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Abstract

Recent advances in the use of Artificial Intelligence to control complex systems make it suitable for profile plasma control. In
this work, we propose an algorithm based on Deep Reinforcement Learning to control the safety factor profile with a feedback
design. For this purpose, we first derive a device-specific control-oriented model with fast simulation time. Then, in order to
enhance robustness with respect to external disturbances and model errors, we include an error time integrator into the controller.
A cascade of the kinetic and magnetic models with the error time integrator is used in the learning procedure of the feedback
controller. Finally, to illustrate the efficiency of the proposed design procedure, the obtained controller is tested in a reference
plasma simulator, the Raptor simulator.

Keywords: Deep Reinforcement Learning, Integral control, Safety factor, Magnetic profiles

1. Introduction

Because of the high uncertainties in the measurements and estimations of plasma profiles, as well as in the mod-
elling of kinetic and magnetic dynamics, robust feedback control is crucial to obtain high-performance operations of
tokamak reactors. In tokamak reactors, the safety factor has been found to be strictly related to Magnetohydrodynamic
(MHD) activities [1]: therefore, controlling the safety factor to the desired profile becomes an essential step towards
obtaining long-time discharges [2]. In this article, we will consider the safety factor profile control problem during
the so-called flat-top phase.

In the plasma control literature, it is common to interchangeably speak about the current profile, safety factor q
(and its inverse ι-profile), magnetic flux gradient profile, and magnetic flux profile. From an operative point of view,
a lot of contributions have been made by the plasma physics and control communities working together. For instance,
an overview of the plasma control in the Tore Supra tokamak can be found in [3]. More specifically, in [4] are shown
experimental results using proportional feedback for the control of the internal inductance on Tore Supra, while in
[5, 6] the authors show the results on the DIII-D and JET tokamaks obtained by using optimal control applied on
data-driven models. Subsequently, different strategies using first-principles-driven models have been developed from
the control community.
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The main challenge in model-based safety factor profile control for advanced mode operations is the derivation of
dynamical models that are complex enough to retain the main physical properties and simple enough to be used for
feedback design. A first attempt to model and numerically simulate the plasma profile evolution has been made in [7].
Then, a control-oriented model describing the magnetic flux gradient and temperature evolution has been proposed
in [8]. Control strategies have been developed using a linear finite-dimensional approximation of the original PDE
describing the magnetic flux dynamics [9–11]. An optimal controller designed on a nonlinear model obtained by
Galerkin approximation has been proposed in [12], while a backstepping controller has been designed on the nonlinear
model obtained by finite differences in [13]. Model predictive control strategies for the safety factor profile control
have been presented in [14]. Nonlinear robust safety factor profile control is developed in [15]. Control algorithms for
simultaneous control of magnetic and kinetic parameters of tokamak plasmas using finite-dimensional approximation
are presented in [16–19].

Recently, much effort has been spent in designing controllers directly on the PDE model of magnetic and tem-
perature diffusion. In [20], a sum-of-square polynomial technique has been used to construct a Lyapunov function to
stabilize the closed-loop system, whereas in [21] the same technique has been used to optimize the bootstrap current.
Furthermore, a Lyapunov-based controller has been designed in [22, 23]. A Lyapunov-based control technique for the
kinetic and magnetic profiles designed on the linearization of the original equations has been proposed in [24].

The seminal work [25] provided a powerful control-oriented fast plasma transport simulator (Raptor) that helps the
feedback design study and implementation for kinetic and magnetic profiles control for the TCV tokamak. This en-
abled the design, simulation and implementation of multiple controllers [26, 27]. For a broader overview of emerging
and current challenges in tokamak control, we refer the reader to [28, 29].

With the rise of Deep Neural Networks (DNNs) as tools for function approximation, the machine learning com-
munity took a step towards control problems of physical systems. Recently, Deep Reinforcement Learning (DRL)
methods proved to be effective in solving complex nonlinear control problems [30, 31]. Guided by an optimization
objective, DRL algorithms train a DNN to produce a sequence of almost-optimal inputs (or actions). This sequence
of inputs is called policy. These algorithms are data-driven, as training evolves according to the interactions with
the environment. One major advantage of DRL algorithms is their direct applicability to a large family of complex
systems, especially in the case of model-free approaches, e.g. [32–34]. The environment to be controlled is typically
considered a black box. In order to estimate the future performances of the policy without knowing the environment,
many DRL algorithms exploit an actor-critic structure. This family of methods exploits two or more DNNs (see e.g.
[35]). The former is used for approximating the policy, while the latter predicts its performance by estimating the sum
of future rewards. This model-agnostic approach enabled DRL algorithms to be applied on a wide variety of complex
tasks and, most recently, also in the field of nuclear fusion [36].

In this paper, we propose to design a dynamic DNN controller complemented by a time integral of the error. Such
an addition is valuable because, according to systems and control theory, the addition of an integrator in the feedback
loop is known to solve the problems of constant reference regulation and constant disturbance rejection [37]. This
control strategy has indeed been shown to be effective for the control of some classes of linear and nonlinear Ordinary
Differential Equations (ODE) [38], as well as some classes of linear and nonlinear PDEs [39]. In [40], the authors
presented a method to solve the regulation problem of linear systems in closed-loop with a neural network controller
and an integrator. More recently, control design by RL has been combined with Model Predictive Control to solve the
tracking problem of surface vessels [41].

However, few works have been so far dedicated to controlling PDEs using DRL. Because of the spatial differential
operators present in PDEs, the state inherits some spatial regularity properties, such as local smoothness. This intrinsic
property can be exploited to design specific RL algorithms that are able to deal with very large state spaces [42], e.g.
the regularized fitted q-iteration (RFQI) algorithm. Furthermore, this method has been successfully applied to the
control design of a multidimensional nonlinear problem such as a heating, ventilating and air conditioning system
[42, 43], but only with a finite amount of possible actions. The case in which the action space is infinite-dimensional
has been investigated in [44]. More recently, a Proximal Policy Optimization (PPO) algorithm has been used to
design the controller for congested freeway traffic [45]. DRL algorithms have already been used in the context of
nuclear fusion control. In [46], the authors proposed a DRL technique to control the safety factor during the ramp-up
phase, while in [47] the authors developed a DRL algorithm to train a feed-forward controller for the kinetic profiles.
Recently, a DRL controller has been proposed in [48] for plasma shape control. A recent publication that aligns
with our proposed work is [49], where the authors present an RL-based algorithm for simultaneous control of the
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Table 1: Table of symbols.

Symbol Description
s j Environment state at j
a j Action applied to the environment at j
Vπ Value function
π Policy
Qπ State-action value function
Aπ Advantage function
r j Reward at j
R j Accumulated reward at j

safety factor and normalized beta in the JT-60SA tokamak. In contrast to their approach, our contribution focuses on
emphasizing the utilization of the time integral of the error as a parameter to be fed into the trained neural network.
Furthermore, after presenting our control architecture and a novel training procedure, we claim that our proposed
control strategy compensates for the disparities between the training model and real-world conditions.

The contribution of this paper hinges on an original model of the kinetic and magnetic plasma dynamics: the
resulting simulator is fast enough to be used for learning purposes by a DRL algorithm. In order to make the latter
robust to constant model uncertainties and disturbances, we embed the controller with an error time integrator. To
illustrate the robustness of the proposed controller, we test it on a different model than the one used for training, i.e.
the Raptor simulator. Several authors proposed the inclusion of an error time integrator in the control loop, which is
fundamental in practical operations to compensate for discrepancies between the model employed for control design
and the actual plant. Integral action-based strategies appeared for instance in [50], with a modification of an LQR
(referred to as LQI), and in [51], where a Lyapunov control strategy is designed based on the linearized partial
differential equation (PDE). The main limitation of these works is that they require the knowledge of a linearized
model around the desired equilibrium point. Furthermore, such approaches typically limit the applicability of the
resulting controller to a small region of initial conditions around the equilibrium. In contrast, our work is based
on a feedback design strategy that uses neural networks (NNs) trained on an arbitrarily large region of the state
space, thereby yielding a controller applicable from any plant’s initialization. Furthermore, we leverage on model-
free reinforcement learning algorithms, thereby circumventing the necessity for explicit knowledge of the system’s
dynamics in proximity to the desired operational point.

