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Introduction

According to the global cancer statistics, in 2020, more than 1.5 million Head and Neck (HN) cancer cases were diagnosed, which represents 7.9% of all cancer diagnoses, and over 510 000 deaths worldwide [START_REF] Sung | Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[END_REF]. Overall, the main treatment options are surgery, radiation therapy (RT), chemotherapy, and targeted therapy. Approximately 74% of the HN cancer patients benefit from external beam RT either prescribed alone or in combination with other treatment strategies [START_REF] Delaney | Evidence-based Estimates of the Demand for Radiotherapy[END_REF]. In external RT, highly conformal dose distributions with steep dose gradients are achieved today, through the use of intensity-modulated radiation therapy (IMRT) techniques. In particular, by allowing continuous gantry rotation of the linear accelerator around the patient during treatment delivery, volumetric modulated arc therapy (VMAT) technique results in plans of similar or improved quality compared with fixed-field IMRT while reducing the treatment time per fraction [START_REF] Otto | Volumetric modulated arc therapy: IMRT in a single gantry arc[END_REF].

Therefore, accurate delineation of both organs-at-risk (OARs) and targets is a crucial step, particularly for HN cancer, where numerous organs with strict dose objectives are involved.

Manual contouring is time-consuming and although international guidelines exist [START_REF] Brouwer | Head and neck guidelines CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG[END_REF][START_REF] Grégoire | Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines[END_REF][START_REF] Grégoire | Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck[END_REF], large inter (IOV) and intra-observer variation are observed [START_REF] Brouwer | 3D Variation in delineation of head and neck organs at risk[END_REF][START_REF] Awan | Prospective assessment of an atlas-based intervention combined with real-time software feedback in contouring lymph node levels and organs-at-risk in the head and neck: Quantitative assessment of conformance to expert delineation[END_REF][START_REF] Van Der Veen | Interobserver variability in delineation of target volumes in head and neck cancer[END_REF] that can negatively impact patient doses [START_REF] Tao | Multi-subject atlas-based autosegmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical study[END_REF][START_REF] Voet | Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis[END_REF]. To assist organ differentiation and increase the image contrast, the patients should be injected with an iodine contrast agent before the simulation computed tomography (CT) scans [START_REF] Grégoire | Management and work-up procedures of patients with head and neck malignancies treated by radiation[END_REF]. To reduce the delineation time, improve consistency and accuracy of volume definition, automatic segmentation (AS) solutions have received great interest [START_REF] Lim | Use of auto-segmentation in the delineation of target volumes and organs at risk in head and neck[END_REF][START_REF] Sharp | Vision 20/20: Perspectives on automated image segmentation for radiotherapy[END_REF][START_REF] Vrtovec | Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods[END_REF]. In the recent years, the performances of AS methods for HN cancer were mainly focus on OARs contouring, but few studies were focused on the clinical target volumes (CTV) [START_REF] Men | Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images[END_REF][START_REF] Wong | Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning[END_REF][START_REF] Van Der | Deep learning for elective neck delineation: More consistent and time efficient[END_REF][START_REF] Strijbis | Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy[END_REF]. Whereas important anatomical variations make gross tumor volumes difficult candidates for AS [START_REF] Men | Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images[END_REF], the healthy HN lymph nodes levels (LN) have well-established anatomical borders [START_REF] Grégoire | Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines[END_REF][START_REF] Grégoire | Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck[END_REF] and are often irradiated prophylactically (i.e. with a preventive intent) as secondary nodal target (CTVn).

While the performance evaluation of an AS method is not yet standardized, the most recent recommendations suggest the use of several complementary metrics [START_REF] Vandewinckele | Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance[END_REF]. Among the most widely used indices comparing the geometric accuracy of AS versus expert contours is the volumetric Dice similarity coefficient (DSC) [START_REF] Taha | Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool[END_REF]. However, DSC alone does not represent a direct estimate of the clinical impact on radiation doses, nor the clinical workflow/labor reduction [START_REF] Sherer | Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review[END_REF]. Therefore, a dosimetric study is highly recommended as well as the assessment of the time needed to perform manual corrections on these contours.

