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Abstract. The didactic object of these developments on differential geometry of curves and surfaces is
to present fine and convenient mathematical strategies, adapted to the study of capillary bridges. The
common thread is to be able to calculate accurately in any situation the bending stress over the free surface,
represented mathematically by the integral of the Gaussian curvature over the surface (called the total
curvature) involved in the generalized Young–Laplace equation. We prove in particular that the resultant of
the bending energy is directly linked to the wetting angles at the contact line.

Résumé. L’objet didactique de ces développements basés sur la géométrie différentielle des courbes et
des surfaces est de présenter des stratégies mathématiques adaptées à l’étude des ponts capillaires. Le
fil conducteur est de pouvoir calculer avec précision, dans n’importe quelle situation, la contrainte de
flexion de la surface libre d’un pont capillaire, représentée mathématiquement par l’intégrale de courbure
de Gauss (courbure totale) de la surface libre intervenant dans l’équation de Young–Laplace généralisée.
Nous établissons en particulier un résultat très général suivant lequel la résultante de l’énergie de flexion
est directement liée aux angles de mouillage au niveau de la ligne de contact.
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1. Introduction

Under boundaryless manifold condition, the most common formulation of the Gauss–Bonnet
integration theorem indicates that for a spherical drop or a soap bubble without contact, with
or without bump, the integral of the Gaussian curvature1 over the surface, proportional to the
bending energy, is invariant if one bends and deforms the surface (this value is a topological
invariant).

Indeed, according to the Gauss–Bonnet integration theorem, for a closed free surface, the
energy contribution of the Gaussian curvature during deformation is directly proportional to
the Euler constant (see Eq. (2)), and therefore is constant as long as the topology of the surface,
described by the Euler characteristic of the surface, does not change [1], and can be ignored when
determining the shape of such a membrane.

This has probably favored the in-depth study of constant mean curvature surfaces, excluding
gravity effects [2–8]. In the case of capillary bridges, the presence of contact surfaces does
not allow this simplification (the total geodesic curvature of the boundary is to be taken into
account to apply the Gauss–Bonnet integration theorem) and makes it a priori necessary to take
into account the Gaussian curvature, to establish a hierarchy of the various configurations with
regard to the bending effects and to introduce the generalized Young–Laplace equation. Some
other works proposed a general law for continuum media with interface or a derivation of thermo
balance equation for systems with interface [9]. A second order thermodynamical approach has
been used to model surface tension of bubbles leading to a generalization of Young–Laplace
theory [10], but without involving the Gaussian curvature of the interface.

In this work, we present various results and complementary strategies of mathematical ana-
lysis that can be applied to concrete capillary bridges problems, concerning in a new way, the
Gauss–Bonnet and Fenchel’s theorems to establish various analytical formulas easy to use for
capillary bridges. In a first step, we will focus on surfaces of revolution (circular boundaries,
which makes these cases much easier, especially for the explicit calculation of the total geodesic
curvatures of the boundaries, rarely possible in practice by the integral calculus). We prove
that, in the general case including particular axisymmetric capillary bridges, the resultant of the
bending energy is directly linked to the wetting angles at the contact line. We also highlight the
determining parameters and their respective influence in the bending energy and its variation.

Then the approach is extended to the rather delicate modelling of nonaxisymmetric capillary
bridges distortions. The key to achieving generalization is a direct consequence of the Fenchel’s
theorem in differential geometry which avoids a lot of dead-end integration calculations. These
developments relate to surfaces of revolution on the basis of an unit speed reparameterization
(or by arc length) for a regular curve, in this case, the semi-meridian. For detailed presentations
of the subject, the reader may refer to [11, p. 161-164], [12, p. 161-162] and also to [13, 14].