The paper is organized as follows: In Section 2 we propose some preliminaries on Reinforcement Learning control
and its use in combination with integral action. In Section 3 the plasma model is written as a Markov decision process
and the training algorithm is presented. The simulation results of the obtained controller on the Raptor simulator are
shown in Section 4. Finally, some concluding remarks and comments on future works are given in Section 5.
In the appendix section, additional context and clarification are provided for the presented material. Specifically, Ap-
pendix A introduces the model of the tokamak’s kinetic and magnetic dynamics, Appendix B outlines the simulation
algorithm, and Appendix C offers a simple example of implementing reinforcement learning control with integral
action.

2. Background on Reinforcement Learning control

In this section, we briefly introduce the essential Reinforcement Learning concepts. A thorough discussion can
be found in [52]. Justified by Bellman’s principle of optimality, Reinforcement Learning aims at optimally solving
a problem by learning a sequence of maximum-reward actions (called policy). The policy optimization is driven by
value functions. The state-value function Vπ(s j) corresponds to the expected total discounted reward R j starting from
state s j at the j time instance and then following the policy. We remark that the value function profoundly depends on
the policy π. If the agent uses a given policy π to select an action from the state s j, the value function is given by

Vπ(st) = E
[
R j | s j

]
(1)
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where E [·] stands for the expectation. The optimal policy is the policy that corresponds to the maximum value V⋆(s j)
of the value function

π⋆ = arg max
π

Vπ(s j). (2)

Dynamic Programming methods search for the optimal policy using the former equation, but they require knowledge
of the model. To enable the concept of model-free Reinforcement Learning, it is necessary to introduce the state-
action value function or Q-function. The Q-function corresponds to the expected total discounted reward when the
action a j is taken in state s j, and then the policy π is followed henceforth. Therefore, the Q-function is given by

Qπ(s j, a j) = E
[
R j | s j, a j

]
. (3)

The optimal Q-function is given by
Q⋆(s j, a j) = max

π
Qπ(s j, a j) (4)

and stands for the expected total discounted reward when the agent picks possible non-optimal action a j in s j, and
then behaves optimally henceforth. The relation between the optimal Q and V function is expressed by

V⋆(st) = max
a j∈A

Q⋆(s j, a j). (5)

If the optimal Q-function is known, then the optimal action a⋆j can be extracted by choosing the action a j that maxi-
mizes Q⋆(s j, a j)

a⋆j = arg max
a j∈A

Q⋆(s j, a j). (6)

This is the reason why the knowledge of the Q function enables model-free RL. Finally, the advantage function
measures how advantageous a certain action a j is with respect to the one drawn from the policy

Aπ(s j, a j) = Qπ(s j, a j) − Vπ(s j). (7)

In RL, as well as in dynamic programming, the action is chosen through a policy that has the objective of max-
imizing the expected total discounted reward. In the present application, we have a system model with continuous
state and action spaces, which inherently comprise an infinite number of elements. Due to this infinite nature, it be-
comes infeasible to fully explore the whole state and action spaces [52]. Consequently, tabular dynamic programming
methods cannot be employed to apply a reinforcement learning algorithm to our fusion control problem. Instead, the
typical solution to tackle the continuous time nature of state and action spaces is to employ deep function approxima-
tions and estimate the value function and the policy. In our application, we chose to use the PPO algorithm, which is
based on Trust Region Policy Optimization (TRPO). These algorithms use an actor-critic approach, where the actor
is in charge of improving the policy based on the value function that is estimated by the critic. The actor and the critic
correspond to function approximators parametrized by ϕ and θ, respectively. In particular, in our application case,
these function approximators are selected to be DNNs and ϕ, θ are vectors collecting weights and biases.

The Critic’s role is to evaluate the current policy prescribed by the actor. At each iteration of an episode p, the
tuple (sp, j, ap, j, rp, j+1, sp, j+1) is stored in a buffer Bp. Each episode is of length J and each episode-related buffer Bp

is stored in a general buffer B. After a certain number of episodes, the parametrized value function Vϕ is updated to
minimize the following loss function

LV = Ê[Vϕ(s j) − R j] (8)

where Ê represents the estimated expectation and can be implemented as the mean

LV =
1

Nsample

∑
p∈B

J∑
j=0

(
Vϕ(sp, j) − Rp, j

)
(9)

where Rp, j is the total discounted reward at iteration j of the p− th episode and Nsample is the total number of samples.
The critic parameters ϕ are updated numerically via gradient descent.
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The Actor’s role is to use the information from the Critic to update the current policy. To understand the PPO
algorithm we first need to understand the optimization objective of Policy Gradient (PG) methods, defined as follows

LPG(θ) = Ê[log πθ(a j | s j)Â(a j, s j)] (10)

that can be implemented as

LPG(θ) =
1

Nsample

∑
p∈B

J∑
j=0

(log πθ(ap, j | sp, j)Â(ap, j, sp, j)) (11)

where πθ(ap, j | sp, j) is computed using the current neural network and Â(a j, s j) using the Generalised Advantage Esti-
mator (GEA) using the critic value estimator. It can be proven that (10) drives the policy in a gradient ascent fashion,
with respect to the objective function [53]. The policy πθ is the current neural network that gives the probability of
picking a j when the environment gives a certain state observation s j. If for a certain couple (a j, s j) the advantage is
positive, the policy gradient updates θ to augment the probability of taking the action a j when the environment is in s j.
Unfortunately, with the previously defined loss function, the parameter θ will often be updated far from the previous
policy. To solve this problem, one can use the Trust Region Policy Optimization (TRPO) [54]. The objective of TRPO
is to maximize the loss function

LTRPO(θ) = Ê
[
πθ(a j | s j)
πθold (a j | s j)

Â(a j, s j)
]

(12)

subject to the constraint
Ê[KL[πθold (· | s j), πθ(· | s j)]] ≤ δ (13)

where θold corresponds to the actor parameters before the last update and the KL is the Kullback-Leibler function
measuring the difference between the old and current policy. The constraint assures that the new policy does not
deviate from the old policy by any more than δ. In this work, we adopt the PPO reinforcement learning algorithm
[55], which is based on TRPO. Indeed, while TRPO computes the trust region using second-order information, PPO
approximates it via clipping. For PPO the loss function to be maximized is defined as

LCLIP(θ) = Ê
[
min(r j(θ)Â(a j, s j), clip(r j(θ), 1 − ϵ, 1 + ϵ)Â(a j, s j))

]
(14)

where

r j(θ) =
πθ(a j | s j)
πθold (a j | s j)

. (15)

The idea is to use probability clipping, which removes the incentives for moving r j outside of the interval [1−ϵ, 1+ϵ].
The minimum of the clipped and unclipped objective ensures the final objective is a lower bound (i.e., a pessimistic
bound) on the unclipped objective. With this scheme, we only ignore the change in probability ratio when it would
improve the objective, and we include it when it deteriorates the objective.

3. Control design

In this section, we propose the design of a dynamic controller enhanced with knowledge about the integral of the
error. Inspired by classical control-theoretic solutions (PIs and PIDs) and recent results on total stability [56, 57],
we embed the stabilization of a discrete-time integrator in the control objective. As such, we consider the problem
of stabilizing the extended cascade system composed of the plant and the integrator, as in Fig. 1. The idea is to
embed “memory” in the agent by providing some time-related information. Then, if the integrator’s state is stabilized,
we guarantee a zero-tracking error with respect to the (constant) reference. Note that such a property is due to the
specific structure of the integrator dynamics. Actually, an alternative for embedding memory into the agent is to use
Recursive Neural Networks (RNNs), e.g. [58, 59]. Yet, aside from the increased complexity in their training due
to back-propagation through time, it would not be possible to guarantee perfect asymptotic tracking and (constant)
disturbance rejection. Indeed, it is not possible to predict the dynamics information that will be stored in the RNN’s
latent space and its evolution. As stated above, the proposition of adding an integral state to the controller stems from
regulation theory. To explain the need for an integral state, a toy example is considered in Appendix C.
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Fig. 1: General overview of a control scheme including a time integrator. In the context of this work, the controller is a DNN trained using a DRL
algorithm. For more information regarding the control structure, we refer to Fig. 4 and Fig. 6.

