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PROPERTIES OF DISCRETE SLICED WASSERSTEIN LOSSES

ELOI TANGUY, RÉMI FLAMARY, AND JULIE DELON

Abstract. The Sliced Wasserstein (SW) distance has become a popular alter-

native to the Wasserstein distance for comparing probability measures. Wide-
spread applications include image processing, domain adaptation and gener-

ative modelling, where it is common to optimise some parameters in order

to minimise SW, which serves as a loss function between discrete probability
measures (since measures admitting densities are numerically unattainable).

All these optimisation problems bear the same sub-problem, which is min-

imising the Sliced Wasserstein energy. In this paper we study the properties
of E : Y 7−→ SW2

2(γY , γZ), i.e. the SW distance between two uniform dis-

crete measures with the same amount of points as a function of the support

Y ∈ Rn×d of one of the measures. We investigate the regularity and opti-
misation properties of this energy, as well as its Monte-Carlo approximation

Ep (estimating the expectation in SW using only p samples) and show conver-

gence results on the critical points of Ep to those of E, as well as an almost-sure
uniform convergence . Finally, we show that in a certain sense, Stochastic Gra-

dient Descent methods minimising E and Ep converge towards (Clarke) critical
points of these energies.
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1. Introduction

Optimal Transport (OT) has grown in popularity as a way of lifting a notion of
cost between points in a space onto a way of comparing measures on said space.
In particular, endowing Rd with a p-norm yields the Wasserstein distance, which
metrises the convergence in law on the space of Radon measures with a finite
moment of order p.

The most studied object that arises from this theory is perhaps the 2-Wasserstein
distance, which is defined as follows (see [29, 31, 36] for a complete practical and
theoretical presentation):

(1.1) ∀µ, ν ∈ P2(Rd), W2
2(µ, ν) := inf

π∈Π(µ,ν)

∫
Rd×Rd

‖x1 − x2‖2dπ(x1, x2),

where Π(µ, ν) is the set of probability measures on Rd×Rd of first marginal µ and
second marginal ν. We denote P2(Rd) as the set of probability measures on Rd
admitting a second-order moment.

The 1 and 2-Wasserstein distances are commonly used for generation tasks, for-
mulated as probability density fitting problems. One defines a statistical model
µθ, a probability measure which is designed to approach a target data distribution
µ. A typical way of solving this problem is to minimise in θ the distance be-
tween µθ and µ: one may choose any probability discrepancies (Kullback-Leibler,
Ciszar divergences, f-divergences or Maximum Mean Discrepancy), or alternatively
the Wasserstein Distance. In the case of Generative Adversarial Networks, the so-
called ”Wasserstein GAN” [2, 16] draws its formulation from the dual expression
of the 1-Wasserstein distance.

Unfortunately, computing the Wasserstein distance is prohibitively costly in
practice. The discrete formulation of the Wasserstein distance (the Kantorovitch
linear problem) is typically solved approximately using standard linear program-
ming tools. These methods suffer from a super-cubic worst-case complexity with
respect to the number of samples from the two measures. Furthermore, given n
samples from each measure µ and ν, the convergence of the estimated distance
W2(µ̂n, ν̂n) is only in O(n−1/d) towards the true distance, thus OT suffers from the
curse of dimensionality, as is known since Dudley, 1969 [12].

Several efforts have been made in recent years to make Optimal Transport
more accessible computationally. In particular, many surrogates for W2 have
been proposed, perhaps the most notable of which is the Sinkhorn Divergence
(see [29, 10, 15]). The Sinkhorn Divergence adds entropic regularisation to OT,
yielding a strongly convex algorithm which can be solved efficiently.
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Another alternative is the Sliced Wasserstein (SW) Distance, which leverages
the simplicity of computing the Wasserstein distance between one-dimensional mea-
sures. Indeed, given

γX :=
1

n

n∑
k=1

δxk , γY :=
1

n

n∑
k=1

δyk with x1, · · · , xn, y1, · · · , yn ∈ R,

the 2-Wasserstein distance between these two measures can be computed by sorting
their supports:

(1.2) W2
2(γX , γY ) =

1

n

n∑
k=1

(xσ(k) − yτ(k))
2,

where σ is a permutation sorting (x1, · · · , xn), and τ is a permutation sorting
(y1, · · · , yn).

The idea of the Sliced Wasserstein Distance [30] is to compute the 1D Wasserstein
distances between projections of input measures. We write Pθ : Rd −→ R the map
x 7−→ θTx, and � the uniform measure over the euclidean unit of Rd, Sd−1.
Denoting # the push-forward operation 1, the Sliced Wasserstein distance between
two measures µ and ν is defined as

(1.3) SW2
2(µ, ν) :=

∫
θ∈Sd−1

W2
2(Pθ#µ, Pθ#ν)d�(θ).

For measures supported on a fixed compact of Rd, Bonnotte ([9], Chapter 5) has
shown that the Wasserstein and Sliced Wasserstein distances are equivalent. The
same work also developed a theory of gradient flows for SW, which justifies some
generative methods. Further discussion on this equivalence has been performed by
Bayraktar and Guo [4]. Nadjahi et al. [27] showed that SW metrises the conver-
gence in law (without restrictions of the measure supports), and further concluded
guarantees for SW-based generative models.

Continuous measures being out of the reach of practical computation, it is nec-
essary to perform sample estimation and replace them with discrete empirical es-
timates. Thankfully, as shown in [26], the sample complexity (i.e. the rate of
convergence of the estimates w.r.t. the number of samples) for sliced distances
such as SW is in 1/

√
n, which in particular avoids the curse of dimensionality

from which the Wasserstein Distance suffers. This fuels interest for the study of
Y 7→ SW(γY , γ), which is to say the variation of SW w.r.t. the discrete support
of one of the measures. It is currently unknown whether this functional presents
strict local optima, for instance.

Originally, SW was introduced as a more computable alternative to the Wasser-
stein distance, notably for texture mixing using a barycentric formulation [30, 7].
Other uses of SW have been suggested, notably in statistics as a probability discrep-
ancy. For instance, Nadjahi et al. [25] proposed an approximate bayesian computa-
tion method, where the estimation of the posterior parameters is done by selecting
those under which the SW distance between observed and synthetic data is below
a fixed threshold. Other widespread uses of SW in image processing include colour
transfer [1] and colour harmonisation [8].

1The push-forward of a measure µ on Rd by an application T : Rd → Rk is defined as a measure
T#µ on Rk such that for all Borel sets B ∈ B(Rk), T#µ(B) = µ(T−1(B)).
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Nowadays, SW is commonly used as a training or validation loss in generative
Machine Learning. Karras et al. [19] propose to use SW to compare GAN results,
by comparing images via multi-scale patched descriptors. Some generative mod-
els (including GANs and auto-encoders), leverage the computational advantages of
SW in order to learn a target distribution. This is done under the implicit gen-
erative modelling framework, where a network Tu of parameters u is learned such
as to minimise SW(Tu#µ0, µ), where µ0 is a low-dimensional input distribution
(often chosen as Gaussian or uniform noise), and where µ is the target distribution.
Deshpande et al. [11] and Wu et al. [38] train GANs and auto-encoders within this
framework; Liutkus et al. [22] perform generation by minimising a regularised SW
problem, which they solve by gradient flow using an SDE formulation. SW can
be used to synthesise images by minimising the SW distance between features of
the optimised image and a target image, as done by [18] for textures with neural
features, and by [33] with wavelet features (amongst other methods).

In practice, the integration over the unit sphere in SW is intractable, and one
must resort to a Monte-Carlo approximation, taking the average between p projec-
tions instead of the expectation The estimation error of this approximation has not
been extensively studied, and it is common in practice to assume that this empirical
version presents the same properties as the true SW distance.

An important question is the conditions under which these approximations for
SW are valid. In practice, sliced-Wasserstein Generative Models compute SW in
the data space or in the data encoding space ([20, 11]), which yields high values for
the dimension d, in particular for images. Note that the necessity behind having a
large number of projections p was already hinted at in [20], §3.3. Another untreated
question is the complexity of optimising this approximation of SW, and how this
optimisation landscape compares to the true SW landscape.

Bonneel et al. [7] studied the uses of SW for barycentre computation, and in
particular proved that the empirical SW distance is C1 on a certain open set, with
respect to the measure positions. They remarked that in practice, numerical res-
olutions for discretised SW distances converged towards (eventual) local optima,
however the convergence and local optima have not been studied theoretically.

In this paper, we propose to study E : Y 7→ SW2
2(γY , γZ), where γY and γZ

are two uniform discrete measures supported by n points, denoted by Y and Z.
Our main objective is to provide optimisation properties for the landscapes of E
and its Monte-Carlo counterpart Ep, obtained by replacing the expectation by an
average over p projections. In Section 2, we prove several regularity properties
for both energies, such as semi-concavity, and we show that the convergence of
the Monte-Carlo estimation is uniform (on every compact) w.r.t. the measure
locations. Section 3 focuses on the respective landscapes of E and Ep, and shows
that the critical points of E satisfy a fixed-point equation, and how the critical
points of Ep relate to this fixed-point equation when the number of projections p
increases (with convergence rates). Mérigot et al. follow a similar methodology
in [24], where they study optimisation properties for Y 7−→ W2(γY , µ), with µ a
continuous measure. The main difficulty they face arises from the non-convexity
of the map, and this difficulty is also central in our work. The last two sections
of our paper tackle numerical considerations. To begin with, since E and Ep are
usually minimised in the literature using Stochastic Gradient Descent (SGD), we
provide in Section 4 the first complete convergence study of SGD for E and Ep,
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relying on the recent work [5]. Finally, Section 5 challenges our theoretical results
with extensive numerical experiments, quantifying the impact of the dimension and
several other parameters on the convergence.

2. Sliced and Empirical Sliced Wasserstein Energies and their
Regularities

2.1. The discrete SW energies E and Ep. The Sliced Wasserstein distance has
been widely studied as an alternative to the Wasserstein distance, in particular
it is arguably simpler to compute in order to minimise measure discrepancies. In
practice, one may not work with continuous measures, which are beyond the capa-
bilities of numerical approximations, thus one must sometimes contend with discrete
measures. To that end, we study in this paper the SW distance between discrete
measures, and in particular the associated energy landscape with respect to the
support of one of the measures:

(2.1) E :=

 Rn×d −→ R+

Y 7−→
∫
Sd−1

W2
2(Pθ#γY , Pθ#γZ)d�(θ)

,

where n denotes the number of points in the data matrices Y,Z, which we write
as data entries stacked vertically: Y = (y1, · · · , yn)T , with points in Rd. The
associated (uniform) discrete measure supported on {y1, · · · , yn} will be denoted
γY := 1

n

∑
k δyk .

For instance, this framework encompasses SW-based implicit generative models
([11], [38]), which optimise parameters ρ by minimising SW(Tρ#µ0, µ), where µ0 is
comprised of samples of a simple distribution, and µ corresponds to data samples
which we would like to generate. In this setting, one would need to minimise
through E . The use of discrete measures is also backed theoretically by the study
of the sample complexity of SW [26], which is to say the rate of decrease of the
approximation error between SW(µ, ν) and its discretised counterpart SW(µ̂n, ν̂n).

In practical and realistic settings, the only numerically accessible workaround
to optimise through E is a form of discretisation of the set of directions. The
first and most common method, due to its efficiency and simplicity, is to mini-
mize E through stochastic gradient descent (SGD): at each time set t, p random

directions (θ
(t)
1 , · · · , θ(t)

p ) are drawn, and a gradient descent step is performed by
approximating E by a discrete sum on these p random directions. This method is
optimisation-centric, since it does not concern itself with computing the final SW
distance and focuses on optimising the parameters. A second possible discretisation
method consists in fixing the p directions (θ1, · · · , θp) once for all and replacing E
in the minimization by its Monte-Carlo estimator 2

(2.2) Ep :=


Rn×d −→ R+

Y 7−→
1

p

p∑
i=1

W2
2(Pθi#γY .Pθi#γZ)

.

It is important to note that both methods are intuitively tied, since in both cases
there is a finite amount of sampled directions. If the SGD method lasts T iterations
with p projections every time, it amounts to a specific way of optimising EpT .

2In this notation the projection axes θ1, · · · , θp ∈ Sd−1 are written implicitly, the complete

notation being Ep(Y ; (θi)i∈J1,pK) when required.
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For this reason, studying Ep theoretically is not only interesting in itself as an
approximation of E , but also yields a better insight on the SGD strategy.

The study of E is also tied with the study of the SW barycentres, which solve
the optimisation problem

(2.3) Bar(λj , γZ(j))j∈J1,JK = argmin
Y ∈Rn×d

J∑
j=1

λjE(Y,Z(j)) =: Ebar(Y ),

where the notation E(Y, Z(j)) reflects the dependency on Z in the definition of E
(2.1). The regularity and convergence results will immediately be applicable to
the barycentre energy (2.3). While the optimisation results on E and Ep will not
generalise naturally due to the sum, the SGD convergence results shall still hold.

As a Monte-Carlo estimator, the law of large numbers yields the point-wise
convergence of Ep to E if the (θi)i∈N are i.i.d. of law �:

(2.4) Ep(Y ; (θi)i∈J1,pK)
a.s.−−−−−→

p→+∞
E(Y ).

2.2. Regularity properties of Ep and E. In order to study the regularity of our
energies, we first focus on the regularity of wθ, the 2-Wasserstein distance between
two discrete measures projected on the line Rθ:

(2.5) wθ :=

{
Rn×d −→ R
Y 7−→ W2

2(Pθ#γY , Pθ#γZ)
.

With this notation, observe that E and Ep can be written

(2.6) E(Y ) = Eθ∼� [wθ(Y )] and Ep(Y ) = Eθ∼�p [wθ(Y )] ,

where �p :=
1

p

p∑
i=1

δθi for p fixed directions (θ1, · · · , θp) ∈ (Sd−1)p.

We now provide an important regularity result about the uniformly locally Lip-
schitz property of the functions (wθ)θ, which will yield easily that our energies E
and Ep are also locally Lipschitz, a central property in the convergence study of
particular SGD schemes on E and Ep (see Section 4.2). To show this result on (wθ),
we need the following Lemma 2.1, whose proof is provided in Section A.3.

Lemma 2.1 (Stability of the Wasserstein cost). Let α, α, β, β ∈ Σn, and C,C ∈
Rn×n+ . Denote by W(α, β;C) := inf

π∈Π(α,β)
π ·C the cost of the discrete Kantorovitch

problem of cost matrix C between the weights α, β. We have the following Lipschitz-
like

The following regularity property on (wθ) uses the norm ‖X‖∞,2 = max
k∈J1,nK

‖xk‖2

on Rn×d. We also denote D := n× d for convenience.

