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We discuss the methodology of quantum Monte Carlo calculations of the effective mass based on
the static self energy, Σ(k, 0). We then use variational Monte Carlo calculations of Σ(k, 0) of the
homogeneous electron gas at various densities to obtain results very close to perturbative G0W0

calculations for values of the density parameter 1 ≤ rs ≤ 10. The obtained values for the effective
mass are close to diagrammatic Monte Carlo results and disagree with previous quantum Monte
Carlo calculations based on a heuristic mapping of excitation energies to those of an ideal gas.

PACS numbers:

Landau’s Fermi liquid theory [1] has provided a
paradigmatic frame for the phenomenological descrip-
tion of equilibrium and transport properties of degen-
erate fermions in terms of a very few characteristic pa-
rameters. Silin [2] has provided the path to generalize
for long-range forces, in order to extend it to normal
metals in condensed matter [3, 4]. Although the formal
structure of the underlying microscopic theory has been
known for a long time [5–7], most explicit calculations of
the Fermi liquid parameters rely on approximative, per-
turbative schemes [8, 9]. As diagrammatic perturbation
theory is not expected to converge for typical electronic
densities, basic Fermi liquid parameters of the 3D homo-
geneous electron gas (jellium), such as the effective mass
m∗ and the renormalization factor Z, are sensitive to the
underlying approximation [10].

Recently, variational diagrammatic Monte Carlo calcu-
lations (VDiagMC) [11, 12] for 3D jellium have been per-
formed to include and control higher order terms of the
perturbation series. Those calculations found an over-
all reasonable agreement for Z with previous quantum
Monte Carlo calculations (QMC) [13]. However, VDi-
agMC results on m∗ have been strongly questioned by
QMC calculations of Ref. [14] yielding substantially dif-
ferent values.

In this paper, we revisit the methodology of zero tem-
perature QMC calculations of the effective mass, in or-
der to resolve the discrepancy between QMC and per-
turbative/VDiagMC results, show how such calculations
can be done and provide new results for 3D Jellium. In
principle, the effective mass can also be calculated from
the temperature dependence of thermodynamic quanti-
ties [15, 16], e.g. from finite-temperature path-integral
results [17–19]; finite temperature methods will not be
discussed here. In contrast to systems with short range
interaction [20], size corrections are expected to play an
important role for charged systems [21] as explained in
detail below.

Landau energy functional. Landau [1] phenomenologi-

cally characterized the low energy excitation of a Fermi
liquid by assuming a one-to-one correspondence of states
of the ideal Fermi gas and those of the interacting system,
such that elementary excitations of the interacting sys-
tems are still described in terms of ideal gas occupation
numbers before adiabatically switching on the interac-
tion. Changes of the total energy, δE, can then be con-
sidered as a functional of changes in the quasi-particle
occupation number δnpσ of the momentum p and spin
quantum number σ

δE =
∑

pσ

(εp + µ)δnpσ +
1

2V

∑

pσ,p′σ′

f(pσ, p′σ′)δnpσδnp′σ′

(1)
Here, µ is the chemical potential, εp = (p − pF )pF /m

∗

is the quasiparticle energy which determines the effective
mass for momenta in the vicinity of the Fermi momen-
tum, pF , and f(pσ, p′σ′) is the quasi-particle interaction,
independent of volume, V , to leading order. Here, and
in the following, we assume a homogeneous system with
isotropic Fermi surface.

The success of Landau’s Fermi liquid theory started
with its application to strongly interacting quantum liq-
uids [22]. Postulating an entropy functional in terms of
quasi-particle occupations, non-trivial predictions could
be made using only a few parameters, notably the ef-
fective mass as a coefficient of the quasi-particle energy
εp.

Fermi liquid behavior results from the assumption of
certain analytical properties of fundamental correlation
functions [7], notably the existence of a Fermi surface [6]
defined by the sharp discontinuity Z of the momentum
distribution at zero temperature, and the effective mass
m∗ obtained from the dispersion of the quasi-particle
peak of the spectral function.