3.1. Integral state for magnetic flux control

Consider ψ(R,Z) the poloidal flux of the magnetic field B(R,Z) passing through a disc centred at the toroidal axis
at height Z and with surface S = πR2 where R is the large plasma radius. Let the magnetic flux be defined as

ψ(R,Z) =
1

2π

∫
S

B(R,Z)dS (16)

and its dynamics can be expressed by the following reaction-diffusion equation [8]

∂ψ

∂t
(x, t) =

D(x, t)
a2
ρ

∂2ψ

∂x2 (x, t) +
G(x, t)

aρ

∂ψ

∂x
(x, t) + S (x, t). (17)

where x = ρ/aρ identifies the normalized spatial variable, D(x, t) and G(x, t) are diffusion parameters, while S (x, t)
is the source term and are defined in (A.2). In this study, we consider that the magnetic flux is controlled by two
Electron Cyclotron Current Drive (ECCD) systems, each characterized by its input power Peccd,i, where i ∈ 1, 2. Our
case of study resembles the scenario presented in [51], where the two inputs are applied to the same spatial point.
Specifically, the first antenna Peccd,1 has a positive effect on z j, while the second antenna Peccd,2 has a negative effect
on it. Thus, from a theoretical point of view, the two inputs can be treated as a single input. The term ρ is the toroidal
flux coefficient indexing the magnetic surfaces, defined as ρ = (2ϕ/Bϕ0)

1
2 , where ϕ is the toroidal magnetic flux and

Bϕ0 is the value of the toroidal magnetic flux at the plasma center. The spatial index belongs to the interval ρ ∈ [0, aρ]
where aρ is the minor plasma radius corresponding to the Last Closed Flux Surface (LCFS). An important quantity of
plasma control in tokamak devices is the safety factor. This distributed variable measures the toroidal over poloidal
turns of a field line passing through a point (R,Z) in a toroidal plane. Since the magnetic field lines are assumed
to be equal in the same magnetic surface, we can define the safety factor for each magnetic surface indexed by x.
In particular, the safety factor is defined as the quotient between the toroidal and poloidal gradient, that using the
previous definition of the toroidal magnetic flux, can be defined as

q(x, t) =
dϕ
dψ
=
∂ϕ/∂x
∂ψ/∂x

= −
Bϕ0a2

ρx

∂ψ/∂x
(18)

where ϕ(x, t) is the toroidal flux defined in A.11. Another important quantity in plasma analysis is the ι-profile, which
is also referred to as “rotational transform”

ι(x, t) =
1

q(x, t)
=
∂ψ/∂x
Bϕ0a2

ρx
. (19)

The ι-profile is a more natural control variable since it proportionally depends on the poloidal flux gradient. Additional
details about the model are discussed in Appendix A. The following equation gives the plasma thermal energy
dynamics {

τth = e−5.7466P0.0214
oh (1 + Peccd,1)0.0426(1 + Peccd,2)0.0012

d
dt Wth = −

1
τth

Wth + Ptot, Wth(0) = Ptot(0)τth(0) (20)

6
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where,

Ptot =

Neccd∑
i=1

Peccd,i + POH (21)

while POH identifies the ohmic power and is defined in (A.12). Although temperature regulation is not the primary
objective of this work, we still consider thermal dynamics in the model. The reason for including these dynamics is to
account for the delay introduced by temperature diffusion. Rather than using a pure delay term, we chose to represent
the temperature diffusion by an appropriate dynamic equation for more accurate modelling. At the same time, we
made the decision not to incorporate the full distributed thermal diffusion model in order to minimize simulation
time and achieve a sufficiently short training time for the RL algorithm. For more details regarding the temperature
reconstruction using thermal energy and Ohmic power, we refer to Appendix B.
By utilizing an implicit-explicit time discretization and a fixed-step spatial discretization for equation (17), and an
implicit-explicit time discretization for equation (20), we obtain the difference equation

z j+1 = f (z j, a j) (22)

in the state variable z j = [ψ j Wth, j] ∈ RN+1 and input a j ∈ [0, 1] = A. The discrete vector field f is defined in
(B.5). Here, N is the number of elements used in the spatial discretization of equation (17). Hence, at iteration j, the
vector ψ j ∈ RN denotes the discretized magnetic flux in N spatial points, while Wth, j represents the thermal energy.
The relation between a j and Peccd,i and further information on the simulation algorithm employed in this study can be
found in Appendix B.

In this work, the objective is to regulate the ι-profile ι(x, t) defined in (19) to a desired ι⋆(x). As ι depends on the
magnetic flux gradient ∂ψ

∂x (x, t), the control objective can be reformulated as the regulation to a desired magnetic flux
gradient profile ∂ψ⋆

∂x (x). Therefore, we define the discretized version of the magnetic flux gradient

∂ψ j

∂x
=



ψ j,2−ψ j,1

δx1
ψ j,3−ψ j,1

δx1+δx2
...

ψ j,N−ψ j,N−1

δxN

 =
C︷                                                    ︸︸                                                    ︷

− 1
δx1

1
δx1

0 · · · 0 0
− 1
δx1+δx2

0 1
δx1+δx2

· · · 0 0
...

...
...

...
...

0 0 0 · · · − 1
δxN

1
δxN

ψ j (23)

where ∂ψ j

∂x ∈ RN and C ∈ RN×N . Then, we select one element of the magnetic flux gradient to define the output
ys = S ∂ψ

∂x , where S ∈ R1×N is the selection matrix with a single element equal to one and zero elsewhere. From now
on, we assume that the system’s parameters are known to belong to a certain range of values. This means that we
do not know the exact parameter’s value, but we only have an estimation. Consider kn a generic system’s parameter.
According to the previous assumption, we know that kn ∈ [kn, k̄n]. We define the vector K as the collection of all the
system’s parameters K = [k1 k2 . . . kNk ]

T ∈ K = [k1, k̄1] × [k2, k̄2] × · · · × [kNk
, k̄Nk ] ⊂ RNk , where Nk is the total

number of parameters. We denote by fK(z j, a j) the magnetic flux dynamics with parameters K
z j+1 = fK(z j, a j)

y j =

[
∂ψ j

∂x
ys, j

]
=

[
Cψ j

S Cψ j

]
.

(24)

By simulating this system with constant input a⋆, it is possible to extract the magnetic flux gradient at witch the sys-
tem stabilizes ∂ψ

∂x
⋆

. In particular, the equilibrium magnetic flux gradient is related to the equation’s set of parameters
K and the applied constant input a⋆. It is worth to remark that equilibrium magnetic flux’s gradients obtained with
the same input a⋆ and different set of parameters K1 and K2 may be different, as shown in Fig. 2. In real applications,
an integral action is vital since we have to compensate for the uncertainties coming from the modelling procedure. At
the same time, the integral action allows compensation for the mismatch between Raptor and the training model.

7
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Fig. 2: Examples of different poloidal magnetic flux equilibriums of the reaction-diffusion equation describing the magnetic flux dynamics. In
black we show that with a certain set of parameters K1, changing the applied constant input (ECCD power), the poloidal magnetic flux equilibrium
changes. The red profile represent a possible poloidal magnetic flux equilibrium with a different set of parameters K2.

Control problem. Stabilize the magnetic flux gradient ∂ψ
∂x as close as possible to the (potentially unreachable)

desired magnetic flux gradient ∂ψ
∂x

⋆
, and at the same time make sure that the selected output ys = S ∂ψ

∂x converges to

the desired value y⋆s = S ∂ψ
∂x

⋆
.

The use of the integral action allows the regulation of the integrated quantity to zero. Having at our disposal one
input (the two antennas act in opposite directions on the magnetic flux dynamics, therefore they can be treated as a
single input), in case of unreachable equilibrium, using the integral action we can regulate to zero the error ys, j − y⋆s .
We define the discrete-time integrator state dynamics as

ε j+1 = ε j + (ys, j − y⋆s )δt. (25)

We define the extended state as

s j =

[
z j

ε j

]
∈ S = RN+2 (26)

and therefore the extended dynamics can be defined as

s j+1 =

[
fK(z j, a j)

ε j + (ys, j − y⋆s )δt

]
= gK(s j, a j). (27)

Since we do not know a priori the equilibrium of the integral state (since it depends on the unknown parameters K),
we fix the integral state reference to zero ε⋆ = 0.