Proposition 2.1. The (wθ)θ∈Sd−1 are uniformly locally Lipschitz.. More precisely,
in a neighbourhood X ∈ RD or radius r > 0, writing κr(X) := n(r + ‖X‖∞,2 +
‖Z‖∞,2), each wθ is κr(X) Lipschitz, which is to say

∀X ∈ RD, ∀Y, Y ′ ∈ B‖·‖∞,2(X, r), ∀θ ∈ Sd−1, |wθ(Y )−wθ(Y ′)| ≤ κr(X)‖Y−Y ′‖∞,2.
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Proof. Let X ∈ RD, Y, Y ′ ∈ B‖·‖∞,2(X, r), and θ ∈ Sd−1. By Lemma 2.1 , we have

, where for (k, l) ∈ J1, nK2, Ck,l := (θT yk − θT zl)2, likewise for C ′. Then:

[C − C ′]k,l =
(
θT (yk − y′k)

) (
θT (yk + y′k − 2zl)

)
≤ ‖yk − y′k‖2‖yk + y′k − 2zl‖2
= ‖yk − y′k‖2‖yk − xk + y′k − xk + 2zl + 2xk‖2
≤ ‖yk − y′k‖2 (2r + 2‖Z‖∞,2 + 2‖X‖∞,2) .

Finally, ‖C−C ′‖F =

√ ∑
k,l∈J1,nK

[C − C ′]2k,l ≤ 2n(r+‖X‖∞,2 +‖Z‖∞,2)‖Y −Y ′‖∞,2.

�

As a consequence, we deduce immediately that Ep and E are locally Lipschitz.

Theorem 2.1. E and Ep are locally Lipschitz.

Proof. Let X ∈ RD, r > 0 and µ ∈ {�,�p}. By Proposition 2.1, for any Y, Y ′ ∈
B‖·‖2,∞(X, r),

|Eθ∼µ [wθ(Y )]− Eθ∼µ [wθ(Y
′)]| ≤ Eθ∼µ [|wθ(Y )− wθ(Y ′)|] ≤ κr(X)‖Y − Y ′‖∞,2.

�

As a locally Lipschitz function, E is differentiable almost everywhere. The ex-
pression of its gradient is quite simple and corresponds to the simple differentiation
of wθ in the integral, as was shown in [7]. We remind here their result for the sake
of completeness, and because the derivative will be useful on several occasions in
this paper. We define U the open set of matrices with distinct lines

(2.7) U =
{

(x1, · · · , xn)T ∈ Rn×d | ∀i 6= j, J1, nK2, xi 6= xj
}
.

Theorem 2.2 (Regularity of E , from Bonneel et al. [7] Theorem 1). E is continuous
on Rn×d, and of class C1 on U . There exists κ ≥ 1 such that ∇E is κ-Lipschitz on
U . For Y ∈ U , one has the expression:

(2.8)
∂E
∂yk

(Y ) =
2

n

∫
Sd−1

θθT (yk − zτθZ◦(τθY )−1(k))d�(θ),

where for θ ∈ Sd−1, X ∈ U , τθX ∈ Sn is any permutations s.t. θTxτθX(1) ≤ · · · ≤
θTxτθX(n).

Proving this theorem requires to be cautious. Firstly, differentiating directly un-
der the integral using standard calculus theorems is impossible, since the integrand
is only differentiable on a set Uθ which depends on the integration variable θ. For-
tunately, these irregularities are smoothed out as θ rotates, yielding differentiability
almost-everywhere. Secondly, the problematic term τθY can be dealt with for Y ∈ U
by remarking that for any Y ′ ε-close to Y , we have τθY = τθY ′ for every θ in a certain
subset of Sd−1 which is of �-measure exceeding 1− Cε.
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2.3. Cell structure of Ep. In order to further study the optimisation properties
of Ep and E , we need to exhibit more explicitly the structure of the landscape
of Ep. The semi-concavity of Ep and E will follow, as well as the fact that E is
semi-algebraic . We can compute Ep by leveraging the formula for 1D Wasserstein
distances:

(2.9) ∀Y ∈ Rn×d, Ep(Y ) =
1

np

p∑
i=1

n∑
k=1

(
θTi

(
yk − zτθiZ ◦(τθiY )−1(k)

))2

.

For now we consider Z and the (θi) fixed, and we write m(Y ) := (mi(Y ))i∈J1,pK

where mi(Y ) = τθiZ ◦ (τθiY )−1. Writing Sn the set of permutations of {1, · · · , n}, mi

is the element σ of Sn which solves the (Monge) quadratic optimal transport be-
tween the points (θTi y1, · · · , θTi yn) and The matching configuration m(Y ) depends
implicitly on the fixed directions (θi).

Note that the permutations τθY and are not always uniquely defined: for any
θ ∈ Sd−1, there exists Y ∈ U such that τθY is not uniquely defined (take Y such
that θ ∈ (y1 − y2)⊥ for instance). However, for a given set of directions (θi), these
permutations are uniquely defined almost everywhere on Rn×d.

A set of interest is Cm = {Y ∈ U | m(Y ) is uniquely defined and equal to m},
the cell of points Y of configuration m. Writing m = (m1, · · · ,mp), and using the
optimality of each mi, note that each cell Cm can be also written as

Cm =

{
Y ∈ Rn×d : ∀i ∈ J1, pK, ∀σ ∈ Sn \ {mi},

n∑
k=1

zTmi(k)θiθ
T
i yk >

n∑
k=1

zTσ(k)θiθ
T
i yk}

}
.

(2.10)

Thus, each Cm is an open polyhedral cone, obtained as the intersection of p(n!− 1)

half-open planes. Moreover, the union of these cells
⋃

m∈Spn

Cm is a strict subset of

U (as a consequence of the non uniqueness of the permutations for some Y ), but
is dense in Rn×d. These cells are of particular interest since by definition, Ep is
quadratic on each Cm, and can be written

(2.11) ∀Y ∈ Cm, Ep(Y ) =
1

np

p∑
i=1

n∑
k=1

(
θTi
(
yk − zmi(k)

))2
=: qm(Y ).

Furthermore, the sorting interpretation of the 1D Wasserstein distance allows us to
re-write Ep(Y ) as a minimum of quadratics,

(2.12) ∀Y ∈ Rn×d, Ep(Y ) = min
m∈Spn

qm(Y ) = qm(Y )(Y ).

Remark 2.1. To each Y = (y1, · · · , yn)T (seen as a n×d matrix), we can associate
the column vector vec(y) := (yT1 , · · · , yTn )T , which is now a vector of RD = Rn×d
without any abuse of notation. We re-write the quadratic from equation (2.11) in
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standard form: qm(vec(y)) = 1
2vec(y)TBvec(y)− aTmvec(y) + b, where:

B :=
2

n

 A 0 0

0
. . . 0

0 0 A

 ; A :=
1

p

p∑
i=1

θiθ
T
i ;

am :=
2

pn



p∑
i=1

θiθ
T
i zmi(1)

...
p∑
i=1

θiθ
T
i zmi(n)


; b :=

1

n

n∑
k=1

zTk Azk.

(2.13)

Note in particular that only the linear component depends on m.

Finding the minimum of each quadratic qm can be done in closed form, thanks to
the computations of Remark 2.1. This computational accessibility will be leveraged
during our discussions on minimising Y 7−→ Ep(Y ) (Section 3.2.4), wherein we
shall present the Block Coordinate Descent method (Algorithm 1), which computes
iteratively minima of quadratics in closed form.

2.4. Consequences of the cell structure on the regularity of Ep and E.
The cell decomposition presented in Section 2.3 permits to show several additional
regularity results.

Proposition 2.2. Ep is quadratic on each cell Cm, thus of class C∞ on
⋃

m∈Spn

Cm,

hence C∞ a.e..

The formulation as an infimum of quadratics also allows us to prove that Ep is
semi-concave, which is an extremely useful property for optimisation.

Proposition 2.3. Ep is 1
n -semi-concave, i.e. Ep − 1

n‖ · ‖
2
2 is concave.

Proof. Using the notations from Remark 2.1, Ep(vec(y)) = 1
2vec(y)TBvec(y) +

min
m∈Spn

aTmvec(y) + b. Now, vec(y) 7−→ min
m∈Spn

aTmvec(y) + b is concave, as an infimum

of affine functions. Furthermore

1

2
vec(y)TBvec(y)− 1

n
‖vec(y)‖22 =

1

n

n∑
k=1

yTk (A− I)yk,

and since A � Id, the equation above defines a concave function of vec(y). �

The semi-concavity of Ep and point-wise convergence allows us to deduce the
semi-concavity of E :

Proposition 2.4. E is 1
n -semi-concave.

Proof. By Proposition 2.3, ∀p ∈ N∗, Ep is 1
n -semi-concave. Let p ∈ N∗, Y, Y ′ ∈

Rn×d and λ ∈ [0, 1]. We have

Ep((1− λ)Y + λY ′)− 1

n
‖(1− λ)Y + λY ′‖2F

≥ (1− λ)Ep(Y ) + λEp(Y ′)−
1

n

(
(1− λ)‖Y ‖2F + λ‖Y ′‖2F

)
.
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Taking the limit p −→ +∞ in this inequality yields the 1
n -semi-concavity of E . �

The cell formulation also allows us to show that Ep is semi-algebraic, which
means that it can be written using a finite number of polynomial expressions. This
result induces strong optimisation results akin to semi-concavity for our purposes.

Proposition 2.5. Ep is semi-algebraic.

Proof. We shall prove that the set G := {(X, Ep(X)) | X ∈ UΘ} is semi-algebraic,

where UΘ :=
⋃

m∈Spn

Cm. Observe that

G =
⋃

m∈Spn

{
(X, y) ∈ RD+1, X ∈ Cm and y = qm(X)

}
.

The function qm is quadratic, thus polynomial, and the cells Cm are intersections
of a finite number of half planes, so we conclude that G is semi-algebraic.

The closure of UΘ verifies UΘ = RD, furthermore, since Ep is continuous on RD
(by Theorem 2.2), the closure of G is exactly the graph of Ep. Now by [37], Lemma

4, since G is semi-algebraic, then G is also semi-algebraic. As a conclusion, Ep is a
semi-algebraic function. �

2.5. Convergence of Ep to E. We have already seen that Ep(Y ) converges to E(Y )
almost surely when p → +∞. In practice, since we want to optimise through Ep
as a surrogate for E , we would wish for the strongest possible convergence. Below,
we show almost-sure uniform convergence over any compact, which is substantially
better than point-wise convergence. Note that this stronger mode of convergence
is unfortunately still too weak to transport local optima properties.

Theorem 2.3 (Uniform Convergence of Ep). Let K ⊂ Rn×d compact. We have

P
(
‖Ep − E‖`∞(K) −−−−−→

p→+∞
0

)
= 1, where for f ∈ C(K,R), ‖f‖`∞(K) := sup

x∈K
|f(x)|.

Proof. We shall temporarily write Ep(Y ) = Ep(Y ; Θ) to illustrate the dependency
on the random variable Θ := (θi)i∈N∗ on a probabilistic space (Ω,A,P) with values
in (Sd−1)N. By point-wise almost-sure convergence, for any fixed Y ∈ Rn×d, there
exists a P-null set NY such that for every ω ∈ Ω \ NY , the deterministic real
number Ep(Y ; Θ(ω)) converges to E(Y ). Let D := K ∩ Qn×d, which is dense in K

and countable. Let N :=
⋃
Y ∈D
NY : N is P-null as a countable union of P-null sets.

Fixing ω ∈ Ω\N , we have ∀Y ∈ D, Ep(Y ; Θ(ω)) −−−−−→
p→+∞

E(Y ), thus point-wise

convergence on D of the (now) deterministic function Ep(·; Θ(ω)) to E . Now, a con-
sequence of Proposition 2.1 is that the family of functions (Y 7→ Ep(Y ; Θ′))Θ′∈(Sd−1)p

is equi-continuous on any compact (thus on K). As a consequence, the point-wise
convergence on D implies the uniform convergence of Ep(·; Θ(ω)) to E on D = K
(a detailed presentation of this classic result can be found in [21], Proposition 3.2).
This holds for any event ω ∈ Ω\N , with P(Ω\N ) = 1, thus the uniform convergence
is almost-sure. �
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2.6. Illustration in a simplified case. Let us illustrate E in a simple case, that
was briefly presented in Bonneel et al. [7], in order to grasp the difficulties at
hand. This example is interesting for understanding the difficulty of performing
computations with E and Ep. Let z1 = (0,−1)T and z2 = (0, 1)T . Instead of
computing E(Y ) for any Y ∈ R2×2, we simplify by assuming Y = (y,−y)T =
(y1, y2)T . We will assume further y 6= 0 and write y = (u, v)T . The interested
reader may seek the computations in Section A.1. With these notations, we can
show that

(2.14) E(Y ) = SW2
2(γY , γZ) =

u2 + v2

2
+

1

2
− 2

π

(
|u|+ |v|Arctan

∣∣∣ v
u

∣∣∣) .
For W2

2, one may show (see Section A.2 for the computations) that W2
2(γY , γZ) =

u2 + (|v| − 1)2 in this setting. We compare E and W2
2 in Figure 1.

(a) Y 7−→ E(Y ) (b) Y 7−→W2
2(γY , γZ)

Figure 1. Comparison between Sliced Wasserstein (a) and
Wasserstein (b) landscapes for 2-point discrete measures Y =
(y,−y)T and Z = (z1, z2)T with z1 = (0,−1)T and z2 = (0, 1)T .

Notice differences in regularity. E is smooth on the open set U (defined in (2.7))
of the Y ∈ Rn×d with distinct points (this is known in general, [7]), but is not
differentiable anywhere in Uc. Here this is clear at (0, 0). Furthermore, E presents
two saddle points, (± 2

π , 0). In Section 3.1.2, we shall study the critical points of

E in full generality. Finally, W2
2 presents the typical landscape of the minimum of

two quadratics.
We now move to computing Ep in this setting. In the case n = 2, a significant

simplification occurs since S2 = {I, (2, 1)}, and we express a simple formula for the
cells in the Appendix, see Section A.2. We illustrate the cell structure in Figure 2.

Notice that as p increases, the number of new strict local optima also increases,
however their associated cells become very small, thus one may hope that the
probability of ending up in a strict local optimum would decrease as p increases.
Specifically, in the heatmap visualisation, one may notice 6 large cells for p = 3,
and for p = 10, two large cells corresponding to the global optima, and 8 small cells
which may present local optima. This observation suggests that as p −→ +∞, the
total size of cells containing local optima decreases, and thus the probability of a
numerical scheme converging to a local optimum decreases as well. Moreover, it is
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(a) Ep, p = 1 (b) Ep, p = 3
(c) Ep, p =
10

(d) E

Figure 2. The landscape Ep approaches E as p increases, but
introduces numerous strict local optima. Notice that when p is too
small (p = 1 ≤ d in particular), Ep even introduces other global
optima.

clear for the landscape Ep with p = 3 that the critical points (points of differentia-
bility with a null gradient) are exactly the minima of the cell quadratics. Remark
that a cell may not contain the minimum of its quadratic, which is why we will
refer to cells containing their minimum as ”stable” (as is the case for all cells in
p = 3 illustration, but seemingly not for p = 10).

As is suggested by Figure 2, even with a large number of projections p compared
to the dimension d, the presence of strict local optima may prevent numerical solvers
from converging to the global optimum γY = γZ . This practical concern motivates
the study of the landscapes E and Ep, which is the topic of Section 3.