Both quantities, Z and m∗, can thus be operationally
defined from the single particle Greens function, conve-
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niently expressed in Fourier space,

G(k, z) = G+(k, z) +G−(k, z) (2)

G±(k, z) =
∑

n

|〈EN±1
n |a†k|EN0 〉|2

z − (±(EN±1
n − EN0 )− µ)

(3)

where |ENn 〉 denotes the nth eigenstate with energy ENn
of the N -particle system. The self energy Σ defined as

G−1(k, z) = z + µ− k2/2m− Σ(k, z) (4)

captures all effects of interactions where m is the bare
mass. The Fermi surface is then determined from
G−1(kF , 0) = 0, or µ = k2

F /2m + Σ(kF , 0). Its ana-
lytic structure close to the singularity determines Fermi
liquid behavior. Under quite general assumptions the
self-energy of the infinite system allows an expansion [7]

Σ(k, z)− Σ(kF , 0) = (k − kF )∂kΣ(kF , 0) + z∂zΣ(kF , 0)
(5)

up to corrections of order k2 and z2 log z. The singular-
ity dominating the Green’s function close to the Fermi
surface is then

G(k, z) ∼ Z

z − (k − kF )kF /m∗
(6)

with

Z−1 = 1− ∂zΣ(kF , 0) (7)

m

m∗
= Z

(
1 +

m

kF
∂kΣ(kF , 0)

)
(8)

giving rise to a well defined quasi-particle behavior of
strength Z and energy (k − kF )kF /m

∗. Since G(k, 0)
changes sign at k = kF , the singularity of the Green’s
function close to the Fermi surface is entirely contained
in either G+(k, z) or G−(k, z). The real-time spectral
function is obtained by approaching the real axis using
z = iω + ηk where ηk = +0 (−0) for k > kF (k < kF ).

Landau’s energy functional may then be identified with
the quasi-particle energies of the single particle propa-
gator [4, 6], providing a microscopic expression for the
quasi-particle occupation number [4, 7]. As knowledge
of the quasi-particle energy is explicitly required and its
definition involves off-diagonal matrix elements in the en-
ergy eigenstate representation, this definition is purely
formal and has not been of much practical use. How-
ever, it provides a strong indication that Landau’s quasi-
particle occupation number may not be expressible as
a simple static observable whose value can be deter-
mined from a single energy eigenstate. Only in the limit
k → kF , does the quasi-particle energy approximate an
exact energy eigenstate up to corrections of the order
of the inverse lifetime [7], provided the thermodynamic
limit is taken first.

Both, Z and m∗, can be obtained from static observ-
ables at zero temperature. The value of the renormal-
ization constant Z can be read off from the jump in the

momentum distribution [13], whereas Σ(k, 0) can be ob-
tained from the static response to an external perturba-
tion ξ(ak+a†k) as we will show below. Together they can
be used to calculate m∗ very near to the Fermi surface.

Landau’s Fermi liquid theory successfully describes
thermal equilibrium or hydrodynamic transport observ-
ables [22], i.e. bulk properties. The form of Landau’s en-
ergy functional, Eq. (1), assures that its energy changes
with respect to variation of the quasi-particle occupations
are to first order additive, with corrections from a small,
∼ 1/V , pairwise interaction. Although these energy vari-
ations can be mapped to variations of the unperturbed
ideal gas propagator within adiabatic perturbation the-
ory [7], they cannot, in general, be mapped to the exact
excited energy eigenstates of the interacting system.