3.2. Magnetic flux and Temperature dynamics plus integral state as a Markov Decision Process

In this section, we express the tokamak magnetic flux and temperature dynamical model together with the integral
state in Markov Decision Process settings. At each time step j, the environment conditions are described by the state
vector s j ∈ S, while the action corresponding to the power of the ECCD antennas can be picked from the action space
a j ∈ A. An action a j is applied to the environment in state s j at a time j, which evolves to the state s j+1 according
to the state transition probability P(s j+1 | s j, a j). In other words, P(s j+1 | s j, a j) represents the probability of ending
in state s j+1 when we apply an action a j in state s j. In our case, since we have the model of the system, the state
transition probability boils down to deterministic dynamics

P(s j+1 | s j, a j) = δ(s j+1 − gK(s j, a j)) (28)

where δ(·) is the Dirac delta function. When applying the action a j, the agent receives the new state s j+1 together with
a scalar reward r j+1 = r(s j+1, a j), as shown in Fig. 3. We select the reward such that

r(s j+1, a j) = −
(
∂ψ j+1

∂x
−
∂ψ

∂x

⋆)T

Q
(
∂ψ j+1

∂x
−
∂ψ

∂x

⋆)
− α3S

(
∂ψ j+1

∂x
−
∂ψ

∂x

⋆)
ε j+1 − α4ε

2
j+1 − R(a j − a⋆)2 (29)

8
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Fig. 3: General representation of the interaction between the environment (system to be controlled) and the agent (controller) in the RL context.

where

Q =

α1I(pi−1)×(pi−1) 0 0
0 α2 0
0 0 α1I(N−pi)×(N−pi)

 ∈ RN×N (30)

where the notation Iα×α stands for an identity matrix of dimensions α × α. The Q matrix is built to have a different
cost at the diagonal entry corresponding to the error integrated by the integral state. It possible to notice that the third
term in (29) can be rewritten as

α3S
(
∂ψ j+1

∂x
−
∂ψ

∂x

⋆)
ε j+1 = α3(ys, j − y⋆s )ε j+1 = α3

ε j+1 − ε j

δt
ε j+1. (31)

Therefore, the presence of this term in the reward allows to penalize the integral state variations. The policy π defines
the mapping from the state space to the action space, which the agent modifies during the learning phase, and will
be used once the learning procedure is completed. The policy can be deterministic or stochastic. A stochastic policy
draws actions from a random distribution, whose state-dependent momenta are learned by the agent. A common
choice in DRL algorithms is to draw from Gaussian distributions. Hence, the policy DNN π(s j) = [µ(s j), σ(s j)]T is
a function of the state s j that returns the mean µ and the variance σ. Then, the probability of selecting a j when the
system is in the state s j is

P(a j | s j) =
1

σ
√

2π
e
− 1

2

(
a j−µ(s j )
σ(s j )

)2

. (32)

In the case of deterministic policy, we have that

P(a j | s j) = δ(a j − µ(s j)). (33)

Hence, in the case of deterministic policies, the policy DNN is usually trained to provide directly the next action. As
in the standard DRL framework, we optimize over a discounted objective. Hence, the total discounted reward from
time j onward is defined as

R j =

∞∑
k=0

γkr(s j+1+k, a j+k) (34)

where γ ∈ [0, 1] is the discount factor. The tokamak’s environment, together with the integral action, is sketched in
Fig. 4.

3.3. Training algorithm

In this section, we describe the strategy used in the training algorithm in order to make the agent learn how to use
the integral state to regulate the desired error to zero. The implementation of the learning algorithm is summarized
in Algorithm 1. Firstly, the parameters K ∈ K are selected according to the tokamak configuration that we want

9
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Fig. 4: Graphical representation of the tokamak environment together with the integral state in the RL settings. The action allows to compute the
future state. The future state together with the actual input allow to compute the future reward.

Algorithm 1: Training Algorithm
Data:
• Initialize parameters for actor θ0 and critic ϕ0

• Initialize the evolution parameters K ∈ K

for k = 1 to NE do
Initialize the tokamak’s state z0 ∈ Z
Initialize the integrator state xi,0 = 0
Randomly select a couple of compatible steady-state output and input ( ∂ψ

∂x
⋆
, a⋆)

Compute the perturbed steady-state output ∂ψP
∂x

⋆
using (35)

for j = 1 to NS do
The agent draws an action a j using the current stochastic policy πθk

Update the state s j+1 = gK(s j, a j)
Compute the reward r j+1 = r(s j+1, a j) using ( ∂ψP

∂x
⋆
, a⋆)

end
Compute the total discounted reward R j

Compute the Advantage estimate A j from current critic Vϕk using the “Generalized Advantage Estimate”
algorithm

Update actor θk+1 minimizing (14)
Update critic ϕk+1 minimizing (9).

end

10



A. Mattioni et al. / Fusion Engineering and Design 00 (2023) 1–28 11

to control. In the following, we refer to NE and NS as the number of episodes and episode steps in the training,
respectively. We define the steady-state output set O as

O = {(
∂ψ

∂x

⋆

, a⋆) ∈ RN ×A}. (35)

At the beginning of every episode, a couple of steady-state output and input ( ∂ψ
∂x

⋆
, a⋆) ∈ O is selected. After analysing

numerous equilibrium positions using different plasma parameters, we observed that the variation of the gradient’s
equilibria was small with respect to plasma parameter variations. In particular, we noticed that by changing the
plasma parameters, we could shift the ∂ψ

∂x
⋆

maximum value and either flatten or sharpen the shape of the equilibrium
function around this point. To avoid the time-consuming task of identifying all possible steady-state outputs with
different parameters selection, we observed that a similar outcome could be achieved by adding a Gaussian function
perturbation to the calculated equilibrium position computed with parameters

∂ψP

∂x

⋆

=
∂ψ

∂x

⋆

+
cN

σ
√

2π
e−

1
2 ( x−µ

σ )2

(36)

where µ ∽ U([0.4, 0.6]), σ ∽ U([0.8, 1.2]) and cN ∽ U([−1,+1]) are continuous uniform random variable selected
in different intervals. We chose to use the Gaussian function since it is a function that approaches zero at x = 1, 0,
as we aimed to preserve the value of ∂ψ

∂x
⋆

at the plasma’s center and the LCFS. This decision was influenced by the
fact that the magnetic flux gradient remains fixed at zero at the center, while the flux gradient at the LCFS is primarily
dependent on the magnetic central location, which experiences comparatively minimal variations compared to other
plasma parameters.

After the modification of the equilibrium’s shape, we ask the agent to stabilize the system to this unreachable
equilibrium, and therefore we expect the agent to give priority to the regulation of the integrated error at one point of
the spatial domain. Then, the learning procedure is carried out following the PPO algorithm described in the previous
section. It is worth emphasizing that during the learning procedure, a stochastic policy is employed to improve
exploration, whereas in Section 4, a deterministic policy will be utilized at test time.
The selection matrix S , for the definition of the point to be regulated, is selected to be 0 in all entries except for the
5th position, which is set equal to 1. This means that we seek to regulate to zero the error at the x = 0.2 position. We
select a position near the plasma center since it is in the interval of the spatial domain where the measures are more
reliable. Moreover, we are sufficiently near the deposit of the ECCD current that is in x = 0.
To design the training-based controller, we carry out four different controller training in order to give some hints on
the definition of the αi parameters depending on the desired closed-loop performances. It is worth mentioning that
only the ratio between the free parameters matters in the learning of the final controller. Therefore, we arbitrarily fix
the value of the α3, α4 and R parameters, letting varying only the α1 and α2 parameters. In particular, the common
cost parameters for the four trainings are

α3 = 0.1, α4 = 130, R = 0.01, (37)

while the α1 and α2 parameters (α1, α2) are selected in the the set of pairs {(0.1, 0.05), (1, 0.5), (10, 5), (100, 50)}.
In Fig. 5a, we show the the episode reward mean (as defined in (29)) of four trainings with different α1 and α2. In
Fig. 5b we show the time-varying profiles at two points of the spatial domain, namely x = 0 and x = 0.2, of the
closed-loop simulations using the four obtained controllers. The simulations are performed on the same model with
which the controllers have been trained, while we set an unreachable equilibrium position, in the form of (36), as
desired set-point. A proper functioning of the integral action becomes necessary to obtain the convergence toward
the equilibrium at the integrator location, i.e. at x = 0.2. Throughout the different simulations, we employ the same
unreachable equilibrium to ensure comparability between the simulations. After analysing Fig 5a and Fig 5b, we
class the four different cases depending on the speed of the integral action, the overshoot magnitude and the number
of steps Nsteps after which no substantial controller changes were observed:

• Case 1: α1 = 0.1, α2 = 0.05. Big overshoot, fast regulation. Nsteps = 3.5 × 106;

• Case 2: α1 = 1, α2 = 0.5. Medium overshoot, medium speed regulation. Nsteps = 4.5 × 106;
11
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(a) Reward mean of four different training of the proposed RL algorithm. (b) Magnetic flux trajectories at two points of the spatial domain (x = 0 and
x = 0.2) of the system in closed-loop with the four controllers obtained with
different αi parameters.

