectional curvatures, is negative on the open set HnC/Γ ⊂
XΓ, and we will prove that it is negatively pinched near the boundary tori. More precisely, using
the notations of the proof of Theorem 2, we claim that Ricci ≤ −2µf,g on (0, ε) × N/φ(Λ) for
some ε > 0. Indeed, let (X1, . . . , Xn−1) be an orthogonal C-basis of (r, µ|r×r), so that, implictely
evaluating f and g = ff ′ at some real number t ∈ (0, A], the family:

(
1

f
X1,

1

f
JX1, . . . ,

1

f
Xn−1,

1

f
JXn−1,

1

g
Z,

1

g
JZ)

forms an orthonormal basis of the tangent space of (0, A]×N/φ(Λ) at (t, Id mod ϕ(Λ)). Let:

Ξ =

n−1∑
i=1

(αiXi + αīJXi) + βZ + γJZ

be a tangent vector at this point, with αi, αī, β, γ ∈ R, and denote by α the real number:

α :=

√√√√n−1∑
i=1

(α2
i + α2

ī
).

Using the above formula for the bisectional curvature, a computation shows that the Ricci cur-
vature of the metric has the following expression:

Ricci(Ξ,Ξ) = −
(
2ff ′′ + 4f ′2 + 2(n− 2)f ′2

)
α2 −

(
(2n+ 1)ff ′2f ′′ + f2f ′f ′′′

)
(β2 + γ2).

The function f coincides with cosh on (0, ε), for some ε > 0 and when t < ε, we get:

Ricci(Ξ,Ξ) ≤ −2f2α2 − 2g2(β2 + γ2) = −2‖Ξ‖2µf,g .

By continuity, this inequality remains valid on the boundary tori, hence the result.

5 Commensurators, parabolic subgroups and Albanese maps

We begin this section by stating a proposition which will be used during the proof of Theorem
4. If Γ is a discrete subgroup of PU(n, 1), its commensurator Comm(Γ) is the set of elements
g ∈ PU(n, 1) such that gΓg−1 ∩ Γ has �nite index both in Γ and in gΓg−1; it is a subgroup of
PU(n, 1). Moreover a parabolic point of Γ is a point ξ ∈ ∂HnC whose stabiliser StabΓ(ξ) in Γ
contains a parabolic element. The following proposition is probably classical, we include it for
the sake of being self-contained.

Proposition 10. Let Γ0 be a non-uniform arithmetic lattice of PU(n, 1). For any pair (ξ, x) ∈
∂HnC × HnC, let K(ξ, x) be the subgroup StabΓ(ξ) ∩ StabΓ(x) of PU(n, 1). Then there exists
a dense subset S ⊂ HnC such that for any parabolic point ξ of Γ0 and for any point x ∈ S,
Comm(Γ0) ∩K(ξ, x) is dense in K(ξ, x).

We defer the proof to the end of the section, and continue with Theorem 4. For every closed
Kähler manifold X, one can construct its Albanese torus Alb(X) and a holomorphic map from
X to Alb(X), called the Albanese map of X [Voi02, chapter 12]. We denote by Alb(XΓ) the
Albanese torus of XΓ and AΓ : XΓ → Alb(XΓ) its Albanese map. With these notations, let us
restate Theorem 4:
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Theorem 4. Let Γ0 be a non-uniform torsion-free arithmetic lattice of PU(n, 1). There exists
a �nite index subgroup Γ′ < Γ0 such that for any �nite index subgroup Γ < Γ′, the toroidal
compacti�cation XΓ of HnC/Γ satis�es the following properties:

• Its Albanese map AΓ is an immersion on the open set HnC/Γ ⊂ XΓ and:

• For any boundary torus T of XΓ, the map AΓ |T is either an immersion or a constant.

We recall that by �boundary torus of XΓ�, we mean one of the tori added during the com-
pacti�cation, i.e. a connected component of the complement of HnC/Γ in XΓ.

Proof. For the �rst point, we refer to [Eys18], which uses that there are non-trivial holomorphic
one forms onXΓ by results of Shimura [Shi79]. See also [LP22] for another exposition of this proof
in the cocompact case. For the proof of the second point, we can and do assume that HnC/Γ0

admits a toroidal compacti�cation, and we introduce the following terminology: a boundary
torus τ of XΓ0

will be said to be virtually Albanese non-constant if there exists a �nite index
subgroup Γ < Γ0 and a boundary torus T of XΓ above τ , in restriction to which AΓ is not
constant. Let τ be a virtually Albanese non-constant boundary torus of XΓ0

, and Γ and T as
above. Holomorphic maps between tori have constant rank, thus for every point x ∈ T , there
exists a holomorphic one form α ∈ Ω1(XΓ) such that i∗α(x) 6= 0, where i : T ↪→ XΓ is the
inclusion.

