Christophe Trophime

Franc ¸ois Debray Jérémie Muzet

Christophe Prudhomme

Vincent Chabannes

MagnetDB a platform for the simulation of High Field Magnet

Keywords: high field magnet, electromagnet, finite element, software architecture

We present a platform, MagnetDB designed to simplify and automate the simulation of high field magnets. The simulation available range from semi-analytical model for the magnetic field in the user experimental zone to multi-physic finite element model. The system architecture is composed of a web front-end with a python back-end that interact with a database containing a formal description of our magnet derived from our operating mode. The system focus on resistive magnets. We give an overview of the system with a focus on the templating engine to generate files for simulations setup. More advance use of the system with a python command line interface module is explored.

I. INTRODUCTION

T HE French magnet user facility of the European Mag- netic Field Laboratory (EMFL), namely the Laboratoire National des Champs Magnétiques Intenses (LNCMI), enable researchers to perform experiments in the highest magnetic field. DC magnetic fields up to 37 T are provided at the Grenoble site and pulsed fields up to 100 T at Toulouse. In this paper, we focus on DC resistive magnets from Grenoble site.

In collaboration with Cemosis of Uni. Strasbourg., we develop a software tool chain, HiFiMagnet [START_REF] Daversin | Full three-dimensional multiphysics model of high-field polyhelices magnets[END_REF], to design and model our magnets. HiFiMagnet is composed of inhouse developments for the initial design and of finite element models based on Feel++ library [START_REF] Prud´homme | Feel++ : A computational framework for galerkin methods and advanced numerical methods[END_REF] for numerical multi-physics simulations that range from semi-analytical 1D to 3D fully coupled models. They allow covering multiple usage from the Magnet designer to the User. HiFiMagnet can generate CAD geometry and mesh for the studied magnets using Salome [START_REF]Opensalome: The open source platform for numerical simulation[END_REF]. Depending on the model size, simulations can be run either on standard laptop or HPC facilities thanks to Feel++ transparent management of parallelism. The setup of simulations is achieved with human-readable configuration files, coined as the input dataset in the sequel. Still, this process remains difficult for users not familiar nor with Feel++, nor with running jobs on HPC.

To address this point, we develop a platform to simplify and automate the setup of simulations as well as running the simulations. The platform consists mainly of a web frontend associated with an API to recover magnet data from an SQL database and to feed them into a templating system for generating the input dataset associated to a selected model. Finally, a worker is in charge of running the simulation on a selected computer and store the results in a S3 storage system. Beside this goal, the platform also offers the possibility to aggregate all the code developed for modeling the resistive magnets -ranging from semi-analytical axisymmetric models for predicting the magnetic field to full scale 3D multi-physic finite element model. On top of that, it allows offering new services for both magnet designers and users. So far, the platform access is still limited to the LNCMI staff.

Similar platforms are actively developed, mostly in the HTS superconductivity community, for educational [START_REF] Riva | AURORA: Learning Superconductivity Through Apps[END_REF] and magnet development [START_REF] Bortot | Steam: A hierarchical cosimulation framework for superconducting accelerator magnet circuits[END_REF] [START_REF]Quanscient allsolve: a multiphysics simulation software[END_REF]. With MagnetDB platform, we aim to provide similar simulation services for our high field magnets, limited to the study of solenoid configurations. We also design the platform to exploit data from the magnet control system (MSC) to mimic magnet in real operating conditions.

The paper will be organized as follows. In a first section, we briefly present the architecture of MagnetDB. The central part of the system is the database representing our magnets that is detailed in section III. Then, we introduce the template engine to perform the simulation setup and the worker that actually launch the simulations. Finally, we illustrate the use of MagnetDB for modeling Bitter magnets from a command line interface that allows for more advanced workflow.

II. PLATFORM ARCHITECTURE

MagnetDB platform consists mostly in a web front-end and a python back-end app (see fig. 1). The access to the front-end is controlled by a Single Sign On (SSO) system [START_REF] Maudoux | LemonLDAP::NG a full AAA free open source WebSSO solution[END_REF] that allows for federate authentication. So far, the front-end is accessible only for LNCMI staff -namely to the laboratory ldap directory service. The SSO system generates a token for each user that can be also used for accessing the platform.