Fig. 5: Episode reward mean during the RL training and Magnetic flux trajectories with the corresponding controllers. Case 1: α1 = 0.1, α2 = 0.05;
Case 2: α1 = 1, α2 = 0.5; Case 3: α1 = 10, α2 = 5; Case 4: α1 = 100, α2 = 50.

• Case 3: α1 = 10, α2 = 5. No overshoot, slow regulation. Nsteps = 4.5 × 106;

• Case 4: α1 = 100, α2 = 50. No overshoot, no regulation. Nsteps = 3.5 × 106.

It follows from the comparisons of all these cases that reducing the values of α1 and α2 with respect to α4 provides a
quick output regulation at the desired point. However, this comes at the expense of a larger magnitude of overshoot.
Furthermore, due to the difference in Nsteps across the various cases, we can formulate some preliminary hypotheses
(which necessitate more extensive investigation for validation) concerning the learning behaviour of the RL algorithm.
Specifically, in Cases 1 and 4, the αi parameters “guide” the controller’s learning towards distinct objectives: achieving
rapid integral action and minimizing overshoot, respectively. In Cases 2 and 3, the αi parameters steer the controller
towards a balance between these two attributes. We infer that this difference is accountable for the larger Nsteps in
Case 2 and 3, where the controller is “asked” to learn two distinct attributes rather than just one.
In the next section, the controller trained with the parameters of Case 1 is tested in closed loop with the Raptor
simulator. The reason behind the selection of the controller of Case 1 lies in its sufficiently fast integral action.
However, if the priority is to have reduced overshoot at the expense of a slower integral action, an alternative would
be to select the controller of Case 3. We remark that the output of the training procedure is a trained neural network
that takes as input the state s j and the reference point s⋆K and returns the values of the input a j to be applied.

4. Control results

In this section, we show the closed-loop simulations of the RL feedback control law applied to the Raptor sim-
ulator. In the following simulations, the parameters are selected equal to the ones in (B.7)-(B.8). Target ι-profiles,
corresponding to steady-state plasma configurations, are generated by applying a constant input for a sufficiently long
time in the Raptor simulator. If these profiles are used in the feedback control law without changing the Raptor con-
figurations, we can achieve perfect tracking of the target profiles. Nevertheless, it is difficult to get perfect tracking
in practical applications because of the high system uncertainties and the limited degrees of freedom in the available
actuators. During the simulations, the ramp-up phase lasts until t = 0.02 s bringing the central current from Ip = 80 kA
to Ip = 120 kA, while the feedback controller is activated at t = 0.1 s. During the flat-top phase, four different target
profiles are given to the controller: the first at t = 0.1 s, the second at t = 2.5 s, the third at t = 5 s, and the last at
t = 7.5 s. Therefore, to test the robustness of the RL control feedback, we set up three different control scenarios:

• 1st scenario: RL feedback applied on the Raptor simulator (with and without anti-windup).

12
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Fig. 6: Graphical representation of the proposed control scheme applied to the Raptor simulator. At each time step the trained neural network ( fNN )
returns a number (u j) between 0 and 1. This number is mapped to the ECCD powers to be applied to Raptor. At the same time as the input is
applied to Raptor, the integral state is updated.

• 2nd scenario: RL feedback applied on the Raptor simulator with input disturbance.

• 3rd scenario: RL feedback applied on the Raptor simulator with input disturbance and different integration point
(no retraining).

1st scenario.
The training procedure is done using the linear integrator dynamic described by (25). In the first simulation,

the test is done using the same integrator dynamics as in the training. A strong overshoot can be observed for the
target equilibrium corresponding to a constant feed-forward near the input’s limits. This overshot problem is due to
the windup problem caused by the simultaneous presence of the integrator and the input saturation. To solve this
problem, we implement an anti-windup scheme modifying the integrator linear dynamics (25) into

ε j+1 =


ε j if a j = 1 and εnew < ε j

ε j if a j = 0 and εnew ≥ ε j

εnew else
εnew = ε j + (ys, j − y⋆s )δt.

(38)

We refer to [60] for a survey on anti-windup techniques for linear, nonlinear, discrete, and continuous time systems.
In Fig. 6, we show the controller design for the Raptor simulator. Fig. 7 shows the ι-profile evolution at four locations
of the spatial domain x ∈ {0, 0.1, 0.2, 0.35} during a simulation time of length Tsim = 10 s. In Fig. 7, we compare
the simulation results in case the controller is equipped or not with the anti-windup algorithm. We remark that for
every ι-profile stabilization, the controller without the anti-windup presents a larger overshoot when the feed-forward
input (connected to the required reference) is closer to the saturation. Using the linear integrator dynamics, the
integrator state can continue to integrate (possibly in the wrong direction) when the input is saturated. This means that
the integrator will need some additional time to come back to a value in the interval where the input is not saturated.
Using the nonlinear integrator dynamics in (38), we prevent the integrator state to vary in the wrong direction in case of
input saturation. Notice that the trajectories with the anti-windup implementation present a smaller overshoot for some
profiles and no overshot in others. Fig. 8 shows the ι-profiles at different time instants t ∈ {2.5, 2.7, 2.9, 3.1, 3.3}

and the feedback control input a j =

[
Peccd,1
Peccd,2

]
during the simulation interval. Comparing Figures 8a and 8c, we can

remark that the ι-profile in the case of anti-windup implementation is much closer to the desired profile than in the case
13
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Fig. 7: Rotational transform profiles (ι(x, t)) at different points of the spatial domain {0, 0.1, 0.2, 0.35}. The orange curves represent the temporal
evolution of the profiles without the implementation of the anti-wind-up algorithm, while the blue curves depict the profiles with the utilization of
the anti-wind-up algorithm.

of linear integrator dynamics. Nevertheless, in both cases, the perfect tracking of the desired ι-profile is eventually
achieved for all given references.

2nd scenario.
The same controller including the anti-windup integrator as in the last section is evaluated in the second scenario.

In this scenario, we introduce an input disturbance at time t = 5.3 s, implemented with a Neutral-Beam Injector with
ρdep = 0.4 and wcd = 0.4. Both parameters ρdep,wcd are set differently from the ones of the ECCD antenna in (B.8).
Therefore, when the input disturbance is activated, the magnetic flux profile is modified and it is not possible to obtain
the perfect tracking of the ι-profile reference as in the previous scenario. Fig. 9 represents the ι trajectories in four
points of the spatial domain. Starting from the disturbance application, we can remark that the error at the integration
point x = 0.2 is regulated to zero, while the trajectories in the other locations are not regulated to zero. Fig. 10a shows
that the ι-profile is stabilized to the desired profile at t = 5.3 s, when the disturbance is introduced. Then, the profile is
stabilized into a shape that coincides with the desired shape at x = 0.2 and it is different at the other locations of the
spatial domain.

3rd scenario.
In this third scenario, we use the same anti-windup controller used in the previous scenarios. In this scenario, the

integration position is changed from pi = 5 to pi = 3. This means that the position where we want to regulate the
error to zero is x = 0.1 instead of x = 0.2. We remark that the neural network has not been retrained in a different
integration position, therefore with this simulation, we want to test the robustness of our control algorithm with respect
to the integration point. Fig. 11 shows that before the disturbance application, the controller is able to perfectly track
the desired profiles. While after the disturbance application, the error is regulated to zero at x = 0.1 and not in the
other points. In Fig. 12a we remark that after the disturbance application, the ι-profile is stabilized to a shape where
the error is zero at x = 0.1 position.