Let ξ ∈ ∂HnC be a point corresponding to the cusp of HnC/Γ compacti�ed by the torus T . From
here on, we use the notations of Section 2. According to the results recalled there, StabΓ(ξ) is
a lattice of the nilpotent group Nξ. Thus it intersects non-trivially [Nξ, Nξ] ' R. Let Zξ be a
generator of Γ ∩ [Nξ, Nξ]. We have the following diagram:

HnC/〈Zξ〉 Ω Ω0 Cn−1

HnC/Γ XΓ T,

L ĩ

i

where Ω0 := Ω ∪ ({0} × Cn−1), hooked arrows are inclusions, ĩ is de�ned by ĩ(x) := (0, x), and
the map Ω0 → XΓ is a covering above T ∪HnC/Γ.

Recall that L depends on the choice of a geodesic γ such that γ(t) −→
t→+∞

ξ. Here we choose

γ such that o := γ(0) belongs to the set S of Proposition 10. Recall also that K(ξ, o) is the
intersection of the stabilisers of ξ ∈ ∂HnC and o ∈ HnC in PU(n, 1), and that it is isomorphic
to U(n − 1). Now the action of K(ξ, o) on HnC commutes with 〈Zξ〉 so K(ξ, o) also acts on Ω.
Identifying K(ξ, o) with U(n − 1), this action can simply be written A · (λ, v) = (λ,Av) for all
(λ, v) ∈ Ω ⊂ C∗×Cn−1. This follows from formula 1 and diagram page 4, and from the fact that
K(ξ, o) acts only on the �v-terms� of the coordinates L̃ and preserves its norm. In particular,
the action of K(ξ, o) extends by the same formula to Ω0.

Let x ∈ XΓ be the point below (0, 0) ∈ Ω0, and α ∈ Ω1(XΓ) a holomorphic one form such
that i∗α(x) 6= 0. Denoting by β the pullback of α by the map Ω0 → XΓ, we have ĩ∗β(0) 6= 0.
We deduce that there exists g1, . . . , gn−1 ∈ K(ξ, o) such that

e := (̃i∗(g−1
1 )∗β(0), . . . , ĩ∗(g−1

n−1)∗β(0))

is a basis of T (1,0)∗
0 Cn−1. All the gi's can be chosen in Comm(Γ) ∩ K(ξ, o), which is dense in

K(ξ, o) by Proposition 10.
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Then let Γ′ be some �nite index subgroup of:

n−1⋂
i=1

giΓg
−1
i ∩ Γ,

and which is normal in Γ. We want to show that for every boundary torus T ′ of XΓ′ above T and
for every point x′ ∈ T ′ above x, the di�erential dAΓ′ |T ′(x

′) is injective. Since Γ′ is normal in Γ,
the automorphism group of XΓ′ acts transitively on the set of tori above T , thus it is enough to
show this property for the torus T ′ above T which compactify the cusp associated to the Γ′-orbit
of ξ.

The group Γ′ ∩ [Nξ, Nξ] is a non-trivial subgroup of Γ ∩ [Nξ, Nξ], it is thus generated by dZξ
for some d ∈ N∗. We then have the following diagram:

HnC/〈dZξ〉 Ω(d) Ω
(d)
0 Cn−1

HnC/〈Zξ〉 Ω Ω0 Cn−1

HnC/Γ XΓ T,

L(d)

Ψ

ĩ(d)

Id

L ĩ

i

(4)

where:

Ω(d) := {(a, v) ∈ C× Cn−1 | 0 < |a| < e
−π‖v‖2

dl },

Ω
(d)
0 := Ω(d) ∪ ({0} × Cn−1) and

Ψ : (a, v) 7→ (ad, v).

Let δ := Ψ∗β, and de�ne δi := (g−1
i )∗δ for i ∈ {1, . . . , n − 1}. We claim that δ1, . . . , δn−1

are the pullback of holomorphic forms ε1, . . . , εn−1 on XΓ′ , and that denoting T ′
i′

↪→ XΓ′ the
inclusion of T ′ in XΓ′ , the family e′′ := (i′∗ε1(x′), . . . , i′∗εn−1(x′)) is a basis of T (1,0)∗

x′ T ′. This
will imply that the di�erential dAΓ′ |T ′(x

′) is injective.
For all i, the form δi is the pullback of a holomorphic form εi because the element gi ∈

PU(n, 1) induces a biholomorphism HnC/Γ → HnC/giΓg
−1
i which extends to a biholomorphism

θi : XΓ → XgiΓg
−1
i
. Noticing that gi acts on Ω

(d)
0 and that there is a rami�ed covering πi :

XΓ′ → XgiΓg
−1
i
, the commutativity of the following diagram entails that δi is the pullback of the

form εi := π∗i (θi)∗α:

Ω
(d)
0 Ω

(d)
0 XΓ′

Ω0

XΓ XgiΓg
−1
i
.