2. Generalized Young–Laplace equation and associated

The generalized Young–Laplace equation concerns the strong distortions for which the bending
effects are modeled by an additional curvature-related term involving the Gaussian curvature
K though a multiplier coefficient CK which has the dimension of a force and stands for the
bending stress [15–17]. According to generalized Young–Laplace equation, the downward vertical
measurement x in relation with the value ∆p0 at x = 0 (a spontaneous unknown value), may be
linked to the mean an Gaussian curvature according to [7, 8, 16, 18, 19]:

γ

(
1

ρc
+ 1

N

)
+CK

1

ρc N
=∆p0 −∆ρ g x, (1)

1The product of the main curvatures.
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where CK has a dimension of a force2. Therefore the term CK /ρc N stands via a pressure for
the local bending stress, where ρc and N denote the principal radii of curvature (evaluated
algebraically, positively when the curvature is turned into the interior of the capillary bridge).
Finally, ∆p0 is the pressure deficiency at x = 0 and ∆ρ the difference of the densities between the
fluid and the gas.

It is assumed that the different cefficients, implicit unknown a priori, as ∆p0, resulting from
the final equilibrium, have been previously identified in situ from exprerimental data, by solving
a linear system, well posed and numerically stable (for example, thanks to a first integral and a
principle of conservation) [20–22], [23–28].

It is extremely noteworthily [29], that this strongly nonlinear differential equation is math-
ematically isomorphic (the same structure) but with different variables and physical units, to
the Gullstrand equation of geometrical optics, which relates the optic power P ′

op of a thick lens
(in diopters, the reciprocal of the equivalent focal length) to its geometry and the properties of
the media. For example, the superficial tension γ is equivalent to the refractivity n1

n2
−1, where ni

is a refractive index, CK is analogous to the expression −( n1
n2

− 1)2 n2
n1

d , d the lens thickness and
∆p0 corresponds to P ′

op .
Shear or free energy problems and the longitudinal bending stress of ship hulls have an anal-

ogy with the subject [30–34]. The mathematical modeling and simulations of the petroleum en-
gineering are also concerned by this theoretical topic, in order to obtain for media with periodic
microstructure an “equivalent” macroscopic representation, by some statistical or homogeniza-
tion methods [35, Chapter 1].

The bending stress over the free surface Σ may be represented in the following integral form,
at the dimension of a force:

Ebending stress =CK

∫
Σ

K dΣ,

where K is the Gaussian curvature of the free surface Σ, intrinsic value, in particular independent
of the choice of the unit normal vector, and the nondimensional integral is the total curvature3.

Concerning the capillary tension forces, by term by term integrating over the free surface Σ
the generalized Young–Laplace equation, we have for example the relationship between various
forces:

γ

∫
Σ

(
1

ρc
+ 1

N

)
dΣ=−CK

∫
Σ

K dΣ +
∫
Σ

(
∆p0 −∆ρ g x

)
dΣ,

with the particular situation:

γ

∫
Σ

(
1

ρc
+ 1

N

)
dΣ=−CK

∫
Σ

K dΣ+∆p0 area (Σ)

when neglecting gravity effects.
This would allow to have a reasoned opinion on the relative importance of the bending forces;

according to an objective criterion, either by relative value or by intrinsic value.

3. Homotopic surfaces, Euler characteristic and Gauss–Bonnet theorem

3.1. General theory

Recall that the Euler characteristic (or Euler–Poincaré characteristic) is a topological invari-
ant, an integer that describes, according to precise axiomatic principles, the shape or a struc-
ture of a topological space regardless of how it is bent according to the formula: number of

2CK results from the physics at the interface molecular scale. Its sign a priori depends on the dynamics of the wetting
(advancing or recessing wetting angle) and on the value of the wetting angle (see Eq. (7)).

3For example, the total curvature of the catenoid whose axis is of infinite length is −4π, the total curvature of the
sphere of radius r is 4π and the torus 0.



4 Olivier Millet and Gérard Gagneux

vertices−number of edges+ number of faces with the property of invariance by homeomor-
phy. It is commonly denoted by χ or χ(M). As examples for surfaces in homological algebra, we
have χ(M) = 2 for a sphere, χ(M) = 4 for two spheres (not connected), χ(M) = 0 for a torus and
χ(M) =−2 for a two-holed torus.

