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Abstract

Markov Chain Monte Carlo (MCMC) algorithms
do not scale well for large datasets leading to dif-
ficulties in Neural Network posterior sampling.
In this paper, we apply a generalization of the
Metropolis Hastings algorithm that allows us to
restrict the evaluation of the likelihood to small
mini-batches in a Bayesian inference context.
Since it requires the computation of a so-called
“noise penalty” determined by the variance of the
training loss function over the mini-batches, we
refer to this data subsampling strategy as Penalty
Bayesian Neural Networks – PBNNs. Its imple-
mentation on top of MCMC is straightforward,
as the variance of the loss function merely re-
duces the acceptance probability. Comparing to
other samplers, we empirically show that PBNN
achieves good predictive performance for a given
mini-batch size. Varying the size of the mini-
batches enables a natural calibration of the pre-
dictive distribution and provides an inbuilt pro-
tection against overfitting. We expect PBNN to
be particularly suited for cases when data sets are
distributed across multiple decentralized devices
as typical in federated learning.

1 INTRODUCTION

The development of an effective Uncertainty Quantifica-
tion (UQ) method that computes the predictive distribu-
tion by marginalizing over Deep Neural Network (DNN)
parameter sets remains an important, challenging task [1].
Bayesian methods provide the posterior distribution which
can be obtained either from Variational inference or via
Monte Carlo sampling techniques, Markov chain Monte
Carlo (MCMC) generally considered as the gold standard
of Bayesian inference [2]. However, sampling a DNN pa-
rameter space by a Markov chain does not scale well for

large systems and data sets, as it requires the evaluation of
the log-likelihood over the whole data set at each iteration
step. This obstacles the use of Bayesian Neural Networks
(BNNs) posterior sampling in practice. Up to now, MCMC
based BNNs only manage to handle limited sizes of data
sets. Therefore, uninformative priors are commonly used to
prevent overfitting, which on the other hand strongly harm
the predictive performance. A current field of research is
dedicated to developing BNN specific priors as reviewed
by Fortuin (2021) [3].

In this article, we develop a data sub-sampling strategy
for BNN posterior sampling explicitly reducing predictive
overconfidence. This leads us to a variant of MCMC, based
on subsampled batch data, which we refer to as Penalty
Bayesian Neural Network - PBNN. The so-called ”penalty
method” [4] was first developed in the context of statisti-
cal and computational physics e.g. in the work of Pierleoni
et al (2004) [5] to efficiently sample distributions with loss
functions affected by statistical noise.

Naive BNN posterior sampling based on sub sampled data
introduces a strong bias. This issue has already been care-
fully studied in the context of Bayesian inference where
several MCMC sub-sampling methodologies have been
proposed for scaling up the Metropolis-Hastings algorithm
[6, 7, 8]. We show, both theoretically and empirically, that
PBNN enables an unbiased posterior sampling by explic-
itly computing the variance of the loss of a subsampled data
batch.

In the following we first introduce some related works,
especially the Stochastic Gradient Langevin Dynamic
(SGLD) algorithm [9] that confronts the effect of a noise
in the loss computation. We then introduce PBNN as an
unbiased posterior sampling strategy and show its benefits
focusing on its ability to mitigate the predictive overcon-
fidence effects. We then continue by giving some prac-
tical details on how to evaluate both, the noisy loss, and
its uncertainty. We show that PBNN is compatible with
state of the art MCMC proposal distribution for the Markov
chain such as Langevin dynamics and Hybrid Monte Carlo
(HMC) [10]. A benchmark is provided on a data set de-
signed to trigger overfitting. Based on this example, PBNN
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obtains good predictive performance. It includes a natural
calibration parameter in the form of the size of the mini-
batch. Lastly we study the impact of this parameter on the
acceptance and on the overall performance of the model.