The microscopic theory maps them to the single parti-
cle quasi-particle spectrum, characterized by the emerg-
ing pole in the exact interacting propagator, Eq. (6),
when approaching the real axis, z = iω + ηk with
ηk → ±0. However, for any finite system, the exact
Green’s function, Eq. (2) is a highly irregular function
on the real axis; a smooth function can only be expected
a finite distance from the real axis, |ηk| ' kF 2π/(mL).
Instead, the effective mass formula, Eq. (8), involves only
static quantities with z = 0 and are well defined on the
real axis, even before the thermodynamic limit is per-
formed. Their calculations may still suffer from impor-
tant finite-size effects [21], but numerical extrapolations
will eventually converge to the infinite system size values.

Considering the generalized Hamiltonian H̃ =∑
N (HN−µN), an external perturbation ξ(ak+a†k) cou-

ples the ground state of the N particle systems to excita-
tions containing N ±1 particles. From time-independent
perturbation theory, restricting to states |E+〉 within the
subspace of N and N+1 particles, the perturbed ground
state up to linear order in ξ can be written as

|E+
k (ξ)〉 = |EN0 〉 − ξ

∑

n

|EN+1
n 〉〈EN+1

n |a†k|EN0 〉
EN+1
n − EN0 − µ

(9)

yielding the energy to second order in ξ:

E+
k (ξ) = EN0 + µ− ξ2

∑

n

|〈EN+1
n |a†k|EN0 〉|2

EN+1
n − EN0 − µ

. (10)

Similarly E−k is the ground state of the perturbed Hamil-
tonian restricted to the N and N − 1 subspaces. The
Green’s functions are determined by comparing with the
Lehmann representation, Eq. (2),

G±(k, 0) = lim
ξ→0

[
±(E±k (ξ)− EN0 )− µ

]
/ξ2. (11)

Upper bounds to the ground state energies E±k can be
obtained with a variational ansatz for |E±k 〉 and mini-
mizing the expectation value of the perturbed Hamilto-
nian with respected to variational parameters. Although
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FIG. 1: Static self-energy for various densities (rs) using back-
flow (BF) trial wave functions and GC-TABC simulations for
N = 38 electrons. They include size corrections. The color
lines are from G0W0 calculations.

technically a little bit more involved, calculations of the
static Green’s function is thereby reduced to a static re-
sponse function, analogous to calculations of the den-
sity response [23] previously employed using ground state
Monte Carlo methods.

Quantum Monte Carlo calculations. Let us now turn
to the calculation of the static single-particle Green’s
function via quantum Monte Carlo methods, focusing on
G+(k, 0). For that, we minimize the energy E+

T (ξ) of the

generalized Hamiltonian H̃ using a trial wave function,
|ΨT (ξ)〉, in the Fock space of N and N + 1 particle wave
functions providing an upper bound for E+

k (ξ).

Assuming that ξ is sufficiently small, the trial wave
function can be expanded as

|ΨT (ξ)〉 = |ΨN
0 〉+ ξ

M∑

i=1

αi|ΨN+1
i 〉 (12)

with M the number of states in the basis. It couples
the ground state wave function |ΨN

0 〉 of the N particle
system (or our best variational ground state wave func-
tion) with different wave functions |ΨN+1

i 〉 of the N + 1
particle states of total momentum corresponding to k.
The variational parameters are the set {αi}. A minimal
choice consists in choosing M = 2, with |ΨN+1

1 〉 as a
candidate for a pure excited state wave function, mini-
mizing separately the excited state energy EN+1

k in the

N + 1 section of momentum k, and |ΨN+1
2 〉 ∼ a†k|ΨN

0 〉;
this should maximize the overlap matrix elements of the
perturbation with the ground state.