To speak very figuratively, quite approximately, the Euler–Poincaré characteristic is an integer,
invariant when the size and the shape of a geometrical object change by an effect of a “plastic”
deformation.

This invariance property makes it a providential tool in the context of this study on the
bending effects, associated to the Gauss–Bonnet theorem, a deep relationship between surfaces
in differential geometry, connecting the Gaussian curvature of a surface to its Euler characteristic.

The Euler characteristic of the right cylinder is zero, thus so is that of the cylinder with one or
two boundaries. These following free surfaces with two circular boundaries and whose meridian
is an arc of Delaunay roulette are considered topologically equivalent (same common topological
genus), because it is possible to continuously move one to obtain the other: portion of concave
or convex, catenoid or unduloid (the right cylinder being the transition case). Accordingly, these
axisymmetric surfaces have in common the same Euler characteristic, in this case, the value zero.
It is the same for their continuous axisymmetric smooth deformations by distorting effect of
bending or gravity [19, 36].

The Gauss–Bonnet theorem is reputed to be one of the most profound and elegant results
of the study of surfaces [1, 11, 13, 37]. It has no surprisingly many applications in Physics. It is
used in sectors of activity where the problems of bending beams surely arises (civil engineering,
naval architecture, shell theory to predict the stress and the displacement arising in an elastic
shell, [37–40], etc. . . ).

In fact, it unexpectedly links two completely different ways of studying a surface: one geomet-
ric, the other topological. Indeed, for any compact, boundaryless two-dimensional Riemannian
manifold Σ, the integral of the Gaussian curvature K over the entire manifold with respect to area
measure is 2π times the Euler characteristic ofΣ, also called the Euler number of the manifold, i.e.∫

Σ
K dΣ= 2πχ (Σ) . (2)

For example, for a sphere Σ of radius R in R3, it comes:∫
Σ

K dΣ= 1

R2 4πR2 = 4π and here χ (Σ) = 2 (3)

Suppose now that M is a compact two-dimensional Riemannian manifold with a boundary
δM and let kg the signed geodesic curvature of δM . Then, in nondimensional writing,∫

M
K d M +

∫
δM

kg d s = 2πχ (M) . (4)

We recall that the geodesic curvature kg , of an arbitrary curve at a point P on a smooth surface,
is defined as the curvature at P of the orthogonal projection of the curve onto the plane tangent
to the surface at P and we have:

kg = k cosθg , (5)

where θg is the angle between the osculating plane of C and the tangent plane Q at point P , which
corresponds to the local contact angle for capillary bridges wetting a plane surface. In particular,
when the curve C representing δM is a circle of radius R, we have k = 1

R and therefore:∫
δM

kg d s = 2πcosθg (6)
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Figure 1. Representation of the geodesic curvature.

3.2. Application to droplets and capillary bridges

As explained in the introduction, the case of a spherical droplet (closed surface) of radius R
has no interest, as the contribution of the Gaussian curvature is directly proportional to the
Euler constant χ(M) whose value χ(M) = 2 for a sphere4. In that case, relation (4) gives no
supplementary information, as no wetting area exists.

Let us consider now the case of a spherical droplet lying on a plane surface as represented
on Fig. 2(a). The application of Gauss–Bonnet theorem leads to calculate both contributions in
the right hand side of equation (4). The first one is directly link the external surface area of the
spherical cap representing the droplet and is equal to 2π(1−cosα), where α is the opening angle
(Fig. 2(a)). The contribution of the geodesic curvature is equal to 2πcosθ, according to (6), since
the contact line is circular and the droplet lies on a plane surface (2(a)). In that case, (4) leads to
the obvious and known geometric relation θ =α. For a droplet lying on the sphere, as the wetted
surface is not plane, the geodesic curvature is kg = 1

rc
cosθg with θg ̸= θ. In that case, the Gauss–

Bonnet theorem leads to the relation θg = π
2 −δ.

