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Abstract

Optimal Transport has sparked vivid interest in recent years, in particular thanks to the
Wasserstein distance, which provides a geometrically sensible and intuitive way of comparing
probability measures. For computational reasons, the Sliced Wasserstein (SW) distance was in-
troduced as an alternative to the Wasserstein distance, and has seen uses for training generative
Neural Networks (NNs). While convergence of Stochastic Gradient Descent (SGD) has been ob-
served practically in such a setting, there is to our knowledge no theoretical guarantee for this
observation. Leveraging recent works on convergence of SGD on non-smooth and non-convex
functions by Bianchi et al. (2022), we aim to bridge that knowledge gap, and provide a realistic
context under which fixed-step SGD trajectories for the SW loss on NN parameters converge.
More precisely, we show that the trajectories approach the set of (sub)-gradient flow equations as
the step decreases. Under stricter assumptions, we show a much stronger convergence result for
noised and projected SGD schemes, namely that the long-run limits of the trajectories approach
a set of generalised critical points of the loss function.
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1 Introduction

1.1 Optimal Transport in Machine Learning

Optimal Transport (OT) allows the comparison of measures on a metric space by generalising the
use of the ground metric. Typical applications use the so-called 2-Wasserstein distance, defined as

∀x, y ∈ P2(Rd), W2
2(x, y) := inf

�∈Π(x,y)

ˆ
Rd×Rd

‖x− y‖22d�(x, y), (W2)

where P2(Rd) is the set of probability measures on Rd admitting a second-order moment and where
Π(x, y) is the set of measures of P2(Rd × Rd) of first marginal x and second marginal y. One may
find a thorough presentation of its properties in classical monographs such as Peyré & Cuturi (2019);
Santambrogio (2015); Villani (2009)

The ability to compare probability measures is useful in probability density fitting problems, which are
a sub-genre of generation tasks. In this formalism, one considers a probability measure parametrised
by a vector u which is designed to approach a target data distribution y (typically the real-world
dataset). In order to determine suitable parameters, one may choose any probability discrepancy
(Kullback-Leibler, Ciszar divergences, f-divergences or Maximum Mean Discrepancy (Gretton et al.,
2006)), or in our case, the Wasserstein distance. In the case of Generative Adversarial Networks, the
optimisation problem which trains the "Wasserstein GAN" (Arjovsky et al., 2017) stems from the
Kantorovitch-Rubinstein dual expression of the 1-Wasserstein distance.

1.2 The Sliced Wasserstein Distance as an Alternative

The Wasserstein distance suffers from the curse of dimensionality, in the sense that the sample
complexity for n samples in dimension d is of the order O(n1/d) (Dudley, 1969). Due to this practical
limitation and to the computational cost of the Wasserstein distance, the study of cheaper alternatives
has become a prominent field of research. A prominent example is Entropic OT introduced by
Cuturi (2013), which adds an entropic regularisation term, advantageously making the problem
strongly convex. Sample complexity bounds have been derived by Genevay et al. (2019), showing a
convergence in O(

√
n) with a constant depending on the regularisation factor.

Another alternative is the Sliced Wasserstein (SW) Distance introduced by Rabin et al. (2012),
which consists in computing the 1D Wasserstein distances between projections of input measures,
and averaging over the projections. The aforementioned projection of a measure x on Rd is done by
the push-forward operation by the map Pθ : x 7−→ θ>x. Formally, Pθ#x is the measure on R such that
for any Borel set B ⊂ R, Pθ#x(B) = x(P−1

θ (B)). Once the measures are projected onto a line Rθ, the
computation of the Wasserstein distance becomes substantially simpler numerically. We illustrate this
fact in the discrete case, which arises in practical optimisation settings. Let two discrete measures on
Rd: X := 1

n

∑
k �xk , Y := 1

n

∑
k �yk with supports X = (x1, · · · , xn) and Y = (y1, · · · , yn) ∈ Rn×d.

Their push-forwards by Pθ are simply computed by the formula Pθ#X = 1
n

∑
k �Pθ(xk), and the

2-Wasserstein distance between their projections can be computed by sorting their supports: let σ
a permutation sorting (θ>x1, · · · , θ>xn), and τ a permutation sorting (θ>y1, · · · , θ>yn), one has the
simple expression

W2
2(Pθ#X , Pθ#Y ) =

1
n

n∑
k=1

(θ>xσ(k) − θ>yτ(k))2. (1)

The SW distance is the expectation of this quantity with respect to θ ∼ �, i.e. uniform on the sphere:
SW2

2(X , Y ) = Eθ∼�
[
W2

2(Pθ#X , Pθ#Y )
]
. The 2-SW distance is also defined more generally be-

tween two measures x, y ∈ P2(Rd):

SW2
2(x, y) :=

ˆ
θ∈Sd−1

W2
2(Pθ#x, Pθ#y)d�(θ). (SW)

In addition to its computational accessibility, the SW distance enjoys a dimension-free sample com-
plexity (Nadjahi et al., 2020). Additional statistical, computational and robustness properties of SW

2



Convergence of SGD for Learning with Wasserstein Losses E. Tanguy

have been explored by Nietert et al. (2022). Moreover, central-limit results have been shown by Xu
& Huang (2022) for 1-SW and the 1-max-SW distance (a variant of SW introduced by Deshpande
et al. (2019)), and related work by Xi & Niles-Weed (2022) shows the convergence of the sliced
error process θ 7−→

√
n
(
Wp

p(Pθ#X , Pθ#Y )−Wp
p(Pθ#x, Pθ#y)

)
, where the samples X ∼ x⊗n and

Y ∼ y⊗n are drawn for each θ. Another salient field of research for SW is its metric properties, and
while it has been shown to be weaker than the Wasserstein distance in general by Bonnotte (2013),
and metric comparisons with Wasserstein and max-SW have been undergone by Bayraktar & Guo
(2021) and Paty & Cuturi (2019).

1.3 Related Works

Our subject of interest is the theoretical properties of SW as a loss for implicit generative modelling,
which leads to minimising SW2

2(Tu#x, y) in the parameters u, where y is the target distribution, and
Tu#x is the image by the NN1 of x, a low-dimensional input distribution (often chosen as Gaussian
or uniform noise). In order to train a NN in this manner, at each iteration one draws n samples from
x and y (denoted X and Y as discrete measures with n points), as well as a projection θ (or a batch
of projections) and performs an SGD step on the sample loss

L(u) = SW2
2(Pθ#Tu#X , Pθ#Y ) =

1
n

n∑
k=1

(θ>Tu(xσ(k))− θ>yτ(k))2. (2)

Taking the expectation of this loss over the samples yields the minibatch Sliced-Wasserstein discrep-
ancy, a member of the minibatch variants of the OT distances, introduced formally by Fatras et
al. Fatras et al. (2021). The framework (2) fits several Machine Learning applications, for instance,
Deshpande et al. (2018) trains GANs and auto-encoders with this method, and Wu et al. (2019)
consider related dual formulations. Other examples within this formalism include the synthesis of
images by minimising the SW distance between features of the optimised image and a target image,
as done by Heitz et al. (2021) for textures with neural features, and by Tartavel et al. (2016) with
wavelet features (amongst other methods).

The general study of convergence of SGD in the context of non-smooth, non-convex functions (as
is the case of L from (2)) is an active field of research: Majewski et al. (2018) and Davis et al.
(2020) show the convergence of diminishing-step SGD under regularity constraints, while Bolte &
Pauwels (2021) leverage conservative field theory to show convergence results for training with back-
propagation. Finally, the recent work by Bianchi et al. (2022) shows the convergence of fixed-step
SGD schemes on a general function F under weaker regularity assumptions.

More specifically, the study of convergence for OT-based generative NNs has been tackled by Fatras
et al. (2021), who prove strong convergence results for minibatch variants of classical OT distances,
namely the Wasserstein distance, the Entropic OT and the Gromov Wasserstein distance (another
OT variant introduced by Mémoli (2011)). A related study on GANs by Huang et al. (2023) derive
optimisation properties for one layer and one dimensional Wasserstein-GANs and generalise to higher
dimensions by turning to SW-GANs. Another work by Bréchet et al. (2023) focuses on the theoretical
properties of linear NNs trained with the Bures-Wasserstein loss (introduced by Bures (1969); see also
(Bhatia et al., 2017) for reference on this metric). Finally, the regularity and optimisation properties
of the simpler energy SW2

2(X , Y ) have been studied by Tanguy et al. (2023).

In practice, it has been observed that SGD in such settings always converges (in the loose numerical
sense, see (Deshpande et al., 2018), Section 5, or (Heitz et al., 2021), Figure 3), yet this property
is not known theoretically. The aim of this work is to bridge the gap between theory and practical
observation by proving convergence results for SGD on (minibatch) Sliced Wasserstein generative
losses of the form F (u) = EX∼x⊗n,Y∼y⊗nSW2

2(Tu#X , Y ).
1Similarly to the 1D case, Tu#x is the push-forward measure of x by Tu, i.e. the law of Tu(x) when x ∼ x.
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1.4 Contributions

Convergence of Interpolated SGD Under Practical Assumptions Under practically real-
istic assumptions, we prove in Theorem 1 that piecewise affine interpolations (defined in Equation
(10)) of constant-step SGD schemes on u 7−→ F (u) (formalised in Equation (7)) converge towards
the set of sub-gradient flow solutions (see Equation (9)) as the gradient step decreases. This results
signifies that with very small learning rates, SGD trajectories will be close to sub-gradient flows,
which themselves converge to critical points of F (omitting serious technicalities).