3. Properties of the Optimisation Landscapes of E and Ep
The goal of this section is to study the respective landscapes of E and Ep, their

critical points and the links between them.

3.1. Optimising E.

3.1.1. Global optima of E. As its name suggests, the SW distance is indeed a dis-
tance on P2(Rd) (this result can be proven in the same manner for the q-SW
distances, for q ≥ 1).

Proposition 3.1 (Bonnotte [9], Theorem 5.1.2). SW is a distance on P2(Rd).

As a consequence, the global optima of E are exactly the points Y ∗ such that
γY ∗ = γZ , or said otherwise the points such that (y∗1 , · · · , y∗n) is a permutation of
(z1, · · · , zn).

3.1.2. Critical points of E. A first step in studying the landscape E is to determine
its critical points, which we define as the set of points Y where E is differentiable
and ∇E(Y ) = 0. Thanks to Theorem 2.2, these critical points can be shown to
satisfy a fixed point equation.
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Corollary 3.1 (Equation characterising the critical points of E). Let Y ∈ U (de-

fined in (2.7)). For (k, l) ∈ J1, nK, define ΘY,Z
k,l :=

{
θ ∈ Sd−1 | τθZ ◦ (τθY )−1(k) = l

}
⊂

Sd−1 and SY,Zk,l := d

∫
ΘY,Zk,l

θθTd� ∈ S+
d (R). Y is a critical point of E iif Y satisfies

(3.1) ∀k ∈ J1, nK, yk =

n∑
l=1

SY,Zk,l zl.

Proof. Let k ∈ J1, nK. We have Sd−1 =

n⋃
l=1

ΘY,Z
k,l , where the union is disjoint,

therefore one may write

∂E
∂yk

(Y ) =
2

n

∫
Sd−1

θθT (yk − zτθZ◦(τθY )−1(k))d�(θ)

=
2

n

n∑
l=1

∫
Θk,l

θθT (yk − zl)d�(θ) =
2

dn
yk −

2

dn

n∑
l=1

SY,Zk,l zl,

where we have used

∫
Sd−1

θθTd�(θ) = I/d in the last equality. Equating the partial

differential to 0 yields (3.1). �

Equation (3.1) shows that the critical points can be written as combinations
of the points (zl), ”weighted” by the normalised conditional covariance matrices

SY,Zk,l = dEθ∼�

[
1(θ ∈ ΘY,Z

k,l )θθT
]
. With Ψ :=



U −→ Rn×d

Y 7−→



n∑
l=1

zTl S
Y,Z
1,l

...
n∑
l=1

zTl S
Y,Z
n,l


,

Equation (3.1) writes as a fixed-point equation Y = Ψ(Y ).
Further notice that Ψ cannot be properly defined on Uc, for instance if n = 2,

and if Y = (y, y), the two possible sorting choices τθY ∈ {(1, 2), (2, 1)} yield two
different values for Ψ(Y ) (the first value is the second with the indices exchanged).
We show below that Ψ is continuous on U . Unfortunately, Ψ cannot be extended
to the whole space Rn×d, since the restrictions Ψ|Cm may have distinct limits at
the borders of the cells.

Proposition 3.2 (Regularity of Ψ). Ψ is continuous on U (defined in (2.7)).

Proof. It is sufficient to prove the continuity of G := Y → SY,Zk,l on U , for k, l fixed.
Let Y ∈ U and ε > 0. Define
(3.2)

Θε(Y ) :=

{
θ ∈ Sd−1 | ∀δY ∈ B(0, ε),

(
θT yτθY (k) + θT δyτθδY (k)

)
k∈J1,nK

∈ Un,1
}
,

with Un,1 the open set of lists (x1, · · · , xn) ∈ Rn with distinct entries. By Bonneel
et al. [7], Appendix A, Lemma 2, ∀θ ∈ Θε(Y ), ∀δY ∈ B(0, ε), τθY = τθY+δY . Let ε
small enough such that ∀δY ∈ B(0, ε), Y + δY ∈ U . Let δY ∈ B(0, ε). Separating
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the integral yields:

G(Y + δY ) =

∫
ΘY+δY,Z
k,l

θθTd�(θ)

=

∫
ΘY+δY,Z
k,l

⋂
Θε(Y )

θθTd�(θ) +

∫
ΘY+δY,Z
k,l

⋂
Θε(Y )c

θθTd�(θ).

Using the fact that ΘY+δY,Z
k,l

⋂
Θε(Y ) = ΘY,Z

k,l

⋂
Θε(Y ), and denoting ‖ · ‖op the

‖ · ‖2-induced operator norm on Rd×d, we get

G(Y + δY )−G(Y ) =

∫
ΘY+δY,Z
k,l

⋂
Θε(Y )c

θθTd�(θ)−
∫

ΘY,Zk,l
⋂

Θε(Y )c
θθTd�(θ),

‖G(Y + δY )−G(Y )‖op ≤
∫

ΘY+δY,Z
k,l

⋂
Θε(Y )c

∥∥θθT∥∥
op

d� +

∫
ΘY,Zk,l

⋂
Θε(Y )c

∥∥θθT∥∥
op

d�

≤ 2

∫
Θε(Y )c

1d� = 2�(Θε(Y )c).

By Bonneel et al. [7], Appendix A, Lemma 3, there exists a constant C such that
�(Θε(Y )c) ≤ Cε, which proves the continuity of G on U . �

3.2. Optimising Ep.

3.2.1. Global optima of Ep. We saw in Proposition 3.1 that SW is a distance. Un-

fortunately, its discretised version ŜWp is only a pseudo-distance:
For generic measures, a measure-theoretic way of seeing this is through charac-

teristic functions. Given µ, ν ∈ P2(Rd) and (θ1, · · · , θp) ∈ (Sd−1)p, the condition

ŜWp(µ, ν) = 0 is equivalent to ∀i ∈ J1, pK, ∀t ∈ R, φµ(tθi) = φν(tθi), where φµ
(resp. φν) is the characteristic function of µ (resp. ν). This condition only con-
strains the characteristic functions on p radial lines, and Bochner or Pólya-type
criteria may be considered to find a characteristic function φ which equals φµ on
these lines but differs on a non-null set.

The discrete case pertains more to our setting. As shown in [32], for p large
enough, almost-sure separation holds. This result can be proven by leveraging the
geometrical consequences of the constrains Pθi#γY = Pθi#γZ , and determining
the a.s. solution set using random affine geometry.

Theorem 3.1 ([32], Theorem 4). Let γZ :=

n∑
l=1

blδzl , where the (zl) are fixed and

distinct. Assuming θ1, · · · , θp ∼ �⊗p , we have

• if p ≤ d, there exists �-a.s. an infinity of measures γ 6= γZ ∈ P2(Rd) s.t.

ŜWp(γ, γZ) = 0.

• if p > d, we have �-almost surely {γZ} = argmin
γ∈P2(Rd)

ŜWp(γ, γZ).

With a sufficient amount of projections, ŜWp(γY , γZ) = 0 ⇒ γY = γZ (a.s.),

hence when minimising ŜWp(γY , γZ) in Y , there is some hope of recovering γZ .
Unfortunately, this does not guarantee that the (unique) solution will be attained
numerically. This practical reality motivates the study of eventual local optima of
Ep.



PROPERTIES OF DISCRETE SLICED WASSERSTEIN LOSSES 15

The computation of the critical points of Ep can be done using the cell decom-
position of Section 2.3. We show that the critical points of Ep are exactly the local
optima of Ep, and correspond to ”stable cells”, which is to say cells that contain
the minimum of their quadratic.

3.2.2. Critical points of Ep and cell stability. The objective of this section is to con-
firm theoretically some of the intuitions provided by the illustrations of Section 2.6,
namely that the critical points of Ep correspond to stable cells. Since the union of
cells is exactly the differentiability set of Ep, any critical point Y of Ep is necessar-
ily within a cell Cm. Since Ep is quadratic on Cm, then a critical point Y is the
minimum of the cell’s quadratic qm. As a consequence, the critical points of Ep are
exactly the ”stable cell optima”, i.e. the Y ∈ U (see the definition (2.7)) such that
Y = argmin

Y ′∈Rn×d
qm(Y )(Y

′).

The following theorem shows that there are no local optima of Ep outside of U ,
and therefore that the set of local optima of Ep, the set of critical points of Ep and
the set of stable cell optima coincide. As previously, we define the set of critical
points of Ep as the set of points Y where Ep is differentiable and ∇Ep(Y ) = 0.

Theorem 3.2 (The local optima of Ep are within cells). Assume that (θ1, · · · , θp) ∼
�⊗p, then the following results hold �-almost surely. Let Y ∈ Rn×d a local optimum
of Ep, then ∃m ∈ Sp

n such that Y ∈ Cm. As a consequence, we have the equality
between the three sets:

• Local optima of Ep;
• Critical points of Ep;

• Stable cell optima:

{
Y ∈ U | Y = argmin

Y ′∈Rn×d
qm(Y )(Y

′)

}
.

Proof. Let Y ∈ Rn×d a local optimum of Ep. Let M := {m ∈ Sp
n | Y ∈ Cm}.

Let m ∈M . Let us show that∇qm(Y ) = 0 by contradiction: suppose∇qm(Y ) 6=
0. For t positive and small enough,

Ep(Y ) ≤ Ep

(
Y − t

∇qm(Y )

‖∇qm(Y )‖

)
≤ qm

(
Y − t

∇qm(Y )

‖∇qm(Y )‖

)
= qm(Y )− t‖∇qm(Y )‖+ o(t) = Ep(Y )− t‖∇qm(Y )‖+ o(t).

Therefore, for t > 0 sufficiently small, we have Ep(Y ) < Ep(Y ), which is a contradic-
tion. We now prove that #M = 1. Using the notations of Remark 2.1, for m ∈M ,
we have ∇qm(Y ) = 0, thus B−→y = am. For (θ1, · · · , θp) ∼ �⊗p, we have �-almost
surely that B is invertible and that m 6= m′ =⇒ am 6= am′ , thus �-almost surely,
#M = 1, proving that in fact Y belongs to Cm and not to its boundary.

�

3.2.3. Closeness of critical points of Ep and E. In practice, all numerical optimisa-
tion methods converge towards a local optimum. One may wonder what is the link
between the critical points of Ep, which we reach in practice, and the critical points
of E , among which are the theoretical solutions we would like to reach.

The following theorem shows that at the limit p→ +∞, any sequence of critical
points of Ep become fixed points of Ψ (3.1) in probability, which is to say that they
exhibit similar properties to the critical points of E .
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Theorem 3.3 (Approximation of the fixed-point equation).
For p > d, let Yp any critical point of Ep. Then we have the convergence in

probability:

(3.3) Yp −Ψ(Yp)
P−−−−−→

p−→+∞
0.

Specifically (see Corollary A.1), in order to reach a precision of ε, we have ‖Yp−
Ψ(Yp)‖∞,2 ≤ ε with probability exceeding 1 − η if p ≥ O

(
d3n log(1/η)/ε3

)
and

p ≥ O
(
d3n2 log(1/η)/ε2

)
, omitting logarithmic multiplicative terms in d and n.

We provide the proof in Section A.4, where we also estimate more precisely the
convergence rate. The idea behind this result stems from computing the minima of
the quadratics. Let Y ∗ := argmin

Y
qm(Y ), we have

(3.4) y∗k = A−1

(
1

p

p∑
i=1

θiθ
T
i zmi(k)

)
=
A−1

p

∑
l∈J1,nK

∑
i∈J1,pK
mi(k)=l

θiθ
T
i zl,

with A =
1

p

p∑
i=1

θiθ
T
i which approaches the covariance matrix of θ ∼ �, i.e. I/d.

Likewise,
1

p

∑
i∈J1,pK
mi(k)=l

θiθ
T
i can be seen as an empirical conditional covariance, and it

approaches SY,Zk,l /d. We then apply matrix concentration inequalities to quantify
the approximation error.

3.2.4. Critical points of Ep and Block Coordinate Descent. Leveraging on the cell
structure of Ep, we present an algorithm alternatively solving for the transport ma-
trices and for the positions. Writing U the set of valid transport plans between two
uniform measures with n points, we minimise the following energy (with (θ1, · · · , θp)
fixed)

(3.5) J :=


Up × Rn×d −→ R+

(π(1), · · · , π(p)), Y 7−→
1

p

p∑
i=1

n∑
k=1

n∑
l=1

(θTi yk − θTi zl)2π
(i)
k,l

.

Observe that minimising J amounts to minimising Ep.
The computation in Algorithm 1, line 3 is done using standard 1D OT solvers

[14], and the update on the positions at line 4 can be computed in closed form . BCD
can be seen as a walk from cell to cell (see Section 2.3), as illustrated in Figure 3.
BCD moves from cell to cell and converges towards a stable cell optimum, and thus
towards a local optimum of Ep (since these two sets are equal by Theorem 3.2).
This behaviour is further studied in the experimental section.

4. Stochastic Gradient Descent on E and Ep
As seen in Section 3.1.2, the optimisation properties of E and Ep indicate that

optimising their landscapes might prove difficult in practice. In real-world appli-
cations, these landscapes (and especially E , which is the most used) are minimised
using Stochastic Gradient Descent. Perhaps unsurprisingly given the difficulties
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Algorithm 1: Minimising Ep with Block-Coordinate Descent

Data: Fixed axes (θ1, · · · , θp) ∈ (Sd−1)p, projections
(zTk θi)k∈J1,nK, i∈J1,pK.

Result: Positions Y ∈ Rn×d.
1 Initialisation: Draw Y (0) ∈ Rn×d;
2 for t ∈ J1, TmaxK do
3 Update the OT maps by solving π(t) ∈ argmin

π∈Up
J(π, Y (t−1));

4 Update the positions by solving Y (t) = argmin
Y ∈Rn×d

J(π(t), Y );

5 if ‖Y (t) − Y (t−1)‖∞,2 < ε then
6 Declare convergence and terminate.

7 end

8 end

00 0

0

1

1

1

2

2

2

(y1, y2) space

z1

z2

y1

y2

y *
1

y *
2

y2 y1 space

z2 z1

z1 z2

y2 y1

y *
2 y *

1

Figure 3. Illustration of the cell structure for p = 4 in dimension
2 from a BCD viewpoint. On the left, we view different points
Y = (y1, y2) (in red and orange) and the minima of their respec-
tive quadratics: (y∗1 , y

∗
2), which should be compared to the original

points (z1, z2) in purple. On the right, we view the cell structure
depending on the position of y2−y1 ∈ R2, since the cell conditions
only depend on this difference (see (A.6)). We can see that in this
example all cells are stable, thus there are three strict local optima
of Ep in addition to the global optimum. The (y1, y2) pair number
0 is sent to (z2, z1), while the pair ”1” is sent to a local optimum,
and the pair ”2” is sent to (z1, z2).

presented in Section 3.1.2 and due to the non-differentiable and non-convex prop-
erties of the landscapes, there has been no attempt to prove the convergence of such
SGD schemes in the literature (to our knowledge). This section aims to bridge this
knowledge gap, using recent theoretical results on the convergence of SGD schemes
due to Bianchi et al. [5]. Related works include Minibatch Wasserstein [13] in par-
ticular Section 5 wherein they leverage another non-convex non-differentiable SGD
convergence framework from Majewski et al. [23] in order to derive convergence
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results for minibatch gradient descent on the Wasserstein and entropic Wasserstein
distances.