5. Conclusions

In this article, we have developed a dynamic Deep Neural Network (DNN) controller enhanced with an integral
action using a Deep Reinforcement Learning (DRL) algorithm to regulate the plasma safety factor in a tokamak.
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(a) Rotational transform profiles (ι(x, t)) at different time instants with the imple-
mentation of the anti-windup algorithm.

(b) Applied ECCD power control input in case of implementation of the anti-
windup algorithm.

(c) Rotational transform profiles (ι(x, t)) at different time instants without the im-
plementation of the anti-windup algorithm.

(d) Applied ECCD power control input in case the anti-windup algorithm is not
implemented.

Fig. 8: ι-profile and applied input comparison between controller with and without anti-windup.

Firstly, we provided an overview of the current state-of-the-art in reinforcement learning control. Subsequently, we
derived a simplified, finite-dimensional nonlinear discrete system from the original distributed magnetic and kinetic
plasma equations. Next, a DRL training algorithm has been proposed to design the controller for the plasma dynamics
in cascade with the temporal integrator of the error to be regulated. The proposed simulator has been implemented
in Python to be able to train the DNN controller using state-of-the-art DRL algorithms. Finally, we evaluated the
performance of the obtained controller on the Raptor simulator under standard conditions, in the presence of external
disturbances and when the time integrator integrates an error that differs from the one used during training.
A possible extension to this work is the realization of a second loop of optimization that learns how to select the
best αi parameters of the reward function to optimize a cost function as the one proposed in Section 3.3 of [61].
Another future research is to use the same RL algorithm to achieve simultaneous stabilization of the temperature and
the safety factor profile. Additionally, an important extension would be to obtain at least local stability guarantees for
the closed-loop system with the proposed dynamic DNN controller.
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Table A.2: Table of symbols and corresponding units.

Symbol Description Unit
aρ Radius of the LCFS m
B Magnetic field T
Bϕ Toroidal magnetic field T
η∥ Resistivity Ω ×m
e Electron charge 1.6022 × 10−19 C
F Diamagnetic function T ×m
ι Rotational transform
Ip Total plasma current A
jni Non-inductive current J/m2

jbs Bootstrap current J/m2

jeccd Electron Ciclotron Current Drive density current J/m2

jtor Toroidal density current J/m2

µ0 Permeability of the free space 4π × 10−7 H/m
ne Electron density profile m−3

ni Ion density profile m−3

ϕ Magnetic flux of the toroidal field T/m2

Peccd ECCD power W
POH Total ohmic power W
ψ Magnetic flux of the poloidal field T/m2

q Safety factor
R Major plasma radius m
R0 Magnetic center location m
ρ Spatial index
τth Thermal energy confinement time s
Te Electronic temperature eV
Ti Ion temperature eV
Upl Toroidal loop voltage
V Plasma volume m3

Wth Plasma thermal energy J
x Normalized spatial index
χe Electron thermal diffusivity m2/s
Ze f f Effective Plasma charge C

16



A. Mattioni et al. / Fusion Engineering and Design 00 (2023) 1–28 17

Fig. 9: Rotational transform profiles (ι(x, t)) at different points of the spatial domain {0, 0.1, 0.2, 0.35} for a time period of 10 seconds. A disturbance,
implemented as a Neutral-Beam Injector placed in a different place from the ECCD antenna control input, is applied at time t = 5.3 (s).

Appendix A. Safety factor and thermal energy control model

Consider the reaction-diffusion equation describing the magnetic flux dynamics

∂ψ

∂t
(x, t) =

D(x, t)
a2
ρ

∂2ψ

∂x2 (x, t) +
G(x, t)

aρ

∂ψ

∂x
(x, t) + S (x, t). (A.1)

The coefficients D(x, t), G(x, t), and S (x, t) can be computed by following [62, eq. III-34] as

D(x, t) =
η∥C2

µ0C3
G(x, t) =

η∥Faρ
µ0C3

∂

∂ρ

(C2

F

)
S (x, t) = L(ρ, t) jni L(ρ, t) =

η∥V ′Bϕ0

FC3
(A.2)

where η∥(ρ, t) is the resistivity, µ0 is the permeability of the free space, F is the diamagnetic function, V(ρ, t) is the
plasma volume, V ′ = ∂V

∂ρ
is the volume spatial derivative while C2 and C3 are space varying parameters depending on

the considered plasma geometry configuration. jni(x, t) is the non-inductive current source and includes the bootstrap
current jbs as well as the ECCD density currents jeccd

jni = jbs + jeccd. (A.3)

In this work, the bootstrap currents are computed according to [25]

jbs = −
kbs

∂ψ/∂ρ

(
L31

∂ln(ne)
∂ρ

+ Rpe(L31 +L32)
∂ln(Te)
∂ρ

+ (1 − Rpe)(L31 + αL34)
∂ln(Ti)
∂ρ

)
(A.4)

where Te is the electronic temperature, Ti(x, t) ≈ αTi(t)Te(x, t) is the ions temperature, ne is the electron density, α is
a constant parameter while kbs, L31, L32, L34, Rpe are space varying parameters depending on the electronic and
ion temperatures and on the plasma geometric configuration. The ion-to-electron temperature ratio can be fixed to
αTi = 0.7. The electron density can be approximated by

ne(x, t) ≈
γn + 1
γn

(1 − xγn )n̄e (A.5)

17



A. Mattioni et al. / Fusion Engineering and Design 00 (2023) 1–28 18

(a) Rotational transform profiles (ι(x, t)) at different time instants after the
disturbance application.

(b) Applied ECCD power control input before and after the disturbance ap-
plication.

Fig. 10: ι-profiles and applied ECCD power (PECCD,i) for the two antennas in case of external disturbance application.

where n̄e is the electron line average density, that in our case has been considered to be constant n̄e = 1 × 10−19.
An appropriate and effective choice used in control-oriented plasma-dynamics simulators is to approximate the current
density by a weighted Gaussian [8]. According to [25], the ECCD efficiency can be modelled heuristically as

jeccd,i(ρ, t) = ccd,ieρ
2/0.52 Te

ne
e−4(ρ−ρdep,i)2/w2

cd,i Peccd,i(t) (A.6)

where wdep is the deposition width and ρdep is the location of the peak of the deposition, while Peccd,i is the power
associated with the i-th antenna. The parameter ccd is a machine-dependent parameter that can be chosen to scale the
expression to the experimentally obtained current drive values. The total ECCD current is obtained as the sum of the
different antennas, that in this work are considered to be two

jeccd(ρ, t) = jeccd,1(ρ, t) + jeccd,2(ρ, t). (A.7)

According to [63], the conductivity can be computed as

η∥ =
1
σ∥
=

1
σsptzcneo

. (A.8)

The Spitzer conductivity σsptz depends on the electron temperature and on the effective value of the plasma charge
Ze f f . This last parameter may in general vary spatially, but it is chosen here to be a fixed quantity for the whole plasma
Ze f f = 3.5. The neoclassical correction cneo depends on the electron and ion collisionality parameters as well as on
Ze f f . Both σsptz and cneo are space and time-varying.
Specific boundary conditions have to be considered both at the center and on the LCFS of the plasma. At the plasma
center, the spatial variation of the flux is zero

∂ψ

∂x
(0, t) = 0, (A.9)

while at the LCFS, we consider a Neumann boundary condition

∂ψ

∂x
(1, t) = −

R0µ0Ip(t)
2π

. (A.10)

where Ip is the total plasma current. The toroidal flux ϕ(x, t) is defined as the magnetic flux passing through a poloidal
surface centered at R0 and with normalized radius x. Assuming that the toroidal magnetic field remains constant, it is
possible to obtain an explicit formula for the toroidal flux [8]

ϕ(x, t) =
1

2π

∫
S pol

B(R,Z)dS pol = −
1

2π

∫
S pol

BϕdS pol ≈ −
Bϕ0a2

ρx2

2
. (A.11)
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Fig. 11: Rotational transform profiles (ι(x, t)) at different points of the spatial domain {0, 0.1, 0.2, 0.35} for a time period of 10 seconds. A
disturbance, implemented as a Neutral-Beam Injector placed in a different place from the ECCD antenna control input, is applied at time t = 5.3
(s). In this simulation the position at which we want to regulate the error to zero is x = 0.1, while the controller was trained to regulate the error at
x = 0.2.