The assumptions for this result are practically reasonable: the input measure x and the true data
measure y are assumed to be compactly supported. As for the network (u, x) 7−→ T (u, x), we assume
that for a fixed datum x, T (·, x) is piecewise C2-smooth and that it is Lipschitz jointly in both
variables. We require additional assumptions on T which are more costly, but are verified as long as
T is a NN composed of typical activations and linear units, with the constraint that the parameters
u and data x stay both stay within a fixed bounded domains. We discuss a class of neural networks
that satisfy all of the assumptions of the paper in the Appendix (Section D). Furthermore, this result
can be extended to other orders p 6= 2 of SW: we present the tools for this generalisation in Section E.

Stronger Convergence Under Stricter Assumptions In order to obtain a stronger convergence
result, we consider a variant of SGD where each iteration receives an additive noise (scaled by the
learning rate) which allows for better space exploration, and where each iteration is projected on
a ball B(0, r) in order to ensure boundedness. This alternative SGD scheme remains within the
realm of practical applications, and we show in Theorem 2 that long-run limits of such trajectories
converge towards a set of generalised critical points of F , as the gradient step approaches 0. This
result is substantially stronger, and can serve as an explanation of the convergence of practical SGD
trajectories, specifically towards a set of critical points which amounts to the stationary points of the
energy (barring theoretical technicalities).

Unfortunately, we require additional assumptions in order to obtain this stronger convergence result,
the most important of which is that the input data measure x and the dataset measure y are discrete.
For the latter, this is always the case in practice, however the former assumption is more problematic,
since it is common to envision generative NNs as taking an argument from a continuous space (the
input is often Gaussian of Uniform noise), thus a discrete setting is a substantial theoretical drawback.
For practical concerns, one may argue that the discrete x can have an arbitrary fixed amount of points,
and leverage strong sample complexity results to ascertain that the discretisation is not costly if the
number of samples is large enough.

2 Stochastic Gradient Descent with SW as Loss
Training Sliced-Wasserstein generative models consists in training a neural network

T :
{

Rdu × Rdx −→ Rdy
(u, x) 7−→ Tu(x) := T (u, x) (3)

by minimising the SW minibatch loss u 7−→ EX∼x⊗n,Y∼y⊗n
[
SW2

2(Tu#X , Y )
]
through Stochastic

Gradient Descent (as described in Algorithm 1). The probability distribution x ∈ P2(Rdx) is the law
of the input of the generator T (u, ·). The distribution y ∈ P2(Rdy) is the data distribution, which
T aims to simulate. Finally, � will denote the uniform measure on the unit sphere of Rdy , denoted
by Sdy−1. Given a list of points X = (x1, · · · , xn) ∈ Rn×dx , denote the associated discrete uniform
measure X := 1

n

∑
i �xi . By abuse of notation, we write Tu(X) := (Tu(x1), · · · , Tu(xn)) ∈ Rn×dy .

The reader may find a summary of this paper’s notations in Table 1.

In the following, we will apply results from (Bianchi et al., 2022), and we pave the way to the
application of these results by presenting their theoretical framework. Consider a sample loss function
f : Rdu × Z −→ R that is locally Lipschitz in the first variable, and z a probability measure
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Algorithm 1: Training a NN on the SW loss with Stochastic Gradient Descent
Data: Learning rate α > 0, probability distributions x ∈ P2(Rdx) and y ∈ P2(Rdy).

1 Initialisation: Draw u(0) ∈ Rdu ;
2 for t ∈ J0, Tmax − 1K do
3 Draw θ(t+1) ∼ �, X(t+1) ∼ x⊗n Y (t+1) ∼ y⊗n. SGD update:

u(t+1) = u(t) − α
[
∂

∂u
W2

2(Pθ(t+1)#Tu#X(t+1) , Pθ(t+1)#Y (t+1))
]
u=u(t)

4 end

on Z ⊂ Rd which is the law of the samples drawn at each SGD iteration. Consider ϕ : Rdu ×
Z −→ Rdu an almost-everywhere gradient of f , which is to say that for almost every (u, z) ∈
Rdu × Z, ϕ(u, z) = ∂uf(u, z) (since each f(·, z) is locally Lipschitz, it is differentiable almost-
everywhere by Rademacher’s theorem). The complete loss function is the expectation of the sample
loss, F := u −→

´
Z f(u, z)dz(z). An SGD trajectory of step α > 0 for F is a sequence (u(t)) ∈ (Rdu)N

of the form:
u(t+1) = u(t) − αϕ(u(t), z(t+1)),

(
u(0), (z(t))t∈N

)
∼ u0 ⊗ z⊗N,

where u0 is the distribution of the initial position u(0). Within this framework, we define an SGD
scheme described by Algorithm 1, with z := x⊗n ⊗ y⊗n ⊗ � and the minibatch SW sample loss

f :=
{

Rdu × Rn×dx × Rn×dy × Sdy−1 −→ Rdy
(u,X, Y, θ) 7−→ W2

2(Pθ#Tu#X , Pθ#Y ) . (4)

With this definition for f , we have

F (u) = E(X,Y,θ)∼z [f(u,X, Y, θ)] = E(X,Y )∼x⊗n⊗y⊗n
[
SW2

2(Tu#X , Y )
]
, (5)

thus the population loss compares the "true" data y with the model’s generation Tu#x using (mini-
batch) SW. We now wish to define an almost-everywhere gradient of f . To this end, notice that
one may write f(u,X, Y, θ) = wθ(T (u,X), Y ), where for X,Y ∈ Rn×dy and θ ∈ Sdy−1, wθ(X,Y ) :=
W2

2(Pθ#X , Pθ#Y ). The differentiability properties of wθ(·, Y ) are already known (Tanguy et al.,
2023; Bonneel et al., 2015), in particular one has the following almost-everywhere gradient of wθ(·, Y ) :

∂wθ

∂X
(X,Y ) =

(
2
n
θθ>(xk − yσX,Y

θ
(k))

)
k∈J1,nK

∈ Rn×dy ,

where the permutation σX,Yθ ∈ Sn is τ θY ◦ (τ θX)−1, with τ θY ∈ Sn being a sorting permutation of the
list (θ>y1, · · · , θ>yn). The sorting permutations are chosen arbitrarily when there is ambiguity. To
define an almost-everywhere gradient, we must differentiate f(·, X, Y, θ) = u 7−→ wθ(T (u,X), Y ) for
which we need regularity assumptions on T : this is the goal of Assumption 1. In the following, A
denotes the topological closure of a set A, ∂A its boundary, and �Rdu denotes the Lebesgue measure
of Rdu .

Assumption 1. For every x ∈ Rdx , there exists a family of disjoint connected open sets (Uj(x))j∈J(x)

such that ∀j ∈ J(x), T (·, x) ∈ C2(Uj(x),Rdy),
⋃

j∈J(x)
Uj(x) = Rdu and �Rdu

( ⋃
j∈J(x)

∂Uj(x)
)

= 0.

Note that for measure-theoretic reasons, the sets J(x) are assumed countable. One may understand
this assumption broadly as the neural networks T being piecewise smooth with respect to the param-
eters u, where the pieces depend on the input data x. In practice, Assumption 1 is an assumption
on the activation functions of the neural network. For instance, it is of course satisfied in the case of
smooth activations, or in the common case of piecewise polynomial activations. We detail suitable
neural networks in the Appendix (Section D).

5



Convergence of SGD for Learning with Wasserstein Losses E. Tanguy

Assumption 1 implies that given X,Y, θ fixed, f(·, X, Y, θ) is differentiable almost-everywhere, and
that one may define the following almost-everywhere gradient (6).

ϕ :


Rdu × Rn×dx × Rn×dy × Sdy−1 −→ Rdu

(u,X, Y, θ) 7−→
n∑
k=1

2
n

(
∂T

∂u
(u, xk)

)>
θθ>(T (u, xk)− yσT (u,X),Y

θ
(k))

,

(6)

where for x ∈ Rdx ,
∂T

∂u
(u, x) ∈ Rdy×du denotes the matrix of the differential of u 7−→ T (u, x), which is

defined for almost-every u. Given u ∈ ∂Uj(x) (a point of potential non-differentiability), take instead
0. (Any choice at such points would still define an a.e. gradient, and will make no difference).

Given a step α > 0, and an initial position u(0) ∼ u0, we may now define formally the following
fixed-step SGD scheme for F :

u(t+1) = u(t) − αϕ(u(t), X(t+1), Y (t+1), θ(t+1)),(
u(0), (X(t))t∈N (Y (t))t∈N (θ(t))t∈N

)
∼ u0 ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N.

(7)

An important technicality that we must verify in order to apply Bianchi et al. (2022)’s results is
that u 7−→ f(u,X, Y, θ) and F are locally Lipschitz. Before proving those claims, we reproduce a
useful Property from (Tanguy et al., 2023). In the following, ‖X‖∞,2 denotes max

k∈J1,nK
‖xk‖2 given

X = (x1, · · · , xn) ∈ Rn×dx , and BN (x, r) for N a norm on Rdx , x ∈ Rdx and r > 0 shall denote the
open ball of Rdx of centre x and radius r for the norm N (if N is omitted, then B is an euclidean
ball).