The python back-end is an API that (i) interacts with the SQL database that holds all information about the actual magnets, (ii) fetch magnet data from the database, send them to the web front-end to be displayed (e.g. magnet definitions -both in terms of components or material properties; magnet field maps; operating conditions for each run attached to a given magnet), (iii) performs simulation setup on demand, (iv) prepare the commands to execute for running the simulation remotely and (v) stores/loads data on a S3 storage service (e.g. CAD and mesh files attached to magnet, simulations results).

A worker service has been added to dispatch simulation setup and jobs in a queue to enable asynchronous treatment since these operations may require important time resources, especially for 3D model. Simulation jobs can be run remotely on any computer resources defined by the user. All that is needed at this point is some credentials to log on to the remote computer, along with the computer's main characteristics (number of CPUs, ..). MagnetDB creates an ssh key for each computer defined by the user. To seamlessly run the simulation on the remote machine, the user simply needs to copy the ssh key to the remote machine. The Feel++ app to be run on the target machine shall be shipped as an HPC container [START_REF] Kurtzer | Singularity: Scientific containers for mobility of compute[END_REF], installed prior to any operations on the target machine. In a future MagnetDB version, we plan to use a registry service [START_REF] Sochat | Singularity registry: Open source registry for singularity images[END_REF] to automatically retrieve the container if not present on the remote computer.

On top of MagnetDB, we also implement a python module to interact with the platform in a command line interface (CLI) mode. The token issued by SSO -specific for each user -is needed to operate this CLI as will be shown in section V. This mode allows exploring new uses of the platform and creating new simulation workflows. Fig. 3. Cut View of an experimental site: in MagnetDB terminology, the site is composed of an HTS magnet in "orange", a poly-helices magnet in "gray" and Bitter magnet with two parts in "red". Poly-Helices magnet is a specific technology of LNCMI, see for [START_REF] Debray | Dc high field magnets at the lncmi[END_REF] details.

The MagnetDB platform has been configured to start using docker-compose that automatically launch each service (SSO system, Database, front-end, back-end). The services accessible from internet are routed using traefik [START_REF]Traefik: an open-source edge router[END_REF] with ssl for security issues. A service to monitor and manage the database is also provided for initial setup of the SQL engine.

III. DATABASE STRUCTURE

The database (Postgres service in fig. II) is the actual central component of MagnetDB. Its structure reflects our operating mode. Magnets are fitted into a housing that enable to cool them down by a high speed water flow. The cooling system is actually similar to the one for nuclear plant -i.e. a primary cooling loop to cool down the magnet powered by a 24 MW installation and a secondary loop to cool down the water going out of the magnet. The resistive high field magnet consist of 2 inserts powered in parallel. The inner insert is made of poly-helices magnet and the outer of Bitter magnets [START_REF] Debray | Dc high field magnets at the lncmi[END_REF]. Superconductor magnet can be "added" to this setup to reach higher fields: Hybrid project [START_REF] Pugnat | Commissioning of the 43+t grenoble hybrid magnet[END_REF] with an LTC outsert which is designed to reached 43 tesla (this magnet is currently tested), an HTS insert [START_REF] Fazilleau | 38 mm diameter cold bore metal-as-insulation hts insert reached 32.5 t in a background magnetic field generated by resistive magnet[END_REF] that has reached 32.5 tesla -see fig [START_REF]Opensalome: The open source platform for numerical simulation[END_REF].

In MagnetDB terminology, we define a site as a set of magnet. In turn, a magnet is composed of parts (see fig. 4). A part is a geometry with a material. The part geometry is defined for the moment as yaml file, stored in the S3 service. In a near future version, the geometry will also be defined as a json database object. The physical properties are introduced as fields of a material object. Again, we have limited ourselves to scalar properties. This will be extended to support tensor as well as tabulated properties. For superconductor material, we envision to use a json db object that contains parameters and fit function for J c (B, T) [START_REF] Muzet | 2d axisymmetric modeling of the hts insert nougat in a background magnetic field generated by resistive magnet[END_REF]. Here, the magnetic field Bz(0, 0) is displayed versus time for a given record. The user can select the fields to view by selecting it in "X-Axis" and "Y-Axis" sliding menu. The data correspond to a "magnet run".

Associated db tables are used to respectively keep track of the parts of a magnet and of the magnets composing a site. This provides a way to have a history of either use part or magnet. Indeed, when a magnet breaks, only certain parts are replaced. In our terminology, a magnet failure means that the corresponding site is retired, which corresponds to a change of status in the db. Operational data from the MSC -namely record in MagnetDB -are attached to each operational site.