Among the AS solutions, atlas-based AS (ABAS) methods are attractive as they require only one or few (multi-ABAS) patients as prior information (in form of an atlas library), but they are limited to the range of patient anatomical representation. Few studies have demonstrated the superiority of multi-ABAS vs single-ABAS strategies for CTVn segmentation [START_REF] Ms | Atlas-based auto-segmentation of head and neck CT images[END_REF][START_REF] Sjöberg | Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients[END_REF][START_REF] Teguh | Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck[END_REF][START_REF] Daisne | Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: A clinical validation[END_REF][START_REF] Stapleford | Evaluation of Automatic Atlas-Based Lymph Node Segmentation for Head-and-Neck Cancer[END_REF]. It was shown that using 11vs1 atlas enabled to decrease the manual delineation time from 42.3min to 21.4min vs 30.1min, respectively [START_REF] Sjöberg | Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients[END_REF]. In another study, the range of DSC results between ABAS and expert contours, was 0.29-0.78 depending on the CTVn level [START_REF] Daisne | Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: A clinical validation[END_REF]. One multi-ABAS study (N=10 atlases) evaluated dosimetric plan quality when using AS contours obtained with a commercially available solution (ABAS, Elekta AB), and demonstrated that despite mean DSC>0.80, non-edited CTVn contours can cause large underdosage in target volumes [START_REF] Voet | Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis[END_REF]. Hybrid approaches combining multi-ABAS and machine learning features have also been explored [START_REF] Gorthi | Segmentation of head and neck lymph node regions for radiotherapy planning using active contour-based atlas registration[END_REF][START_REF] Chen | Combining registration and active shape models for the automatic segmentation of the lymph node regions in head and neck CT images[END_REF][START_REF] Qazi | Auto-segmentation of normal and target structures in head and neck CT images: A feature-driven model-based approach[END_REF]. Qazi et al. evaluated a modelbased algorithm (N=15 atlases) and achieved mean DSC of 0.74 (LN level 1-4) [START_REF] Qazi | Auto-segmentation of normal and target structures in head and neck CT images: A feature-driven model-based approach[END_REF]. Their results were superior to Chen et al. [START_REF] Chen | Combining registration and active shape models for the automatic segmentation of the lymph node regions in head and neck CT images[END_REF] who created an active shape model (N=14 atlases) that reached mean DSC=0.69 (one volume covering LN 2-4) and superior to that of Gorthi et al. [START_REF] Gorthi | Segmentation of head and neck lymph node regions for radiotherapy planning using active contour-based atlas registration[END_REF] with an active contour-based model (N=9 atlases) that reached maximum DSC of 0.58 (individual LN levels 1-6). In these studies, the combination of the individual LN volumes probably had an important contribution in the differences in the DSC results.

Alternatively, deep learning (DL) solutions could increase accuracy and efficiency in AS at the cost of more efforts involved in gathering and curating manual contours databases for training.

Promising results were obtained particularly for OARs in HN patients and several solutions are commercially available [START_REF] Vrtovec | Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods[END_REF][START_REF] Wong | Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning[END_REF][START_REF] Urago | Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models[END_REF][START_REF] Costea | Comparison of atlasbased and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system[END_REF][START_REF] Yang | Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017[END_REF][START_REF] Ung | Improving Radiotherapy Workflow Through Implementation of Delineation Guidelines & AI-Based Annotation[END_REF]. From the 3 studies evaluating their accuracy in segmenting HN CTVn levels, Wong et al. investigated a commercial DL-based segmentation software (Limbus Contour) trained with publicly available annotated data (on average 328 CT scans/organ) [START_REF] Wong | Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning[END_REF].