Before presenting our core results and the necessary theoretical framework from
Bianchi et al. [5], we provide in Algorithm 2 the description of the SGD scheme used
to minimise either E or Ep, i.e. for projections drawn with µ ∈ {�,�p} respectively.

Starting with random initial points Y (0) ∼ ν, at each step t, we draw a random
projection θ(t+1) ∼ � and compute an SGD step of step α in the direction of the
gradient of Y 7−→ wθ(t+1)(Y ). This scheme uses optionally an additive noise term
controlled by a parameter a (that can be set to 0).

Algorithm 2: Minimising E or Ep with Stochastic Gradient Descent

Data: Learning rate α > 0, noise level a ≥ 0, convergence threshold
β > 0, and probability distribution µ on Sd−1.

Result: Positions Y ∈ Rn×d, assignment τ ∈ Sn.
1 Initialisation: Draw Y (0) ∈ Rn×d;
2 for t ∈ J0, Tmax − 1K do
3 Draw θ(t+1) ∼ µ and ε(t+1) ∼ N (0, Ind).

4 SGD update:

5 Y (t+1) = Y (t)−α

[
∂

∂Y
W2

2(Pθ(t+1)#γY , Pθ(t+1)#γZ)

]
Y=Y (t)

+αaε(t+1)

6 if ‖Y (t+1) − Y (t)‖∞,2 < β then
7 Declare convergence and terminate.

8 end

9 end

10 return Y (tfinal) and the assignment τ of

W2
2(Pθ(tfinal)#γY (tfinal) , Pθ(tfinal)#γZ).

In [5], Bianchi et al. establish conditions under which a constant-step SGD
converges (in a certain sense), for a non-convex, locally Lipschitz cost function.
Observe that both E and Ep are indeed locally Lipschitz, as shown in Theorem 2.1.
In the following sections, we verify the required conditions for E and Ep (with p
fixed projections), and prove results which can be broadly summarised as follows:

Theorem (Theorem 4.1: Convergence of the interpolated SGD (without noise)

for E and Ep). Given a sequence of SGD schemes (Y
(t)
α ) for E (resp. Ep) of steps

α, their associated piecewise affine interpolated schemes (Yα) converge, in a weak

sense as α −→ 0, to the set of solutions of the differential inclusion equation Ẏ (s) ∈
−∂CE(Y (s)) (resp. Ep), where ∂CE denotes the Clarke differential of E.

If we instead consider a noised SGD scheme (with noise magnitude α×a, a > 0),
we have a stronger convergence result:

Theorem (Theorem 4.2: Convergence of the noised SGD for E and Ep). Given a

sequence of noised SGD schemes (Y
(t)
α ) for E (resp. Ep) of steps α, they converge,

in a weak sense as α −→ 0, to the set of (Clarke) critical points of E (resp. Ep).

These results rely on the notion of Clarke differentiability, which generalises
differentiability to non smooth functions as soon as these functions are locally Lip-
schitz (i.e. Lipschitz in a neighbourhood of each point). More precisely, for such a
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function f : Rd → R, its Clarke sub-differential at x is defined as the convex hull
of the limits of gradients of f

∂Cf(x) := conv

{
v ∈ Rd : ∃(xi) ∈ (Df )N : xi −−−−−→

i−→+∞
x and ∇f(xi) −−−−−→

i−→+∞
v

}
,

where Df denotes the set of differentiability of f , whose complementary is of
Lebesgue measure 0 by Rademacher’s theorem, since f is locally Lipschitz. This no-
tion of differentiability coincides with the classical one for differentiable functions,
and with the usual sub-differential for convex functions. Clarke critical points of f
are points x such that 0 ∈ ∂Cf(x).

4.1. Theoretical framework. In the following, we briefly present the theoretical
framework of Bianchi et al. [5]. They consider a function f : RD×Θ −→ R, locally
Lipschitz continuous in the first variable (for each θ), and µ a probability measure
on Θ ⊂ Rd. Since f is locally Lipschitz in the first variable, the gradient ∇f(·, θ)
of f(·, θ) (w.r.t. the first variable) can be defined almost everywhere on RD, and
any function ϕ : RD ×Θ −→ RD such that λ⊗ µ a.e., ϕ = ∇f is called an almost-
everywhere gradient of f (see [5], Definition 1). Let F :=−→

∫
Θ
f(Y, θ)dµ(θ). A

SGD scheme of step α > 0 for F is a sequence (Y (t)) of the form:

(4.1) Y (t+1) = Y (t) − αϕ(Y (t), θ(t+1)),
(
Y (0), (θ(t))t∈N

)
∼ ν ⊗ µ⊗N,

where ν is the distribution of the initial position Y (0), which we shall assume to be
absolutely continuous w.r.t. the Lebesgue measure.

Within this framework, we can define an SGD scheme for E and Ep. The function
wθ (Equation (2.5)) plays the role of f . We know from Proposition 2.1 that wθ is lo-
cally Lipschitz (uniformly in θ), hence differentiable almost everywhere, and that at
these points of differentiability, using [7] (Appendix A, ”proof of differentiability”),
the derivative of wθ in Y is

(4.2) ϕ(Y, θ) :=

[
2

n
θθT

(
yk − zτθZ◦(τθY )−1(k)

)]
k∈J1,nK

,

which corresponds to the definition of an almost-everywhere gradient as proposed
by [5]. Moreover, ϕ can be extended everywhere by choosing the sorting permu-
tations arbitrarily when there is ambiguity. Within this framework, given a step
α > 0, and an initial position Y (0) ∼ ν, the fixed-step SGD iterations (4.1) can
be applied to F = E by choosing µ = � or to F = Ep by choosing µ = �p :=
1
p

∑p
i δθi . We assume that Span(θi)i∈J1,pK = Rd, which is satisfied �-almost surely

if (θi)i∈J1,pK ∼ �⊗p, since p > d.

4.2. Convergence of piecewise affine interpolated SGD schemes on E and
Ep. The piecewise-affine interpolated SGD scheme associated to a discrete SGD

scheme (Y
(t)
α ) of step α is defined as:

Yα(s) = Y (t)
α +

( s
α
− t
)

(Y (t+1)
α − Y (t)

α ), ∀s ∈ [tα, (t+ 1)α[, ∀t ∈ N.

We consider the space of absolutely continuous curves from R+ to RD, denoted
Cabs(R+,RD), and endow it with the metric of uniform convergence on all segments:

(4.3) dc(Y, Y
′) :=

∑
k∈N∗

1

2k
min

(
1, max
s∈[0,k]

‖Y (s)− Y ′(s)‖∞,2
)
.
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We will show that when the step decreases, the interpolated processes approach the
set of solutions of a differential inclusion equation. To that end, we define the set
of absolutely continuous curves that start within a given compact K of RD and are
a.e. solutions of the differential inclusion:
(4.4)

S−∂CF (K) :=
{
Y ∈ Cabs(R+,RD) | ∀s ∈ R+, Ẏ (s) ∈ −∂CF (Y (s)); Y (0) ∈ K

}
,

where ∀ denotes ”for almost every”. Bianchi et al. [5] present three conditions under
which they prove the convergence (in a certain weak sense) of interpolated SGD
schemes on F . For the sake of self-containedness, we reproduce them here and verify
them successively. Recall that for our two respective applications, f(Y, θ) = wθ(Y ),
µ ∈ {�, �p} and F ∈ {E , Ep}.

Assumption 1.

i) There exists κ : RD × Sd−1 −→ R+ measurable such that each κ(X, ·) is
µ-integrable, and:

∃ε > 0, ∀Y, Y ′ ∈ B(X, ε), ∀θ ∈ Sd−1, |f(Y, θ)− f(Y ′, θ)| ≤ κ(X, θ)‖Y − Y ′‖.

ii) There exists X ∈ RD such that f(X, ·) is µ-integrable.

Since f is the same in both cases, we can satisfy Assumption 1 for both schemes
simultaneously. The (quantified) uniformly locally Lipschitz property of the wθ
(Proposition 2.1) allows us to verify Assumption 1, by letting r := 1 and κ(X, θ) :=
κ1(X). Assumption 1 ii) is immediate since for all Y ∈ RD, θ 7−→ wθ(Y ) is
continuous, therefore �− L1 and �p − L1.

Assumption 2. The function κ of Assumption 1 verifies:

i) There exists c ≥ 0 such that ∀X ∈ RD,
∫
Sd−1

κ(X, θ)dµ(θ) ≤ c(1 + ‖X‖).

ii) For every K compact of RD, sup
X∈K

∫
Sd−1

κ(X, θ)2dµ(θ) < +∞.

The choice κ(X, θ) := κ1(X) (independent on θ, and as defined in Proposi-
tion 2.1) satisfies Assumption 2. We now consider the Markov kernel associated to
the SGD schemes, denoting the Borel sets B(RD):

Pα :

 RD × B(RD) −→ [0, 1]

Y,B 7−→
∫
Sd−1

1B(Y − αϕ(Y, θ))dµ(θ)
.

With λ denoting the Lebesgue measure on RD, let

Γ := {α ∈ ]0,+∞[ | ∀ρ� λ, ρPα � λ} .

We will verify the following assumption for both schemes:

Assumption 3. The closure of Γ contains 0.

Proposition 4.1. For schemes (4.1) applied to E or Ep, Γ = R∗+ \ {n2 }.

Proof. Let µ ∈ {�, �p}. Recall the line-by-line notation Y = (y1, · · · , yn)T ∈ Rn×d.
We also denote Zτ := (zτ(1), · · · , zτ(n))

T for τ ∈ Sn. Let ρ � λ and B ∈ B(RD)
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such that λ(B) = 0. We have, with α′ := 2α/n:

ρPα(B) =

∫
RD

∫
Sd−1

1B
(
Y (I − α′θθT ) + α′ZτθZ◦(τθY )−1θθT

)
dµ(θ)dρ(Y )

≤
∑
τ∈Sn

∫
RD

∫
Sd−1

1B
(
Y (I − α′θθT ) + α′Zτθθ

T
)

dµ(θ)dρ(Y )

=
∑
τ∈Sn

∫
Sd−1

Iτ (θ)dµ(θ),

where Iτ (θ) :=

∫
RD

1B
(
Y (I − α′θθT ) + α′Zτθθ

T
)

dρ(Y ), and where the last line

is obtained by applying Tonelli’s theorem. Let τ ∈ Sn and θ ∈ Sd−1. We now
assume α′ 6= 1, which is to say α 6= n/2. We operate the affine change of variables
X = φ(Y ) := Y (I − α′θθT ) + α′Zτθθ

T , which is invertible for α′ 6= 1. We have

Iτ (θ) =

∫
RD

1B(φ(Y ))dρ(Y ) =

∫
RD

1B(X)dφ#ρ(X) = φ#ρ(B).

Now since φ is affine and invertible, φ#ρ � λ, thus φ#ρ(B) = 0, and finally
ρPα(B) = 0. This proves that ρPα � λ for α > 0 differing from n/2. �

Now that we have verified Assumption 1, Assumption 2 and Assumption 3, we
can apply [5], Theorem 2 to E and Ep. Let 0 < α0 < n/2.

Theorem 4.1 ([5], Theorem 2 applied to E and Ep: convergence of the interpolated

SGD scheme). Let (Y
(t)
α ), α ∈]0, α0], t ∈ N a collection of SGD sequences associated

to (4.1) applied to E or Ep. Consider (Yα) their associated piecewise affine inter-
polations. For any K compact of RD and any ε > 0, we have for F ∈ {E , Ep} and
µ ∈ {�, �p} respectively

(4.5) lim
α−→0

α∈ ]0,α0]

ν ⊗ µ⊗N (dc(Yα, S−∂CF (K)) > ε) = 0,

where dc is the metric of uniform convergence defined in (4.3).

It is to be understood that when the SGD step decreases, the interpolated
schemes converge towards the set of solutions of the differential inclusion related
to the continuous SGD equation. This convergence is weak: the distance to this
set approaches 0 in probability, and S−∂CF (K) is a set of solutions which we do
not know how to compute, however we can study some theoretical properties of the
solutions given a suitable starting point Y (0), see Remark 4.1.

Remark 4.1. For E, if the initial position Y (0) belongs to a maximal connected
component V of the differentiability set U (which is open), then consider the gradient
flow differential equation

(4.6)
∂γ

∂t
(Y, s) = −∇E(γ(Y, s)), γ(Y, 0) = Y, γ(Y, s) ∈ V.

Since E is of class C1 on V (by Theorem 2.2), with ∇E Lipschitz (locally would
suffice), standard flow results show that there exists a unique solution γ(Y, ·) for any
Y ∈ V defined on some interval ]aY , bY [⊂ R, which defines a continuous function
γ : D −→ V, with D = {(s, Y ) ∈ R × V | s ∈]aY , bY []}. Since in our case, we
consider a gradient flow, and since for any c ∈ R, the set Ac := {Y ∈ V | E(Y ) ≤ c}
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is compact, in fact the flows γ(Y, s) are defined for s ∈ [0,+∞[. Furthermore, if
a sequence (γ(Y, sm))m∈N were to converge to a limit Y∞, then one would have
Y∞ ∈ V and ∇E(Y∞) = 0. Our work does not show that the set ZV := {Y ∈
V | ∇E(Y ) = 0} of critical points of E is finite, however if that were the case, then
more standard euclidean gradient flow results show that for any Y ∈ V, ∃Y∞ ∈
ZV : γ(Y, s) −−−−−→

s−→+∞
Y∞.

Note that given a learning rate α > 0, an SGD scheme (4.1) applied to E and
starting in V has no reason to stay in V, and we unfortunately do not have equality
with a discretised version of the gradient flow. However, thanks to Bianchi et al.
[5] Theorem 1, the trajectories stay almost-surely in differentiability points of E and
wθ, and thus almost-surely, ϕ(Y (t), θ(t+1)) = ∇wθ(t+1)(Y (t)).

4.3. Convergence of Noised SGD Schemes on E and Ep. In order to prove
stronger convergence results we need to consider noised variants of our SGD schemes.
Consider ε ∼ η := N (0, ID) an independent noise, our schemes become:
(4.7)

Y (t+1) = Y (t)−αϕ(Y (t), θ(t+1))+αaε(t+1), (Y (0), (θ(t))t∈N, (ε
(t))t∈N) ∼ ν⊗µ⊗N⊗η⊗N

where µ = � for E and �p for Ep. We follow the method from [5], which suggests
that adding a small perturbation (that decreases with the step size) allows us to
verify additional suitable assumptions. Note that this modification does not impact
our verification of the previous assumptions 1 through 3. Bianchi et al. introduce
the following assumption:

Assumption 4. there exists V, p : RD → R+ and β : R∗+ → R∗+ measurable, as
well as C ≥ 0, such that for any α ∈ Γ ∩ ]0, α0]:

i) ∃R(α) > 0, δ(α) > 0, ∃ρ(α) a probability measure on RD, such that:

∀Y ∈ B(0, R), ∀A ∈ B(RD), Pα(Y,A) ≥ δρ(A).

ii) sup
Y ∈B(0,R)

V (Y ) < +∞ and inf
Y ∈B(0,R)c

p(Y ) > 0, with:

∀Y ∈ RD, PαV (Y ) ≤ V (Y )− β(α)p(Y ) + Cβ(α)1B(0,R)(Y ).

iii) p(Y ) −−−−−→
Y−→∞

+∞.