2 PRELIMINARIES

In the following we consider a vector θ that describes the
parameters (weights and biases) of a Neural Network. We
define p(θ) as a prior distribution over this set of parame-
ters. Commonly used priors are Gaussian prior and Laplace
prior that correspond respectively to an L2 and a L1 regu-
larization of the vector θ. We refer as p(y|x, θ) the prob-
ability of a data item y given a data item x and parameter
θ. As an example, we aim at sampling the posterior of a
Neural Network designed for a supervised task. The pos-
terior distribution over the parameters given a set of data
can be written as p(θ|D) ∝ p(θ)

∏N
i=1 p(yi|xi, θ) where

D = {(yi, xi)}Ni=1. Up to a constant, the log of the poste-
rior can be written as a loss

LD(θ) = − log p(θ)−
N∑
i=1

log p(yi|xi, θ) (1)

where the last term corresponds to the Negative Log-
Likelihood (NLL). This is an illustrative choice that does
not reduce the generality of PBNN as we could have also
considered an unsupervised setup where D = {(xi)}Ni=1

and LD(θ) = − log p(θ)−
∑N
i=1 log p(xi|θ).

Note that in the following D indicates precisely the ensem-
ble of datum (yi, xi) used for the loss computation LD(θ)
in the equation 1. In particular, this data set can be a sub
sample (mini-batch) of the larger data set containing all
known data points of the training set.

3 RELATED WORK

We introduce in this section some relevant literature that
studied how to take into account a noisy gradient estimate
of ∇θLD(θ) computed from a subset of the data. The link
between noisy gradient and BNN posterior sampling is de-
tailed in section 4.2.

Stochastic Gradient Langevin Dynamics Max Welling
and Yee Whye Teh (2011) [9] showed that the iterates θt
will converge to samples from the true posterior distribu-
tion as they anneal the stepsize by adding the right amount
of noise to a standard stochastic gradient optimization algo-
rithm. This is known as the Stochastic Gradient Langevin
Dynamics (SGLD) where the parameter update is given by

θt+1 = θt − ηt∇θL̃D(θt) +
√

2ηtεt

L̃D(θt) = − log p(θ)− N

n

n∑
i=1

log p(yi|xi, θ)
(2)

where ηt ∈ R+ is a learning rate and εt is a centered nor-
mally distributed random vector. No rejection step is re-
quired for a vanishing step size. The positive whole num-
ber n corresponds to the size of the subsampled mini-batch.
Chen (2014) [11] later extended this idea to HMC sampler.

Noisy Posterior Sampling Bias Due to a potentially
high variance of the stochastic gradients ∇θL̃D(θ), Brosse
(2018) [12] showed that the SGLD algorithm has an invari-
ant probability measure which in general significantly de-
parts from the target posterior for any non vanishing step-
size η. Furthermore, a recent work from Garriga-Alonso
(2020) [13] suggests that recent versions of SGLD imple-
menting an additional Metropolis-Hastings rejection step
do not improve this issue, because the resulting acceptance
probability is likely to vanish too.

Failures of Data Set Splitting Inference Other works
have exploited parallel computing to scale Bayesian in-
ference to large datasets by using a two-step approach.
First, a MCMC computation is run in parallel on
K (sub)posteriors defined on data partitions following
p(θ|D) ∝

∏K
i=1 p(θ)

1/Kp(Di|θ). Then, a server combines
local results. While efficient, this framework is very sensi-
tive to the quality of subposterior sampling as showned by
de Souza (2022) [14].

4 PENALTY BAYESIAN NEURAL
NETWORK

4.1 Unbiased Posterior Sampling

We suppose that the data set points (yi, xi) are sampled
from an unknown distribution p(y, x) that can provide an
infinite number of independent and identically distributed
(i.i.d) random data points. This allows us to properly define
a true unbiased loss L(θ) as the mean over all possible data
sets L(θ) ' LD(θ) with

L(θ) = − log p(θ)−NE(yi,xi)∼p(y,x)[log p(yi|xi, θ)] (3)

given a fixed size N of a random data set D. In order to
sample from this log-posterior, we note that detailed bal-
ance is a sufficient but not necessary condition to ensure
that a Markov process possesses a stationary distribution
proportional to e−L(θ). Concretely, the detailed balance
can be written as