Proposition 1. The (wθ(·, Y ))θ∈Sdy−1 are uniformly locally Lipschitz (Tanguy et al., 2023) Prop.
2.1.

Let Kw(r,X, Y ) := 2n(r + ‖X‖∞,2 + ‖Y ‖∞,2), for X,Y ∈ Rn×dy and r > 0. Then wθ(·, Y ) is
Kw(r,X, Y )-Lipschitz in the neighbourhood B‖·‖∞,2(X, r):

∀Y ′, Y ′′ ∈ B‖·‖∞,2(X, r), ∀θ ∈ Sdy−1, |wθ(Y ′, Y )− wθ(Y ′′, Y )| ≤ Kw(r,X, Y )‖Y ′ − Y ′′‖∞,2.

In order to deduce regularity results on f and F from Proposition 1, we will make the assumption
that T is globally Lipschitz in (u, x). In practice, this is the case when both parameters are enforced
to stay within a fixed bounded domain, for instance by multiplying a typical NN with the indicator
of such a set. We present this in detail in the Appendix (Section D).

Assumption 2. There exists L > 0 such that

∀(u1, u2, x1, x2) ∈ (Rdu)2 × (Rdx)2, ‖T (u1, x1)− T (u2, x2)‖2 ≤ L (‖u1 − u2‖2 + ‖x1 − x2‖2) .

Proposition 2. Under Assumption 2, for ε > 0, u0 ∈ Rdu , X ∈ Rn×dx , Y ∈ Rn×dy and θ ∈ Sdy−1,
let Kf (ε, u0, X, Y ) := 2Ln(εL + ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2). Then f(·, X, Y, θ) is Kf (ε, u0, X, Y )-
Lipschitz in B(u0, ε):

∀u, u′ ∈ B(u0, ε), |f(u,X, Y, θ)− f(u′, X, Y, θ)| ≤ Kf (ε, u0, X, Y )‖u− u′‖2.

Proof. Let ε > 0, u0 ∈ Rdu , X ∈ Rn×dx , Y ∈ Rn×dy and θ ∈ Sdy−1. Let u, u′ ∈ B(u0, ε). Using
Assumption 2, we have T (u,X), T (u′, X) ∈ B‖·‖∞,2(T (u0, X), r), with r := εL.

Denoting L := LB(u0,ε),B(0Rdx ,‖X‖∞,2), we apply successively Proposition 1 (first inequality), then
Assumption 2 (second inequality):

|f(u,X, Y, θ)− f(u′, X, Y, θ)| = |wθ(T (u,X), Y )− wθ(T (u′, X), Y )|
≤ Kw(r, T (u0, X), Y )‖T (u,X)− T (u′, X)‖∞,2
≤ 2n(εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)L‖u− u′‖2.

6
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Proposition 2 shows that f is locally Lipschitz in u. We now assume some conditions on the measures x
and y in order to prove that F is also locally Lipschitz. Specifically, we require that the data measures
x and y be supported on bounded domains, which imposes little restriction in practice.

Assumption 3. x and y are Radon probability measures on Rdx and Rdy respectively, supported by
the compacts X and Y respectively. Denote Rx := sup

x∈X
‖x‖2 and Ry := sup

y∈Y
‖y‖2.

Proposition 3. Assume Assumption 2 and Assumption 3. For ε > 0, u0 ∈ Rdu , let C1(u0) :=ˆ
Xn
‖T (u0, X)‖∞,2dx⊗n(X) and C2 :=

ˆ
Yn
‖Y ‖∞,2dy⊗n(Y ).

Let KF (ε, u0) := 2Ln(εL+C1(u0) +C2). We have ∀u, u′ ∈ B(u0, ε), |F (u)−F (u′)| ≤ KF (ε, u0)‖u−
u′‖2.

Proof. Let ε > 0, u0 ∈ Rdu and u, u′ ∈ B(u0, ε). We have

|F (u)− F (u′)| ≤
ˆ
Xn×Yn×Sdy−1

|f(u,X, Y, θ)− f(u′, X, Y, θ)|dx⊗n(X)dy⊗n(Y )d�(θ)

≤
ˆ
Xn×Yn

Kf (ε, u0, X, Y )‖u− u′‖2dx⊗n(X)dy⊗n(Y )

≤
ˆ
Xn×Yn

2Ln(εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)‖u− u′‖2dx⊗n(X)dy⊗n(Y ).

Now by Assumption 2, X 7−→ ‖T (u0, X)‖∞,2 is continuous on the compact X n, thus upper-bounded
by a certain M(u0) > 0. We can define C1(u0) :=

ˆ
Xn
‖T (u0, X)‖∞,2dx⊗n(X), which verifies

C1(u0) ≤M(u0)x(X )n. Since X is compact and x is a Radon probability measure by Assumption 3,
x(X ) is well-defined and finite, thus C1(u0) is finite. Likewise, let C2 :=

ˆ
Yn
‖Y ‖∞,2dy⊗n(Y ) < +∞.

Finally, |F (u)− F (u′)| ≤ 2Ln(εL+ C1(u0) + C2)‖u− u′‖2.

Having shown that our losses are locally Lipschitz, we can now turn to convergence results. These
conclusions are placed in the context of non-smooth and non-convex optimisation, thus will be tied
to the Clarke sub-differential of F , which we denote ∂CF . The set of Clarke sub-gradients at a point
u is the convex hull of the limits of gradients of F :

∂CF (u) := conv
{
v ∈ Rdu : ∃(u(t)) ∈ (DF )N : u(t) −−−−−→

t−→+∞
u and ∇F (u(t)) −−−−−→

t−→+∞
v

}
, (8)

whereDF is the set of differentiability of F . At points u where F is differentiable, ∂CF (u) = {∇F (u)},
and if F is convex in a neighbourhood of u, then the Clarke differential at u is the set of its convex
sub-gradients. The interested reader may turn to Section C for further context on non-smooth and
non-convex optimisation.

3 Convergence of Interpolated SGD Trajectories on F

In general, the idea behind SGD is a discretisation of the gradient flow equation u̇(s) = −∇F (u(s)).
In our non-smooth setting, the underlying continuous-time problem is instead the Clarke differential
inclusion u̇(s) ∈ −∂CF (u(s)). Our objective is to show that in a certain sense, the SGD trajectories
approach the set of solutions of this inclusion problem, as the step size decreases. We consider
solutions that are absolutely continuous (we will write u(·) ∈ Cabs(R+,Rdu)) and start within K ⊂
Rdu , a fixed compact set. We can now define the solution set formally as

S−∂CF (K) :=
{
u ∈ Cabs(R+,Rdu) | ∀s ∈ R+, u̇(s) ∈ −∂CF (u(s)); u(0) ∈ K

}
, (9)
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where we write ∀ for "almost every". In order to compare the discrete SGD trajectories to this set
of continuous-time trajectories, we interpolate the discrete points in an affine manner: Equation
(10) defines the piecewise-affine interpolated SGD trajectory associated to a discrete SGD trajectory
(u(t)
α )t∈N of learning rate α.

uα(s) = u(t)
α +

(
s

α
− t
)

(u(t+1)
α − u(t)

α ), ∀s ∈ [tα, (t+ 1)α[, ∀t ∈ N. (10)

In order to compare our interpolated trajectories with the solutions, we consider the metric of uniform
convergence on all segments

dc(u, u′) :=
∑
k∈N∗

1
2k min

(
1, max
s∈[0,k]

‖u(s)− u′(s)‖2
)
. (11)

In order to prove a convergence result on the interpolated trajectories, we will leverage the work of
Bianchi et al. (2022) which hinges on three conditions on the loss F that we reproduce and verify
successively. Firstly, Condition 1 assumes mild regularity on the sample loss function f .

Condition 1.

i) There exists κ : Rdu ×Z −→ R+ measurable such that each κ(u, ·) is z-integrable, and:

∃ε > 0, ∀u, u′ ∈ B(u0, ε), ∀z ∈ Z, |f(u, z)− f(u′, z)| ≤ κ(u0, z)‖u− u′‖2.

ii) There exists u ∈ Rdu such that f(u, ·) is z-integrable.

Our regularity result on f Proposition 2 allows us to verify Condition 1, by letting ε := 1 and
κ(u0, z) := Kf (1, u0, X, Y ). Condition 1 ii) is immediate since for all u ∈ Rdu , (X,Y, θ) 7−→
wθ(T (u,X), Y ) is continuous in each variable separately, thanks to the regularity of T provided by
Assumption 2, and to the regularities of w. This continuity implies that all f(u, ·) are z-integrable,
since z = x⊗n ⊗ y⊗n ⊗ � is a compactly supported probability measure under Assumption 3. Sec-
ondly, Condition 2 concerns the local Lipschitz constant κ introduced in Condition 1: it is assumed
to increase slowly with respect to the network parameters u.

Condition 2. The function κ of Condition 1 verifies:

i) There exists c ≥ 0 such that ∀u ∈ Rdu ,
ˆ
Z
κ(u, z)dz(z) ≤ c(1 + ‖u‖2).

ii) For every compact K ⊂ Rdu , sup
u∈K

ˆ
Z
κ(u, z)2dz(z) < +∞.