One single CTVn volume (including 6 LN) was auto-segmented. The mean DSC against the experts' contours was 0.72 which was inferior to the IOV (DSC=0.79). Another study investigated a 3D-convolutional neural network (CNN) trained on 69 patients (mono-centric data), for AS of 10 separated CTVn levels (one volume for LN 2-4) [START_REF] Van Der | Deep learning for elective neck delineation: More consistent and time efficient[END_REF]. Compared with 2 experts manual contours the mean DSC ranged between 0.46-0.82, in function of the considered CTVn level. The manual delineation time was reduced from 52 to 35min when editing AS contours. Moreover, it was shown that using the DL solution enabled to significantly improve the IOV (DSC=0.92vs0.79). Lastly, Strijbis et al. [START_REF] Strijbis | Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy[END_REF] trained 3 different Unet networks on 70 patients for AS of individual LN 1-5. They showed that an ensemble of networks provided the best contours with mean DSC>0.85 for the LN 1, 2 and 3, but mean DSC<0.72 for LN 4 and 5.

In this context, the objective of the present study was to evaluate the performance of 4 multi-ABAS and 2 DL solutions for the individual segmentation of left (L) and right (R) LN levels 2 (CTVn2), 3 (CTVn3) and 4 (CTVn4), following the formerly performed work on HN OARs segmentation [START_REF] Costea | Comparison of atlasbased and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system[END_REF].

Five out of the six solutions were investigated for the first time on HN CTVn segmentation. Notably, non-commercial solutions (one hybrid-ABAS and one mono-centric DL solution) were compared with 4 commercial solutions (three multi-ABAS and one multi-centric DL solution). All 6 solutions were evaluated based on geometrical accuracy. A clinical scoring of the contours was performed by 4 physicians on the 3 most accurate AS solutions. One physician recorded the time spend on manual corrections. Lastly, an auto-planning solution based on a priori multi-criterial optimization (MCO) algorithm was used to generate treatment plans using manual and AS CTVn contours with and without manual corrections.

Material and methods

Patient data

Sixty-nine HN cancer patients treated with radiation therapy between 2018-2022 were included in the study, which was approved by the hospital ethics committee. Each patient was immobilized using personalized head cushion (Moldcare®, Qfix, Avondale, USA) and a 5-points thermoplastic mask (MacroMedics, Moordrecht, The Nederlands). CT-scan acquisitions were performed on a SOMATOM go.Sim scanner (CT) (Siemens, Munich, Germany), after 2-phase injection of iodine solution, following recommendations [START_REF] Grégoire | Management and work-up procedures of patients with head and neck malignancies treated by radiation[END_REF]. Bilateral CTVn2, CTVn3 and CTVn4 were manually delineated according to international delineation guidelines [START_REF] Grégoire | Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines[END_REF] by a senior expert physician, on 512x512 and 2mm-thick CT slices with maximum physical in-plane resolution of 1.17mm. Fortynine non-operated patients with standard anatomy, were used to train a mono-centric DL model.

Ten of these patients were subsequently used to form an atlas library for the multi-ABAS solutions.

The patients' selection was arbitrary and based on their body mass index (BMI) which was intended to cover a large variety of patient anatomies (atlas library BMI range: 19.9-26). Identical atlas libraries were created within MIM-Maestro (MIM-Software; Cleveland, USA) and the research version of ADMIRE software (ADMIREv3.41, Elekta AB; Stockholm, Sweden).

Conversely, the second DL solution was trained by the vendor (Therapanacea, France) with large amount of data (>1000) from multiple centers. The remaining 20 patients with different tumors and anatomies (BMI range: 17.9-33.7), were used for testing of the 6 AS solutions. In addition to reference contours for CTVn, the test cohort (Table 1) included expert delineations for OARs and primary tumor volumes.

Automatic segmentation solutions

Three multi-ABAS solutions integrated in the research version of Monaco treatment planning system (TPS) (Monaco 5.59.11 with ADMIREv3.41) and another one available in MIM-Maestro (MIM Software Inc., Cleveland, OH) were investigated (Table 2). Two DL solutions were considered: one mono-centric (ADMIRE-DL, data from this study) and one commercial multicentric solution (ART-Plan, Table 2).