Ψ

gi·

πi

θi

The family e′′ is a basis because, up to the cover Cn−1 → T ′ it can be identi�ed with the
family e′ := (̃i(d)∗δ1(0), . . . , ĩ(d)∗δn−1(0)) which, up to the identity map Cn−1 → Cn−1 of the
commutative diagram (4), is (identi�ed with) e. The latter was constructed to be a basis of
T

(1,0)∗
0 Cn−1.

16



We deduce that dAΓ′ |T ′(x
′) is injective. Since AΓ′ |T ′ is a holomorphic application between

tori, it is a �bration, and in particular, its di�erential is injective at a point if and only if it is
injective at any point. Hence AΓ′ |T ′ is an immersion.

For each virtually Albanese non-constant boundary torus τi, there is a �nite index subgroup
Γ′i < Γ0 constructed as above. Let Γ′ be the intersection of the Γ′i. Let Γ′′ be a �nite index
subgroup of Γ′, and T a boundary torus of XΓ′′ . If T covers a boundary torus of XΓ0 which
is not virtually Albanese non-constant, then by de�nition AΓ′′ |T is constant. Otherwise, there
exists an intermediate rami�ed covering XΓ′′ → XΓ′i

→ XΓ0
such that the Albanese map of

XΓ′i
in restriction to a torus below T is an immersion. A fortiori the Albanese map of XΓ′′ in

restriction to T is an immersion.

Proof of Proposition 10. We use there the explicit description of non-uniform arithmetic lattices
in PU(n, 1), see for instance section 2 of [ES14] or [PY09]. We denote π : U(n, 1) → PU(n, 1)
and [·] : Cn+1 \ {0} → CPn the projection maps. Let Γ0 be a non-uniform arithmetic lattice of
PU(n, 1). Then there exists:

• A purely imaginary quadratic extension l := Q(
√
−d) of Q whose ring of integers is denoted

Ol,

• A Hermitian form H : ln+1× ln+1 → l on ln+1 whose extension HC to Cn+1 is of signature
(n, 1),

• An isomorphism Φ : (Cn+1, HC) → (Cn+1, 〈·, ·〉) where 〈·, ·〉 denotes the standard Her-
mitian form of signature (n, 1) used to de�ne HnC; moreover Φ induces an isomorphism
Θ : U(HC)→ U(n, 1) de�ned by Θ(g) := ΦgΦ−1, and allows to de�ne an arithmetic lattice
Γl < PU(n, 1) by Γl := π(Θ(U(HC ,Ol))); and

• A subgroup Γ of Γ0 ∩ Γl which is of �nite index both in Γ0 and Γl.

If we replace Γ by a �nite index subgroup, we can also suppose that all its parabolic subgroups
are unipotent. We de�ne:

Hnl := {[Φ(x)] | x ∈ ln+1 and H(x, x) < 0},
∂Hnl := {[Φ(x)] | x ∈ ln+1 and H(x, x) = 0}.

Let ξ := [Φ(ξ̃)] ∈ ∂Hnl and o := [Φ(õ)] ∈ Hnl , with (ξ̃, õ) ∈ ln+1 × ln+1. Let C be the intersection
of the stabilisers of ξ̃ and õ in U(HC), and Cl the subgroup of C consisting of the matrices with
coe�cients in l. By construction, K(ξ, o) = π(Θ(C)).

Two commensurable lattices have the same commensurator and the same parabolic points.
Therefore, the following three statements lead to the proposition with S := Hnl :

Assertion 1: let ξ be a parabolic point of Γ. Then ξ ∈ ∂Hnl .
Assertion 2: let ξ ∈ ∂Hnl and o ∈ Hnl . Then π(Θ(Cl)) ⊂ Comm(Γl)∩K(ξ, o), with Cl de�ned

as above.
Assertion 3: let ξ ∈ ∂Hnl and o ∈ Hnl . Then Cl is dense in C, so π(Θ(Cl)) is dense in K(ξ, o).
The proofs of these three statements are independent of each other. Assertion 2 is classical,

and we will omit its proof.
Proof of Assertion 1 :
Let γ be a non-trivial parabolic element of Γ which �xes ξ = [x]. We must show that Cx

intersects non trivially ln+1. Since Γ ⊂ Γl, we can write γ = π(Θ(M)) with M ∈ U(HC,Ol),
and Θ(M)x = αx for some α ∈ S1. Since γ is unipotent, it can also be represented by an upper
triangular matrix T with diagonal entries 1, thus Θ(M) is a multiple α′T of T . Evaluating at
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x gives α = α′, and in particular det(M) = det(Θ(M)) = αn+1. We deduce that αn+1 ∈ Ol.
The only integers of modulus 1 of purely imaginary quadratic extensions are roots of units, so
α is a root of unit. Up to replacing γ by an appropriate power γk, we can thus suppose that
γ = [Θ(M)] with Θ(M)x = x.