Minimizing with respect to α1, α2 in the limit of ξ → 0,
we obtain a variational approximation for the Green’s
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FIG. 2: Static self-energy for rs = 10 using SJ-VMC trial
wave functions for simulations with periodic boundary con-
ditions (PBC) and GC-TABC for various sizes ranging from
N = 38 to N = 162, size corrected according to Eq. (17),
the line is a fit to the data. The inset shows the uncorrected
values for N = 38 and N = 162 (PBC), the lines indicate the
size corrections of the fit based on Eq. 17).

function in the particle excitation sector

G+
µ (k, 0) = −ζ

2
1ε22 − 2ζ1ζ2ε12 + ζ2

2ε11

ε11ε22 − ε2
12

(13)

with εij = 〈ΨN+1
i |HN+1 − EN0 − µ|ΨN+1

j 〉 (14)

ζi = 〈ΨN+1
i |a†k|Ψ

N
0 〉 (15)

where we have assumed normalized wave functions, e.g.
〈ΨN±1

i |Ψ±i 〉 = 1, with overall phases such that all matrix
elements are real.

An analogous calculation in the hole sector yields
G−µ (k, 0) from a variational calculation based on super-
position of the lowest energy state for a hole excita-
tion and ak|ΨN

0 〉. Thus, the static Green’s function
Gµ(k, 0) = G+

µ (k, 0) +G−µ (k, 0) is determined.
So far, the chemical potential, µ, entering as a pa-

rameter in G±µ , has not been specified yet. Since single
particle excitation are gapless in the Fermi liquid, the
chemical potential can be fixed by the implicit equation
limk→kF G

−1
µ (k, 0) = 0.

Finite size effects. Our Quantum Monte Carlo calcu-
lations are done for finite number of electrons N confined
in a periodic cube of side L and volume V = L3. Calcula-
tions must be extrapolated to the thermodynamic limit.
Shell effects in the single particle energy spectrum and
the Coulombic interaction represent the main source of
finite size effects [24].

Shell effects can be addressed by twisted boundary con-
ditions [25] corresponding to a shifted grid calculation in
momentum space. Using grand-canonical twist averaging
(GC-TABC) [26] we obtain a sharp Fermi surface. We
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spherically average G±µ (k, 0) for any k using 32 equally
weighted points that exactly integrates all polynomials
on the sphere up to the eighth order [27, 28].

Although GC-TABC allows us to obtain G±µ (k, 0) for
arbitrary k, size effects due to intrinsic two-body effects
remain. In charged systems, these are dominated by the
long-range Coulomb interaction [29]. In particular, zk
and nk are expected to suffer from important size effects
[13] of order 1/L. Instead of addressing them directly
which necessitates a thorough investigation as a function
of L and k, we will determine the exact leading order form
of the corrections from a diagrammatic analysis based on
Fermi liquid theory [7]. Following Ref. [21], within the
RPA approximation, δΣ(k, 0) = Σ∞(k, 0) − ΣN (k, 0) is
given by

δΣ(k, 0) ' −
∫ π/L

−π/L

d3q

(2π)3

∫ ∞

−∞

dν

(2π)

vq
ε(q, iν)

1

iν + µ− ε0
k+q

(16)
where vq = 4πe2/q2 is the Coulomb interaction, ε0

k =
~2k2/2m, and the integral is restricted to a cube with
|qα| < π/L for any spatial component (α = x, y, z). Due
to this restriction, we can use the expression ε(q, ω) '
1 − ω2

p/ω for the dielectric function, where ωp is the
plasma frequency. Since, the dominant contribution to
the integral stems from the finite values of ω = iν, substi-
tuting this limiting form for the dielectric function cap-
tures the exact behavior in the limit of small q. The
resulting integration then gives

δΣ(k, 0) = C
ε0
k − µ

ωp + |ε0
k − µ|

(17)

with C ' 1.22 e2/L. One can show that Eq. (17) is indeed
exact not only within RPA, if ε0

k − µ is replaced by the
exact single particle energies (k−kF )kF /m

∗. This occurs
since irreducible vertex corrections approach 1/Z in the
limit of vanishing momentum transfer at fixed frequency
[7] and exactly cancel against the quasiparticle weight of
the exact propagator replacing the non-interacting prop-
agator in the RPA expression.