Condition 2.ii) is verified by κ given its regularity. However, Condition 2.i) requires that T (u, x)
increase slowly as ‖u‖2 increases, which is more costly.

Assumption 4. There exists an x-integrable function g : Rdx −→ R+ such that ∀u ∈ Rdu , ∀x ∈
Rdx , ‖T (u, x)‖2 ≤ g(x)(1 + ‖u‖2).

Assumption 4 is satisfied in particular as soon as T (·, x) is bounded (which is the case for a neural
network with bounded activation functions), or if T is of the form T (u, x) = T̃ (u, x)1B(0,R)(u),
i.e. limiting the network parameters u to be bounded. This second case does not yield substantial
restrictions in practice (see Section D for a class of NNs that satisfy all of the assumptions), yet
vastly simplifies theory. Under Assumption 4, we have for any u ∈ Rdu , with κ(u, z) = Kf (1, u,X, Y )
from Proposition 2 and C2 from Proposition 3,
ˆ
Xn×Yn×Sdy−1

Kf (1, u,X, Y )dx⊗n(X)dy⊗n(Y )d�(θ) ≤ 4Ln
(
εL+ (1 + ‖u‖2)

ˆ
Xn

max
k∈J1,nK

g(xk)dx⊗n(X) + C2

)
≤ c(1 + ‖u‖2).

8
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As a consequence, Condition 2 holds under our assumptions. We now consider the Markov kernel
associated to the SGD schemes:

Pα :


Rdu × B(Rdu) −→ [0, 1]

u,B 7−→
ˆ
Z
1B(u− αϕ(u, z))dz(z) .

Given u ∈ Rdu , Pα(u, ·) is a probability measure on Rdu which dictates the law of the positions of
the next SGD iteration u(t+1), conditionally to u(t) = u. With �Rdu denoting the Lebesgue measure
on Rdu , let Γ := {α ∈ ]0,+∞[ | ∀u� �Rdu , uPα � �Rdu}. Γ is the set of learning rates α for which
the kernel Pα maps any absolutely continuous probability measure u to another such measure. We
will verify the following condition, which can be interpreted as the SGD trajectories continuing to
explore the entire space for a small enough learning rate α:

Condition 3. The closure of Γ contains 0.

In order to satisfy Condition 3, we require an additional regularity condition on the neural network
T which we formulate in Assumption 5.

Assumption 5. There exists a constant M > 0, such that (with the notations of Assumption 1 and
Assumption 3) ∀x ∈ X , ∀j ∈ J(x), ∀u ∈ Uj(x), ∀(i1, i2, i3, i4) ∈ J1, duK2 × J1, dyK2,∣∣∣∣∣ ∂2

∂ui1∂ui2

(
[T (u, x)]i3 [T (u, x)]i4

)∣∣∣∣∣ ≤M, and
∥∥∥∥∥ ∂2T

∂ui1∂ui2
(u, x)

∥∥∥∥∥
2
≤M.

The upper bounds in Assumption 5 bear strong consequences on the behaviour of T for ‖u‖2 � 1, and
are only practical for networks of the form T (u, x) = T̃ (u, x)1B(0,R)(u, x), similarly to Assumption 4.
We detail the technicalities of verifying this assumption along with the others in the Appendix
(Section D).

Proposition 4. Under Assumption 1, Assumption 3 and Assumption 5, for the SGD trajectories
(7), Γ contains ]0, α0[, where α0 :=

(
(dy2 + 2Ry)duM

)−1
.

We postpone the proof to Section B. Now that we have verified Condition 1, Condition 2 and
Condition 3, we can apply (Bianchi et al., 2022), Theorem 2 to F , showing a convergence result on
interpolated SGD trajectories.

Theorem 1. Consider a neural network T and measures x, y satisfying Assumption 1, Assumption 2,
Assumption 3, Assumption 4 and Assumption 5. Let α1 < α0 (see Proposition 4).

Let (u(t)
α ), α ∈]0, α1], t ∈ N a collection of SGD trajectories associated to (7). Consider (uα) their

associated interpolations. For any compact K ⊂ Rdu and any η > 0, we have:

lim
α−→0

α∈ ]0,α1]

u0 ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N (dc(uα, S−∂CF (K)) > η) = 0. (12)

The distance dc is defined in (11). As the learning rate decreases, the interpolated trajectories
approach the trajectory set S−∂CF , which is essentially a solution of the gradient flow equation
u̇(s) = −∇F (u(s)) (ignoring the set of non-differentiability, which is �Rdu -null). To get a tangible
idea of the concepts at play, if F was C2 and had a finite amount of critical points, then one would
have the convergence of a solution u(s) to a critical point of F , as s −→ +∞. These results have
implicit consequences on the value of the parameters at the "end" of training for low learning rates,
which is why we will consider a variant of SGD for which we can say more precise results on the
convergence of the parameters.

4 Convergence of Noised Projected SGD Schemes on F

In practice, it is seldom desirable for the parameters of a neural network to reach extremely large
values during training. Weight clipping is a common (although contentious) method of enforcing

9
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that T (u, ·) stay Lipschitz, which is desirable for theoretical reasons. For instance the 1-Wasserstein
duality in Wasserstein GANs (Arjovsky et al., 2017) requires Lipschitz networks, and similarly,
Sliced-Wasserstein GANs (Deshpande et al., 2018) use weight clipping and enforce their networks to
be Lipschitz.

Given a radius r > 0, we consider SGD schemes that are restricted to u ∈ B(0, r) =: Br, by
performing projected SGD. At each step t, we also add a noise aε(t+1), where ε(t+1) is an additive
noise of law � � �Ru , which is often taken as standard Gaussian in practice. These additions yield
the following SGD scheme:

u(t+1) = πr
(
u(t) − αϕ(u(t), X(t+1), Y (t+1), θ(t+1)) + αaε(t+1)

)
,(

u(0), (X(t))t∈N (Y (t))t∈N, (θ(t))t∈N, (ε(t))t∈N
)
∼ u0 ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N ⊗ �⊗N,

(13)

where πr : Ru −→ Br denotes the orthogonal projection on the ball Br := B(0, r). Thanks to
Condition 1, Condition 2 and the additional noise, we can verify the assumptions for (Bianchi et al.,
2022) Theorem 4, yielding the same result as Theorem 1 for the noised projected scheme (13). In fact,
under additional assumptions, we shall prove a stronger mode of convergence for the aforementioned
trajectories. The natural context in which to perform gradient descent is on functions that admit
a chain rule, which is formalised in the case of almost-everywhere differentiability by the notion of
path differentiability, as studied thoroughly in (Bolte & Pauwels, 2021). We also provide a brief
presentation in the Appendix (Section C.1).

Condition 4. F is path differentiable, which is to say that for any u ∈ Cabs(R+,Rdu), for almost all
s > 0, ∀v ∈ ∂CF (u(s)), v>u̇(s) = (F ◦ u)′(s).

Remark 1. There are alternate equivalent formulations for Condition 4. Indeed, as presented in
further detail in Section C.1, F is path differentiable if and only if ∂CF is a conservative field for F
if and only if F has a chain rule for ∂C (the latter is the formulation chosen above in Condition 4).

In order to satisfy Condition 4, we need to make the assumption that the NN input measure x and
the data measure y are discrete measures, which is the case for y in the case of generative neural
networks, but is less realistic for x in practice. We define Σn the n-simplex: its elements are the
a ∈ Rn s.t. ∀i ∈ J1, nK, ai ≥ 0 and ∑i ai = 1.

Assumption 6. One may write x =
nx∑
k=1

ak�xk and y =
ny∑
k=1

bk�yk , with the coefficient vectors a ∈

Σnx , b ∈ Σny , X = {x1, · · · , xnx} ⊂ Rdx and Y = {y1, · · · , yny} ⊂ Rdy .

There is little practical reason to consider non-uniform measures, however the generalisation to any
discrete measure makes no theoretical difference. Note that Assumption 3 is clearly implied by
Assumption 6.

In order to show that F is path differentiable, we require the natural assumption that each T (·, x) be
path differentiable. Since T (·, x) is a vector-valued function, we need to extend the notion of path-
differentiability. Thankfully, Bolte & Pauwels (2021) define conservative mappings for vector-valued
locally Lipschitz functions (Definition 4), which allows us to define naturally path differentiability of
a vector-valued function as the path-differentiability of all of its coordinate functions. See Section C.2
for a detailed presentation.

Assumption 7. For any x ∈ Rdx , T (·, x) is path differentiable.

Assumption 7 holds as soon as each the neural network has the typical structure of compositions of
linear units and typical activations, as was proved by Davis et al. (2020), Corollary 5.11 and Bolte
& Pauwels (2021), Section 6.2. We provide a more specific class of NNs that are path differentiable
and satisfy all our other assumptions in Section D.

Proposition 5. Under Assumption 2, Assumption 6 and Assumption 7, F is path differentiable.

10
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Proof. We shall use repeatedly the property that the composition of path differentiable functions
remains path differentiable, which is proved in (Bolte & Pauwels, 2021), Lemma 6.

Let E :
{

Rn×dy × Rn×dy −→ R+
Y, Y ′ 7−→ SW2

2(Y , Y ′)
. By (Tanguy et al., 2023), Proposition 2.4.3, each

E(·, Y ) is semi-concave and thus is path differentiable (by (Tanguy et al., 2023), Proposition 4.3.3).