Thanks to Bianchi et al. [5], Proposition 5, this noised setting implies immedi-
ately Assumption 4 i), for any choice of R > 0. They also suggest more restrictions
on f that imply Assumption 4 ii) and iii), which our use case does not satisfy. We
shall verify Assumption 4 ii) and iii) for E and Ep separately, but using similar
methods. Beforehand, let us remark that the Markov kernel associated to (4.7) is
determined by the following action on measurable functions g : RD −→ R:

Pαg(Y ) =

∫
Sd−1×RD

g(Y − αϕ(Y, θ) + αaX)dµ(θ)dη(X).

Proposition 4.2 (Drift property for noised SGD on E). Let V := ‖ · ‖2F , α0 < 1

and p(Y ) :=
2

dn
(1− α0)

n∑
k=1

‖yk‖22. There exists R > 0 and C ≥ 0 :

∀α ∈ ]0, α0], ∀Y ∈ RD, PαV (Y ) ≤ V (Y )− αp(Y ) + Cα1B(0,R)(Y ).

Therefore, Assumption 4 is satisfied for (4.7) when µ = �.
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Proof. Let Y ∈ RD, α ∈]0, 1[ and ∆(Y ) := PαV (Y ) − V (Y ). We expand the
square, then leverage the fact that η is centred, and decompose:

∆(Y ) = α2a2nd+ α2
n∑
k=1

∫
Sd−1

d�(θ)︸ ︷︷ ︸
∆1(Y )

−2α

n∑
k=1

∫
Sd−1

d�(θ)︸ ︷︷ ︸
∆2(Y )

.

We have =
4

n2
(yk − zτθZ◦(τθY )−1(k))

T θθT (yk − zτθZ◦(τθY )−1(k)). Then recall that for all

θ ∈ ΘY,Z
k,l , zτθZ◦(τθY )−1(k) = zl. It follows that

∆1(Y ) =
4α2

n2

∑
(k,l)∈J1,nK2

∫
ΘY,Zk,l

(xk − zl)T θθT (yk − zl)d�(θ)

=
4α2

dn2

∑
(k,l)∈J1,nK2

(yk − zl)TSY,Zk,l (yk − zl)

≤
4αα0

dn2

∑
(k,l)∈J1,nK2

‖yk − zl‖22 ≤
4αα0

dn

(
n∑
k=1

(‖yk‖22 + 2‖Z‖∞,2‖yk‖2) + n‖Z‖2∞,2

)
,

where we used the inequality SY,Zk,l � Id.
Now for ∆2, we have = 2

n (θT yk)θT (yk − zτθZ◦(τθY )−1(k)), hence

∆2(Y ) = −
4α

dn

∑
(k,l)∈J1,nK2

yTk S
Y,Z
k,l (yk − zl)

= −
4α

dn

n∑
k=1

‖y2‖2 +
4α

dn

∑
(k,l)∈J1,nK2

yTk S
Y,Z
k,l zl

≤ −
4α

dn

n∑
k=1

‖y2‖2 +
4α

d
‖Z‖∞,2

n∑
k=1

‖yk‖2,

since

n∑
l=1

SY,Zk,l = Id and SY,Zk,l � Id. Finally,

∆(Y ) ≤ α
[
−

4

dn
(1− α0)

n∑
k=1

‖yk‖22︸ ︷︷ ︸
q(Y )

+ α0a
2nd+

4α0

d
‖Z‖2∞,2 +

4

d
‖Z‖∞,2

n∑
k=1

‖yk‖2 +
8α0

dn
‖Z‖∞,2

n∑
k=1

‖yk‖2︸ ︷︷ ︸
r(Y )

]
.

Now since
r(Y )

q(Y )
−−−−−−−→
‖Y ‖−→+∞

0, there exists R > 0 such that for Y ∈ RD such that

‖Y ‖∞,2 > R, we have r(Y ) ≤ q(Y )/2. In that case, we have ∆(Y ) ≤ α(−q(Y ) +
q(Y )/2) = −αq(Y )/2. For Y ∈ RD such that ‖Y ‖∞,2 ≤ R, we have ∆(Y ) ≤
αr(Y ) ≤ α max

‖Y ‖∞,2≤R
r(Y ) =: Cα (C exists since r is continuous on the compact
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B(0, R).) This proves that for any Y ∈ RD, ∆(Y ) ≤ −αq(Y )/2 + Cα1B(0,R)(Y ).

�

We now turn to the scheme for Ep. Let A :=
1

p

p∑
j=1

θjθ
T
j , and consider λmin(A) its

smallest eigenvalue. Note that λmin(A) > 0, since we assumed Span(θj)j∈J1,pK = Rd.

Proposition 4.3 (Drift property for noised SGD on Ep). Let V := ‖ · ‖2F , α0 < n

and q(Y ) :=
2

n

(
1−

α0

n

)
λmin(A)

n∑
k=1

‖yk‖22. There exists R > 0 and C ≥ 0 :

∀α ∈ ]0, α0], ∀Y ∈ RD, PαV (Y ) ≤ V (Y )− αq(Y ) + Cα1B(0,R)(Y ).

Therefore, Assumption 4 is satisfied for (4.7) when µ = �p.

We leverage the same strategy as Proposition 4.2, yet the technicalities of the
upper-bounds differ.

Proof. Let Y ∈ RD and α ∈ ]0, α0]. We expand the squares and use that η is
centred:

∆(Y ) := PαV (Y )− V (Y )

= α2a2nd+ α2 1

p

p∑
j=1

n∑
k=1

d∑
i=1

ϕ(Y, θj)
2
k,i︸ ︷︷ ︸

∆1(Y )

−2α
1

p

p∑
j=1

n∑
k=1

d∑
i=1

yk,iϕ(Y, θj)k,i︸ ︷︷ ︸
∆2(Y )

.

On the one hand,

∆1(Y ) =
4α2

pn2

p∑
j=1

n∑
k=1

(yk − z
τ
θj
Z ◦(τ

θj
Y )−1(k)

)T θjθ
T
j (yk − z

τ
θj
Z ◦(τ

θj
Y )−1(k)

)

≤
4αα0

n2

(
n‖Z‖2∞,2 +

n∑
k=1

(
yTk Ayk + 2‖Z‖∞,2‖yk‖2

))
.

Similarly, ∆2(Y ) ≤ −
4α

n

n∑
k=1

yTk Ayk +
4α

n
‖Z‖∞,2

n∑
k=1

‖yk‖2. Let

q0(Y ) :=
4

n

(
1−

α0

n

)
λmin(A)

n∑
k=1

‖yk‖22,

r(Y ) := α0a
2nd+

4α0

n
‖Z‖2∞,2 +

(
8α0

n2
+

4

n

)
‖Z‖∞,2

n∑
k=1

‖yk‖2.

We have ∆(Y ) ≤ α(−q0(Y ) + r(Y )), and we can conclude using the same method
as Proposition 4.2. �

Finally, we require the fairly natural assumption that F admits a ”chain rule”.

Assumption 5.
For any Y ∈ Cabs(R+,RD), ∀s > 0, ∀V ∈ ∂CF (Y (s)), V T Ẏ (s) = (F ◦ Y )′(s).

In order to satisfy Assumption 5, we will use the following result:
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Proposition 4.4. Any F : RD −→ R locally Lipschitz and semi-concave admits a
chain rule for the Clarke sub-differential, and thus satisfies Assumption 5.

Proof. Let F : RD −→ R locally Lipschitz and semi-concave. By Vial (1983) [35],
Proposition 4.5, this implies that −F is Clarke regular. Then, by Bolte et al.
(2021) [6], Proposition 2, the fact that −F is Clarke regular implies that F is path
differentiable, and thus admits a chain rule, by Bolte et al. [6], Corollary 2. �

Since E is semi-concave (Proposition 2.4) and locally Lipschitz, Proposition 4.4
allows us to verify Assumption 5 for (4.7). We may follow the same line of thought
for Ep, or alternatively we may use the fact that it is semi-algebraic (Proposi-
tion 2.5). By Bolte and Pauwels (2021), [6], Proposition 2, this implies that Ep is
path differentiable. Then by Bolte and Pauwels [6], Corollary 2, path differentiabil-
ity implies having a chain rule for the Clarke sub-differential, which is verbatim [5],
Assumption 5. We now have all the assumptions for [5], Theorem 3:

Theorem 4.2 (Applying [5], Theorem 3: convergence of noised SGD schemes to

a critical point). Consider a collection of noised SGD schemes (Y
(t)
α ), associated

to (4.7), respectively for F ∈ {E , Ep}, with steps α ∈ ]0, α0], with α0 < 1. Let
Z the set of Clarke critical points of F , i.e. Z :=

{
Y ∈ RD | 0 ∈ ∂CF (Y )

}
. For

µ ∈ {�, �p} respectively, we have:

∀ε > 0, lim
t−→+∞

ν ⊗ µ⊗N ⊗ η⊗N
(
d(Y (t)

α ,Z) > ε
)
−−−−−→
α−→0
α∈]0,α0]

0.

It is to be understood that the euclidean distance between any sub-sequential

limit of (Y
(t)
α )t and set of Clarke critical points Z approaches 0 in probability as

the step size decreases. The distance d in the Theorem refers to the ‖ · ‖2-induced

distance between the point Y
(t)
α ∈ RD and the set Z ⊂ RD.

For Ep, the set of Clarke critical points strictly contains the set of critical points
established in Theorem 3.2. We illustrate in Figure 4 the Clarke critical points of
Ep for p = 3, on the numerical example of Section 2.6.

In full generality (without the symmetry restriction, and with larger parameters
p, n, d), the Clarke critical points will have a similar structure.

4.4. Discussion on result generalisation. Batching. One may consider a vari-
ant in which at each step t, one draws a random batch of b directions independently
from a measure µ over Sd−1 (µ ∈ {�,�p}, for our purposes). Algorithmically, one
does the following SGD scheme:

(4.8) Y (t+1) = Y (t) −
α

b

b∑
j=1

ϕ(Y (t), θ
(t+1)
j ), (Y (0), (θ

(t)
j )j∈J1,bK

t∈N
) ∼ ν ⊗ (µ⊗b)⊗N.

In order to fit our theoretical framework (see Section 4.1), we define

g(Y, (θ1, · · · , θb)) :=
1

b

b∑
j=1

f(Y, θj).
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Figure 4. The stars, circles and squares are the Clarke critical
points of x 7→ Ep(X = (−x, x)T ), x ∈ R2 for p = 3. The squares do
not correspond to local optima of Ep, and are unlikely to be reached
numerically. The circles and stars correspond to local optima of Ep:
the stars correspond to the global optima and satisfy the desired
results Ep = 0, while the circles are strict local optima.

Furthermore, the a.e. gradient of g becomes ψ(·, (θ1, · · · , θb)) :=
1

b

b∑
j=1

ϕ(·, θj) in-

stead of ϕ(·, θ(t)). The function over which (4.8) performs SGD is:

G(Y ) =

∫
Sd−1

g(Y, θ1, · · · , θb)dµ⊗b(θ1, · · · , θp)

=

∫
Sd−1

1

b

b∑
j=1

f(Y, θj)dµ
⊗b(θ1, · · · , θp)

=

∫
Sd−1

f(Y, θ)dµ(θ) = F (Y ).

One may check easily that if Assumptions 1 through 5 of Section 4.1 are satisfied
for (f, F ), then they are satisfied for (g,G). As a consequence, all our results can
be adapted without any difficulty to the batched setting.

Barycentres. If one were to replace E with the barycentre energy Ebar (2.3),
the sample loss would become

g(Y, θ) =

J∑
j=1

λjfj(Y, θj), where fj(Y, θ) := W2
2(Pθ#γY , Pθ#γZ(j)).

By sum, all of the previous results will hold, with the only technical point being
path differentiability, which is stable by sum ([6], Corollary 4). Note that this
extension is also valid for a Monte-Carlo approximation of E , replacing E with Ep
in the barycentre formulation.
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5. Numerical Experiments

This section illustrates the optimisation properties of E and Ep with several nu-
merical experiments. Section 5.1 studies the optimisation of Ep using the BCD
algorithm described in Algorithm 1, which offers insights on the cell structure of
Ep (Section 2.3). Section 5.2.1 focuses on stochastic gradient descent Algorithm 2
and showcases various SGD trajectories on E and Ep for different learning rates,
noise levels or numbers of projections, as well as the Wasserstein error along itera-
tions. All the convergence curves shown throughout our experiments also showcase
margins of error, computed by repeating the experiments several times, and corre-
sponding to the 30% and 70% quantiles of the experiment.

In order to assess the quality of a position Y (t), perhaps the most germane
metric is the Wasserstein distance: W2

2(γY (t) , γZ), which is why we will study the
2-Wasserstein error of BCD and SGD trajectories in this section. Unfortunately,
this metric is not quite comparable for different dimensions d, notably because
‖(1, · · · , 1)‖22 = d. We shall attempt to compensate this phenomenon by using
1
dW2

2(γY (t) , γZ) instead, which makes the metric more comparable for measures on
spaces of different dimensions.

5.1. Empirical study of Block Coordinate Descent on Ep. In this section,
we shall focus on studying the optimisation properties of the Ep landscape using
the BCD algorithm (Algorithm 1). This method leverages the cell structure of
Ep (see Section 2.3), by moving from cell to cell by computing the minimum of
their associated quadratics (see the discussion in Section 3.2.4). By Theorem 3.2,
all local optima of Ep are stable cell optima, i.e. fixed points of the BCD, which
summarises briefly the ties between BCD and the optimisation properties of Ep. As
for the numerical implementation, Algorithm 1 was implemented in Python with
Numpy [17] using the closed-form formulae for the updates.

5.1.1. Illustration in 2D.
Dataset and implementation details. We start by setting a simple 2D measure γZ
with a support of only two points represented with stars in Figure 5. The measure
weights are taken as uniform. We fix sequences of p projections (θ1, · · · , θp) for
p ∈ {3, 10, 30, 100} respectively. We then draw 100 BCD schemes with different
initial positions Y (0) ∈ R2×2, drawn with independent standard Gaussian entries.
We take a stopping criterion threshold of 10−5 (see Algorithm 1), and limit to 500
iterations.