Results and discussion. We have performed VMC cal-
culations for the 3D homogeneous electron gas based on
analytical Slater-Jastrow (SJ) and Slater-Jastrow back-
flow (BF) wave functions [30] as used in a previous study
on the renormalization factor [13]. Its density, n, is
parametrized by rs ≡ a/aB , where aB is the Bohr ra-
dius and a = (4πn/3)−1/3 is the mean electron distance.
Details of the VMC procedure are given in the Supple-
mentary Material.

In Figure 2 we illustrate the importance of size ef-
fects at rs = 10, comparing canonical simulations with
periodic boundary conditions (PBC) from system sizes,
N = 38 to 114 using SJ wave functions. Although, the
bare curves seem to indicate only small variations with
size, the size corrected curves based on the analytical for-

rs method Z mk−1
F ∂kΣ m∗/m

1 BF-VMC 0.86(1) [13] 0.170.18
0.15(1) 1.001.01

0.99(1)

SJ-VMC 0.894(9) [13] 0.170.18
0.15(1) 0.960.97

0.95(1)

G0W0 (RPA) 0.859 [31] 0.200 0.970 [10]

VDiagMC [12] 0.8725(2) 0.200(1) 0.955(1)

2 BF-VMC 0.78(1) 0.3090.361
0.280(6) 0.981.00

0.94(1)

SJ-VMC 0.82(1) 0.300.31
0.28(2) 0.940.95

0.93(2)

G0W0 (RPA) 0.768 [31] 0.313 0.992 [10]

VDiagMC [12] 0.7984(2) 0.328(4) 0.943(3)

4 BF-VMC 0.65(1) 0.5380.549
0.530(7) 1.001.01

0.99(2)

SJ-VMC 0.69(1) 0.550.45(2) 0.941.00(2)

G0W0 (RPA) 0.646 [31] 0.490 1.039 [10]

VDiagMC [12] 0.6571(2) 0.528(5) 0.996(3)

5 BF-VMC 0.59(1) 0.560.65(1) 1.091.03(3)

SJ-VMC 0.61(1) 0.6100.624
0.596(9) 1.021.03

1.01(2)

G0W0 (RPA) 0.602 [31] 0.569 1.059 [10]

10 BF-VMC 0.41(1) 0.900.98
0.88(2) 1.281.30

1.23(3)

SJ-VMC 0.45(1) 0.971.03
0.91(3) 1.131.16

1.09(3)

G0W0 (RPA) 0.45 [31] 0.98 1.13

TABLE I: Our QMC results with backflow (BF) and Slater-
Jastrow (SJ) trial functions as compared to those of G0W0

(RPA) and variational diagrammatic Monte Carlo (VDi-
agMC) [12, 32, 33]. Upper and low indices indicate system-
atic errors assuming different fitting functions/ranges to de-
termine ∂kΣ(kF , 0).

mula above show that the bare curves for such small sys-
tems are still very far from reaching the thermodynamic
limit. Due to the slow decay ∼ L of the corrections, we
have not attempted any numerical extrapolation of the
curves,. Extrapolation is more difficult for smaller values
of rs since variations are masked by the larger stochastic
error.

In Figure (1) we compare our size corrected results
from BF-VMC calculations using grand-canonical twist
averaging to perturbative G0W0 results. Even though
rs = 10 is thought to be far outside the range of valid-
ity of a perturbative approach our QMC results indicate
only small modifications in the whole range rs ≤ 10; dif-
ferences are hardly visible on the figures.

In contrast to Z, perturbative calculations of
∂kΣ(kF , 0) seem to be much less sensitive to the under-
lying approximation scheme, e.g. self-consistency and
vertex corrections [34, 35]. We do not believe that the
quantitative agreement of the static self energy between
QMC and G0W0 is a result of fortuitous error cancella-
tions.