A(θ, θ′)q(θ|θ′)e−∆(θ′,θ) = A(θ′, θ)q(θ′|θ) (4)

where A(θ′, θ) corresponds to the acceptance of the move
from θ to θ′ and q(θ′|θ) is a proposal distribution. The loss
difference writes

∆(θ′, θ) = L(θ′)− L(θ) (5)
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In the following, we assume that the true loss difference
∆(θ′, θ) is unknown, and loss differences can only be esti-
mated based on random data setsD. Then we can introduce
a random variable δ(θ′, θ) providing an unbiased estimator
of ∆(θ′, θ) which we assume as normally distributed

δ(θ′, θ) ∼ N (∆(θ′, θ), σ2(θ′, θ)) (6)

The variance σ2(θ′, θ) typically decreases with the size N
of the random data sets D.

This noisy loss δ(θ′, θ) introduces a bias in the poste-
rior sampling if not correctly taken into account. In the
context of statistical physics and computational chemistry,
Ceperley and Dewing (1999) [4] have generalized the
Metropolis-Hastings random walk algorithm to the situa-
tion where the loss is noisy and can only be estimated.
They showed that it is possible to still sample the ex-
act distribution even with very strong noise by modify-
ing the acceptance probability and applying a noise penalty
−σ2(θ′, θ)/2 to the loss difference in the acceptance ratio
A such that

A(δ, θ′, θ) = min
(

1, e−δ(θ
′,θ)−σ2(θ′,θ)/2

)
(7)

One can then show that detailed balance is satisfied on av-
erage∫

dδA(δ, θ, θ′)q(θ|θ′)N (δ; ∆(θ′, θ), σ2(θ′, θ))e−δ

=

∫
dδA(δ, θ′, θ)q(θ′|θ)N (δ; ∆(θ, θ′), σ2(θ, θ′))

(8)

which is sufficient condition for the Markov chain to sam-
ple the unbiased distribution in the stationary regime. The
penalty method can further be extended to a non symmetric
proposal distribution q(θ′|θ) used in algorithm 1.

Algorithm 1 PBNN Metropolis Adjusted Algorithm
θt ← θ0

for t← 0 to T do
θ′ ∼ q(θ′|θt)
A(δ, θ′, θt)← min

(
1, q(θt|θ

′)
q(θ′|θt)e

−δ(θ′,θt)−σ2(θ′,θt)/2
)

u ∼ U(0, 1)
if u ≤ A(δ, θ′, θt) then

θt+1 ← θ′

else
θt+1 ← θt

end if
t← t+ 1

end for

From equation 7 one can immediately recognize the draw-
back of PBNN leading to an exponential suppression of
the acceptance since the variance σ2(θ′, θ) is always non
negative. Note further, that in the case of BNN posterior
sampling, σ2(θ′, θ) is in general not known either, and can

only be estimated, too. Whereas it is possible to extend
the scheme to account for noisy variances [4], we will not
pursue this here.

Let us stress that the penalty term serves to exactly account
for the uncertainty in calculating the loss L(θ) of equation
3 for a finite number of random data. However, it does not
address the actual uncertainty introduced by settingL(θ) ≈
LD(θ), e.g. equation 3 and equation 1.

4.2 Langevin Dynamic Penalty

Choosing a non symmetric proposal distribution q(θ′|θ)
can speed up the mixing of the Markov Chain and help
PBNN scale to larger systems by maximizing the accep-
tance A(θ′, θ). We first consider the situation where the
proposal distribution depends only on the two states θ and
θ′ and not on any given mini-batch D. In the absence of
noise, the Metropolis-Hastings acceptance writes

A(θ′, θ) = min

(
1,
q(θ|θ′)
q(θ′|θ)

e−∆(θ′,θ)