The mapM can also be seen as a linear mapMl : ln+1 → ln+1. The kernel E1
l ofMl− Id and

the kernel E1 ofM − Id are related by E1 = E1
l ⊗C. Let e := (e1, . . . , ek) be an orthogonal basis

of E1
l . It is not possible to have H(ei, ei) > 0 for all i because otherwise, HC would be positive

de�nite on the C-span of e, which is E1, and this space contains the isotropic vector x. Thus
H(ei, ei) ≤ 0 for some i. Now ξ = [x] and [Φ(ei)] are two �xed points in HnC of the parabolic
element γ = π(Θ(M)), hence ξ = [Φ(ei)] ∈ ∂Hnl .

Proof of Assertion 3 :
Let ξ̃ ∈ ln+1 and õ ∈ ln+1 be respectively isotropic and negative vectors of H, P the l-span of

these two vectors and P⊥ its orthogonal with respect to H. Then, since H has signature (n, 1),
H(ξ̃, õ) 6= 0 and this easily implies that P ∩ P⊥ = {0}. Hence ln+1 = P ⊕ P⊥, and H restricted
to P⊥ is a positive de�nite Hermitian form. In particular, there is a basis (u1, . . . , un−1) of P⊥

orthogonal for H, and the matrix B := (H(ui, uj))i,j is diagonal, with positive rational diagonal
entries. Now de�ne:

U := {M ∈ Mat(n− 1,C) | tMBM = B}.
Then C is isomorphic to U by a Lie group isomorphism sending Cl to:

Ul := {M ∈ Mat(n− 1, l) | tMBM = B}.

We will show that Ul is dense in U, using a classical argument involving the Cayley transform
[Wey46, section II.10]. Here are the notations that we are going to use:

Mat∗ := {M ∈ Mat(n− 1,C) | det(M + Id) 6= 0} Mat∗l := Mat∗ ∩Mat(n− 1, l)
U∗ := U ∩Mat∗ U∗l := U∗ ∩Mat(n− 1, l)

A∗ := {M ∈ Mat(n− 1,C) | tMB = −BM} ∩Mat∗ A∗l := A∗ ∩Mat(n− 1, l)

The Cayley transform is the involution:

S : Mat∗ −→ Mat∗

N 7−→ 2(I +N)−1 − I.

We will use the two last facts about S of the following series, whose veri�cation can be done
using the �rst ones:

S(N) = (I −N)(I +N)−1 = (I +N)−1(I −N),

S(N) = S(N),

S(N−1) = −S(N) if N is invertible,

N ∈ Mat∗l ⇐⇒ S(N) ∈ Mat∗l ,

N ∈ U∗ ⇐⇒ S(N) ∈ A∗.

Since U∗ is dense in U and S : U∗ → A∗ is a homeomorphism sending U∗l to A∗l , it is enough to
show that A∗l is dense in A∗.

Let S := X + iY be an element of A∗ with X and Y real. Write X := (xij) and Y := (yij).
Taking real and imaginary parts, the equation tSB = −BS is equivalent to:{

tXB +BX = 0
tY B −BY = 0

⇐⇒

{
∀j ≥ i, xji = −bii

bjj
xij

∀j ≥ i, yji = bii
bjj
yij .
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Since all bii are rational, we can approximate X and Y by matrices Xk, Yk with rational coe�-
cients and satisfying the above system. Then the sequence Sk := Xk + iYk is in A∗l for k great
enough, and converges to S. This concludes the proof.

6 A strictly plurisubharmonic exhaustion function on the

universal cover of XΓ

In this section, we �x a non-uniform torsion-free lattice Γ of PU(n, 1) verifying the following
properties: the space HnC/Γ admits a toroidal compacti�cation XΓ with π1-injected boundary
tori, the Albanese map AΓ : XΓ → Alb(XΓ) is an immersion on the open set HnC/Γ and for any
boundary torus T of XΓ, AΓ |T is either an immersion or a constant. We will show that for such

a lattice Γ, the universal cover X̃Γ of XΓ is Stein. This statement implies Theorem 5: indeed,
in Hummel and Schroeder's article, it is noticed that boundary tori are totally geodesic in XΓ

for the metric of non-positive Riemannian curvature constructed there, and they are thus π1-
injected. In combination with Theorem 4, we deduce that for any torsion-free arithmetic lattice
Γ0 of PU(n, 1), there exists a �nite index subgroup Γ′ < Γ0 all of whose �nite index subgroups
satisfy these properties. We will also use that toroidal compacti�cations are projective manifolds.

Here is the global strategy of our proof. Let us denote by π : X̃Γ → XΓ the universal
cover of XΓ. We can construct holomorphic functions on X̃Γ of the form f := gh where h
is a meromorphic function obtained by the theorem of holomorphic convexity with respect to
a line bundle [Nap90, Corollary 4.3] and g is a holomorphic function which kills the poles of
h, obtained by post-composing the lift of the Albanese map of XΓ by a holomorphic function
from Cb1(XΓ)/2 to C. This strategy gives enough holomorphic functions to construct a strictly
plurisubharmonic exhaustion ψ on X̃Γ \ π−1(U) where U is an open neighborhood of the set
Z consisting of all points x ∈ XΓ whose �ber A−1

Γ (AΓ(x)) is not �nite (Proposition 13-1).
We also construct by hand a strictly plurisubharmonic exhaustion function φ on the lift of an
open neighborhood of Z (Lemmas 11,12) and �nally we glue φ and ψ (Lemma 14) to obtain a
strictly plurisubharmonic exhaustion function on X̃Γ (Proposition 13-2). We use the fact that
AΓ restricted to any boundary torus T is either an immersion or a constant in order to get a
nice description of Z (Lemma 12 and its proof).