Beside the magnet formal description, the database also contains specific tables for monitoring database operations, for controlling what a user can do. We have classically implemented "Admin", "User" and "Guest" roles. "Guest" can only view data, "User" can add/modify data.

IV. TEMPLATING SETUP SYSTEM

As briefly stated in section II, the simulation setup is performed by call to the python API. More precisely, we developed a python module -namely magnetsetup -that generate files needed for running a simulation with feel++ apps using a mustache template engine (fig. 6).

A form is provided to select either the magnet, either the site to model, the actual simulation to perform and several other fields depending on the selected simulation type (see fig. 7). When the user click on the "Save" button, the API retrieve data from db for the selected objected and generate the actual simulation files needed by sending appropriate data to the template engine. Once the files are generated, a simulation object is created and the user can proceed with setup by clicking on the corresponding button. Then, running the simulation can be started just by clicking on the "Run" button. At this stage, the user is asked to select a computer before actually running the simulation. In case of failure at any steps, the user is notified -see the "setup pending" in fig. 8 which stands for setup operation in progress -and may retrieve log files of the failed operation for debugging.

Template files per numerical model are defined as a dictionary in a magnetsetup json file, loaded when the system is powered on.

V. ADVANCE USE WITH CLI MODE

We also provide a python module to interact with MagnetDB in CLI and to perform more advanced simulation workflow. To enable this mode, the user just need to get the API key generated when first logging into MagnetDB and define an environment variable that points to this token.

To illustrate this mode, we will mimic the commissioning procedure of a Bitter magnet. In this procedure, the cooling water flow rate Q is controlled by the current I in the Bitter magnet. As a consequence, we need to estimate for each current the heat exchange coefficient h and the water temperature rise ∆T w to properly model the magnet cooling. h is computed using heuristic correlation [START_REF] Montgomery | Solenoid Magnet Design[END_REF] and ∆T w is

VI. CONCLUSIONS

We have developed MagnetDB, a platform for the simulation of our resistive magnets. It consists of a database that provides a formal description of the magnets and an API interface that allows automatic simulation setup. A worker service is used to seamlessly launch the simulation on a remote computer. Users can actually run simulation ranging from semi-analytical 1D model to multi-physics Axi or 3D finite element model from a web front end. Right now, the access to the platform is limited to LNCMI staff, but it may be opened for our users in a near future. In a near future, we plan to add a post-processing service for magnet designer to explore in detail simulations results, some basic stats service for e.g magnet consumption.

Data issued from the MSC are accessible from the frontend. This allows to model our magnets in real operating conditions through the use of a python CLI for interacting with MagnetDB. We foresee to extend this mode to adopt a systemic approach for more realistic simulations. This would be the first toward magnet digital twin to get more insights of magnet part life-time from the real "stress" history during its operation; coupling the simulations with the actual MSC system for early failure detection; estimating the water flow temperature rise from the user experiment in the prospect of fatal heat recovery project [START_REF]Projet valocal: Valorisation des calories issues du procédé de production des champs magnétiques intenses[END_REF].

Fig. 1 .

 1 Fig. 1. MagnetDB architecture.

Fig. 2 .

 2 Fig. 2. MagnetDB: Magnet Field profile in (Or, Oz) plane for a given magnet. The user can define the currents in each insert composing the magnet, z and r range. The magnetic field is computed from a semi-analytical axi model.

Fig. 4 .

 4 Fig. 4. MagnetDB database structure.

Fig. 5 .

 5 Fig.5. MagnetDB: view of a record. Here, the magnetic field Bz(0, 0) is displayed versus time for a given record. The user can select the fields to view by selecting it in "X-Axis" and "Y-Axis" sliding menu. The data correspond to a "magnet run".

Fig. 6 .

 6 Fig. 6. Schematic view of the template setup engine.

Fig. 7 .

 7 Fig. 7. MagnetDB: form to setup a simulation. Here, we create a static linear thermo-electric model for an axisymetrical geometry with a "mean" cooling model. The cooling model does not consider each cooling channels separately.

Fig. 8 .

 8 Fig. 8. MagnetDB: launch setup and run a simulation. The model is the same as the one defined in fig. 7.

Fig. 9 .

 9 Fig. 9. MagnetDB: Comparisons of computed and measured Voltage taps during magnet commissioning. Each plateau corresponds to a given current (see legend on the right side)

ACKNOWLEDGMENT

The authors would like to thank Remi Caumette for his help in implementing MagnetDB front-end and back-end.

1POM04-09