)
≈ min

(
1,
q(θ|θ′)
q(θ′|θ)

e−(θ−θ′)·(∇θL(θ′)+∇θL(θ))/2

) (9)

where we have Taylor expanded the loss L(θ) around θ′

assuming a sufficiently small step from θ to θ′. The max-
imization of A(θ′, θ) leads to a Langevin equation where
the gradient of the loss introduces a drift in the Gaussian
proposal distribution

q(θ′|θ) = N (θ′; θ − η∇θL(θ), 2η) (10)

Sampling a new state θ′ from the proposal distribution
q(θ′|θ) corresponds exactly to drawing a centered reduced
normal random variable ε, and computing

θ′ = θ − η∇θL(θ) +
√

2ηε (11)

The non-trivial term in the Metropolis-Hastings acceptance
then writes

log

(
q(θ|θ′)
q(θ′|θ)

e−∆(θ′,θ)

)
=
−1

4η

∥∥∥η (∇θL(θ′) +∇θL(θ))−
√

2ηε
∥∥∥2

+
1

4η

∥∥∥√2ηε
∥∥∥2

− L(θ′) + L(θ)

(12)

In order to use a noisy gradient ∇θL(θ) ' ∇θL̃D(θ) as
an approximation of the Gaussian mean’s drift, SGLD [9]
requires a vanishing learning rate to dominate the noise and
maximize the acceptance. On the other hand, one could
design an optimized proposal distribution q(θ|θ′) and set
a non zero step size while computing the full Metropolis-
Hastings acceptance

A(θ′, θ) = min

(
1,
q(θt|θ′)
q(θ′|θt)

e−δ(θ
′,θt)−σ2(θ′,θt)/2

)
(13)
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as shown in algorithm 1. The PBNN’s noise penalty explic-
itly targets the bias introduced by a noisy loss. In fact, in the
equation 13, the corresponding Monte Carlo loss minimiza-
tion (i.e. introducing a zero temperature limit) corresponds
to finding the set of parameters θ that minimizes both the
noisy regularized loss and its associated uncertainty.

For large size models, biased samplers like the Unrestricted
Langevin Algorithm (ULA) are known to be very effec-
tive as they skip the rejection step i.e set A(θ′, θ) = 1 for
a sufficiently small step size η resulting in an unrestricted
Langevin sampling as

θt+1 = θt − η∇θL(θt) +
√

2ηεt (14)

In order to model a noisy estimate of the loss, it is tempting
to replace the drift η∇θL(θt) with an unbiased estimator
such that

η∇θL(θ) = η∇θL̃D(θ) + ησ(θ) (15)

where L̃D(θ) is defined in the equation 2. For a vanishing
step size η → 0, one may then expect that the additional
noise term ησ(θ) gets negligible compared to the random
noise of order η1/2 in the equation 14. However, the uncer-
tainty of the loss gradient σ(θ) does in general not result
in white noise, but is correlated between different parame-
ters θ. For non-vanishing η the noisy loss gradient can thus
trigger a significant departure from the target posterior, see
also [12].

As we will see in the numerical experiments section,
PBNN’s ability to evaluate the likelihood over small mini-
batches even in the presence of a strong noise allows us
to calibrate the Bayesian predictive distribution. This is
especially convenient in comparison with usual BNNs as
the regularization is handled solely by the prior distribu-
tion p(θ). Commonly used uninformative priors can lead
to poor performances as they do not target explicitly over-
fitting but rather the complexity of the model i.e. L2 and L1
penalties. As a reminder, other conventional methods such
as early stopping are not compatible with the Bayesian ap-
proach developed for BNN.

4.3 Noise Penalty Estimation

As showed in equation 7 in the case of a symmetric pro-
posal distribution q(θ′|θ), the energy difference δ(θ′, θt)
has to dominate the always positive variance σ2(θ′, θt)/2 in
order to obtain a reasonable acceptance A(δ, θ′, θt). How-
ever, in practice a noise penalty usually strongly dominates
any gain in energy from θt to θ′ if the energy difference is
computed only on a single small mini-batch D. This leads
to an exponentially suppressed acceptance and long corre-
lation times of the MCMC.