In the case p = 3, we observe on Figure 5 points which correspond to strict local
optima, and the schemes appear to have a comparable probability of converging
towards each of them. Note that these points are essentially the same as the ones
represented in Figure 2 for p = 3, but that they depend on the projection sample.
Between the two projection realisations, we observe that these local optima change
locations. The cases p ∈ {10, 30, 100} also exhibit strict local optima, however they
appear to be decreasingly likely to be converged towards. For p = 30 and p = 100,
notice that most trajectories end up on the same ellipsoid arcs towards the solution
Z, and further remark that these arcs strongly resembles the trajectories of SGD
schemes on E for small learning rates (see Figure 9 in Section 5.2).

5.1.2. Wasserstein convergence of BCD schemes on Ep.
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p = 3 p = 10 p = 30 p = 100

Figure 5. BCD on Ep with different initial positions Y (0), with
fixed projections (first sample). Each of the two points of the

trajectory Y (t) = (y
(t)
1 , y

(t)
2 ) is coloured with respect to the point

of the original measure γZ to which they converge.

Final Wasserstein error of BCD Schemes. For a dimension d ∈ {10, 30, 100} and
n = 20 points, the original measure γZ , Z ∈ Rn×d is sampled once for all with
independent standard Gaussian entries. Then, for varying numbers of projections
p, we draw a starting position Y (0) ∈ Rn×d with entries that are uniform on [0, 1];
and draw p projections as input to the BCD algorithm. We set the stopping criterion
threshold as ε = 10−5 and the maximum iterations to 1000. In order to produce
Figure 6, we record the normalised 2-Wasserstein discrepancy 1

dW2
2(γY (T ) , γZ) at

the final iteration T for 10 realisations for each value of p and d.
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Figure 6. We consider BCD schemes with different amounts of
projections p, and with an original measure γZ comprised of n = 10
points in dimension d ∈ {10, 30, 100}, which is fixed as a standard
Gaussian realisation for each value of d. The stopping threshold
was chosen as ε = 10−5, and we plot the final Wasserstein errors
1
dW2

2(γY T , γZ) at the final iteration T . For each set of values for the
parameters, we perform 10 realisations with different initialisations
Y (0) (drawn with uniform [0, 1] entries), and different projections
(θ1, · · · , θp).

As a first estimation of the difficulty of optimising Ep, we consider the evolution
- as p increases - of final W2

2 errors of BCD schemes. The results of the experiments
presented in Figure 6 suggests the existence of a phase transition between an in-
sufficient and a sufficient amount of projections. For instance, in the case d = 10,
there appears to be a cutoff around p = 400, under which all the BCD realisations
converge towards strict local optima, and past which we observe convergence up to
numerical precision.
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Probability of convergence of BCD schemes. We can investigate further this em-
pirical cutoff phenomenon by estimating the probability of convergence of a BCD
algorithm. This probability is loosely related to the difficulty of optimising the
landscape Ep, since a high probability of BCD convergence indicates either a small
number of strict local optima, or that their corresponding cells are extremely small
and seldom reached in practice. For varying numbers of projections p and dimen-
sions d, we run 100 realisations of BCD schemes. Each sample draws a target
measure γZ , Z ∈ Rn×d with independent standard Gaussian entries and n = 10
points, as well as its initialisation Y (0) ∈ Rn×d with entries that are uniform on
[0, 1] and p projections. Every BCD scheme has a stopping threshold of ε = 10−5

and a maximum of 1000 iterations. We consider that a sample scheme has con-
verged (towards the global optimum γZ) if 1

dW2
2(γY (T ) , γZ) < 10−5, which allows

us to compute an empirical probability of convergence for each value of (p, d).
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Figure 7. Given a number of projections p, we run 100 BCD trials
with different initial positions (with entries drawn as uniform on
[0, 1]), projections and target measure supported by Z ∈ Rn×d,
with n = 10 points in different dimensions d ∈ [10, 100], where
Z is drawn with independent standard Gaussian entries. At the
final iteration T , we determine whether the optimum is global by
a threshold criterion: 1

dW2
2(γY (T ) , γZ) < 10−5 and compute an

empirical probability of convergence.

The findings in Figure 7 indicate that the W2
2 error cutoffs from Figure 6 have

a probabilistic counterpart: the probability of converging to a global optimum
transitions from almost 0 to almost 1 relatively suddenly (in the logarithmic scale).
We can conjecture that this drop in optimisation difficulty is tied to the number
of iterations needed for the convergence of SGD schemes on E , especially given the
similar behaviour for the W2

2 error in Figure 13.

5.2. Empirical study of SGD on E and Ep.
General numerical implementation. In order to perform gradient descent on E or
Ep, we compute the gradient (4.2) using Pytorch’s [28] Stochastic Gradient De-
scent optimiser, which back-propagates gradients through the loss wθ := Y 7→
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W2
2(Pθ#γY , Pθ#γZ), which we compute using the 1D Wasserstein solver from

Python Optimal Transport [14].

5.2.1. Illustration in 2D.
2D dataset and implementation details. We define a 2D spiral dataset with the mea-

sure γZ , Z = (z1, · · · , z10)T ∈ R10×2 with zk = 2k
10 (cos (2kπ/10) , sin (2kπ/10))

T
,

and k ∈ J1, 10K. The initial position Y (0) is fixed and remains the same across
realisations. For schemes on E , the projections θ(t) ∼ � are fixed beforehand and
are the same across experiments. For every realisation of a scheme on Ep, p unique

projections (θ1, · · · , θp) are drawn, then the projections (θ(t)) for the iterations are
drawn from these p fixed projections. For noised schemes, the only variable that
is drawn at every sample is the noise (ε(t)). Note that the associated energy land-
scapes are extremely similar to those illustrated in Section 2.6 and in particular in
Figure 2.

= 0.01 = 0.03 = 0.1 = 0.3 = 1

Figure 8. SGD trajectories on E for different learning rates α. All
the trajectories are computed using the same projection sequence
(θ(t)).

= 0.01 = 0.03 = 0.1 = 0.3 = 1

Figure 9. SGD trajectories on E for different learning rates α.
For each value of α, 100 samples are drawn with different projec-
tions (θ(t)), and for each realisation, each of the two points of the
trajectory is coloured with respect to the point of the original mea-
sure γZ (represented by stars) to which they converge. The initial
position Y (0) is represented by circles.

Figure 8 and Figure 9 illustrate the convergence of SGD schemes on E towards
the original measure γZ , for different learning rate α (provided that α is under a
divergence threshold). Theorem 4.1 allowed us only to expect a convergence to
a solution of a Clarke Differential Inclusion on E (4.4), yet in practice we seem
to have convergence to a global optimum. Furthermore, Theorem 4.1 shows that
the interpolated SGD trajectories are approximately solutions of the DI Ẋ(t) ∈
−∂CE(X(t)), which, assuming that the trajectory stays in U , amounts to Ẋ(t) +
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∇E(X(t)) = 0, which is exactly the Euclidean Gradient Flow of E , as discussed
in more detail in Remark 4.1. This illustration suggests that the SGD schemes
approach the gradient flow (4.6) as α −→ 0, whereas Theorem 4.1 predicts a (weak)
convergence towards the set of solutions of the DI (4.4), which is equal to the
gradient flow provided that the initial position Y (0) belongs to the differentiability
set of E (see Remark 4.1 for details). Note that higher learning rates lead to a
”noisier” trajectory, which may impede upon the quality of the assignment. This
shows that there is a trade-off: lower values of α allow for a better approximation
of the (or a) gradient flow of E and potentially a more precise final position Y and
assignment τ , however a larger value of α yields a substantially faster convergence.

a = 0.0001 a = 0.003 a = 0.01 a = 0.03 a = 0.1

Figure 10. SGD trajectories on E for different noise levels a. All
the trajectories are computed using the same projection sequence
(θ(t)). The learning rate is fixed at α = 0.3.

Figure 10 presents a case where noised SGD schemes on E ”converge” whatever
the noise level to a global optimum of E . Note that the additive noise causes the
scheme to oscillate around a solution, with a movement akin to Brownian motion
with a scale tied to αa. Theorem 4.2 shows that such schemes converge (as the
step approaches 0) to Clarke critical points of E , which could theoretically be a
saddle point of strict local optimum. In this experiment, we observe convergence
to a global optimum.

p = 1 p = 3 p = 10 p = 30 p = 100

Figure 11. SGD schemes on Ep for different number of projec-
tions p. The learning rate is fixed at α = 0.3.

Figure 11 illustrates that SGD schemes on Ep may converge to strict local optima,
which is to be expected, given how numerous they may be (see the discussion in
Section 2.6 and Figure 2 therein). For p = 1, entire lines are local optima, and for
p = 3 and p = 30, we also observe convergence to strict local optima. Notice that for
a large value of p such as p = 100� d = 2, we have similar trajectories in Figure 12
compared to the E counterpart in Figure 9 (α = 0.03). This observation suggests
a stronger property than our results on the approximation of E by Ep: uniform
convergence in Theorem 2.3 and a weak link between critical points Theorem 3.3.
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p = 1 p = 3 p = 10 p = 30 p = 100

Figure 12. SGD schemes on Ep for different number of projec-
tions p. For each value of p, 100 samples are drawn with differ-
ent projections (θ1, · · · , θp). For each realisation, each of the two
points of the trajectory is coloured with respect to the point of the
original measure γZ (represented by stars) to which they converge.
The initial position Y (0) is represented by circles. The learning
rate is fixed at α = 0.03.

To be precise, this illustration could allow one to hope for a result on the high
probability for the proximity of SGD schemes on Ep and on E as p −→ +∞, perhaps

with conditions on the sequence of projections (θ(t)).

5.2.2. Wasserstein convergence of SGD schemes on E and Ep.
SGD on E . The original measure γZ , Z ∈ Rn×d is sampled once for all with in-
dependent standard Gaussian entries. For each value of the parameter of interest
(the learning rate α or the dimension d respectively), 10 realisations of the SGD
schemes are computed with a different initial position Y (0), drawn with indepen-
dent entries uniform on [0, 1], and different projections (θ(t)). The SGD stopping
criterion threshold (see Algorithm 2) is set as negative, in order to always end at
the maximum number of iterations, 106. For the experiment with varying learning
rates α, we consider measures with n = 20 points in dimension d = 10. For the
experiment with varying dimensions d, we still take n = 20 and use the learning
rate α = 10.
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Figure 13. Wasserstein error 1
dW2

2(γY (t) , γZ) for SGD iterations

Y (t) on E , given a fixed measure γZ , Rn×d with n = 20 points.
Left: different learning rates α for points in dimension d = 10.
Right: different dimensions with α = 10 (right).

In Figure 13, we observe that the SGD schemes converge towards the true mea-
sure γZ up to numerical precision, which corresponds to a stronger convergence
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than the one predicted by Theorem 4.1. The number of iterations needed for con-
vergence obviously depends on the learning rate α, which notably can be chosen
larger than n/2, which is a case that does not fall under the conditions for Theo-
rem 4.1. However, in this particular experiment, the SGD schemes diverged as soon
as α ≥ 30, which could suggest that limiting oneself to α � n is reasonable. The
dimension d increases significantly the number of iterations required for conver-
gence, furthermore we observe a transition from high W2

2 error to low error, which
is relatively sudden in logarithmic space. These first studies invites an in-depth
analysis of the amount of iterations needed to reach convergence, which we propose
in Figure 16. The final 1

dW2
2 error does not seem to depend significantly on the

dimension d, which provides empirical grounds for the 1/d normalisation choice.
Noised SGD on E . Figure 14 shows the Wasserstein error 1

dW2
2(γY (t) , γZ) for the

noised SGD iterations on E . The numerical setup is the same as above, with the
addition of the noise aαε(t) at each iteration, where ε(t) has independent standard
Gaussian entries, a is the noise level and α is the learning rate (set to α = 10). This
noise is drawn differently for each SGD scheme. For the experiment with different
dimensions, the noise level is taken as a = 10−4.
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Figure 14. Wasserstein error 1
dW2

2(γY (t) , γZ) for noised SGD it-

erations Y (t) on E , given a fixed measure γZ , Rn×d with n = 20
points. The noise is additive standard Gaussian, scaled by the
learning rate α = 10 times the noise level a. Left: different noise
levels a for points in dimension d = 10. Right: different dimensions
with a = 10−4.

The noised SGD scheme errors oscillate around a certain level which depends on
the noise level, as the trajectories from Figure 10 suggest: we observed Brownian-
like motion around the target points. Note that the error begins falling drastically
past the same iteration threshold, albeit with a higher variance across samples for
higher noise levels. At a fixed noise level, the final 1

dW2
2 still depends on the noise

level, despite the 1/d normalisation. Empirically, the final W2
2 error seems to be

smaller than the noise level a, which is reassuring since the noise is entry-wise of
law N (0, a2α2), where α is the learning rate.
SGD on Ep. Figure 15 also illustrates the Wasserstein error along iterations but
this time for Ep. The general SGD setup and initial measure γZ remain unchanged
compared to the schemes on E (with also a learning rate of α = 10 in particular).
In order to handle the projections (θ(t)), for each sample we draw p independent
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projections (θ1, · · · , θp), then select the (θ(t)) by drawing uniformly amongst these

p projections. Given this sequence of projections (θ(t)), the SGD algorithm is then
exactly the same as for E .
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Figure 15. Wasserstein error 1
dW2

2(γY (t) , γZ) for SGD iterations

Y (t) on Ep, given a fixed measure γZ , Rn×d with n = 20 points.
The p projections in Ep are drawn randomly for each sample. Left:
different noise levels a for points in dimension d = 10. Right:
different dimensions with α = 10.

For SGD schemes on Ep with small values of projections p, we do not have con-
vergence to γY (t) = γZ . Intuitively, this could be understood as the approximation
Ep ≈ E being too rough, allowing for an excessive amount of numerically attainable
strict local optima. This is illustrated in Figure 2 in a simple case: with p = 3 in
dimension 2, the landscape presents numerous strict local optima that lie within
large basins. However, it is notable that for p large enough (p ≥ 10d = 100), we
do observe convergence to γY (t) = γZ up to numerical precision. This convergence
happens in fewer iterations as p increases, and with a smaller variance with respect
to the projection samples. This suggests a stronger mode of convergence of Ep
towards E , as hinted at before in Figure 2 and Figure 12.
Quantifying the impact of the dimension. For different values of the number of
points n and the dimension d, we run 10 samples of SGD on E for an original
measure γZ drawn with standard Gaussian entries (re-drawn for each sample this
time). The SGD schemes are done without additive noise, and with a learning
rate of α = 10. In order to save computation time, the SGD stopping threshold is
taken as β = 10−5 (see Algorithm 2). For each sample, the initial position Y (0) is
drawn with entries that are uniform on [0, 1]. Our goal is to estimate the number of
iterations required for the convergence of the SGD schemes: to this end, we define
convergence as the first step t such that 1

dW2
2(γY (t) , γZ) < 10−5.