All AS solutions have been fully described in a previous work [START_REF] Costea | Comparison of atlasbased and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system[END_REF]. Briefly, ABAS.1 uses a traditional method for atlas fusion based on expectation-maximization algorithm [START_REF] Warfield | Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation[END_REF]. ABAS.2 uses voxel intensity information to obtain a weighted average of the atlases' contours [START_REF] Yang | Patch-Based Label Fusion for Automatic Multi-Atlas-Based Prostate Segmentation in MR Images[END_REF]. ABAS.3 algorithm trains a voxel classifier on the fly using the registered atlases as training data [START_REF] Han | Learning-Boosted Label Fusion for Multi-atlas Auto-Segmentation[END_REF].

ABAS.4 performs the voxel annotation based on labels predicted by majority of the atlases [START_REF] Lee | Clinical evaluation of commercial[END_REF].

For the 3 ABAS solutions used in ADMIRE, for each test patient, a reference atlas was selected from the library, upon the closest BMI. In MIM-Maestro, to create the atlas library, one atlas was chosen as template patient (based on BMI) and was registered to the 9 remaining atlases [START_REF] Lee | Clinical evaluation of commercial[END_REF].

Among the DL solutions, DL.1 is a CNN where the high-resolution image features captured in the encoding part are preserved with the help of short-range connectors in the decoding part for a label map corresponding to the input image size [START_REF] Yang | Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017[END_REF]40]. The DL.2 solution uses a set of organspecific networks with an original combination of data-driven and decisional artificial intelligence that enforces anatomical consistency [START_REF] Ung | Improving Radiotherapy Workflow Through Implementation of Delineation Guidelines & AI-Based Annotation[END_REF]41].

Geometric evaluation

The quantitatively evaluation of the 6 AS solution was performed per LN level and per their union, based on volumetric DSC and 95-percentile Hausdorff Distance (HD95%) [START_REF] Taha | Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool[END_REF], similar to [START_REF] Costea | Comparison of atlasbased and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system[END_REF].

Results are presented as mean ± 1 standard deviation (SD).

Clinical acceptability assessment and time required for manual editing

The union of bilateral CTVn contours (CTVn_union) was further examined for the three most 

Statistics

For all 6 solutions and for each CTVn, Kruskal-Wallis test was performed to assess if the distribution of geometric indices (DSC and HD95%) and the volume of the contours corresponding to the different AS methods tested were statistically significant. Furthermore, post-hoc Dunn's with Bonferroni correction for multiple testing was performed to detect between which pairs of algorithms the differences were statistically significant. For the dosimetric study, paired Wilcoxon signed-rank test was performed to assess significant dose differences between the treatment plans (reference vs experimental plans). The statistical tests were performed with level of significance set <0.05.

Results

Computational time for one patient was on average 6min, 9min and 10min for ABAS.1, ABAS.2 and ABAS.3, respectively. For ABAS.4, the computational time was on average 1min, whereas creating the atlas library (registering of the atlases) took around 7min. DL.1 and DL.2 provided segmentations in <1 and <2min, respectively.

DSC and HD95% results obtained for each CTVn level and for CTVn_union are presented in Fig. 1.

Overall DL solutions (mean DSC:0.62-0.87) were more accurate than multi-ABAS methods (mean DSC:0.50-0.79), with no statistically significant difference between DL. DSC results for all levels (p<0.04) but CTVn4_L (p=1) and significantly better HD95% for all CTVn (p<0.01).