To prevent this situation, we define δ(θ′, θ) as an empirical

average over the loss difference

δ(θ′, θ) =
1

M

M∑
j=1

(
LDj (θ′)− LDj (θ)

)
(16)

where Dj corresponds to randomly chosen mini-batches.
By definition the average is an unbiased estimator such that
E[δ(θ′, θ)] = ∆(θ′, θ). We notice that the central limit
theorem ensures that δ(θ′, θ) is normally distributed in the
limit of large M as required by equation 6.

The variance of the random variable δ(θ′, θ) strictly
decreases with the number of mini-batches M since
σ2(θ′, θ) = σ2

D(θ′, θ)/M where σ2
D corresponds to the ex-

pected variance of a single loss difference computed over a
mini-batch D. Both σ2

D and σ2 are unknown, but we can
compute an estimate of σ2(θ′, θ) ' χ2(θ′, θ) using an un-
biased chi-squared estimator

χ2(θ′, θ)

=
1

M(M − 1)

M∑
j=1

(
LDj (θ′)− LDj (θ)− δ(θ′, θ)

)2
(17)

In the following, we do not take into account the error over
the estimation of the variance σ2(θ′, θ) which corresponds
to the hypothesis that variations of χ2 as a function of θ′

and θ largely dominate over the noise. Leading order cor-
rections in this noise are discussed in [4].

A second approximation can be introduced in case of a lim-
ited access to the data: drawing M mini-batches with re-
placement artificially decreases the variance at the cost of
introducing a bias (i.e. violates the i.i.d. hypothesis of the
energy differences).

5 EXPERIMENTS

5.1 Data Set

We study the performance of PBNN on a synthetic data
set that contains the positions of a double pendulum over a
simulated time t. These positions are obtained by integrat-
ing Euler-Lagrange equations casted as ordinary differen-
tial equations. We turn a time series forecasting problem
into a supervised regression task. We model the distribu-
tion p(y|x) where y ∈ R4 corresponds to the four Cartesian
coordinates of the two masses of the double pendulum and
x ∈ R4∗5 are 5 given y past positions of the masses. The
data set D = {(yi, xi)}Ni=1 inputs xi write

xt ≡ (yt−20, ..., yt−24) (18)

where t is the discrete simulation time. The system is
strongly chaotic such that learning on a given limited data
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set can lead to strong predictive overconfidence as sug-
gested in figure 1. We thus expect the noise penalty to play
an important role on the realization of a supervised task
based on this data set.

The code that generates the double pendulum dataset is
available following this link: https://gitlab.com/
eijikawasaki/double-pendulum

Figure 1: Pendulum data set extracts from a single simula-
tion run. The blue curve corresponds to one of the Carte-
sian coordinates of one of the masses in function of time.
As an example, the behavior on the bottom (part of the test
data set) is hard to predict knowing only the data from the
top (part of the training data).

5.2 Benchmark setup

The goal of this section is to compare the performances between
PBNN and other BNN that do not include any noise penalty. We
show empirically that the PBNN obtains good predictive perfor-
mances even while evaluating the loss on small mini-batches and
therefore introducing a strong noise. On the other hand, as ex-
pected PBNN has a much lower MCMC acceptance rate. We also
compare the PBNN to SGLD which is designed to take into ac-
count a stochastic noise in the loss computation.

In the following, we sample the posterior based on MCMC ran-
dom walkers where q(θ′|θt) is a symmetric proposal density. We
use a Gaussian distribution centered around θt and adjust its vari-
ance to ensure the ergodicity of the Markov process. We model
the data distribution with a single multivariate Gaussian likeli-

hood p(y|x, θ) = N (y;µθ(x),Σ2
θ(x)) where µθ(x) ∈ R4 and

Σ2
θ(x) is a positive diagonal covariance matrix parameterized by

σ2
θ,d(x) where d ∈ {1, 2, 3, 4}. This model is thus heteroscedas-

tic: we use a Mixture Density Network [15] such that both µθ(x)
and Σ2

θ(x) are outputs of a neural network that takes x as an in-
put. We observe empirically that a homoscedastic model based
on a Mean Squared Error loss has a noise penalty that is several
orders of magnitude smaller than its heteroscedastic counterpart.