Thanks to Assumption 6, x⊗n and y⊗n are discrete measures on Rn×dx and Rn×dy respectively,
allowing one to write x⊗n = ∑

k ak�Xk and y⊗n = ∑
l bl�Yl . Then F = u 7−→

∑
k,l akblE(T (u,Xk), Yl)

is path differentiable as a sum ((Bolte & Pauwels, 2021), Corollary 4) of compositions ((Bolte &
Pauwels, 2021), Lemma 6) of path differentiable functions.

We have now satisfied all the assumptions to apply (Bianchi et al., 2022), Theorem 6, showing that
trajectories of (13) converge towards to a set of generalised critical points2 Cr defined as

Cr :=
{
u ∈ Rdu | 0 ∈ −∂CF (u)−Nr(u)

}
, Nr(u) =


{0} if ‖u‖2 < r

{su | s ≥ 0} if ‖u‖2 = r
∅ if ‖u‖2 > r

, (14)

where Nr(u) refers to the normal cone of the ball B(0, r) at x. The term Nr(u) in (14) only makes
a difference in the pathological case ‖u‖2 = r, which never happens in practice since the idea behind
projecting is to do so on a very large ball, in order to avoid gradient explosion, to limit the Lipschitz
constant and to satisfy theoretical assumptions. Omitting the Nr(u) term, and denoting D the points
where F is differentiable, (14) simplifies to Cr∩D = {u ∈ D | ∇F (u) = 0}, i.e. the critical points of F
for the usual differential. Like in Theorem 1, we let α1 < α0, where α0 is defined in Proposition 4. We
have met the conditions to apply Bianchi et al. (2022), Theorem 6, showing a long-run convergence
results on the SGD trajectories (13).

Theorem 2. Consider a neural network T and measures x, y satisfying Assumption 1, Assumption 2,
Assumption 4, Assumption 5, Assumption 6 and Assumption 7. Let (u(t)

α )t∈N be SGD trajectories
defined by (13) for r > 0 and α ∈]0, α1]. One has

∀η > 0, lim
t−→+∞

u0 ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N ⊗ �⊗N
(
d(u(t)

α , Cr) > η
)
−−−−−→
α−→0
α∈]0,α1]

0.

The distance d above is the usual euclidean distance. Theorem 2 shows essentially that as the learning
rate approaches 0, the long-run limits of the SGD trajectories approach the set of Cr in probability.
Omitting the points of non-differentiability and the pathological case ‖u‖2 = r, the general idea is
that u(∞)

α −−−−→
α−→0

{u : ∇F (u) = 0}, which is the convergence that would be achieved by the gradient
flow of F , in the simpler case of C2 smoothness.

5 Conclusion and Outlook
Under reasonable assumptions, we have shown that SGD trajectories of parameters of generative
NNs with a minibatch SW loss converge towards the desired sub-gradient flow solutions, implying in
a weak sense the convergence of said trajectories. Under stronger assumptions, we have shown that
trajectories of a mildly modified SGD scheme converge towards a set of generalised critical points of
the loss, which provides a missing convergence result for such optimisation problems.

The core limitation of this theoretical work is the assumption that the input data measure x is discrete
(Assumption 6), which we required in order to prove that the loss F is path differentiable. In order to
generalise to a non-discrete measure, one would need to apply or show a result on the stability of path
differentiability through integration: in our case, we want to show that

´
Xn E(T (u,X), Y )dx⊗n(X)

2Typically referred to as the set of Karush-Kahn-Tucker points of the differential inclusion u̇(s) ∈ −∂CF (u(s)) −
Nr(u(s)).
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is path differentiable, knowing that u 7−→ E(T (u,X), Y ) is path differentiable by composition (see
the proof of Proposition 5 for the justification). Unfortunately, in general if each g(·, x) is path
differentiable, it is not always the case that

´
g(·, x)dx is path differentiable (at the very least, there

is no theorem stating this, even in the simpler case of another sub-class of path differentiable functions,
see (Bianchi et al., 2022), Section 6.1). However, there is such a theorem (specifically (Clarke, 1990),
Theorem 2.7.2 with Remark 2.3.5) for Clarke regular functions (see Section C.3 for a presentation of
this regularity class), sadly the composition of Clarke regular functions is not always Clarke regular,
it is only known to be the case in excessively restrictive cases (see (Clarke, 1990), Theorems 2.3.9
and 2.3.10). Similarly to the continuous case, the simpler generalisation in which x has a countable
support adds substantial difficulty, since all of the typical tools (path differentiability itself, Clarke
regularity or even definability (see (Bolte & Pauwels, 2021) Section 4.1 for a first introduction) do
not have readily applicable results for infinite operations, to our knowledge. As a result, we leave
the generalisation to a non-discrete input measure x for future work.

Our studies focus on the 2-SW distance, but our results from Section 3 can be extended to p ∈
[1,+∞[, as presented in the appendix (Section E). However, as also discussed in the Appendix,
the generalisation of Section 4 is still an open problem, since it has not yet be proven that X 7−→
SWp

p(X , Y ) is path differentiable for p 6= 2.

This paper studies the use of the average SW distance as a loss, and an extension to related distances
would be worth considering. The average SW distance aggregates the projected distances through
an expectation, while the closely-related max-Sliced Wasserstein distance introduced by Deshpande
et al. (2019) aggregates the projections via a maximisation on the axis θ ∈ Sd−1. The training
paradigm presented in (Deshpande et al., 2019) differs strongly from our formalism since it applies
to GANs, however one could consider an extension of our formalism in which the optimal projection
θ becomes a learned parameter of the neural network. A related extension is the Subspace-Robust
Wasserstein distance (Paty & Cuturi, 2019), which can take the following formulation

S2
k(x, y) = max

0�Ω�Id
trace(Ω)=k

W2
2(Ω1/2#x,Ω1/2#y),

for which one could consider a similar extension where the positive semi-definite Ω becomes a learned
parameter of T .

Another avenue for future study would be to tie the flow approximation result from Theorem 1
to Sliced Wasserstein Flows (Liutkus et al., 2019; Bonet et al., 2022). The difficulty in seeing the
differential inclusion (9) as a flow of F lies in the non-differentiable nature of the functions at play, as
well as the presence of the composition between SW and the neural network T , which bodes poorly
with Clarke sub-differentials.
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A Table of Notations

Table 1: List of Notations

Symbol Explanation
X Given X = (x1, · · · , xn) ∈ Rn×d, X = 1

n

∑
i �xi

X (x1, · · · , xn) ∈ Rn×dx an input data sample of law x⊗n

x input data probability measure on Rdx , supported on X
Y (y1, · · · , yn) ∈ Rn×dy a target data sample of law y⊗n

y target data probability measure on Rdy , supported on Y
θ direction in Sdy−1

� uniform measure on Sdy−1

z := (X,Y, θ) sample in X,Y and θ
z := x⊗n ⊗ y⊗n ⊗ � probability measure for the samples z, supported on Z := X n × Yn × Sdy−1

u neural network parameters in Rdu
T (u,X) neural network function defined in (3)

f(u,X, Y, θ) sample loss function defined in (4)
F (u) population loss function defined in (5)

wθ(Y, Y ′) discrete and projected 2-Wasserstein distance W2
2(Pθ#Y , Pθ#Y ′)

ϕ(u,X, Y, θ) almost-everywhere gradient of f(·, X, Y, θ) defined in (6)
Kw,Kf ,KF local Lipschitz constants of w, f, F respectively (see Propositions 1, 2, 3)

α; a SGD learning rate; noise level
�Rd ; ρ� �Rd Lebesgue measure on Rd; a measure ρ absolutely continuous w.r.t. �Rd

∂C Clarke differential, defined in (8)
u0 probability measure of SGD initialisation u(0)

ε(t) additive noise in Rdu at SGD step t
� additive noise probability measure on Rdu

B‖·‖(x,R), B‖·‖(x,R) open (resp. closed) ball of centre x and radius R for the norm ‖ · ‖

B Postponed Proofs
Proof of Proposition 4

Proof. Let u� � and B ∈ B(Rdu) such that �(B) = 0. We have, with α′ := 2α/n, z := (X,Y, θ), z :=
x⊗n ⊗ y⊗n ⊗ � and Z := X n × Yn × Sdy−1,

uPα(B) =
ˆ
Rdu×Z

1B

u− α′ n∑
k=1

(
∂T

∂u
(u, xk)

)>
θθ>(T (u, xk)− yσT (u,X),Y

θ
(k))

du(u)dz(z)

≤
∑
τ∈Sn

ˆ
Z
Iτ (z)dz(z),
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where Iτ (z) :=
ˆ
Rdu

1B (φτ,z(u)) du(u), with φτ,z := u− α′
n∑
k=1

(
∂T

∂u
(u, xk)

)>
θθ>(T (u, xk)− yτ(k))︸ ︷︷ ︸

ψτ,z :=

.

Let τ ∈ Sn and (X,Y, θ) ∈ Z. Using Assumption 1, separate Iτ (z) =
∑
j∈J

ˆ
Uj(X)

1B (u− ψτ,z(u)) du(u),

where the differentiability structure (Uj(X))j∈J(X) is obtained using the respective differentiability
structures: for each k ∈ J1, nK, Assumption 1 yields a structure (Ujk(xk))jk∈Jk(xk) of u 7−→ T (u, xk),
which depends on xk, hence the k indices.