An instrumental quantity for the temperature dynamics is the ohmic power

POH =

∫ 1

0

1
2πR0

Upl jtordx (A.12)

In the previous equation, Upl identifies the toroidal loop voltage while jtor corresponds to the toroidal density and they
can be computed as

Upl =
∂ψ

∂t
jtor =

1
η∥

D(x, t)
a2
ρ

∂2ψ

∂x2 +
G(x, t)

aρ

∂ψ

∂x

 . (A.13)

The temperature diffusion equation writes

3
2
∂neTe

∂t
=

1
ρ

∂

∂ρ

(
ρneχe(ρ, t)

∂Te

∂ρ

)
−

3neTe

2τd
+ S T (ρ, t) (A.14)

where χe(ρ, t) is the electron thermal diffusivity, τd is the time-varying damping modelling the losses and S T (ρ, t) is
the source term. In our specific application, where we consider two ECCD inputs, we have

S T (ρ, t) = S T,eccd,1(ρ, t) + S T,eccd,2(ρ, t). (A.15)

It is worth remarking that for i ∈ {1, 2} the source term has an amplitude such that∫ 1

0
S T,eccd,i(x, t)dx = Peccd,i. (A.16)

Because of the high uncertainty of the proposed temperature model and in order to effectively diminish the simulation
time, we choose to use an empirical reduced-order model that approximates the actual temperature dynamics, similar
to the one proposed in [64]. This model is composed of an ordinary differential equation representing the evolution
of the thermal energy Wth and a Neural network that takes as input the total power and the thermal energy and returns
the distributed temperature profile. The plasma thermal energy is defined as

Wth = We(t) +Wi(t) =
3e
2

∫
V

(neTe + niTi)dV =
3e
2

∫
V

(1 + αTiαni)neTedV (A.17)
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(a) Rotational transform profiles (ι(x, t)) at different time instants after the
disturbance application.

(b) Applied ECCD power control input before and after the disturbance ap-
plication.

Fig. 12: ι-profiles and applied ECCD power (PECCD,i) for the two antennas in case the point to be regulated is different from the one the controller
has been trained with and external disturbance application.

where ni ≈ αnine(x, t) is the ions density, e is the electron charge and We,Wi are the electrons and ions energy,
respectively. The density ratio can be approximately computed as αni ≈ (7 − Ze f f )/6.
The exponents in the τth expression in (20) have been obtained by applying linear regression on data obtained from
Raptor simulations. In particular, the collected data together with the applied open-loop input, are organised in the
vectors X and Y as following

X =


1

log(Ptot)
log(1 + Peccd,1)
log(1 + Peccd,2)

 Y = τth. (A.18)

Linear regression is then applied to the couple (X,Y) to obtain the power constant values k0, k1, k2, k3 such that

τth = ek0 Pk1
tot(1 + Peccd,1)k2 (1 + Peccd,2)k3 . (A.19)

The temperature profile is obtained as the output of an artificial Neural Network

Te(x, t) = fNN(Ptot,Wth). (A.20)

The neural network has been trained using a set of temperature profiles associated with the total power and the
thermal energy obtained by some Raptor simulations. For both the τth linear regression and the NN training, the
Raptor simulations have been obtained by applying different constant open-loop inputs to the system and extracting
the total power, the thermal energy, τth and the temperature profiles.

Appendix B. Simulation Algorithm

Employing a combination of implicit-explicit time discretization and fixed-step spatial discretization, as outlined
in [8, Appendix A], system (17) can be approximated by the difference equation

ψ j+1 = B−1
j A jψ j + B−1

j S j (B.1)

where ψ j, S j ∈ RN are N-dimensional vectors of the magnetic flux and the source term at N different point of the
spatial domain at the j time iteration. The matrices A j ∈ RN×N and B j ∈ RN×N depend on the plasma physical
parameters and change at every iteration j. The time discretization step is fixed at δt = 0.01, with an implicit-explicit
ratio of h = 0.45, and the total simulation time is referred to as Tsim. The space domain is divided into N = 21
discretization elements, with a fixed spatial discretization step of δxi = 0.05. Similarly, the thermal energy dynamics
can be approximated by the difference equation

Wth, j+1 = d jWth, j + s jPtot, j (B.2)
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where Wth, j, Ptot, j ∈ R are the thermal energy and the total power at the j time iteration. d j and s j are coefficients
depending on τth, j. It is worth remarking that our study case is similar to the one considered in [51], where the two
available inputs act on the same spatial point: the first antenna Peccd,1 acts positively on z j while the second Peccd,2
acts negatively. The two input powers have limited maximum power Peccd,i ∈ [Peccd,i, P̄eccd,i]. To control the magnetic
flux gradient, the control action corresponds to the difference between the two antennas’ power. Inversely, the control
action for the temperature profile corresponds to the sum of the two antennas’ power. Since in this work we are
interested in magnetic control, in the following we define a function mapping from the desired power difference to the
value of each antenna power. Firstly, we define the control input a j ∈ [0, 1] that is mapped to the desired difference
α j ∈ [α, ᾱ] between the two ECCD powers applied at the j time iteration

α j = α + a j(ᾱ − α) = Peccd,1, j − Peccd,2, j, (B.3)

where α = Peccd,1 − P̄eccd,2 and ᾱ = P̄eccd,1 − Peccd,2. Given a desired power difference α j, the control input powers are
mapped to minimize their sum Peccd,1, j + Peccd,2, j. The mapping can be expressed by

Peccd,1, j = Peccd,1
Peccd,2, j = Peccd,1 − α j

if α j < Peccd,1 − Peccd,2

Peccd,1, j = α j + Peccd,2
Peccd,2, j = Peccd,2

if α j ≥ Peccd,1 − Peccd,2.

(B.4)

After the spatial discretization of the magnetic flux dynamics and the temporal discretization of both the magnetic
flux and thermal energy dynamics, we obtain the difference equation

z j+1 =

[
B−1

j A j 0
0 d j

]
z j +

[
B−1

j S j

s jPtot, j

]
= f (z j, a j). (B.5)

in the state variable

z j =

[
ψ j

Wth, j

]
∈ RN+1. (B.6)

The steps for the plasma magnetic flux and temperature simulation are listed in Algorithm 2. The constant parameters
are fixed as follows

Bϕ0 = 1.44, R0 = 0.88, aρ = 0.25, Ze f f = 3.5, δ0 = 0.3,
n̄e = 1 × 10−19, αTi = 0.7, µ0 = 4π × 10−7, γn = 2. (B.7)

In the current experiment, we assume that the two ECCD actuators, described by the injected current density in (A.6),
have the following parameters

ccd,1 = 1, ρdep,1 = 0, wcd,1 = 0.35, P̄eccd,1 = 900(MW), Peccd,1 = 360(MW),
ccd,2 = −1, ρdep,2 = 0, wcd,2 = 0.35, P̄eccd,2 = 750(MW), Peccd,2 = 100(MW). (B.8)

It is worth noticing that the Ohmic power at time instant j + 1 is computed with the variables η∥, j, Te, j, Ti, j, u j,
belonging to the time instant j, as well as ψ j+1, belonging to the time instant j + 1. With this simulation procedure,
it is not possible to only use variables belonging to the time instant j + 1 for the POH, j+1 calculation because POH, j+1
itself is needed to compute Te, j+1 and Ti, j+1. This is an intrinsic property of this simulation procedure, introduced in
[8], that avoids the implementation of a fixed point iteration research to find all the states at the time step j + 1. The
nonlinear components of the model are delayed by one sample while an implicit-explicit scheme is used for the linear
components, thus avoiding the fixed-point iteration algorithm to obtain a faster simulation.
To test the simulator’s precision with respect to a certain tokamak configuration, we compare the trajectories obtained
with the application of some constant open-loop controls with the ones obtained through the application of the same
controls with the Raptor simulator. The Raptor simulator is a real-time predictor of the Ψ and Te profiles used as
an observer in the TCV control environment [25]. The kinetic and magnetic profiles are obtained by simulating two
coupled nonlinear reaction-diffusion PDEs. Therefore, the Raptor simulator provides fairly precise simulation results
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Algorithm 2: Simulation Algorithm
Data:
• Initialization of ψ0, Wth,0 and POH,0 from Raptor simulation after the ramp-up phase