For axisymmetric capillary bridges whose contact lines are circles, typically capillary bridges
between two parallel planes (Fig. 3), we obtain a general expression of the bending stress for a
surface of revolution5

Ebendi ng str ess =Ck

∫
M

K d M =−2πCk (cosθ1 +cosθ2) , (7)

with here the Euler characteristic χ(M) = 0 and when the total geodesic curvature at the bound-
aries is 2π(cosθ1 +cosθ2) according to (6).

For symmetric profiles with θ1 = θ2 = θ, we obtain a relationship between the contact angle θ
and the bending stress:

θ = arccos

∫
M
−K d M

4π
.

4χ(M) = 1 for a half-sphere or a cap.
5We have denoted θ1 and θ2 the upper and lower contact angles assumed to be constant. In the case of a plane wetted

surface, θg corresponds to the wetting angle θ.
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θ

Tangent line

(a) Representation of a droplet on a plane surface.
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(b) Representation of a droplet on a sphere.

Figure 2

Figure 3. Capillary bridge between two parallel planes.

Coming back to (7) with the same contact angle θ, the relative finite variation of the bending
stress, as function of the contact angle θ, is then given by the formula:

δ
(
Ebending stress

)
Ebending stress

=− tanθ δθ , θ ̸= π

2
. (8)

In summary, it should be kept in mind that the value of the bending stress depends, besides
physical constants, only on the observed values of the contact angles, whereas these angles result
in part implicitly from the final equilibrium of the device.

In the general case of capillary bridges, using the classification and the associated parameter-
ization of [20], the Gauss–Bonnet theorem leads to a supplementary relation linking the geomet-
ric properties of the capillary bridge. In the particular case of a catenoid6, where the parameteri-
zation of the meridian is given by

y(x) = y∗ cosh

(
x

y∗

)
,

y∗ denoting the gorge radius (Fig. 3), we may obtain an explicit and useful relation between
between θ, y∗ and the length D of the capillary bridge.

6Transition between unduloid or nodoid shape.
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In the next, we want to generalize these expressions in any situation, for capillary bridges with
non necessarily circular contact lines in non-axisymmetric cases (this is the case for instance
when coalescence of capillary bridges occurs [21]).

3.3. The prevaling roles of the contact angles values and of the convexity/nonconvexity of
the boundaries.

For didactic purposes, we mainly limited ourselves to the detailed case of axisymmetric capillary
bridges to show the interest of the simultaneous use of the Gauss–Bonnet formula and of the
topological notion of Euler characteristic to evaluate the importance of the bending stress. The
obtained result clearly shows in an explicit way, the major role of the contact angles values after
distortion effects, eventually distinct (Eqs. (7) and (8)). Therefore, all the factors determining
the contact angle have consecutively an influence on the bending stress (surface roughness and
heterogeneity, influence of gravity, contact angle hysteresis [4, 30, 41–43]).

It is well known that the contact angle value is determined by the balance between adhesive
and cohesive forces on the rigid supports. As the tendency of a drop to spread out over a flat,
solid surface increases, the contact angle decreases. Thus, the contact angle provides an inverse
measure of wettability. In this context, the case of the right cylinders is still a borderline case.

A contact angle less than π
2 (low contact angle) usually indicates that wetting of the surface

is very favorable, and the fluid will spread over a large area of the surface. Contact angles
greater than π

2 (high contact angle) generally mean that wetting of the surface is unfavorable.
It should be quoted that a certain number of terms of the generalized Young–Laplace equation
are spontaneous values, resulting from instantaneous equilibrium, and are therefore implicit
unknowns. This is a difficulty for the mathematical resolution of this nonlinear differential
boundary problem.

In addition, the Fenchel’s theorem sheds light on the importance of the convexity or the
nonconvexity of the outer edges in calculating exactly the value of the total curvatures.

Consequently, even a limited displacement of the surface boundary can modify the bending
stress, by local modifications of the contact angles or affecting the local curvature of the outline
curve and then, the total geodesic curvature. The contact angle hysteresis can also be significant.