The loss of a NN is known to have numerous local minima and
we don’t use in the experiment any transition kernel for PBNN de-
signed to jump between separate minima. We thus limit our study
on the impact of the penalty method on a relatively small model
that is easier to sample. The dimension of the vector parameter
θ is equal to 419 as we consider a NN with 2 hidden layers each
containing 10 neurons. The data consists in 9975 data points se-
quentially (i.e. not randomly) split into a 2992 points as a training
data and 6983 points as a test data set. We use a Gaussian unin-
formative prior p(θ) ∝ e−λ‖θ‖

2
2 corresponding to a tiny L2 regu-

larization of the NN parameters of magnitude λ = 10−5. During
the posterior sampling, only the training data is used in order to
compute the loss LD(θ) and thus both δ(θ′, θ) and χ2(θ′, θ).

The performance of the prediction (based on the inferred param-
eters θ sampled from the posterior) is measure by the the average
Negative-Log-Likelihood (NLL) that we define as

NLLD = − 1

L

L∑
i=1

log

(
1

J

J∑
j=1

p(yi|xi, θ(j))

)
(19)

where the data set D of size L corresponds either to the train or
the test sets. θ(j) are J i.i.d. samples of the MDN parameters
obtained from the Markov chain. Note that this measure should
not depend on θ since the MDN prediction is marginalized over
the posterior parameters distribution.

The mini-batch size N in equation 1 determines the target poste-
rior distribution that is sampled and therefore changes the value of
NLLD . For a constant uninformative prior, decreasing N corre-
sponds to increasing the variance of the predictive function. This
is a straightforward consequence of Bayes theorem using an un-
informative Gaussian prior with a huge variance. In order to com-
pare the performances of the prediction of a BNN and a reference
standard ”vanilla” BNN that does not use mini-batches, we com-
pute one-sigma confidence intervals as drawn in the figure 2. As
an example, we compare them to a Gaussian predictive distribu-
tion and target an expected coverage of approximately 68.2%. To
check the accuracy of the UQ method, we compute the Average
Coverage Error (ACE) defined in the equation 20.

ACE =

∣∣∣∣∣68.2%− 1

4L

L∑
i=1

4∑
d=1

ρi,d

∣∣∣∣∣ with ρi,d =

{
1 if yi,d ∈ [µ∗d(xi)− σ∗d(xi), µ

∗
d(xi) + σ∗d(xi)]

0 otherwise
(20)

where µ∗d and σ∗d are the mean and the standard deviation in one
of the four dimension d of the empirical predictive distribution as
defined in equation 21.

5.3 Numerical Results

From table 1 we empirically show that PBNN achieves a better
overall performance than other biased sub sampled models for
a small mini-batch size. As an illustration, figure 2 shows the
error bars of the prediction over a random period of time for each

model. The empirical predictive distribution is defined as

E[p(yt|xt, θ)] '
1

J

J∑
j=1

p(yt|xt, θ(j)) (21)

where t is the simulated time and θ(j) are J samples obtained by
the MCMC computation. The expected value in the equation 21
is computed over the targeted posteriors which are different for
every model studied in the benchmark.

It is important to note here that even for a same likelihood weight

https://gitlab.com/eijikawasaki/double-pendulum
https://gitlab.com/eijikawasaki/double-pendulum
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Table 1: Performance benchmark. The top and bottom groups of models correspond to the predictive performance based
on a likelihood weight corresponding respectively to N = 2992 and N = 60.