We now state our intermediary results. Lemmas 11 and 12 are about toroidal compacti�ca-
tions, and Lemma 12 says that the Albanese map of XΓ satis�es all the hypotheses of Proposition
13. This proposition is stated for projective manifolds which are the source of a holomorphic
map with values in a compact manifold with Stein universal cover, and we use it with the Al-
banese map of XΓ to deduce that X̃Γ is Stein. Lemma 14 is used to prove the second point of
Proposition 13.

Lemma 11. Let T be a boundary torus of XΓ. If V is a su�ciently small open neighbourhood of
T , its preimage Ṽ := π−1(V ) is a disjoint union of neighbourhoods of (copies of) Cn−1. We can
choose V so that each of these open neighbourhood admits a strictly plurisubharmonic function
which is of exhaustion relatively to X̃Γ.

This lemma does not use the assumptions on the Albanese map. When we say that a function
is an exhaustion relatively to X̃Γ, it means that its sublevels are relatively compact in X̃Γ.
Furthermore, recall that Z is the set of points x ∈ XΓ whose �ber A−1

Γ (AΓ(x)) is not �nite.

Lemma 12. The set Z is a �nite number of �bers of the map AΓ, and it consists of some
boundary tori together with a �nite number of points. In particular, there exists a neighbourhood
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V of Z as well as a smooth strictly plurisubharmonic function φ on Ṽ := π−1(V ) which is an

exhaustion relatively to X̃Γ.

Proposition 13. Let X be a projective manifold, π : X̃ → X its universal cover and A : X → Y
a holomorphic map from X to a compact manifold Y whose universal cover Ỹ is Stein.

1. De�ne:
Z := {x ∈ X | A−1(A(x)) is not �nite},

let U be an open neighborhood of Z and set Ũ := π−1(U). Then Z is an analytic subvariety

of X and there is a smooth plurisubharmonic function ψ : X̃ → R+, whose vanishing locus

is exactly Z̃ := π−1(Z), that is strictly plurisubharmonic on X̃ \ Z̃, and whose restriction

to X̃ \ Ũ is an exhaustion.

2. In addition, if there is an open neighborhood V of Z and a smooth strictly plurisubharmonic
function φ on Ṽ := π−1(V ) which is an exhaustion relatively to X̃, then X̃ is Stein.

Lemma 14. Let X be a metric space, Z a closed subspace of X and U, V two open sets of X
containing Z with U ⊂ V . Suppose that there exists:

• A continuous function φ : V → (0,+∞) which is an exhaustion relatively to X, and

• A continuous function ψ : X → R+ such that ψ−1({0}) ⊂ Z and ψ|X\U is an exhaustion.

Then for any open set V ′ containing U whose closure is included in V , there exists an increasing
smooth convex function χ : R+ → R+ such that χ(0) = 0 and χ ◦ ψ > φ on V ′ \ U .

Proof of Lemma 11. By hypothesis, for any boundary torus T of XΓ, the map π1(T )→ π1(XΓ)
induced by the inclusion T ↪→ XΓ is injective, therefore the preimage of T in the universal cover
X̃Γ of XΓ is a disjoint union of copies of Cn−1.

Let p : Cn−1 → T be the universal cover of a boundary torus T of XΓ, V a neighbourhood
of T identi�ed with the unit disk bundle of a holomorphic line bundle on T endowed with a
Hermitian metric h as in Proposition 6, and F : V → T the application de�ning this bundle.
Then we have the following commutative diagram:

Ṽ V

Cn−1 T,

F̃

π

F

p

where π : Ṽ → V is the universal cover of V and F̃ the lift of F . We identify Ṽ with a connected
component of the preimage of V in X̃Γ and Cn−1 with the connected component of the preimage
of T in X̃Γ contained in Ṽ . We will show that some neighborhood of the zero section in Ṽ has a
strictly plurisubharmonic function φ which is an exhaution relatively to X̃Γ. This function φ will
be the sum of the pullback by F̃ of a strictly plurisubharmonic exhaustion function on Cn−1, for
instance z 7→ ‖z‖2, and a bounded function on the �bers, de�ned to be the pullback by π of the
squared hermitian norm on V , which will be strictly plurisubharmonic in a neighborhood of the
zero section. Explicitely, for ṽ ∈ Ṽ , let us put φ(ṽ) := ‖F̃ (ṽ)‖2 + N(π(ṽ)), where N : V → R+

is the function v 7→ h(v, v). Then the function φ is an exhaustion relatively to X̃Γ.
We now assert that φ is strictly plurisubharmonic on Cn−1. Indeed, working in coordinates,

this amount to saying that the map:

(a, v) ∈ C× Cn−1 7−→ ‖v‖2 + eh(v)|a|2
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is strictly plurisubharmonic at all points of the form (0, v), which is easily checked. Since i∂∂̄φ
is invariant under the action of π1(T ) on Ṽ , which is co-compact on some closed neighbourhood
of Cn−1, we deduce that φ is strictly plurisubharmonic on a �uniform� neighbourhood of Cn−1,
i.e. a set of the form π−1(V ′) for some open set V ′ ⊂ V .

Proof of Lemma 12. Let T1, . . . , Tk be the boundary tori of XΓ on which the Albanese map AΓ

is constant, of values a1, . . . , ak. We claim that Z = A−1
Γ ({a1, . . . , ak}), which implies that it is

an analytic set. Indeed, if x ∈ Z, there exists a smooth immersed curve z 7→ γ(z) in A−1
Γ (AΓ(x)).

For all z, dAΓ · γ′(z) = 0 so γ is included in a torus. The Albanese map is an immersion in
restriction to all tori except T1, . . . , Tk so γ must be included in one of the Ti, and AΓ(x) = ai.
This proves one inclusion, the other being immediate. In particular, any smooth curve included
in Z is either constant or included in one of the tori T1, . . . , Tk on which the Albanese map
AΓ is constant. We deduce that Z is the union of the tori T1, . . . , Tk with a discrete subset of
XΓ \

⋃k
i=1 Ti.

We claim that this discrete subset is �nite, in other words that it does not accumulate on one
of the tori T1, . . . , Tk. This follows from the fact that Z is an analytic set: in the neighbourhood
of any point of Ti, the set Z has a �nite number of irreducible components. If it had a component
distinct from Ti, Z would contain non-isolated points in the interior of XΓ, which is not possible.
Hence Z coincides locally with Ti.

The last part of the lemma then follows from Lemma 11 and the fact that each point has a
Stein neighborhood.

Proof of Proposition 13-1. This proof is mainly taken from [Nap90], with some modi�cations to
take into account that we work in arbitrary dimensions.

Step 1. The set Z is an analytic subvariety of X.
Realise X as a submanifold of some projective space CPd. For all x ∈ X \ Z, the �ber

A−1(A(x)) is �nite so there exists a hyperplane Hx of CPd which does not intersect this set. We
claim that:

Z =
⋂

x∈X\Z

A−1(A(Hx))

Indeed, for all x ∈ X \Z, we have by construction x /∈ A−1(A(Hx)) thus
⋂
x∈X\Z A

−1(A(Hx)) ⊂
Z. On the other hand, if x0 ∈ Z and x ∈ X \ Z, then the compact analytic set of positive
dimension A−1(A(x0)) cannot be included in CPd \Hx ' Cd. Hence x0 ∈ A−1(A(Hx)) and the
above equality of sets holds. In particular, Z is an analytic subvariety of X.

Step 2. For any sequence (x̃k)k of X̃ \ Ũ with no accumulation point, there is a holomorphic

function f : X̃ → C which is not bounded on (x̃k)k and vanishes on Z̃ := π−1(Z).
Let ρ : Ỹ → Y be the universal cover of Y and Ã : X̃ → Ỹ the lift of A, so that the following

diagram commutes:

X̃ Ỹ

X Y.

π

Ã

ρ

A

If (Ã(x̃k))k has no accumulation point, then as Ỹ is a Stein manifold, there is a holomorphic
function u : Ỹ → C which is unbounded on (Ã(x̃k))k and vanishes on the variety ρ−1(A(Z)).
The function u ◦ Ã has the required properties.

Otherwise, the sequence ỹk := Ã(x̃k) has an accumulation point, and up to extracting a
subsequence, we can assume, on the one hand, that it converges to an element ỹ∞ ∈ Ỹ , and on
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the other hand that the sequence xk := π(x̃k) converges to a limit x∞ ∈ X \ Z. We claim that
there exists an ample line bundle L→ X such that:

• There exists a holomorphic section t ∈ H0(X̃, π∗L) which is unbounded on (x̃k)k.

• There exists a holomorphic section s ∈ H0(X,L) whose vanishing locus S ⊂ X satis�es:

� S ∩ A−1(A(x∞)) = ∅, in other words A(x∞) /∈ A(S). In particular, π∗s(x̃k) −→
s(x∞) 6= 0.

� The complement of S does not contain a compact variety of positive dimension of X.