In order to deduce the effective mass, we have fit-
ted our QMC results for Σ(k, 0) around kF to obtain
∂kΣ(kF , 0). In table I we summarize our results based
on size corrected GC-TABC calculations for N = 66 SJ
and N = 54 BF wave functions. We see that the de-
crease of Z competes with the increase of ∂kΣ(kF , 0),
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resulting in values of m∗/m very close to one. However,
since mk−1

F ∂kΣ(kF , 0) remains smaller than one even at
rs = 10, the lowering of Z with increasing rs eventually
dominates the effective mass and m∗ clearly increases for
rs & 4.

Similarly to Z, the change from the SJ trial function
to more accurate BF trial functions reduces ∂kΣ(kF , 0)
by a small amount, slightly larger than our statistical
resolution. This provides a rough estimate of the bias
due to the trial wave function. Since our approach is
variational, we expect that the our results provide upper
bounds to ∂kΣ. In addition, more correlated wave func-
tions tend to lower the values of Z [13, 36], so that our
results for m∗ are likely lower bounds. Future studies
based on iterative backflow and machine learning wave
functions [36–38] can be used to further reduce the wave
function bias.

Our results are in rather good agreement with pertur-
bative G0W0 calculations [10, 31] and more recent vari-
ational digrammatic Monte Carlo calculations including
higher order diagrams [12, 32]. They are at variance with
previous QMC calculations [14] of m∗ which are based on
a heuristic mapping of excitation energies to the ideal gas
and not on the properties of the single particle Green’s
function. As we have reviewed above, the use of Landau’s
energy functional to determine Fermi liquid parameters
from the excitation spectrum of finite systems is highly
problematic. The comparison with those results is fur-
ther detailed in the Supplementary Material.

The quantitative agreement between two methodologi-
cally and numerically different methods, real space QMC
and VDiagMC, is highly encouraging. Comparisons with
high precision measurements, as already done in solid
sodium [39] and lithium [40, 41] for the renormalization
factor, Z, can now be extended to the band width and
effective mass.

The authors acknowledge support from the Fondation
Nanosciences de Grenoble. DMC is supported by the
U.S. Dept. of Energy, CMS program DE-SC0020177.
M.H. thanks Saverio Moroni for many valuable discus-
sions. Computations were done using the GRICAD in-
frastructure which is supported by Grenoble research
communities, and HPC resources from GENCI-IDRIS
A0140914158.

Supplementary Material

In this Supplementary Material we provide details of
the VMC calculations, how the self-energy is extracted,
and how errors are estimated. Then we present data for
different sizes of the simulation cell in table S.2. Finally
we compute an effective band mass of excitation energies
and compare with a recent calculation.

Variational Monte Carlo Simulations

We have performed variational quantum Monte Carlo
simulations using both Γ point and grand-canonical
twist-averaged boundary conditions (GC-TABC) con-
ditions for systems containing between N = 38 and
N = 162 electrons. In these calculations we used
Slater-Jastrow (SJ) and Slater-Jastrow-Backflow (BF)
trial wave functions with analytical expressions for the
Jastrow and backflow potentials as detailed in Ref. [30]
for the 3D jellium, and used in a previous calculation for
momentum distribution [13] and for the renormalization
factor Z entering the effective mass formula.

Wave function structure

A SJ/BF wave function for the ground state is

ΨN
0 = DN

k e
−UN (S.18)

with

DN = det
qn

ϕq(rn) (S.19)

ϕq(r) = eiq·r (S.20)

where q contains N wave vectors of lowest |q| (here and
in the following we do not explicitly consider the spin-
structure of our paramagnetic system where the deter-
minant can be further reduced to the product of two
determinants, one for each spin), and UN denotes the
symmetric pair correlation factor

UN =
∑

i<j

u(ri − rj) (S.21)

In the case of SJ wave functions, the arguments of the
orbitals ϕq(·) are the bare electron coordinates, whereas
in backflow wave functions they are shifted by a many-
body correlation factor [30].