4. The aim and effective convenience of the arc length reparameterization strategy

The generalization of expression (7) for non necessarily circular contact lines and possibly non
closed will be performed using Fenchel’s theorem based on an unit speed reparameterization (or
by arc length) of the contact line to calculate the total geodesic curvature.

4.1. Surface of revolution

The rather paradoxical aspect of this method is that it is only very rarely easy to get in practice
an explicit calculation formula. However, it leads to general quantitative results in the form of
analytical formulas very easy to use from the experimental data, via a very convenient expression
of the Gaussian curvature of a surface of revolution (the speed and acceleration vectors are then
orthogonal).

To illustrate what we are talking about, let us consider a smooth curve of the half-plan {y > 0,
z = 0} parametrized by the arc length. The surface of revolution resulting in R3 from the rotation
of the curve around the x-axis, ψ being the angle of rotation, is parametrized by:

M
((

s,ψ
))= (

x (s) , y (s)cosψ, y (s)sin
(
ψ

))
0 ≤ψ≤ 2π,0 ≤ s ≤ L.
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As the meridian portion is parameterized by arc length, we have ipso facto the following remark-
able and convenient relations and convenient expressions for angular (in radians) and trigono-
metric values as well as for the Gaussian curvature of the surfaces of revolution:

x ′2 + y ′2 = 1 at any point, (9)

and therefore, by differentiating, the orthogonality relationship

x ′x ′′+ y ′y
′′ = 0,

that is to say that T. dT
d s = 0 where the dot denotes the scalar product of R3 and where T (s) = d M(s)

d s
is the unit tangent vector to the curve M(s) = M(s,0).

The Gaussian curvature K of the surface of revolution has then the very convenient expression
(see [13, p. 162, eq. (9)]):

K (s,θ) =− y
′′

(s)

y (s)
.

In this context, the expression of the mean curvature H of a surface of revolution is less
attractive (see [13, p. 162, eq. (11)]).

A remarkable illustrative example of the arc length reparameterization strategy is the deter-
mination of the axisymmetric surfaces of constant Gaussian curvature7. We consider then the
classical differential equation, linear, of the second order, homogeneous:

y
′′

(s)+K y (s)−0, 0 ≤ s ≤ L,

with the three following cases: K < 0, K = 0, K > 0. Then, introducing the general form of the
corresponding solutions in y , we consider the resulting differential equations

x ′2 = 1− y ′2,0 ≤ s ≤ L (10)

resulting from (9).
Moreover, ϕ being the angle that the tangent to the profile curve makes with the x-axis, we

have the following relationships:

sinϕ= y ′ (s)√
x ′2 (s)+ y ′2 (s)

, i.e. sinϕ= y ′ (s) and cosϕ= x ′ (s) .

To compute the global bending stress in this context, we have to consider succesively:

Ebending stress =Ck

∫
M

K d M =Ck

∫ ∫
− y

′′
(s)

y (s)
y (s)dψd s

and therefore

Ck

∫ ∫
−y

′′
(s)dψd s =−2πCk

(
y ′ (L)− y ′ (0)

)
so that

Ebending stress =−2π(Ck
(
sin

(
ϕ (L)

)− sin
(
ϕ(0

))
,

ϕ being the angle that the tangent to the profile curve makes with the x−axis, the axis of rotation.
Let us quote that this case of a surface of revolution around x-axis may correspond to a

capillary bridge between two parallel planes at x = 0 and x = L. With the notation of Fig. 3,
we have ϕ(L) = π/2 − θ1 and ϕ(0) = θ2 − π/2 and we recover the general expression (7) for
axisymmetric capillary bridges.

7Problem studied more extensively by Gaston Darboux 1890. Among the solutions, surfaces are found that look like a
hyperboloid.
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4.2. The conclusive Fenchel’s theorem for the general case

In the case of non circular contact lines, for instance portions of an ellipse, the parameterization
involves elliptic integrals, rarely possible to explain in practice, so that the parameters would
have to be sought numerically (spline interpolation) [44, 45]. This computational difficulty is
overcame by knowing the Fenchel’s theorem [13, 46], which shows the complementarity of the
three methods leading to a generalization of expression (7) for possibly non convex or even non
closed contact lines.