Indeed, since X is a projective manifold, it can be realized as a submanifold of some projective
space CPd. Let H ⊂ CPd be a projective hyperplane disjoint from the �nite set A−1(A(x∞)).
Then O(1)|X is positive so by [Nap90, Corollary 4.3], for a large enough integer p, the bundle

L := O(p)|X is su�ciently positive so that there exists a holomorphic section t ∈ H0(X̃, π∗L)
unbounded on (x̃k)k. For the second point, let s̃0 be a global holomorphic section of O(1) whose
vanishing locus is H. Then the vanishing locus of the section s̃ := s̃0

⊗p of O(p) is H and
its complement, biholomorphic to Cd, is a Stein manifold and therefore contains no compact
variety of positive dimension. The restriction s ∈ H0(X,L) of s̃ to X, whose vanishing locus is
S := X ∩H has the required properties. Set also S̃ := π−1(S).

The set E := ρ−1(A(S)) is an analytic subset of Ỹ , which is equal to ρ−1(ρ ◦ Ã(S̃)). Since
A(x∞) /∈ A(S), the point ỹ∞, whose image by ρ is A(x∞), does not belong to E. We deduce
that there exists a holomorphic function u : Ỹ → C which vanishes on E but does not vanish
on ỹ∞. Indeed the sheaf F of holomorphic functions vanishing on E is coherent, so by Cartan's
Theorem B, there exist holomorphic functions vanishing on E which generate the germ space
Fỹ∞ = Oỹ∞ . Then, E contains Ã(S̃), and, we a�rm that it also contains Ã(Z̃). Indeed, let
x̃ ∈ Z̃ and x := π(x̃). By de�nition of Z0, the analytic subset A−1(A(x)) is not �nite, so has a
non-empty intersection with S. In other words, ρ ◦ Ã(x̃) = A(x) ∈ A(S), so Ã(x̃) ∈ E. Thus,
u ◦ Ã vanishes on S̃ ∪ Z̃. As the divisor of π∗s is pS̃, we deduce that the meromorphic function:

f := (u ◦ Ã)p+1 × (t/π∗s)

is in fact holomorphic. Since t is not bounded on (x̃k)k, and the sequences u(ỹk) and π∗s(x̃k)
converge respectively to non-zero limits u(ỹ∞) and s(x∞), the function f is not bounded on
(x̃k)k. Finally it is divisible as a holomorphic function by u ◦ Ã, thus it vanishes on Z̃.

Step 3. For any point x̃0 ∈ X̃ \ Z̃, there exists a holomorphic function F : X̃ → Cn which

vanishes on Z̃, does not vanish at x̃0 and whose di�erential at x̃0 is invertible (n = dimX).
Let us write x0 := π(x̃0). We assert that there exists an ample line bundle L → X and

holomorphic sections s, t1, . . . , tn of L such that:

• The section s does not vanish on A−1(A(x0)), and in particular does not vanish at x0 so
that the meromorphic functions ti/s are holomorphic on a neighbourhood of x0.

• In a neighbourhood of x0, the holomorphic functions ( t1s , . . . ,
tn
s ) do not vanish and de�ne

coordinates of X.

• The complement of the vanishing locus S ⊂ X of s does not contain a compact variety of
positive dimension of X.

Indeed, embedding X in CPd we choose L := O(1)|X , and s := s̃|X where s̃ is a section of
O(1) whose vanishing hyperplane H is disjoint from A−1(A(x0)). On the complement of H, the
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section s̃ trivializes O(1), therefore it makes sense to speak of the di�erential of a section t̃ of
O(1) at a point of the complement of H: it is the di�erential of the function t̃/s̃. There are
homogeneous coordinates [z1 : · · · : zd+1] for which s̃ identi�es with the linear form zd+1, the
point x0 has coordinates [1 : 1 : · · · : 1] and, in a�ne coordinates (z1, . . . , zd) 7→ [z1 : · · · : zd : 1],
the tangent space of X at x0 is spanned by ( ∂

∂z1
, . . . , ∂

∂zn
). The linear forms z1, . . . , zn identify

with global sections t̃1, . . . , t̃n of O(1). Let t1, . . . , tn denote the restriction of these sections to
X. By construction, the holomorphic functions ( t1s , . . . ,

tn
s ) do not vanish and de�ne coordinates

of X.
Let S := X ∩ H be the vanishing locus of s, and S̃ := π−1(S). By construction, the

functions π∗(ti/s) are meromorphic on X̃, and their divisors satisfy div(π∗(ti/s)) ≥ −S̃. As
above, E := ρ−1(ρ ◦ Ã(S̃)) is an analytic subset of Ỹ containing Ã(S̃)∪ Ã(Z̃) and not containing
Ã(x̃0). By Cartan's Theorem B, there exists a holomorphic function u : Ỹ → C which vanishes
on E := ρ−1(ρ ◦ Ã(S̃)), does not vanish at Ã(x̃0) and whose di�erential at Ã(x̃0) is zero. In
particular, u ◦ Ã vanishes on S̃ ∪ Z̃ but not at x̃0. Let us then set:

fi := (u ◦ Ã)2 × π∗ ti
s
.