Our perturbed wave functions, Eq. (12), is then built
from the SJ (BF) ground state wave function of the
N particle ground state, ΨN

0 , and from M = 2 non-
orthogonal states, ΨN±1

1 and ΨN±1
2 . To describe a per-

turbation of momentum k, ΨN±1
1/2 describe wave functions

where essentially a plane wave orbital of wave vector k is
added/removed from the N particle ground state. The
amount of correlation changes between ΨN±1

1 and ΨN±1
2 .

In the following, we describe both wave functions in de-
tail.

Let us first discuss ΨN±1
1 which is chosen in order to

represent a good trial wave function for an N±1 particle
energy state with momentum±k compared to the ground
state. For ΨN±1

1 , we used the simplest extension of the
ground state state wave function to a correlated excited

(https://urldefense.com/v3/__https://gricad.univ-grenoble-alpes.fr
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state which approximately describes an exact eigenstate
of momentum ±k in the N ± 1 particle sector

ΨN±1
1 = DN±1

k e−UN±1 (S.22)

In the case of particle excitations (ΨN+1
1 ), the orbitals of

the Slater determinant DN+1 now contain also k in ad-
dition to all wave vectors occupied in the ground state,
whereas for hole excitations (ΨN−1

1 ), the orbital of wave
vector k is removed. Further, UN±1 denotes the symmet-
ric pair correlation potential

UN±1 =
∑

i<j

u(ri − rj) (S.23)

which is built from the same Jastrow potential u(·) used
in the ground state, and the summation is over all N(N±
1)/2 pairs of particles.

In contrast to ΨN±1
1 , where we have used a straight-

forward candidate for minimizing the total energy,

EN±1
11 ≡ 〈Ψ

N±1
1 |HN±1|ΨN±1

1 〉
〈ΨN±1

1 |ΨN±1
1 〉

(S.24)

ΨN±1
2 is chosen to maximize the overlap with the pertur-

bation acting on the ground state, a†k|ΨN
0 〉. The natural

candidate is then to directly use a state |ΨN+1
2 〉 ∝ a†k|ΨN

0 〉
in the case of particle excitations, and |ΨN−1

2 〉 ∝ ak|ΨN
0 〉

for holes.
In the coordinate representation, the unnormalized

hole state ΨN−1
2 can be written as

ΨN−1
2 (RN−1) =

∫
drne

−ik·rN ΨN
0 (RN ) (S.25)

with RN = (r1, . . . , rN ).
In practice, we perform a VMC calculation of weight

|ΨN−1
1 (RN−1)|2, and matrix elements/ expectation val-

ues containing ΨN
0 (RN ) and ΨN−1

2 (RN−1) can be ac-
cessed via introducing additional integrals over rN and
reweighting.

In the particle excitation sector, ΨN+1
2 , for SJ wave

functions, we can explicitly write down |ΨN+1
2 〉 ∝ a†k|ΨN

0 〉
in the coordinate representation

ΨN+1
2 (RN+1) =

∑

n

δDN+1
k

δϕk(rn)
ϕk(rn)e−U

n
N (RN+1) (S.26)

where

UnN (RN+1) ≡
∑

i<j,i,j 6=n

u(ri − rj) = UN+1(RN+1)− ũ(rn)(S.27)

ũ(r) =

N+1∑

i=1

u(ri − r)− u(0) (S.28)

and we can write

ΨN+1
2 (RN+1) =

∑

n

δDN+1
k

δϕk(rn)
ϕk(rn)eũ(rn)e−UN+1(RN+1)

(S.29)

Denoting ϕ̃k(r) = ϕk(r) exp[ũ(r)] for the orbital k, we
can write the wave function in form of a determinant
times a symmetric correlation function

ΨN+1
2 (RN+1) = det

qn
ϕ̃q(rn)e−UN+1(RN+1) (S.30)

with ϕ̃q(r) = ϕq(r) for q 6= k. Derivatives of the de-
terminant needed for the local energy can be calculated
similarly as backflow [42, 43].