To be precise, define for j = (j1, · · · , jn) ∈ J1(x1)×· · ·×Jn(xn), Uj(X) :=
n⋂
k=1
Ujk(xk), and J(X) :=

{(j1, · · · , jn) ∈ J1(x1)× · · · × Jn(xn) | Uj(X) 6= ∅}. In particular, for any k ∈ J1, nK, T (·, xk) is C2

on Uj(X). Notice that the derivatives are not necessarily defined on the border ∂Uj(X), which is of
Lebesgue measure 0 by Assumption 1, thus the values of the derivatives on the border do not change
the value of the integrals (the integrals may have the value +∞, depending on the behaviour of φτ,s,
but we shall see that they are all finite when α is small enough).

We drop the z, τ index in the notation, and focus on the properties of φ and ψ as functions of u. Our
first objective is to determine a constant K > 0, independent of u, z, τ , such that ψ is K-Lipschitz
on Uj(X).

First, let χ :=


Uj(X) −→ Rdu

u 7−→
(
∂T

∂u
(u, xk)

)>
θθ>T (u, xk)

. The function χ is of class C1, there-

fore we determine its Lipschitz constant by upper-bounding the ‖ · ‖2-induced operator norm of its

differential, denoted by
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂χ∂u(u)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2
. Notice that χ(u) =

1
2
∂

∂u

(
θ>T (u, xk)

)2
.

Now
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∂2

∂u2

(
θ>T (u, xk)

)2
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2
≤ du max

(i1,i2)∈J1,duK2

∣∣∣∣∣ ∂2

∂ui1∂ui2

(
θ>T (u, xk)

)2
∣∣∣∣∣, using Assumption 5 and

|θi| ≤ 1,∣∣∣∣∣ ∂2

∂ui1∂ui2

(
θ>T (u, xk)

)2
∣∣∣∣∣ ≤ ∑

(i3,i4)∈J1,dyK2

∣∣∣∣∣θi3θi4 ∂2

∂ui1∂ui2

(
[T (u, xk)]i3 [T (u, xk)]i4

)∣∣∣∣∣ ≤ dy2M.

We obtain that χ is 1
2dudy

2M -Lipschitz.

Second, let ω : u ∈ Uj(X) 7−→
(
∂T

∂u
(u, xk)

)>
θθ>yτ(k), also of class C1. We re-write

[
∂ω

∂u
(u)
]
i1,i2

=

y>τ(k)θθ
> ∂2T

∂ui1∂ui2
(u, xk), and conclude similarly by Assumption 5 that ω is ‖yτ(k)‖2duM -Lipschitz.

Finally, ψ =
n∑
k=1

(χk−ωk), and is therefore K := (1
2dy

2 +Ry)dunM -Lipschitz, with Ry from Assump-

tion 3. We have proven that
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂ψ∂u(u)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2
≤ K for any u ∈ Uj(X), and that K does not depend on

X,Y, θ, j or u.

We now suppose that α′ < 1
K , which is to say α < n

2K . Under this condition, φ : Uj(X) −→ Rdu is
injective. Indeed, if φ(u1) = φ(u2), then ‖u1 − u2‖2 = α′‖ψ(u1) − ψ(u2)‖2 ≤ α′K‖u1 − u2‖2, thus

u1 = u2. Furthermore, for any u ∈ Uj(X),
∂φ

∂u
(u) = IdRdu − α′

∂ψ

∂u
(u), with

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α′∂ψ∂u(u)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2
< 1, thus
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the matrix
∂φ

∂u
(u) is invertible (using the Neumann series method). By the global inverse function

theorem, φ : Uj(X) −→ φ(Uj(X)) is a C1-diffeomorphism.

Using the change-of-variables formula, we have
ˆ
Uj(X)

1B(φ(u))du(u) =
ˆ
Uj(X)

1B(u′)dφ#u(u′) =

φ#u(B), we have now shown that φ is a C1-diffeomorphism, thus since u � �, φ#u � �. (α � β
denoting that α is absolutely continuous with respect to β). Since �(B) = 0, it follows that the
integral is 0, then by sum over j, Iτ (z) = 0 and finally uPα(B) = 0 by integration over z and sum
over τ .

C Background on Non-Smooth and Non-Convex Analysis
This work is placed within the context of non-smooth optimisation, a field of study in part introduced
by Clarke with the so-called Clarke differential, which we introduced in Equation (8) (see (Clarke,
1990) for a general reference on this object). The purpose of this appendix is to present several
adjacent objects that can be useful to the application of our results, even though we do not need
them in order to prove our theorems.

C.1 Conservative Fields

The Clarke differential ∂C of a locally Lipschitz function g : Rd −→ R (defined in Equation (8)) is an
example of a set-valued map. Such a map is a function D : Rp ⇒ Rq from the subsets of Rp to the
subsets of Rq, for instance in the case of the Clarke differential, we have the signature ∂Cg : Rd ⇒ Rd.
A set-valued map D is graph closed if its graph {(u, v) | u ∈ Rp, v ∈ D(u)} is a closed set of Rp+q. A
set-valued map D is said to be a conservative field, when it is graph closed, has non-empty compact
values and for any absolutely continuous loop γ ∈ Cabs([0, 1],Rp) with γ(0) = γ(1), we have

ˆ 1

0
max

v∈D(γ(s))
〈γ̇(s), v〉ds = 0.

Similarly to primitive functions in calculus, one may define a function g : Rd −→ R using a conser-
vative field D : Rd ⇒ Rd up to an additive constant through following expression:

g(u) = g(0) +
ˆ 1

0
max

v∈D(γ(s))
〈γ̇(s), v〉ds, ∀γ ∈ Cabs([0, 1],Rp) such that γ(0) = 1 and γ(1) = u. (15)

In this case, we say that g is a potential function for the field D. This notion allows us to define
a new regularity class: a function g : Rd −→ R is called path differentiable when there exists a
conservative field of which it is a potential. A standard result in non-smooth optimisation is the
following equivalence between different notions of regularity:

Proposition 6. Bolte & Pauwels (2021), Corollary 2. Let g : Rd −→ R locally Lipschitz. We have
the equivalence between the following statements:

• g is path differentiable

• ∂Cg is a conservative field

• g has a chain rule for the Clarke differential ∂C :

∀u ∈ Cabs(R+,Rd), ∀s > 0, ∀v ∈ ∂Cg(u(s)), v>u̇(s) = (g ◦ u)′(s). (16)

This equivalence justifies the terminology used in Condition 4. The reader seeking a complete pre-
sentation of conservative field theory may refer to (Bolte & Pauwels, 2021).
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C.2 Conservative Mappings

The notion of conservative fields for real-valued locally Lipschitz functions g : Rd −→ R can be
generalised to conservative mappings for vector-valued locally Lipschitz functions g : Rp −→ Rq,
which one may see as a generalised Jacobian matrix (see (Bolte & Pauwels, 2021), Section 3.3 for
further details). A set-valued map J : Rp ⇒ Rq×p is a conservative mapping for such a g if

∀u ∈ Cabs(R+,Rp), ∀s > 0, (g ◦ u)′(s) = Mu̇(t), ∀M ∈ J(u(s)). (17)

In this case, we shall say that g is path differentiable. Note that if each coordinate function gi is the
potential of a conservative field Di, then the set-valued map

J(u) =



v>1
...
v>q

 : ∀i ∈ J1, qK, vi ∈ Di(u)


is a conservative mapping for g (although not all conservative mappings for g can be written in this
manner). As a consequence, one could interpret (simplistically) vector-valued path differentiability
as coordinate-wise path differentiability.

C.3 Clarke Regularity

Another notion of regularity for locally Lipschitz functions is that of Clarke regularity. Let g : Rp −→
Rq and u ∈ Rp, g is said to be Clarke regular at u if the two quantities

g◦(u; v) := limsup
u′→u
t↘0

g(u′ + tv)− g(u′)
t

and g′(u; v) := lim
t↘0

g(u+ tv)− g(u)
t

exist and are equal for all v ∈ Rp. Note that this notion implies path differentiability by (Bolte
& Pauwels, 2021), Proposition 2. Clarke regularity is the central concept of Clarke’s monograph
(Clarke, 1990).

C.4 Semi-Algebraic Functions

In non-smooth analysis, one of the simplest regularity cases is the class of semi-algebraic functions,
which are essentially piecewise polynomial functions defined on polynomial pieces. To be precise, a
set A ⊂ Rd is semi-algebraic if it can be written under the form

A =
n⋃
i=1

m⋂
j=1

{
u ∈ Rd | Pi,j(u) < 0, Qi,j(u) = 0

}
,

where the Pi,j and Qi,j are real multivariate polynomials. A function g : Rp −→ Rq is semi-algebraic
if its graph G := {(u, g(u)) | u ∈ Rp} is semi-algebraic.