Then F := (f1, . . . , fn) is holomorphic. We assert that F vanishes on Z̃, does not vanish at
x̃0 and that its di�erential is invertible at x̃0. Indeed, for all i, fi is divisible by u ◦ Ã, thus it
vanishes on Z̃0. However fi does not vanish at x̃0 by construction. Finally, the di�erential of
u ◦ Ã is zero at x̃0 so:

(dfi)x̃0
= u(Ã(x̃0))2π∗d

(
ti
s

)
x0

.

Therefore, the di�erential of F is invertible at x̃0.
Step 3. Construction of ψ from these two statements: we refer to [Nap90, pp. 470-472].

To prove the second point of Proposition 13, we need Lemma 14, that we prove here.

Proof of Lemma 14. First, we claim that m := infV ′\U (ψ) is positive. Indeed, seeking a con-
tradiction, suppose that m = 0. Then there is a sequence (vn) of elements of V ′ \ U such that
ψ(vn)→ 0. By assumption, ψ|X\U is an exhaustion, thus up to taking some subsequence, we can
assume that (vn) converges toward a limit v∞ ∈ X \ U such that ψ(v∞) = 0. This contradicts
the hypothesis ψ−1({0}) ⊂ Z.

If φ is bounded on V ′\U by some constant C, then χ(x) := C+1
m x is suitable. Assume now that

φ is unbounded on V ′\U , and for all j ∈ N∗, de�ne the set Ap := {x ∈ V ′\U | p−1 ≤ φ(x) < p}.
There is an increasing sequence of integers pk such that Apk 6= ∅ for all k. For all k, the set
Apk is relatively compact in X, so ψ|Apk

attains its minimum ak at a point xk ∈ V ′ \ U . We
claim that ak −→

k→+∞
+∞. Indeed, seeking a contradiction, suppose that there is a subsequence

(akj )j∈N∗ of (ak), bounded by some constant M . Then the sublevel {ψ|X\U ≤ M} is compact
and contains xkj for all j so up to a subsequence, we can assume that xkj converges to a limit
` ∈ V ′. We obtain a contradiction by noticing that φ(xkj )→ φ(`) and φ(xkj ) ≥ pkj − 1→ +∞.

Thus for all integer n ∈ N∗ there exists kn ∈ N∗ such that ∀k ≥ kn,
ak
m ≥ n. We can choose

k1 = 1 and arrange so that the sequence (kn)n∈N∗ is increasing. Let χ be a smooth increasing
convex function such that χ(0) = 0 and χ(nm) ≥ pkn+1

∀n ∈ N∗. We claim that χ ◦ ψ > φ on
V ′ \U . Indeed, for all k ∈ N∗, we can �nd some n ∈ N∗ such that kn ≤ k < kn+1. Then because
k ≥ kn, we �nd ak ≥ nm so ∀x ∈ Apk , ψ(x) ≥ ak ≥ nm. We deduce that:

∀x ∈ Apk , χ ◦ ψ(x) ≥ χ(nm) ≥ pkn+1
> φ(x).
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Proof of Proposition 13-2. By assumption, there is an open neighborhood V of Z and a smooth
strictly plurisubharmonic function φ on Ṽ := π−1(V ) which is an exhaustion relatively to X̃. Let
U be an open neighbourhood of Z whose closure is included in V , and ψ : X̃ → R the function
given by the �rst point of the Proposition. Write Z̃ := π−1(Z).

After replacing Ṽ by a smaller open set Ṽ ′, let χ be an increasing smooth convex function,
given by Lemma 14, such that χ(0) = 0 and χ ◦ ψ > φ+ 2 on Ṽ ′ \ Ũ . Set φ2 := φ+ 1 and ψ2 :=
χ ◦ ψ. Setting η = 1

2 , let M(η,η) be the regularized maximum function de�ned in [Dem, Lemma
I.5.18]. Recall that this is a smooth symmetric function on R2 with the following properties:
max(x, y) ≤ M(η,η)(x, y), and M(η,η)(x, y) = y whenever y ≥ x + 2η. Also, M(η,η)(u1, u2) is
(strictly) plurisubharmonic whenever u1, u2 are (strictly) plurisubharmonic functions. Now let
λ : X̃ → R be the function de�ned by:

λ(x) :=

{
M(η,η)(φ2(x), ψ2(x)) if x ∈ Ṽ ′,
ψ2(x) if x ∈ X̃ \ Ṽ ′.

Notice that ψ2 ≥ φ2 + 2η on Ṽ ′ \ Ũ and φ2 ≥ ψ2 + 2η on some neighbourhood of Z̃. Hence λ is
a smooth strictly plurisubharmonic function. For any real number C, we have:

{x ∈ X̃ | λ(x) ≤ C} ⊂ {x ∈ X̃ \ Ũ | ψ2(x) ≤ C} ∪ {x ∈ Ṽ | φ2(x) ≤ C}.

The right-hand side being compact, we infer that λ is an exhaustion, which implies that X̃ is a
Stein manifold.
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