• Initialization of the constant physical parameters

• Initialization of the constant simulation parameters

• Initialization of the open-loop input U

• Simulation initialization j = 0

while j < Tsim/δt do

1. Input extraction : a j = U[ j]
2. Temperature: Te, j,Ti, j ← ftemp(a j, POH, j,Wth, j) with (21), (A.20) and (B.3)-(B.4)
3. Resistivity: η∥, j ← fresistivity(Te, j, ψ j) with (A.8)
4. Bootstrap current: jbs, j ← fboostrap(Te, j,Ti, j, ψ j) with (A.4)
5. ECCD deposit: ( jeccd,1) j, ( jeccd,2) j ← feccd(a j,Te, j) with (A.6)
6. Non-inductive currents: jni, j ← jbs, j + ( jeccd,1) j + ( jeccd,2) j

7. Diffusion coefficients: Di, j,Gi, j, Li, j ← fcoe f f (η∥, j) with (A.2)
8. Magnetic flux: ψ j+1 ← fψ(ψ j,Di, j,Gi, j, Li, j, jni, j) with (B.5)
9. Thermal energy: Wth, j+1 ← fthermal(u j, POH, j,Wth, j) with (B.5)

10. Ohmic Power: POH, j+1 = fohmic(η∥, j,Te, j,Ti, j, a j, ψ j+1) with (A.12)-(A.13)

j← j + 1
end

that can be taken as a reference for our simulator. Fig. B.13 shows the ∂ψ
∂ρ

(ρ, t) trajectories with the application of
the open loop input a = 0.15. The initial condition for both the Raptor and the training simulator corresponds to
the steady state with the constant open loop input a = 0.7. In Fig. B.13a are shown the trajectories of four points
of the spatial domain x = 0.05, 0.35, 0.5, 0.75 of both the Raptor and training simulator. While in Fig. B.13b are
shown the ∂ψ

∂ρ
(ρ, t) profiles at time instants t = 0.1, 0.2, 1.5. We remark that there exists a visible difference between

the profiles obtained with the proposed simulation algorithm and the Raptor simulator. Nevertheless, we can observe
similar trends:

• Small values of the input result to small values of the magnetic gradient peak,

• Small values of the input result to a right-shift of the magnetic gradient peak.

In the following sections, we show that having a model that keeps the same trends as the “real” system is enough to
design a controller with a DRL algorithm.

Appendix C. Reinforcement Learning with integral action on a toy model

Consider a continuous-time mass-spring-damper system with mass m, spring constant k0, damping c, and position
denoted by x. The toy model’s dynamic equations can be expressed as

ẍ(t) = −
k0

m
x(t) −

c
m

ẋ(t) +
1
m

a(t) (C.1)

22



A. Mattioni et al. / Fusion Engineering and Design 00 (2023) 1–28 23

(a) Trajectories of poloidal flux gradient (∂ψ/∂x) over time at various points
of the normalized spatial index {0.05, 0.35, 0.5, 0.75}. The dashed lines rep-
resent trajectories obtained from an open-loop Raptor simulation, while the
solid lines depict trajectories resulting from the simulator proposed in this
study.

(b) Poloidal flux gradient (∂ψ/∂x) profiles at different time instants
{0.1, 0.2, 1.5}. The dashed lines represent trajectories obtained from an
open-loop Raptor simulation, while the solid lines depict trajectories re-
sulting from the simulator proposed in this study.

Fig. B.13: Comparison between Raptor and training model open-loop simulations.

where a(t) is the control force (action) applied to the system. The state space representation, with z = [x ẋ]T ,
corresponds to

ż(t) =

A︷        ︸︸        ︷[
0 1
− k0

m − c
m

]
z(t) +

B︷︸︸︷[
0
1
m

]
a(t) (C.2)

Using an implicit-explicit discretization scheme, we are able to obtain the difference equation corresponding to the
mass-spring-damper system

z j+1 =

AD︷                              ︸︸                              ︷
(I − δt(1 − h)A)−1(I + hδtA) z j +

BD︷                   ︸︸                   ︷
(I − δt(1 − h)A)−1B a j, (C.3)

where δt is the discretization time step. The control objective is to find a control law capable of stabilizing the
system to a desired position x⋆. Hence, we aim at steering the system to z⋆ = [x⋆ 0]⊤. Moreover, we want such a
stabilization property to be robust, namely, we want the controller to stabilize the system even in presence of (constant)
disturbances. An example of such disturbances may be the imperfect knowledge of the system’s parameters, e.g., the
spring’s constant k = k0 + δk with δk ∈ [−∆,∆]. Hence, we model the true plant to be controlled as

z j+1 = (AD + ÃD)z j + BDa j, (C.4)

where z j = [x j ẋ j]T and ÃD embeds the constant unknown spring variation δk. Instead of using a more conventional
control approach (e.g. Lyapunov-based, forwarding, etc.) we now want to use an RL algorithm to learn the policy
(controller) for the former system. To do that, let us define the optimal problem via the reward

r j = (z j − z⋆)T Q(z j − z⋆) + R(a j − a⋆)2. (C.5)

where a⋆ = k0x⋆ is the steady state input for obtaining the desired equilibrium with a spring constant k = k0. The
training is performed on a system with unitary parameters m = c = 1 and spring constants k0 = 1 and ∆ = 0.2. The
cost matrices are defined as Q = 0.001I and R = 0.01. In this example, we use a 2 layers neural network with 32
nodes for both the actor and the critic. The learning rate is set equal to γ = 0.001. Training is performed with a
2 × 106 total number of steps, while each episode has 500 steps. The time step is set equal to δt = 0.1. The training is
performed using 8 environments in parallel using the PPO algorithm. At each episode, the spring parameter variation
is selected randomly in the interval [−∆,∆]. Fig. C.14 shows the evolution of the episode reward mean over time. In
Fig. C.15, we show the mass-spring-damper system in a closed loop with the trained control law in case k = 1 with
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Fig. C.14: Reward mean over steps of the mass-spring-damper controller training without the integral action.

Fig. C.15: Control action and position of the mass-spring damper system in closed loop with a controller without integral state that has been trained
on a model with a different spring coefficient.

initial conditions set to x0 = −4, ẋ0 = −5. We can see that the control law drives the system towards an equilibrium
position, with a constant offset from the desired position x⋆ = 1.
Now, let us add the integrator dynamics and consider the stabilization of the extended systemz j+1 = (AD + ÃD)z j + BDa j,

ε j+1 = ε j + (x j − x⋆)δt.
(C.6)

Then, if the extended system is stabilized to some (ze, ηe) by a feedback control law a(t) = u(z, η) such that u(ze, ηe) =
ue, we have 0 = (AD + ÃD)ze + BDue,

0 = (xe − x⋆)δt.
(C.7)

As such, the second equation implies xe = x⋆. Hence, x⋆ is reached even in presence of constant unknown variation
of the spring constant. We rewrite the open-loop system with state s j = [x j ẋ j ε j]T as

s j+1 =

AD + ÃD
0
0

δt 0 1

 s j +

0
1
m
0

 a j +

 0
0
−x⋆δt

 (C.8)

We define

s⋆ =

 0
x⋆

0

 (C.9)

and the reward as
r j = (s j − s⋆)T Qe(s j − s⋆) + R(a j − a⋆)2 (C.10)
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Fig. C.16: Reward mean over steps of the mass-spring-damper controller training with integral action.

where Qe is the new extended state cost matrix and a⋆ = k0x⋆ as before. We perform the same training as the one
done for the system without the integrator state. In this case we fix

Qe =

 0.001 0 0.0005
0 0.001 0

0.0005 0 0.001

 R = 0.01. (C.11)

In Fig. C.16 is depicted the evolution of the episode reward mean. In Fig. C.17 we show the extended system in
closed-loop with the trained control law in case k = 1. We can appreciate that in this case, the position converges
to the desired equilibrium. Therefore, we have trained a robust controller that makes use of an integrator state to be
robust with respect to constant parameter variation. It is possible to show that the same controller is robust also with
respect to constant disturbances.
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