A locally Lipschitz real-valued semi-algebraic function is path differentiable (see for instance (Bolte
& Pauwels, 2021), Proposition 2), and in the light of (Bolte & Pauwels, 2021), Lemma 3, this is also
the case in the vector-valued case. Another useful property of semi-algebraic functions is that their
class is stable by composition and product. The interested reader may consult (Wakabayashi, 2008)
for additional properties of semi-algebraic objects, or (Coste, 1999; Van Den Dries & Miller, 1996),
for a presentation of o-minimal structures, a generalisation of this concept.

D Suitable Neural Networks
In this section, we detail our claim that typical NN structures satisfy our conditions. To this end, we
define a class of practical neural networks whose properties are sufficient (not all NNs that satisfy
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our assumptions are within this framework). Consider T the set of NNs T of the form

T :
{

Rdu × Rdx −→ Rdy
(u, x) 7−→ T̃ (u, x)1εB(0,Ru)(u)1εB(0,Rx)(x) ,

with Ru, Rx > 0 and ε > 0. The function 1εB(0,R) is a smoothed version of the usual indicator
function 1B(0,R): it is any function that has value 1 in B(0, R − ε), 0 outside B(0, R + ε) and is C2-
smooth (see Remark 2 for a possible construction). Given that one may take arbitrarily large radii,
these indicators are added for theoretical purposes and impose no realistic constraints in practice.
Additionally, T̃ = hN , the N -th layer of a recursive NN structure defined by

h0(u, x) = x, ∀n ∈ J1, NK, hn =


Rdu × Rdx −→ Rdn

(u, x) 7−→ an

(
n−1∑
i=0

An,i(u)hi(u, x) +Bnu

)
,

where:

• All functions an : R −→ R are C2-smooth, or all locally Lipschitz semi-algebraic activation
functions (applied entry-wise). The former condition is satisfied by the common sigmoid,
hyperbolic tangent or softplus activations. The latter condition applies to the non-differentiable
ReLU activation, its "Leaky ReLU" extension, and continuous piecewise polynomial activations.
Note that other non-linearities such as softmax can also be considered under the same regularity
restrictions, but we limit ourselves to entry-wise non-linearities for notational consistency.

• Each dimension dn is a positive integer, with obviously dN = dy, the output dimension.

• Each An,i is a linear map: Rdu −→ Rdn×di , which maps a parameter vector u to a dn × di
matrix. Since the entire parameter vector u is given at each layer, this allows the architecture
to only use certain parameters at each layer (as is more typical in practice). One may see this
map as a 3-tensor of shape (dn, di, du), as specified in the formulation

∀u ∈ Rdu , ∀h ∈ Rdi , An,i(u)h =

 di∑
j2=1

du∑
j3=1

A
(n,i)
j1,j2,j3

hj2uj3


j1∈J1,dnK

∈ Rdn . (18)

• The matrix Bn ∈ Rdn×du determines the intercept from the full parameter vector u.

In this model, each layer depends on all the previous layers, allowing for residual inputs for instance.
Overall, all typical networks fit this description, once bounded using the indicator functions, with
only a technicality on the regularities of the activations which need to be all C2-smooth, or all semi-
algebraic. One could extend this class of NNs to those with definable activations within the same
o-minimal structure (similarly to Davis et al. (2020) and Bolte & Pauwels (2021)).

Remark 2. We mention that we may construct a C∞-smooth 1εB(0,R) in Rd explicitly as follows:

f(s) :=
{
e−1/s if s > 0

else 0 , g(s) :=
f(s)

f(s) + f(1− s), 1εB(0,R) :=


Rd −→ [0, 1]

u 7−→ g

(
(R+ ε)2 − ‖u‖22

4Rε

)
.

Before proving the properties of NNs from the class T , we require a technical result on path differ-
entiable functions.

Proposition 7. Let f : Rd −→ R path differentiable, and g : Rd −→ R of class C1. Then their
product fg is path differentiable.
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Proof. Our objective is to apply (Bolte & Pauwels, 2021) Corollary 2 (stated in Proposition 6), which
is to say that h := fg admits a chain rule for ∂Ch). First, we apply the definition of the Clarke
differential and compute

∀u ∈ Rd, ∂Cf(u) = f(u)∇g(u) + g(u)∂Cf(u) := {f(u)∇g(u) + g(u)v | v ∈ ∂Cf(u)} .

Note that we used the smoothness of g. We now consider an absolutely continuous curve u ∈
Cabs(R+,Rd). By Bolte & Pauwels (2021) Lemma 2, since f is path differentiable, f ◦ u is dif-
ferentiable almost everywhere. Let D the associated set of differentiability, then let s ∈ D and
v ∈ ∂Ch(u(s)), writing v = f(u(s))∇g(u(s))+g(u(s))w with w ∈ ∂Cf(u(s)). We compute (h◦u)′(s) =
(f ◦u)′(s)g(u(s))+f(u(s))(g◦u)′(s). Now since f is path differentiable and w ∈ ∂Cf(u(s)), by Propo-
sition 6 item 3, we have (f ◦ u)′(s) = 〈w, u̇(s)〉. On the other hand, (g ◦ u)′(s) = 〈∇g(u(s)), u̇(s)〉
since g is C1. Finally by definition of v and bilinearity of 〈·, ·〉,

(h ◦ u)′(s) = 〈w, u̇(s)〉g(u(s)) + f(u(s))〈∇g(u(s)), u̇(s)〉 = 〈v, u̇(s)〉.

We now have all the tools to prove that the class of NNs T satisfies all of the assumptions of our
paper.

Proposition 8. All networks of the class T verify Assumption 1, Assumption 2, Assumption 4,
Assumption 5 and Assumption 7.

Proof. Let T ∈ T , and T̃ its associated underlying network. We begin with regularity considerations.

Verifying Assumptions 1 and 7 in the C2 Case In the case where the activations are C2-smooth,
then each T̃ (·, x) is also of class C2. Furthermore, the smooth indicator 1εB(0,Ru) is C∞-smooth, thus
we can conclude that T (·, x) is C2-smooth, and thus satisfies Assumption 1 trivially. In particular,
T (·, x) is path differentiable for any x ∈ Rdx , thus T also satisfies Assumption 7.

Verifying Assumptions 1 and 7 in the Semi-Algebraic Case In the case where the activations
are locally Lipschitz and semi-algebraic, it follows that each T̃ (·, x) is semi-algebraic, which yields
naturally a differentiability structure associated to the polynomial pieces, satisfying Assumption 1.
Furthermore, this regularity yields path differentiability by (Bolte & Pauwels, 2021), Proposition 2.
By product with the smooth indicator function, T is path differentiable by Proposition 7, therefore
it satisfies Assumption 7 .

Verifying Assumption 2 in the C2 Case In the case where the activations are C2-smooth, it is
clear that by composition and product (u, x) 7−→ T̃ (u, x) is jointly C2-smooth. As a consequence, it
is Lipschitz jointly in (u, x) on any compact of Rdu×Rdy , and by product with the smooth indicators,
so is T . Since T is zero outside B(0, Ru + ε)×B(0, Rx + ε), we conclude that it is globally Lipschitz
in (u, x).

Verifying Assumption 2 in the Semi-Algebraic Case In the case of locally Lipschitz and semi-
algebraic activations, we prove that T̃ is jointly Lipschitz on any compact K by strong induction on
n ∈ J1, NK. Let K = K1×K2 a product compact of Rdu×Rdy , and Pn : "∃Ln > 0 : hn is Ln-Lipschitz
on K". The initialisation P0 is trivial, since z(u, x) = x. Let n ∈ J1, NK and assume Pi to hold true
for i ∈ J0, n− 1K. In particular, the hi are jointly continuous in (u, x), allowing the definition of

M := max
(u,x)∈K

∣∣∣∣∣
n−1∑
i=0

An,i(u)hi(u, x) +Bnu

∣∣∣∣∣ .
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Since an is locally Lipschitz, a covering argument shows that there exists Lan > 0 such that an is
Lan-Lipschitz on [−M,M ]. Now let (u1, u2) ∈ K2

1 and (x1, x2) ∈ K2
2. We have

‖hn(u1, x1)− hn(u2, x2)‖2 ≤ Lan

∥∥∥∥∥
n−1∑
i=0

An,i(u1)hi(u1, x1) +Bnu1 −
n−1∑
i=0

An,i(u2)hi(u2, x2)−Bnu2

∥∥∥∥∥
2

≤ Lan

(
‖Bn‖op ‖u1 − u2‖2 +

n−1∑
i=0
‖An,i(u1)hi(u1, x1)−An,i(u2)hi(u2, x2)‖2

)
,

(19)

where ‖·‖op denotes the ‖ · ‖2-induced operator norm. Let i ∈ J0, n− 1K, we separate the norm:

‖An,i(u1)hi(u1, x1)−An,i(u2)hi(u2, x2)‖2 ≤ ‖An,i(u1)hi(u1, x1)−An,i(u2)hi(u1, x1)‖2 =: ∆1

+ ‖An,i(u2)hi(u1, x1)−An,i(u2)hi(u2, x2)‖2 =: ∆2. (20)

For ∆1, use the tensor form (18) and the inequality ‖x‖2 ≤
√
d‖x‖∞ for x ∈ Rd, then ‖u‖∞ ≤ ‖u‖2:

∆1 ≤
√
dn

∥∥∥∥∥∥∥
 di∑
j2=1

du∑
j3=1

A
(n,i)
j1,j2,j3

hi(u1, x1)j2(u(1)
j3
− u(2)

j3
)


j1∈J1,dnK

∥∥∥∥∥∥∥
∞

≤
√
dn max

j1,j2,j3
|A(n,i)

j1,j2,j3
| max

(u,x)∈K1×K2
‖hi(u, x)‖∞ ‖u1 − u2‖∞

≤ L∆1‖u1 − u2‖2. (21)

For ∆2, we leverage Pi and obtain

∆2 ≤ max
u∈K1

‖Ai(u)‖op ‖hi(u1, x1)− hi(u2, x2)‖2 ≤ max
u∈K1

‖Ai(u)‖op Li (‖u1 − u2‖2 + ‖x1 − x2‖2) .
(22)

Combining (19) (20) (21) and (22) shows Pn and concludes the induction, which in turn shows that
T̃ is jointly Lipschitz on any compact. Like in the smooth case, we conclude that T is globally
Lipschitz, and thus that Assumption 2 holds.