An additional geometric analysis of the CTVn_union resulted in increased conformity to the manual reference, particularly for the multi-ABAS solutions, for which the contour unification enabled DSC results to reach values up to 0.81 (ABAS.2). Finally, union of DL.2 contours obtained the best conformity to the reference (mean DSC:0.86±0.03; meanHD95%:4.1±1.3mm) (Fig. 1 Panel C and D). Moreover, the blinded study results (Fig. 2) showed that all physicians clinically approved DL.2 contours without or with only minor corrections. Contrarily, majority of DL.1 and ABAS.2 contours were clinically accepted with minor or major corrections, and only one physician accepted few contours from DL.1 without corrections. Moreover, some ABAS.2 and DL.1 contours were rejected by two physicians.

One patient case is illustrated in Fig. 3, for a visual representation of ABAS.2, DL.1 and DL.2

CTVn contours versus reference contours. Two more cases are presented in Fig. 1 and Fig. 2 of supplementary data.

Furthermore, manual correction time was in average 6.52min, 4.17min and 1.1min for ABAS.2, DL.1 and DL.2 respectively. Contours' accuracy improved significantly only for ABAS.2 solution (p=0.01) (Fig. 3 of supplementary data). In general, the volume of AS contour was smaller than the reference and for DL.1 the difference was significant (volume difference of 8.7%, p=0.001).

After performing manual corrections, the differences was smaller for all solutions, but were still significant for DL.1 (p=0.02).

The dosimetric results obtained per PTV and per CTVn level are presented in Table 3. No statistically significant difference was observed on the dosimetric results obtained for PTV_70Gy (p>0.1). Conversely, compared with reference plans, all experimental plans created with AS CTVn contours experienced a significant loss in PTV_54.25Gy coverage (meanV95% reduction up to 5.9%, p<0.001). In addition, using ABAS.2 contours to perform the plans lead to significant dose differences regarding all the analyzed DVH parameters (p<0.05). Using ABAS.2+corr contours, dose differences were still significant for all CTVn4 DVH parameters (p<0.02), V95% (p=0.003) and D98% and V95% for CTVn2 (p<0.01).

for CTVn3

For DL.1, with the exception of the D50% to the CTVs (p>0.26), the differences in D98% and V95%

between the reference plans and the plans obtained with AS contours were significant (p<0.03).

Using DL.1+corr contours did not improve the dose agreement to CTVn4 contours (p<0.0003), but for the other CTVn levels, meanΔD was smaller, with difference in D98% becoming not significant (p=0. [START_REF] Men | Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images[END_REF]).

The differences in DVH parameters between the reference and plans performed with DL.2 AS contours were significant for all CTVn (p<0.05), with the exception of D98% to the CTVn3 (p=0.21).

After correction of DL.2 contours, no significant difference between all DVH parameters was observed for the CTVn3 level (p>0.37). In addition, using DL.2+corr contours improved the dose agreement on CTVn2 regarding D98% (p=0.15) and D50% (p=0.54). At the same time, while the meanΔD was smaller on CTVn4, the differences in the DVH parameters remained significant (p<0.001).

For the OARs, in general, better agreement was observed between reference doses and doses obtained with ABAS.2 and DL.2 versus DL.1 AS contours, with no significant difference compared with the reference doses for 10 and 10 vs 8 out of 14 DVH parameters (Table 1 of the supplementary data). After correction of the CTVn, for all solutions, 10 out of 14 DVH parameters were not significantly different from the reference. Interestingly, the correction of the CTVn tended to introduce significant differences in DHV parameters for certain OARs. Hence, on parotids, using the corrected CTVn contours generally resulted in an increase in the meanΔD and statistically significant differences compared with reference doses, whatever the algorithm. Thus for such OARs located at the very close vicinity of the PTVs (submandibular glands, parotids), small differences in the delineation of the contours might lead to significant dose differences. The same observation applied to Dmean to the thyroid where significant differences were still observed (or appeared) after correction of the contours, for the 3 algorithms (p<0.02). On the opposite, for the 3 solutions, there was no statistically significant difference in Dmean to the oral cavity, esophagus and brainstem, and D5% to the larynx. Finally, the CTVn contours corrections generally lead to smaller meanΔD values for theses OARs, which might reflect a smaller IOV and/or larger distance of the OARs to the PTVs.