To well illustrate the interest of Fenchel’s theorem associated with the theorems of Gauss and
Bonnet, let us consider a reparameterization by arc length of the curve Γ.

4.2.1. Close plane curve

According to Fenchel’s theorem8 (1929), the value of the total curvature∫
Γ

k(s)d s

of any smooth closed space curve Γ is at least 2π, i.e
∫
Γk(s)d s ≥ 2π. The equality holds if and

only if the curve is a convex plane curve. In other words, the average curvature of a closed convex
plane curve equals 2π/L, where L is the length (the perimeter) of the curve9.

By the Fenchel’s theorem, without calculation of primitive functions, often tedious or ineffec-
tive, we deduce directly, for any closed convex plane curve Γ (i.e. the curve is the boundary of a
convex set in the Euclidean plane), that ∫

Γ
k(s)d s = 2π.

This case is certainly the most encountered in practice when the boundaries of the capillary
bridge (the contact lines) are two closed plane convex curves, not necessarily circular. We then
recover expression (7) which is still valid in this more general case10:

Ebending stress =Ck

∫
M

K d M =−2πCk (cosθ1 +cosθ2) . (11)

In the case of a closed nonconvex plane curve, we are led to conclude by defining of the notion
of the winding index, a topological argument, in what follows.

4.2.2. Open plane curve

Let us give some classical preliminary elements of differential geometry related to smooth
boundaries of surfaces, parametrized by arc length. The curvature of a plane curve parametrized
by arc length is the rate of turning of the tangent line with respect to an ad hoc frame along the
curve.

Let ϕ(s) be the angle of inclination of the unit tangent vector T = T (s) with respect to a fixed
frame of reference, for instance x−axis. Considered then as a rate of turning for the tangent line
when one moves along the curve at unit speed, the curvature k(s) becomes

k(s) = dϕ

d s
(s) =ϕ′(s).

8The Fary–Milnor theorem concerning the total curvature of the knotted closed curves does not seem appropriate for
the subject of this study.

9For a given arc of a plane curve, the local average curvature quantifies the ratio of the change in inclination of the
tangent to the curve over the arc length.

10When the wet solid surface is not plane, relation (11) involves θg 1 and θg 2 which corresponds to θ1 and θ2 to within

a constant linked to the geometry of the wet solid interface.
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It follows that the total curvature of a smooth curve C is then given by the formula depending
only of the initial and final states:∫

C
k(s)d s =ϕ(ending)−ϕ(starting), (in radians). (12)

For a piecewise smooth curve parametrized by arc length, then we need to deal with the
exterior angles at the corners according to the orientation of the curve in the turning motion.
However, up to now, to our knowledge such capillary bridges with non convex or open contact
line have are not considered in literature.

5. The general case and its implementation

In the general cases of nonaxisymmetric capillary bridges between two supports, possibly of
distinct natures, the method remains applicable in principle. The difficulty is not conceptual in
dealing with the general case but rather calculative. We must then, in any given case, engage in
a delicate exercise in differential and analytical geometries to explicitly calculate the total signed
geodesic curvature of the boundaries by the classical methods of analytical geometry.

5.1. The calculation procedure is as follows

At any point P of the border liquid-solid, one considers the tangent plane in P to the free sur-
face (that supposes an adequate local regularity). One then considers the orthogonal projection
of each edge into this tangent plane. The curvature in P of the projected curve is then calculated,
what introduces the important role of the cosine of the local contact angle and leads to expres-
sion (5) of the the curvature k which related related to the geodesic curvature kg at P by the rela-
tionship:

kg = k cosθg

where θg is linked to the local contact angle θ to within a constant depending on the geometry
of the wet solid surface. When it is plane, θg corresponds to the wetting angle θ, that will be
considered in the next to simplify the developments.