Model Test NLLD Train NLLD Test ACE

Vanilla BNN −4.11± 0.01 −5.36± 0.01 7.1%± 0.3%

Tempered BNN −1.96± 0.08 −2.05± 0.10 3.9%± 1.1%
Batched BNN −1.68± 0.17 −1.74± 0.19 1.7%± 1.6%
pseudo-SGLD −2.35± 0.10 −2.48± 0.11 4.8%± 0.8%
PBNN -3.91±0.07 -4.83±0.09 0.4%± 2.3%

Figure 2: Models predictions over a test data set example extract. The blue line corresponds to one of the Cartesian
coordinate of one of the two masses. Mean models predictions are in red and one standard deviation regions are plotted
in grey. The horizontal axis corresponds to the the simulated time t. The four figures from top to bottom correspond
respectively to the models: Tempered BNN, Batched BNN, pseudo-SGLD and PBNN.

N in the Bayes theorem, we do not expect the same prediction be-
tween models that use the whole train set, like ”vanilla” BNNs and
the PBNN as they do not target the same posterior sampling. The
vanilla BNN samples a posterior proportional to e−LD(θ) whereas
PBNN aims at sampling a posterior proportional to e−L(θ) where
L(θ) is the loss expected for a given size N of mini-batch D as
defined in the equation 3.

Vanilla BNN We call this first model ”vanilla” as it corre-
sponds to a standard MCMC random walk based BNN with no
mini batches. Vanilla BNN’s acceptance writes A(θ′, θt) =

min(1, e−LD(θ′)+LD(θt))) where D contains all the 2992 avail-
able train data points. This model thus uses the whole train set to
compute the loss difference for each new proposed state θ′. Note
that Langevin algorithms such as MALA or HMC all sample the
same posterior. The only difference with this model is in their ef-
ficiency as they are designed to maximize the MCMC acceptance
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and the ergodicity of the Markov Chain.

The ACE is approximately zero on the training set and signifi-
cantly different from zero on the test data set. In the limit of a
single mini-batch containing all the training data set, the PBNN
coincides with this model. In the following we aim at calibrating
the PBNN predictive prediction while maintaining good predic-
tive performances.

Tempered BNN In order to provide a comparison between
the usual ”vanilla” BNN and a PBNN, we adjust the likelihood
weight following

− log p(θ)− N

2992

2992∑
i=1

log p(yi|xi, θ) (22)

Indeed, we balance the loss to be equal to PBNN’s likelihood that
uses mini-batches with N = 60. This adjusted weight over the
likelihood corresponds to the Safe Bayes approach where we vary
the weight of the likelihood thanks to a temperature T following
p(D|θ)1/T as discussed by Wilson (2020) [16]. In our case T > 1
is known to help under model misspecification as it is the case in
the double pendulum Gaussian prediction example.

The resulting temperature T = 2992/60 is however such a high
temperature that the prior regularization dominates the likelihood
for this model. The resulting predictive performance is unsatis-
factory as shown in the table 1.

Batched BNN The acceptance for this model is defined as
A(δ, θ′, θt) = min(1, e−δ(θ

′,θt)) with δ(θ′, θt) computed with
M = 100 and N = 60. The number of mini-batches used by this
model is the same as the number used by the PBNN for a fair com-
parison. The only difference with the PBNN model is the noise
penalty e−χ

2(θ′,θt)/2 in the acceptance. Table 1 therefore demon-
strates the impact of the penalty method, strongly improving the
overall performance of the model.

pseudo-SGLD The SGLD algorithm is designed to naturally
take into account noise from sub-sampled data. Standard SGLD
with a weight N = 2992, i.e. the number of training samples, in
equation 2 leads to results that are similar to the Vanilla BNN both
in terms of negative loglikelihood and coverage. In this bench-
mark we want to test the ability of the algorithm to handle a noisy
loss. We therefore set N = n = 60 with a constant learning rate
η = 10−5 and call the resulting model a pseudo-SGLD. Com-
paring to PBNN, we observe in both table 1 and figure 2 that the
noise is too high for the SGLD in this setup. The performance
of SGLD could probably be improved by decaying the step size η
polynomially as suggested in the literature [9]. As a reminder, this
model has the great advantage of not requiring a rejection step.