An example of dose distribution obtained for one patient case to illustrate where important loss in PTV_54.25Gy coverage can be observed at each CTVn level is provided in Fig. 4.

Discussion

In this study, we evaluated several atlas-based and deep learning segmentation solutions for automatic delineation of nodal clinical target volumes for HN RT on planning CT images. We observed that overall DL solutions had better accuracy compared with multi-ABAS methods. With regard to the geometric indices, the two DL solutions were not statistically different. In general DSC results were better for DL.2 on CTVn2 and CTVn3, and better for DL.1 on CTVn4. When evaluating CTVn_union, DL.2 provided better conformity to manual reference. All physicians accepted the contours without or with minor corrections, and they were quickly corrected (about 1min/patient) by one of the physicians involved. Thus, considering that between 15-20 min are required to manually delineate CTVn2-4 by a skilled physician, up to 90% time reduction for contouring can be reached with DL.2 solution. Conversely, most of DL.1 contours were accepted with minor/major corrections which resulted in more important manual correction times (4min/patient). Overall, manual corrections were necessary on the lateral borders of the contours following the sternocleidomastoid muscle (SCM) as well as on the space between the SCM and the parotid glands. Corrections were also needed for the caudal limit of CTVn4 (2cm from sternal manubrium), particularly for DL.2 contours.

DL.1 model was trained with a relatively small number of patients (N=49) delineated exclusively by one expert, which ensured data uniformity. Similar with the previous work on OARs, we showed in this study that accurate results can be obtained with a limited but uniform training database. A similar mono-centric model (N=69) was trained by van der Veen et al. for the segmentation of 10

CTVn levels [START_REF] Van Der | Deep learning for elective neck delineation: More consistent and time efficient[END_REF]. Regarding union of LN 2-4, they found mean DSC of 0.76 and 0.82 against 2 observers, whereas a mean DSC of 0.83 was obtained with DL.1 solution in our study. DL.2 solution, trained with much more patients from multiple centers, obtained a mean DSC of 0.86 in this study, which indicated a good generalizability of the model.

Regarding multi-ABAS methods, this study showed that accurate results can be obtained when using a library of only 10 patients. The two ABAS methods evaluated had an atlas selection strategy based on BMI. Using the same atlas library, we showed that the ADMIRE algorithm provided better results compared with MIM Maestro. Although the workflow to process the data was less efficient, to choose a reference atlas having the closest BMI to the test patient before each AS provided more accurate results than choosing one patient representing average anatomy over the ATLAS patients to perform all AS of the test cohort.

Moreover, performing the CTVn_union, enabled an DSC≥0.80 (ABAS.1, ABAS.2 and ABAS.3), which suggested that most of the AS contour discrepancies happened at the junction of the level.

Manual corrections took on average 6.52min/patient for ABAS.2 method. Contrary to the previous study on OARs segmentation, the superiority of the new ABAS.3 solution over the commercial ABAS.1 and ABAS.2 solutions was not demonstrated for the segmentation of CTVn volumes [START_REF] Costea | Comparison of atlasbased and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system[END_REF].

Nonetheless, DL methods outperformed multi-ABAS algorithms for both OARs and CTVn segmentation.

The heterogeneity of literature studies makes comparisons difficult (Table 2 supplementary data).

Some studies considered a total volume of the CTVn whereas others considered independent contours per LN. Moreover, guidelines suggest that a dosimetric study should be included when evaluating new AS methods [START_REF] Vandewinckele | Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance[END_REF]. Only one study performed a dosimetric evaluation and attested that editing ABAS contours of HN CTVn was required to avoid large reduction in target coverage (mean reduction in V95% of 7.2%) [START_REF] Voet | Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis[END_REF].