Figure 16 (cautiously) suggests that the number of iterations required for con-
vergence its proportional to d1.25 (where convergence means that 1

dW2
2 falls below

ε). Note that the exponent on d does not seem to depend on n. Obviously, the
factor in front of d1.25 depends on the number of points n, the learning rate α and
the convergence threshold ε. This superlinear rule remains fairly prohibitive for
large Machine Learning models, which can typically have d and n both in excess of
106.
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Figure 16. Amount of iterations required for convergence of a
SGD scheme Y (t) of learning rate α = 10 on E . Here convergence
is defined as the first step t such that 1

dW2
2(γY (t) , γZ) < 10−5. For

each set of parameters (number of points n and dimension d ),
10 trials are done with γZ , Z ∈ Rn×d drawn at random (uniform
[0, 1]n×d).

6. Conclusion and Outlook

Throughout this paper, we have investigated the properties of the Sliced Wasser-
stein (SW) distance between discrete measures, namely the function E : Y 7−→
SW2

2(γY , γZ), where Y and Z are supports with n points in dimension d. Due to
the intractability of the expectation in E , we introduced its Monte-Carlo empir-
ical counterpart Ep, computed as an average over p directions. In Section 2, we
showed and reminded regularity results on E and Ep: they are locally-Lipschitz and
differentiable on certain open sets of full measure. Leveraging the fact that Ep is
piece-wise quadratic, we showed additional regularity results, and finally showed
that the convergence of Ep to E (as p −→ +∞.) is almost-surely uniform on any
fixed compact. Section 3 furthers the study of the optimisation landscapes at hand
by presenting properties of the critical points of E and Ep (points of differentiability
will null gradient), and a convergence of such points of Ep to those of E as p −→ +∞
(in a certain sense). In Section 4, we put these theoretical results in a more practical
context by showing that one can apply the SGD convergence results of [5] to our
optimisation landscapes. Finally, we illustrate and study these convergence results
in Section 5 through numerical experiments.

Further work would be welcome on the cells of Ep (see Section 2.3), in particular
the law of their size given a fixed configuration m and their probability of being
stable are still open problems, and would have strong consequences in practical ap-
plications such as the convergence of BCD (Algorithm 1). The main difficulty stems
from the link between statistical properties of the cells to the so-called Gaussian
Orthant Probabilities, which can be broadly defined as the probability of a non-
standard Gaussian Vector to be in the positive quadrant Rd+. This probability
is unfortunately not tractable in high dimensions, and its estimation is a field of
research in itself [3].

Another core limitation of our work concerns the practicality of our results on
SGD convergence (Section 4). Firstly, typical applications use more advanced
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optimisation methods, such as SGD with momentum or ADAM, which our the-
ory does not encompass yet. Secondly, as mentioned in the introduction, prac-
tical applications actually minimise through E , which is to say a loss function
F : u 7−→ SW2

2(Tu#µ, ν) with respect to the parameters u of a model x 7−→ Tu(x)
of the input data x ∼ µ. Minimising F through SGD (stochastically on the projec-
tions θ ∼ �, the input data x ∼ µ and the true data y ∼ ν) is beyond the scope of
this paper, and we leave this generalisation for future work.

Acknowledgements.
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Appendix A.

A.1. Computing E, W2
2 and Ep in a simple case.

Computing E . We work in polar coordinates, writing

θ =

(
cosφ
sinφ

)
, and y =

(
u
v

)
= r

(
cosψ
sinψ

)
.

By symmetry of the problem, we can assume ψ ∈ [0, π/2] (i.e. the top-right
quadrant u ≥ 0, v ≥ 0). Now let ψ ∈ [0, 2π[, let us compute W2

2(Pθ#γY , Pθ#γZ).
Since we project in 1D, computing this slice amounts to sorting (θT y1, θ

T y2) and
(θT z1, θ

T z2). Let τθZ ∈ S2 such that θT yτθY (1) ≤ θT yτθY (2) and similarly θT zτθZ(1) ≤
θT zτθZ(2). We always have

W2
2(Pθ#γY , Pθ#γZ) =

1

2

((
θT (yτθY (1) − zτθZ(1))

)2

+
(
θT (yτθY (2) − zτθZ(2))

)2
)
.

We split the integral depending on the values of τθY and τθZ , which vary depending
on the angle of the projection φ. We begin with τθY :
(A.1)
θT y1 ≥ θT y2 ⇐⇒ cosφ cosψ + sinφ sinψ ≥ 0⇐⇒ φ ∈ [ψ − π/2, ψ + ψ/2] + 2πZ.

The equation for τθZ is much simpler:

(A.2) θT z1 ≥ θT z2 ⇐⇒ − sinφ ≥ 0⇐⇒ φ ∈ [π, 2π] + 2πZ.

We divide a period of 2π in four quadrants corresponding to the four possibilities
for (τθY , τ

θ
Z). Since we assume ψ ∈ [0, π/2], we can write this simply as:

E(Y ) =
1

4π

∫ ψ−π/2

−π

((
θT (y1 − z2)

)2
+
(
θT (y2 − z1)

)2)
dφ

+
1

4π

∫ 0

ψ−π/2

((
θT (y2 − z2)

)2
+
(
θT (y1 − z1)

)2)
dφ

+
1

4π

∫ ψ+π/2

0

((
θT (y2 − z1)

)2
+
(
θT (y1 − z2)

)2)
dφ

+
1

4π

∫ π

ψ+π/2

((
θT (y1 − z1)

)2
+
(
θT (y2 − z2)

)2)
dφ.

Elementary trigonometric integration yields

(A.3) E(Y ) =
r2

2
+

1

2
− 2

π
(r cosψ + rψ sinψ) =

u2 + v2

2
+

1

2
− 2

π

(
u+ vArctan

v

u

)
,

which holds for ψ ∈ [0, π/2]. By symmetry, we obtain the following expression for
any (u, v) ∈ R2 (recall that we stack the vectors in Y line by line):

(A.4) E
(

u v
−u −v

)
=
u2 + v2

2
+

1

2
− 2

π

(
|u|+ |v|Arctan

∣∣∣ v
u

∣∣∣) .
In the general case, dimension d would require the use of d-dimensional spherical
coordinates, making the equations (A.1) and (A.2) intractable. Furthermore, gen-
eralising to n points would separate the integral into (n!)2 parts, losing all hopes
of tractability and legibility.

A.2. Computing E, W2
2 and Ep in a simple case.
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Computing W2
2. In the case n = 2, the Kantorovitch LP formulation of the Wasser-

stein distance can be written as:

min
a∈[0,1]

∑
k,l∈J1,2K

πk,l(a)‖yk − zl‖22, with π(a) :=
1

2

(
1− a a
a 1− a

)
.

Substituting y1 =

(
u
v

)
, y2 =

(
−u
−v

)
, z1 =

(
0
−1

)
, z2 =

(
0
1

)
yields:

W2
2(γY , γZ) = min

a∈[0,1]

(
u2 + (v + 1)2 − 4av

)
= u2 + (|v| − 1)2.

Computing Ep. For simplicity, in the following we will only consider θ ∈ Sd−1 such
that the θT yk are distinct, and such that the θT zk are also distinct. We will express
the cases for the values of the sortings τθY and τθZ in a different (yet equivalent)
manner.

We have τθY = I if θT y1 < θT y2 and τθY = (2, 1) otherwise. Then τθZ ◦ (τθY )−1 = I

if τθY = τθZ , and τθiZ ◦ (τθiY )−1 = (2, 1) otherwise. The system

τθZ ◦ (τθY )−1 = I ⇐⇒

 θT y1 < θT y2 and θT z1 < θT z2

or
θT y2 < θT y1 and θT z2 < θT z1

can be simplified, yielding:

(A.5) τθZ ◦ (τθY )−1 = I ⇐⇒
(
θθT (z2 − z1)

)T
(y2 − y1) > 0.

(A.5) is a linear equation in Y . Additionally, (A.5) only depends on y2 − y1 =
−2y, which makes our symmetrical simplification inconsequential. Plugging in the
specific point values yields a more explicit definition of the cells. We write the
condition on y ∈ R2, since Y = (y,−y)T .
(A.6)

Cm =

{
y ∈ R2 | ∀i ∈ J1, pK, − sign

[
θTi

(
0
1

)
θTi y

]
= +1 if mi = I, else− 1

}
.

Equation (A.6) describes Cm as an intersection of p half-planes of R2, thus it is a
polytope. Note that we use strict inequalities, which lifts configuration ambiguities,
and implies that the (Cm)m∈Sp2 are disjoint, and that the union of their closure is

R2.
Straightforward computation yields

argmin
X∈Rn×d

qm(X) = (A−1(Bm
1,1z1 +Bm

1,2z2), A−1(Bm
2,1z1 +Bm

2,2z2)),

where A :=
1

p

p∑
i=1

θiθ
T
i and Bm

k,l :=
1

p

p∑
i=1

mi(k)=l

θiθ
T
i .

Note that our n = 2 setting, we have the simplifications Bm
1,2 = A−Bm

1,1, B
m
2,1 =

Bm
1,2 and Bm

1,1 = Bm
2,2. Furthermore, Bm

k,l is (up to a factor), a Monte-Carlo estima-

tion of SY,Zk,l (see Corollary 3.1).

A.3. Discrete Wasserstein stability. Consider the following generic discrete
Kantorovitch problem, given weights and a generic cost matrix C ∈ Rn×m+ :

(A.7) W(α, β;C) := inf
π∈Π(α,β)

π · C,
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Lemma A.1 (Stability of the Wasserstein cost). Let α, α, β, β ∈ Σn, and C,C ∈
Rn×n+ , Then:

Proof. We split the difference in two terms:∣∣W(α, β;C)−W(α, β;C)
∣∣ ≤ ∣∣W(α, β;C)−W(α, β;C)

∣∣ =: I

+
∣∣W(α, β;C)−W(α, β;C)

∣∣ =: II

— Step 1 : Controlling I

— Step 2 :

(A.8)

— Step 3 :
— Step 4 : Wrapping up
—

�

A.4. Proof of Theorem 3.3 and convergence rate. The proof of Theorem 3.3
requires matrix concentration technicalities. In the following, ‖ · ‖op denotes the
‖ · ‖2-induced operator norm on Rd×d, and Sd(R) denotes the space of symmetric
d×d matrices. We write � for the Loewner order of positive semi-definite symmetric
matrices (A � B means that B−A is positive semi-definite). We recall the following
Hoeffding inequality.

Theorem A.1 (Matrix Hoeffding Inequality, [34], Theorem 1.3).
Let q ∈ N∗, (Xi)i∈J1,qK independent random variables with values in Sd(R),

such that E [Xi] = 0. Suppose that ∀i ∈ J1, qK, ∃Ai ∈ Sd(R) : X2
i � A2

i . Let
σ2 :=

∥∥∑
iA

2
i

∥∥
op

, then for any t > 0,

P

∥∥∥∥∥
q∑
i=1

Xi

∥∥∥∥∥
op

≥ t

 ≤ d exp

(
−
t2

8σ2

)
.

We deduce from Theorem A.1 the following lemma, where theXi follow a uniform
law on Θ ⊂ Sd−1.

Lemma A.2 (Hoeffding applied to θ ∼ U(Θ)).
Let (θi)i∈J1,qK, independent random vectors following the uniform law on Θ ⊂

Sd−1, where Θ is �-measurable with �(Θ) > 0. Let SΘ := 1
sΘ

∫
Θ
θθTd�(θ), where

sΘ := �(Θ). SΘ is the covariance matrix of θ ∼ U(Θ). Let η ∈]0, 1[ and t > 0.
Then with probability exceeding 1− η we have

q ≥
32 log (d/η)

t2
=⇒

∥∥∥∥∥1

q

q∑
i=1

θiθ
T
i − SΘ

∥∥∥∥∥
op

≤ t.

In the case Θ = Sd−1, the condition q ≥
8 log (d/η)

t2
is sufficient.
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Proof. The idea is to apply Theorem A.1 to Xi := 1
q θiθ

T
i − 1

qSΘ. First, by definition,

E [Xi] = 0.
We now find A ∈ S+

d (R) such that X2
i � A. Let u ∈ Sd−1, we compute:

uTX2
i u =

1

q2

(
uT θiθ

T
i u− uT θiθTi SΘu− uTSΘθiθ

T
i u+ uTS2

Θu
)
≤
(

1 + ‖SΘ‖op

q

)2

.

Moreover, ‖SΘ‖op ≤ 1, since

∀u ∈ Sd−1, uTSΘu =
1

sΘ

∫
Θ

uT θθTud�(θ) ≤
1

sΘ

∫
Θ

1d�(θ) = 1.

In conclusion X2
i � 4

q2 I. Using the notations of Theorem A.1, we compute σ2 =

4/q, and apply the Matrix Hoeffding inequality with ∆ :=
∑
iXi = 1

q

∑
i θiθ

T
i −SΘ.

It follows that for any t > 0, P (‖∆‖op ≥ t) ≤ d exp
(
− qt

2

32

)
. In order to have the

event ‖∆‖op ≤ t with probability exceeding 1 − η, it is therefore sufficient that

η ≥ d exp
(
− qt

2

32

)
, which is equivalent to q ≥ 32 log(d/η)

t2 .

In the case Θ = Sd−1, one has SΘ = I/d, and a finer Loewner upper-bound can
be established, since

uTX2
i u =

1

q2

(
uT θiθ

T
i u−

2

d
uT θiθ

T
i u+

1

d2

)
≤

(
1− 1

d

q

)2

≤
1

q2
,

and thus σ2 = 1/q. This yields the Hoeffding inequality P (‖∆‖op ≥ t) ≤ d exp
(
− qt

2

8

)
,

which in turn provides the announced weaker condition on q. �

With this tool at hand, we now prove a quantitative concentration result:

Theorem A.2 (Concentration of cell optima).
Let m = (σ1, · · · , σp) be a fixed matching configuration (see Section 2.3) and

let (θi)i∈J1,pK ∼ �⊗p (uniform on Sd−1). We introduce the following notations and
variables:

• For (k, l) ∈ J1, nK2, let qk,l := #{i ∈ J1, pK | k = σi(l)};
• Let cZ := max

l∈J1,nK
‖zl‖2;

• Let ε ∈]0, 4
3ncZ ];

• Let η ∈]0, 1[.

Assume the following:

• (Hq) : ∀(k, l) ∈ J1, nK2, qk,l ≥ q or qk,l < q, with 1 ≤ q ≤ q ≤ p ;

• (H1) : p ≥
697d2n2c2Z log (3d/η)

ε2
;

• (H2) : q ≥
512d2c2Z log(3dnn+/η)

ε2
; n+ := max

k∈J1,nK
#{l ∈ J1, nK | qk,l ≥ q};

• (H3) : q ≤
ε

8dn−cZ
p; n− := max

k∈J1,nK
#{l ∈ J1, nK | qk,l ≤ q};

• (H4) : p ≥
8d2n2c2Z log(6n2/η)

ε2
.
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Then with probability exceeding 1− η, writing Y ∗ := argmin
Y ′∈Rn×d

qm(Y ′), we have

(A.9) ∀k ∈ J1, nK,

∥∥∥∥∥y∗k −
n∑
l=1

Sk,lzl

∥∥∥∥∥
2

≤ ε,

where the normalized conditional covariance matrices Sk,l are defined in Corol-
lary 3.1 (we omit the Y ∗, Z exponent here for legibility).