Verifying Assumption 4 Under both cases of regularity for the activations,

g := x 7−→ max
u∈B(0,Ru+ε)

‖T̃ (u, x)‖21εB(0,Rx)(x)

is measurable and bounded. Furthermore, observe that for u, x ∈ Rdu × Rdx , ‖T (u, x)‖2 ≤ g(x). As
a consequence, Assumption 4 holds.

Verifying Assumption 5 in the C2 case If all activations are C2-smooth, both T̃ and its
coordinate-wise products Ti × Tj are C2-smooth jointly in (u, x). As a result, one may bound these
terms on (u, x) ∈ B(0, Ru+ε)×B(0, Rx+ε) by a constantM , independent of u, x, and the assumption
is verified.

Verifying Assumption 5 in the semi-algebraic case In the semi-algebraic case, there exists
a structure (Uj)j∈J of open sets of Rdu × Rdx whose closures cover the entire space, such that T̃
is polynomial in (u, x) on each Uj , with J finite (this is possible since T̃ is jointly semi-algebraic).
The NN can be written T (u, x) = T̃ (u, x)1εB(0,Ru)(u)1εB(0,Rx)(x), and is therefore C2-smooth on each
Uj . Furthermore, its restriction to Uj is extendable C2-smoothly to Uj (we shall not introduce a
different notation to these extensions, for legibility). As a result, one may introduce the following
bounds on the derivatives of the coordinate functions on the intersection of the compact K :=
B(0, Ru + ε)×B(0, Rx + ε) and Uj : there exists an Mj > 0 such that

∀(u, x) ∈ K ∩ Uj ,
∣∣∣∣∣ ∂2

∂ui1∂ui2

(
[T (u, x)]i3 [T (u, x)]i4

)∣∣∣∣∣ ≤Mj and
∥∥∥∥∥ ∂2T

∂ui1∂ui2
(u, x)

∥∥∥∥∥
2
≤Mj .
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Since J is finite and the (Uj)j∈J cover K, we deduce that this bound holds for (u, x) ∈ K for a
common constant M > 0. Moreover, since T is the zero function outside of K, this bounds also holds
for any (u, x) ∈ Rdu × Rdx . Finally, this shows that Assumption 5 holds.

E Generalisation to Other Sliced Wasserstein Orders
In this section, we shall discuss how some of our results can be extended by replacing the 2-SW term
SW2

2 with SWp
p for p ∈ [1,+∞[.

Determining Lipschitz Constants The first difficulty lies in showing that the functions w(p)
θ :=

(X,Y ) 7−→Wp
p(Pθ#X , Pθ#Y ) still have a locally Lipschitz regularity similar to Proposition 1 (this

proposition is only shown for p = 2 in (Tanguy et al., 2023)). We generalise their result in the
following proposition.

Proposition 9. Let K(p)
w (r,X, Y ) := pn(r + ‖X‖∞,2 + ‖Y ‖∞,2)p−1, for X,Y ∈ Rn×dy and r > 0.

Then w(p)
θ (·, Y ) is K(p)

w (r,X, Y )-Lipschitz in the neighbourhood B‖·‖∞,2(X, r):

∀Y ′, Y ′′ ∈ B‖·‖∞,2(X, r), ∀θ ∈ Sdy−1, |wθ(Y ′, Y )− wθ(Y ′′, Y )| ≤ K(p)
w (r,X, Y )‖Y ′ − Y ′′‖∞,2.

Proof. Let X,Y ∈ Rn×dy , r > 0 and Y ′, Y ′′ ∈ B‖·‖∞,2(X, r). By (Tanguy et al., 2023) Lemma 2.1,
we have |w(p)

θ (Y ′)− w(p)
θ (Y ′′)| ≤ ‖C ′ − C ′′‖F , where ‖ · ‖F denotes the Frobenius norm, and C ′ is a

n× n matrix of entries C ′k,l = |θ>y′k − θ>yl|p, with similarly C ′′k,l = |θ>y′′k − θ>yl|p. Now consider the
function

gyl :=
{

Rdy −→ R
y 7−→ |θ>y − θ>yl|p

,

which satisfies C ′k,l = gyl(y′k), and is differentiable almost-everywhere, with ∇gyl(y) = p|θ>y −
θ>yl|p−1θ. For almost every y ∈ B(xk, r), we have

‖∇gyl(y)‖2 ≤ p‖y − yl‖p−1
2 = p‖y − xk + xk − yl‖p−1

2

≤ p (‖y − xk‖2 + ‖xk‖2 + ‖yl‖2)p−1 ≤ p(r + ‖X‖∞,2 + ‖Y ‖∞,2)p−1.

As a result, gyl is p(r+‖X‖∞,2 +‖Y ‖∞,2)p−1-Lipschitz in B(xk, r). Now since Y ′, y′′ ∈ B‖·‖∞,2(X, r),
we have y′k, y′′k ∈ B(xk, r), thus

|[C ′]k,l − [C ′′]k,l| = |gyl(y′k)− gyl(y′′k)| ≤ p(r + ‖X‖∞,2 + ‖Y ‖∞,2)p−1‖y′k − y′′k‖2.

Then ‖C ′ − C ′′‖F =
√∑

k,l |[C ′]k,l − [C ′′]k,l|2 ≤ np(r + ‖X‖∞,2 + ‖Y ‖∞,2)p−1‖Y ′ − Y ′′‖∞,2.

Our results regarding the local Lipschitz property of f and F adapt immediately using the same
method with the different constant K(p)

w (r,X, Y ), we obtain the following constant for f (with L
from Assumption 2):

K
(p)
f (ε, u0, X, Y ) = pnL (εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)p−1 ,

then the following constant for F :

K
(p)
F (ε, u0) = pnL

ˆ
Xn×Yn

(εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)p−1 dx⊗n(X)dy⊗n(Y ).

In order to satisfy Condition 2 item i) in the case p 6= 2, one needs to modify Assumption 4 to require
‖T (u, x)‖2 ≤ g(x)1/(p−1)(1 + ‖u‖2)1/(p−1), which in realistic cases is not much more expensive than
asking for T to be bounded, which is a property of the class of NNs that we present in Section D.
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Almost-Everywhere Gradient A second difficulty lies in defining an almost-everywhere gradient
f , since in our main text we rely on the formulation of an almost-everywhere gradient of w(2)

θ (·, Y )
which was derived only for p = 2 by Bonneel et al. (2015) and Tanguy et al. (2023). In fact, for
θ, Y fixed w(p)

θ (X,Y ) is piecewise smooth, like w(2)
θ (·, Y ) is piecewise quadratic. As a result, one may

show that the following is an almost-everywhere gradient of w(p)
θ (·, Y ):

∂w
(p)
θ

∂X
(X,Y ) =

(
p

n
sign

(
θ>xk − θ>yσX,Y

θ
(k)

) ∣∣∣∣θ>xk − θ>yσX,Y
θ

(k)

∣∣∣∣p−1
θ

)
k∈J1,nK

∈ Rn×dy .

The chain rule now yields the following almost-everywhere gradient for f :

ϕ(u,X, Y, θ) =
n∑
k=1

p

n
sign

(
θ>T (u, xk)− θ>yσT (u,X),Y

θ
(k)

) ∣∣∣∣θ>T (u, xk)− θ>yσT (u,X),Y
θ

(k)

∣∣∣∣p−1 ∂T

∂u
(u, xk)θ.

Adapting Proposition 4 Moving on to adapting Proposition 4, the general case p 6= 2 makes
things substantially more technical, but one may still show that the ψ functions are Lipschitz using
restrictions on T its first and second-order derivatives (which can be formulated in a more technical
version of Assumption 5). In conclusion, Proposition 4 can be adapted to apply to p ∈ [1,+∞[, and
it follows that Theorem 1 also generalises to this case.

Path Differentiability Regarding the results from Section 4, the only substantial difference lies
in showing that T (·, x) is path differentiable. The only missing link in the composition chain is the
path differentiability of E(p) := X 7−→

´
Sd−1 w

(p)
θ (X,Y )d�(θ). In the case p = 2, the difficulty of the

integral can be circumvented by noticing that E is semi-concave (Tanguy et al., 2023), Proposition
2.4, which implies path differentiability. This argument does not generalise to p ∈ [1,+∞[ naturally,
hence our Theorem 2 only generalises to p ∈ [1,+∞[ under the conjecture that E(p) is indeed path
differentiable.
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