When the contact angle is constant on the considered contact surface, we have the particularly
simple relationship: ∫

Γi

kg (s)d s = cosθ
∫
Γi

k(s) d s.

5.2. The special situation of heterogeneous contact surfaces

When the contact angles are separately variable on each of the contact surfaces, i.e. θ = θ1(M) and
θ = θ2(M) according to the physical conditions of the two surfaces (non ideal smooth surfaces),
the integral along each boundary, corresponding to the total geodesic curvature, in fact, of the
kind ∫

Γi

cosθi (M(s)) k(s) d s, (13)

is more complicated to calculate with computational prediction of wetting (at our knowledge, an
open problem for the probably most realistic case). The use of a mean theorem would likely be
imprecise (effects of surface roughness).
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5.3. The general case of homogeneous contact surfaces

When multiplied by the coefficient (−CK ) at the dimension of a force, the dimensionless integral
of these curvature values along the reunion of the two contact edges gives finally the value of the
resulting bending stress by the Fenchel’s theorem (the cornerstone of the method).

The three possible scenarios then arise according to the geometry of the boundaries (closed
plane convex or nonconvex curves) are the following, the surfaces having in common, without
loss of generality, the same Euler characteristic, in this illustrative case, the value zero.

By introducing the contact angles θ1 and θ2 (in radians) on each outline of contact surfaces,
we proved that, at least theoretically, the wettability being evaluated, here, by constant contact
angles, separately on each contact support.

Case 1: The boundaries are two closed plane convex curves. Then,

Ebending stress =Ck

∫
M

K d M =−2πCk (cosθ1 +cosθ2) .

Case 2: The boundaries are two closed plane curves, one convex and the other nonconvex. Then,

Ebending stress =Ck

∫
M

K d M =−Ck (2k1πcosθ1 +2πcosθ2) ,

the observed integer k1, k1 ≥ 2, being the winding number of the nonconvex curve (the winding
index in algebraic topology).

Case 3: The boundaries are two closed disjoint plane curves, nonconvex. Then,

Ebending stress =Ck

∫
M

K d M =−Ck (2k1πcosθ1 +2k2πcosθ2) ,

k1 and k2 being the integers, ≥ 2, winding numbers of the curves, observed and known in situ.
In the rather theoretical case, where the value of the Euler characteristic is non-zero, it should

be necessary to write:

Ebending stress =Ck

∫
M

K d M = 2πχ (M)−Ck (2k1πcosθ1 +2k2πcosθ2) .

It must be emphasized that, when the contact angles are separately variable on each of the
contact surfaces according to the physical conditions of the two surfaces (non ideal smooth
surfaces), the integral along each boundary, corresponding to the total geodesic curvature of the
plane and closed boundaries, seems a serious difficulty to explain. The question might interest
specialists in differential geometry.

6. Conclusion

The developments obtained here for surfaces of revolution and their generalization to more
general surfaces representing the shape of capillary bridges, result from concepts in differential
geometry and geometric analysis with applications to Lagrangian Mechanics, without resorting
to differential calculus and integral calculus. The methods of Euler’s characteristic, associated
to the Gauss–Bonnet–Binet theorem and the strongly complementary Fenchel’s theorem apply
immediately to the cases of the nonaxisymmetric surfaces, with explicit, easy-to-use, results
formulations.

We proved that in the general way, the value of the bending stress depends, besides physical
constants, only on the observed values of the contact angles, whereas these angles result in part
implicitly from the final equilibrium of the device. Therefore, all the factors determining the
contact angle have an influence on the bending stress (surface roughness and heterogeneity,
influence of gravity, contact angle hysteresis.
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It would be interesting to reconsider, in taking into account these new results concerning the
bending effects, the important role of the contact curves geometry and the Gauss–Bonnet and
Fenchel theorems, an analytical framework for reassessing the cohesion effects of coalescence
between saddle shaped capillary bridges [21]. Finally, by creating a support material having a
nonconvex region with high wettability and a complementary region with very low wettability,
the experimenter could illustrate the theory by experimentation.
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