In this study, we reached the same conclusions. We showed that, using the AS contours for treatment planning, the meanV95% to PTV_54.25Gy was between 93.1%-94.7% compared with 98.7% for the reference plan. After manual correction of the AS contours, PTV_54.25Gy meanV95% was increased to 94.8%-95.4%. Note that reference contours and manual corrections were done by two different physicians. Although the DSC results showed a strong agreement between the 2 physicians (DSC>0.85 after manual corrections), significant differences in meanV95% to PTV_54.25Gy were observed between reference plans and plans performed with AS+corr contours. There are two main reasons for this observation. The first one is IOV, which was noticeable in the delineation of the CTVn4. This is also where AS solutions have been less accurate (DSC≤0.72). Despite significant differences still being present between the reference doses and the doses obtained with the AS+corr contours, the meanΔDs were generally lower, particularly for DL.2. This is mainly due to the fact that, especially for DL.2, the AS of CTVn4 contours were missing in the bottom slices. The other reason of the differences observed in V95% to PTV_54.25Gy was the use of the auto-planning tool which was demonstrated to provide highly conformed plans with steeper dose gradients than manual ones [42]. Hence, even a small IOV in contouring of CTVn could lead to important dose distributions discrepancies on PTVs.

The consequences on the dose distributions to the OARs were different according their proximity to the PTVs. We showed that small differences in the delineation of the CTVn contours might lead to significant meanΔD on OARs such as submandibular glands, parotids or thyroid. For other OARs such as the esophagus (Dmean) or the larynx (D5%), which was also close to the PTVs, there was no significant difference in the meanΔD either when comparing the reference dose to the treatment plan performed with AS contours, or the one performed with AS+corr contours. This both reflected better accuracy of the algorithm in the delineation of CTVn3 and better agreement between the contours of the two physicians.

To our knowledge, the present study investigated for the first time 5 AS methods (ABAS.2, ABAS.3, ABAS.4, DL.1 and DL.2) for segmenting 3 distinct CTVn levels. Additionally, autoplanning was used to assess dosimetric consequences of using the AS contours from one multi-ABAS and 2 DL solutions. This allowed decreased labor, to eliminate inter or intra operator variability in planning, and to focus on the dosimetric effect coming from the CTVn contours only.

Overall the results were similar among the AS methods and showed no significant impact on the primary PTV and OARs. However, despite the use of a CTV-to-PTV margin of 4mm, significant reduction in coverage of the elective PTV (up to 5.9%, p<0.006, see Table 3) was observed for all the AS solutions, which was consistent with the literature [START_REF] Voet | Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis[END_REF]. The effect was more pronounced on the CTVn4 which could be related with the worse results previously identified in the geometrical indices (mean DSC<0.8 and HD95%>5mm). Moreover, the blinded study showed that, overall, manual corrections still need to be performed. However, DL.2 contours were preferred by the physicians. When considering both computational and manual correction time, DL solutions proved the most promising in decreasing the manual delineation time. A mean DSC of 0.85 between the two experts who did reference and corrected contours was observed when manual corrections were performed on the AS contours (Fig. 3 supplementary data). IOV between manual delineations among the experts was not assessed in this study. Other study showed that performing manual adjustments on AS contours enabled to improve IOV [START_REF] Van Der | Deep learning for elective neck delineation: More consistent and time efficient[END_REF].

While differences in geometric indices were not statistically significant between DL solutions, DL.2 contours were better rated by all the 4 physicians, and time for correcting the contours was shorter.

This strongly suggests that DSC/HD95% alone are not sufficient to characterize the performances to CTVn3 and CTVn4 which is consistent with the literature [START_REF] Strijbis | Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy[END_REF][START_REF] Daisne | Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: A clinical validation[END_REF].