Proof. — Step 1 : Re-writing (3.4).
Remind that the matching configuration m is fixed here. Let Y ∗ := argmin

Y ′∈Rn×d
qm(Y ′)

and k ∈ J1, nK. By (3.4), we have

y∗k = A−1

(
1

p

p∑
i=1

θiθ
T
i zσi(k)

)
, with A =

1

p

p∑
i=1

θiθ
T
i .

Let Ik,l := {i ∈ J1, pK | σi(k) = l}. Since the σi are permutations, we have

J1, pK =

n⋃
l=1

Ik,l =

n⋃
k=1

Ik,l and k 6= k′ ⇒ Ik,l ∩ Ik′,l = ∅; l 6= l′ ⇒ Ik,l ∩ Ik,l′ = ∅.

We re-order the sum:

1

p

p∑
i=1

θiθ
T
i zσi(k) =

n∑
l=1

1

p

∑
i∈Ik,l

θiθ
T
i zl =

n∑
l=1

qk,l

p
Bk,lzl,

where qk,l := #Ik,l and Bk,l :=
1

qk,l

∑
i∈Ik,l

θiθ
T
i . This invites the definition of the

matrix R = (rk,l), rk,l :=
qk,l
p , which is bi-stochastic by construction.

— Step 2 : Separating the terms in y∗k.
We will see later that the empirical covariance matrix A concentrates towards

the covariance matrix of θ ∼ �, which is I/d. In order to quantify the impact of
this concentration on y∗k, we introduce the error term: δA− := A−1 − dI.

A similar concentration will be observed for Bk,l, but the θi in the sum are
selected such that i ∈ Ik,l. Recall that since we project in 1D, the permutations σi
arise from a sorting problem, namely σi = τθiZ ◦ (τθiY )−1, where we recall that τθY is
a permutation sorting the numbers (yT1 θ, · · · , yTn θ).

By definition, we have σi(k) = l⇐⇒ θi ∈ Θk,l =
{
θ ∈ Sd−1 | τθZ ◦ (τθY )−1(k) = l

}
,

where we omit again the Y, Z exponent on Θk,l for legibility.
Since the θi in Bk,l are drawn under the condition θi ∈ Θk,l, we study the

concentration Bk,l ≈ Ck,l, where Ck,l := 1
d�(Θk,l)

Sk,l. In order to quantify this

approximation, we define the error term δBk,l := Bk,l − Ck,l. Similarly, the
rk,l :=

qk,l
p are Monte-Carlo approximations of �(Θk,l), which leads to the defi-

nition δrk,l := rk,l − �(Θk,l).
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We may now separate the terms in the result from Step 1:

y∗k = (dI + δA−)

 n∑
l=1

rk,l(Ck,l + δBk,l︸ ︷︷ ︸
Bk,l

)zl


= d

n∑
l=1

�(Θk,l)Ck,lzl︸ ︷︷ ︸
v

+ δA−

(
n∑
l=1

rk,lBk,lzl

)
︸ ︷︷ ︸

δv1

+ d

n∑
l=1
qk,l≥q

rk,lδBk,lzl

︸ ︷︷ ︸
δv2

+ d

n∑
l=1
qk,l<q

rk,lδBk,lzl

︸ ︷︷ ︸
δv3

+ d

n∑
l=1

δrk,lCk,lzl︸ ︷︷ ︸
δv4

.

The separation of the terms in the second equality arises from (Hq), formu-
lated in the theorem. Observe that the first term v is exactly Ψ(Y ∗), with Ψ
defined in Section 3.1.2. Our objective is to provide conditions under which ∀i ∈
{1, 2, 3, 4}, ‖δvi‖2 ≤ ε/4 with probability exceeding 1−η. To that end, we let ε > 0
and η ∈]0, 1[.

— Step 3 : Condition for ‖δv2‖2 ≤
ε

4
.

First of all, note that if the sum defining δv2 is empty, the condition holds
trivially almost-surely. In the following, we suppose that the sum has at least one
non-zero term. We have from Step 2,

‖δv2‖2 =

∥∥∥∥∥∥∥∥d
n∑
l=1
qk,l≥q

rk,lδBk,lzl

∥∥∥∥∥∥∥∥
2

≤ dcZ
n∑
l=1
qk,l≥q

rk,l‖δBk,l‖op.

Let the shorthands n+
k := #J+

k and J+
k := {l ∈ J1, nK | qk,l ≥ q}. We upper-bound

the right term by
∑
l∈J+

k

rk,l‖δBk,l‖op ≤
∑
l∈J+

k

rk,lmax
l∈J+

k

‖δBk,l‖op ≤ max
l∈J+

k

‖δBk,l‖op.

For l ∈ J+
k , by Lemma A.2, we have ‖δBk,l‖op ≤ t with probability exceed-

ing 1 − η/(3nn+
k ) provided that qk,l ≥

32 log(3dnn+
k /η)

t2 . Since the probability of⋃
l∈J+

k
{‖δBk,l‖op > t} can be upper bounded by the sum of the probabilities of

each of the n+
k terms, it is upper bounded by η/(3n). Therefore, writing the event

{∀l ∈ J+
k , ‖δBk,l‖op ≤ t} as the complementary of this union, we conclude that it

holds with probability exceeding 1− η/(3n), provided that

∀l ∈ J+
k , qk,l ≥

32 log
(
3dnn+

k /η
)

t2
.
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A sufficient condition for this last assumption to hold is (Hk
2 ) : q ≥

32 log
(
3dnn+

k /η
)

t2
.

Applying this result to t := ε
4dcZ

, and by letting n+ := max
k∈J1,nK

n+
k , a sufficient con-

dition to have ‖δv2‖2 ≤ ε
4 with probability exceeding 1− η/(3n) is

(H2) : q ≥
512d2c2Z log(3dnn+/η)

ε2
.

— Step 4 : Condition for ‖δv3‖2 ≤
ε

4
.

With a computation analogous to Step 3, we write

‖δv3‖2 =

∥∥∥∥∥∥∥∥d
n∑
l=1
qk,l<q

rk,lδBk,lzl

∥∥∥∥∥∥∥∥
2

≤ dcZ
∑
l∈J−k

rk,l‖δBk,l‖op,

where, like in Step 3, we define n−k := #J−k and J−k := {l ∈ J1, nK | qk,l ≤ q}. If

n−k = 0 then the objective holds almost-surely, thus we suppose n−k ≥ 1. In this
setting, the qk,l are small, thus we have little control over ‖δBk,l‖op, which can be
upper bounded by 2.

Leveraging the condition qk,l ≤ q, which holds for l ∈ J−k , we have rk,l =
qk,l/p ≤ q/p. In order to have ‖δv3‖2 ≤ ε

4 almost-surely, it is sufficient to have

(Hk
3 ) : q ≤ ε

8dn−k cZ
p. Again, with n− := max

k∈J1,nK
n−k , we obtain the sufficient

condition:

(H3) : q ≤
ε

8dn−cZ
p.

— Step 5 : Condition for ‖δv4‖2 ≤
ε

4
.

By definition, δv4 = d

n∑
l=1

δrk,lCk,lzl, then ‖δv4‖2 ≤ cZd

n∑
l=1

|δrk,l|‖Ck,l‖op. We

use the upper-bound ‖Ck,l‖op ≤ 1 (observe that ‖Ck,l‖op can be made as close to 1
as desired by choosing Θk,l as a very small portion of the sphere). In order to have
‖δv4‖2 ≤ ε

4 , it is sufficient to have ∀l ∈ J1, nK, |δrk,l| ≤ ε
4dncZ

=: t. Our objective
is to quantify the Monte-Carlo error

δrk,l =
#{i ∈ J1, pK | θi ∈ Θk,l}

p
− �(Θk,l).

To that end, we fix l ∈ J1, nK and apply the standard Bernoulli Chernoff concen-
tration inequality (additive form) to Xi := 1(θi ∈ Θk,l). By definition, E [Xi] =
�(Θk,l), hence by Chernoff

P

(∣∣∣∣∣1p
p∑
i=1

Xi − �(Θk,l)

∣∣∣∣∣ > t

)
≤ 2e−2pt2 .

It follows that the inequality p ≥ log(6n2/η)
2t2 implies |δrk,l| ≤ t with probability

exceeding 1− η
3n2 . Substituting t = ε

4dncZ
yields

(H4) : p ≥
8d2n2c2Z log(6n2/η)

ε2
.
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Using the same reasoning as in previous steps, under (H4), the event {∀l ∈
J1, nK, |δrk,l| ≤ ε

4dncZ
} holds with probability exceeding 1− η

3n , which implies that

our objective ‖δv4‖2 ≤ ε
4 also holds with the same probability.

— Step 6 : Condition for ‖δv1‖2 ≤
ε

4
.

We have

‖δv1‖2 ≤ ‖δA−‖op

∥∥∥∥∥
n∑
l=1

rk,lBk,lzl

∥∥∥∥∥
2

≤
‖δA−‖op

d
(‖v‖2 + ‖δv2‖2 + ‖δv3‖2 + ‖δv4‖2) .

In the following, we continue conditionally on the three events “‖δvi‖2 ≤ ε
4”, i ∈

{2, 3, 4}, under which:

‖δv1‖2 ≤
‖δA−‖op

d

(
‖v‖2 +

3ε

4

)
.

We now dominate ‖v‖2 =

∥∥∥∥∥
n∑
l=1

Sk,lzl

∥∥∥∥∥
2

. Recall that the (Θk,l)l∈J1,nK are disjoint,

with

n⋃
l=1

Θk,l = Sd−1, which implies

n∑
l=1

Sk,l = d

∫
Sd−1

θθTd�(θ) = I. Since the Sk,l

are symmetric semi-definite, the previous equation provides ‖Sk,l‖op ≤ 1, which in

turn yields ‖v‖2 ≤ ncZ . Assuming ε ≤ 4
3ncZ , we get finally ‖δv1‖2 ≤ ‖δA−‖op

2ncZ
d .

It is sufficient to find a condition under which ‖δA−‖op ≤ dε
8ncZ

=: t. We cannot

apply Lemma A.2 directly since δA− has an inverse operation. First, ‖δA−‖op =
‖A−1 − dI‖op =

∥∥d(I − dδA)−1 − dI
∥∥

op
, with δA := I/d − A. Then, assuming

(HδA) : d‖δA‖op < 1, we use a Neumann series for the inverse:

‖δA−‖op =

∥∥∥∥∥
+∞∑
k=1

(dδA)k

∥∥∥∥∥
op

≤
+∞∑
k=1

(d‖δA‖op)k,

and finally ‖δA−‖op ≤
d2‖δA‖op

1− d‖δA‖op
. Consider f :=

{
[0, 1

d [ −→ [0,+∞[

u 7−→ d2u
1−du

.

The function f is bijective and increasing, with f−1 =

{
[0,+∞[ −→ [0, 1

d [
v 7−→ v

d(d+v)
.

This analysis yields under (HδA), ‖δA−‖op ≤ t⇐= ‖δA‖op ≤
t

d(d+ t)
.

Conveniently, by Lemma A.2, ‖δA‖op ≤ s with probability 1 − η/3 if p ≥
8 log(3d/η)

s2 . We can apply this to

t

d(d+ t)
=

ε

8dncZ(1 + ε
8ncZ

)
,

but in order to simplify the expression, we apply it to

s :=
3ε

28dncZ
≤ t

d(d+ t)
,

where the inequality holds thanks to ε ≤ 4
3ncZ .

Now we must quantify the assumption (HδA) : ‖δA‖op < 1/d. Notice that s ≤
1/d and thus the event ‖δA‖op < s is contained in the event ‖δA‖op < 1/d, hence it
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is sufficient to satisfy (H1), which we write (after upper-bounding 8×282/9 ≤ 697):

(H1) : p ≥
697d2n2c2Z log (3d/η)

ε2
.

To summarise, under (H1), we have ‖δA‖op ≤ s with probability exceeding 1−η/3.
Conditionally to the events “‖δA‖op ≤ s”, “‖δvi‖2 ≤ ε

4”, i ∈ {2, 3, 4}, this step
shows ‖δv1‖2 ≤ ε

4 .
— Step 7 : Wrapping up.
We now work under the conditions (Hi), i ∈ {1, 2, 3, 4}. By Step 1,

‖y∗k − vk‖2 ≤ ‖δvk1‖2 + ‖δvk2‖2 + ‖δvk3‖2 + ‖δvk4‖2,
where we restore the omitted k indices. By Step 3, with probability exceeding
1 − η/(3n), we have ‖δvk2‖2 ≤ ε

4 , thus with probability 1 − η/3 we have ∀k ∈
J1, nK, ‖δvk2‖2 ≤ ε

4 . By Step 4, we have almost-surely ∀k ∈ J1, nK, ‖δvk3‖2 ≤ ε
4 . By

Step 5, with probability 1 − η/3, ‖δA‖op ≤ s. Putting this together yields that
with probability 1− η, we have:

∀k ∈ J1, nK, ‖δvk2‖2 ≤
ε

4
, ‖δvk3‖2 ≤

ε

4
, ‖δvk4‖2 ≤

ε

4
and ‖δA‖op ≤ s.

Finally, Step 5 shows that conditionally to the events above, ‖δvk1‖2 ≤
ε

4
almost-

surely. Thus with probability exceeding 1 − η, ∀k ∈ J1, nK, ‖y∗k − vk‖2 ≤ ε. Since

vk =

n∑
l=1

Sk,lzl, with probability over 1−η : ∀k ∈ J1, nK,

∥∥∥∥∥y∗k −
n∑
l=1

Sk,lzl

∥∥∥∥∥
2

≤ ε. �

In order to get the summarised result from Section 3.2.3, we simplify the condi-
tions as follows.

Corollary A.1 (Simplified conditions for Theorem A.2). With the notations of The-
orem A.2, the condition:
(A.10)

(Hp) : p ≥

(
4096d3nc3Z log(3dn2/η)

ε3

)
∨

(
697d2n2c2Z log (3d/η)

ε2

)
∨

(
8d2n2c2Z log(6n2/η)

ε2

)
implies (Hq) and (Hi)i∈{1,2,3,4}, and thus is sufficient in order to have (3.3).

Proof. The second and third terms of (A.10) correspond to (H1) and (H4) respec-
tively. Then, using n+, n− ≤ n, we have

(H2)⇐= q ≥
512d2c2Z log(3dn2η)

ε2
,

(H3)⇐= q ≤
ε

8dncZ
p.

Let q :=
512d2c2Z log(3dn2/η)

ε2
; q = q = q. (Hq) and (H2) are automatically satisfied

by this choice. For q to satisfy (H3), it is sufficient to have

512d2c2Z log(3dn2/η)

ε2
≤

ε

8dncZ
p, i.e. p ≥

4096d3nc3Z log(3dn2/η)

ε3

�
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Université Paris Cité, CNRS, MAP5, F-75006 Paris, France

Email address: eloi.tanguy@u-paris.fr

CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris
Email address: remi.flamary@polytechnique.edu
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