PBNN The noise penalty is estimated following equations 16
and 17 withM = 100 andN = 60. The random walk acceptance
for PBNN writes

A(δ, θ′, θt) = min
(

1, e−δ(θ
′,θt)−χ2(θ′,θt)/2

)
We have adjusted by hand the mini-batch size N = 60 in order to
calibrate the models to optimize the test data set coverage.

There is a noticeable gap of PBNN’s performance between the
train and the test data sets that is not intuitively described in the
theory of PBNN. This overfitting is probably caused partially by
the access to a limited amount of data. Indeed, during the Monte
Carlo sampling, all mini-batches D are part of the same training

data and not i.i.d. sampled from a probability distribution p(D).
In an ideal situation where we could evaluate both δ and χ2 from
i.i.d. samples D ∼ p(D) as required by the equations 16 and 17,
we expect a lower overfitting effect.

5.4 Mini-Batch Size N

For the purpose of the benchmark we have calibrated PBNN error
bars in the table 1 by tuning the mini-batch sizeN . One can won-
der what is the optimal value ofN in a general purpose outside the
scope of calibration and for a given data set size. Figure 3 shows
that, as expected, the prediction performance measured as the neg-
ative loglikelihood NLLD over the test data set increases with N .
On the other hand, the acceptance rapidly drops because the num-
ber of mini-batches M in equation 17 decreases for a constant
data set size. In the figure 3 we indeed notice a linear decrease of
the log-acceptance due to the decrease of the number of available
mini-batches M . The optimal value of N is therefore a trade-off
between reasonable acceptance and good predictive performance.
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Figure 3: PBNN performance measured by NLLD over
the test data set, acceptance in base log10 and one sigma
coverage in function of the mini-batch size N for a con-
stant prior. The standard deviation continuously decreases
in function of the batch size. We notice however that the
coverage is not monotonous: it is determined by both the
error bars size and by the loglikelihood.

It is important to note in the figure 3 that different batch sizes
result in different coverages for a constant uninformative prior.
As we have shown the PBNN predictive distribution can be cali-
brated. In practical setups as discussed by Hermans (2021) [17], it
is recommended to compare the expected coverage probability of
the predictive distribution defined in equation 21 to the empirical
coverage probability as shown in the equation 20.

6 CONCLUSION

Uncertainty quantification for the predictions of large size neural
networks remains an open issue. In this work, we have shown a
new way to enable data sub-sampling for Bayesian Neural Net-
work independent from gradient based approximation such as
Stochastic Gradient Langevin Dynamic.

First, we have demonstrated that a raw estimation of the like-
lihood based on a noisy loss introduces a bias in the posterior
sampling if not taken into account. We then have shown that a
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generalization of the Metropolis Hastings algorithm allows us to
eliminate the bias and to exactly sample the posterior even with
very strong noise. This necessitates an additional ”noise penalty”
that corresponds to the variance of the noisy loss difference and
exponentially suppresses the MCMC acceptance probability.

In practice, the noise penalty corresponds to replacing a single
large data set by multiple smaller sub sampled mini batches asso-
ciated with an uncertainty over their losses. We have shown how
to interpret this term as a regularization. Varying the size of the
mini-batches enables a natural calibration that we have compared
to other techniques such as tempered Safe Bayes approaches.

Based on this calibration principle, we have provided a bench-
mark that empirically showed good predictive performances of
PBNNs. We hope that combining data sub-sampling with other
Monte Carlo acceleration techniques such as HMC could allow to
compute uncertainties for model sizes not reachable until now.

Lastly, PBNN could be particularly suited in the case when the
data sets D are distributed across multiple decentralized devices
as in the typical federated learning setup. Indeed, the noise
penalty is determined by the variance of the losses computed on
each individual data set. In principle, PBNN should enable the
possibility to compute uncertainty with separate data sets without
exchanging them.
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