Conclusion

DL solutions provided contours with better geometric accuracy and were better rated by experts than multi-ABAS methods for CT-based AS of CTVn levels. Lower mean DSC were observed for CTVn4 compared with CTVn2 and CTVn3. However, DL contours were faster to compute and to manually correct. With few patient data, multi-ABAS methods provided good conformity to reference contours, but with decreased workflow efficiency.

  accurate solutions (DL.1, DL.2, ABAS.2) on 11 patients who had all 3 LN levels (CTVn2+CTVn3+CTVn4) involved in the RT treatment. To get a trend from different HN cancer experts a blinded evaluation was made by 4 physicians choosing for each CTVn_union one of the following options: a) clinically acceptable without corrections b) clinically acceptable with minor corrections c) clinically acceptable with major corrections d) not acceptable for clinical use Then, the AS contours were manually adjusted on Elekta ProKnow® (Elekta AB, Stockholm) platform and the time spent on corrections was recorded for each of the 3 solutions. Note that, out of the four physicians, one single physician performed the reference contours whereas another one performed manual corrections of the AS contours. Dosimetric end-points using auto-planning solution For the 11 patients, 7 VMAT treatment plans (one reference plan + 6 experimental plans) were calculated automatically using mCycle auto-planning solution (Monaco 5.59.11, Elekta AB; Stockholm, Sweden) [42]. All plans were designed using 2 arcs and a simultaneous integrated boost technique to deliver 70Gy to the primary planned target volume (PTV_70Gy) and 54.25Gy to the prophylactic nodal target (PTV_54.25Gy), in 35 fractions. The reference plan was created using exclusively manually delineated contours of OARs and CTVs. Three experimental plans were created by replacing the manual CTVn contours with CTVn contours obtained by ABAS.2, DL.1 and DL.2 solutions, the other three being plans obtained with corrected AS contours (ABAS.2+corr, DL.1+corr and DL.2+corr). The PTV_54.25Gy was created for each plan from CTVn_union and the prophylactic target plus 4mm margin. The resulting 7 dose distributions were all analyzed on the reference manual contours by evaluating the dose differences between the reference (Dref) and the experimental plan (Dexp) (ΔD = Dref -Dexp). From the dose-volume histograms (DVHs) clinically relevant dosimetric endpoints were extracted according to the French Society of Radiation Oncology recommendations [12].

  of a solution. Therefore, the interplay between the training cohort size and a DL model architecture could be further investigated by training DL.1 on a larger cohort (N>50 patients). In our previous work, 63 patients were used for training the same model on OARs, which provided consistent result over the majority of structures. While on CTVn delineation, DSC≥0.82 were obtained for CTVn2, more training data could potentially improve the accuracy on CTVn3 and CTVn4. At the same time, DL.2 was trained on large patient database and the mean DSC for CTVn4 was inferior to DL.1 model. Overall, both multi-ABAS and DL results showed decreased accuracy from CTVn2

  

  

  

  1 and DL.2 (p>0.14).

	However, DL.1 performed better on CTVn4 than DL.2 (mean DSC:0.72vs0.64), whereas DL.2 had
	the lowest meanHD95% distance (6.4±5.3mm) among all the methods.
	Considering the multi-ABAS solutions, no statistically significant difference was observed between
	ABAS1, ABAS.2 and ABAS.3 (p=1). ABAS.4 provided overall the worst results but differences in
	both DSC and HD95% compared with other multi-ABAS methods were statistically significant only
	on CTVn2_L (p<0.01).
	statistically better HD95% results for CTVn2_L (p<0.001) and CTVn3_L/R (p<0.04).
	Similarly, DL.2 had significantly better DSC results compared with ABAS.1, ABAS.2 and ABAS.3
	for CTVn2_L/R (p<0.03) and CTVn3_L/R (p<0.001) and significantly better HD95% for CTVn3_L/R
	(p<0.004) and CTVn4_R (p<0.02). Moreover, compared with ABAS.4, DL.2 had significantly better

Differences were statistically significant between DL.1 algorithm and ABAS.1, ABAS.2 and ABAS.3 solutions only in DSC for the CTVn3_L/R (p<0.02). Compared with ABAS.4, DL.1 had significantly better DSC results for all CTVn levels (p<0.001) but CTVn4_L (p=0.07) and
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