In the case of BF, we have used Eq. (S.30) where the
bare coordinates are replaced by the backflow coordinates
constructed exactly as in the N + 1 particle case. Al-
though this wave function is not exactly proportional to
a†k|ΨN

0 〉, we don’t expect any significant differences, e.g.

we have checked that |〈ΨN+1
2 |a†k|ΨN

0 〉|2 coincides with

〈Ψ0|aa†k|ΨN
0 〉 = 1− nk within our stochastic error.

GC-TABC

In the GC-TABC procedure [24, 26, 44] the volume of
the simulation box is fixed by V = N/n where n is the
electronic density. Each simulation is characterized by a
twist vector; the phase that the trial function picks up as
an electron exits the supercell on one side and re-enters
the other side. For a given twist vector, the Slater de-
terminant of our wave function consists of all plane wave
states of wave vector k such that |k| ≤ kF . The number
of electrons then depends on the twist vector, Nθ, but
the number of electrons averaged over all twists equals
N . Expectation values of observables and matrix ele-
ments are calculated independently for each twist angle
and then averaged over twists. In all our simulations N
has been chosen to be one that has a closed shell ground
state at the Γ point.

Notice that all our trial wave functions have the prop-
erties that by space inversion they equal their complex
conjugate, hence the overlap integrals and matrix ele-
ments are real.

For our study of the static self-energy, Σ(k, 0), for any
given k and twist angle, the observables and matrix ele-
ments εij , zk, and nk, given by Eq.(14),(15), and (16) as
well as the ground state energy E0 have been calculated
from a variational Monte Carlo run with weight |ΨN+1

1 |2
using reweighting. (The equivalent procedure in the hole
sector with |ΨN−1

1 |2.) Within GC-TABC, the expecta-
tion values are twist averaged before inserting them into
the expression of the Greens function, Eq.(13). Note that
Eq.(13) depends parametrically on the chemical poten-
tial µ, but the Monte Carlo expectation values depend
trivially on µ. For canonical VMC calculations at the
Γ point, values of k are on a discrete grid given by the
number of electrons N . Continuous values of k are only
reached in the limit of N →∞.

For GC-TABC, any k vector can be reached by impos-
ing the corresponding twist angle. Spherical averaging
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over all k vectors of given magnitude then corresponds
to averaging twist over all twist angles yielding the same
modulus of k. In our GC-TABC calculations, we have
used 32 equally weighted points that exactly integrates
all polynomials on the sphere up to order eight [27, 28]
for any given value of k. Typically we have performed
simulations for around ∼ 10 different k values around kF
in our runs for each N . In the GC-TABC runs we have
chosen similar values of k as the canonical runs where
the k values are fixed by N . We also chose some inter-
mediate ones to interpolate better between them. In our
GC-TABC runs, we have avoided k vectors too close to
kF , in particular the region |k − kF | . π/L where no
excitation would be possible in a canonical simulation,
since inside that region twist averaging can produce arti-
facts in the self-energy. In any case, since the perturbed
energies approaches E0 ± µ for k → kF , the finite pre-
cision of our Monte Carlo evaluations additionally limit
calculations approaching too closely the Fermi surface.

Estimation of Self-energy

Given the value of the chemical potential, µ, the
Greens functions G±µ can be expressed in terms of QMC
observables, e.g. Eq.(13-16) in the main text, (and
thereby Σµ(k, 0)) by subtracting the single particle en-
ergies. Its value at the Fermi surface, Σµ(kF , 0), as well
as the slope of the self-energy have been obtained by lin-
ear and quadratic fits around kF . The value of µ is then
varied so that Σµ(kF , 0) = µ . In table S.2, µN and
∂kΣN indicate the values obtained before size extrapo-
lation. This procedure has been performed for the bare
values at given system size, N , and, equally, using the
extrapolated self-energy Σ∞µ (k, 0) = Σµ(k, 0) + δΣ(k, 0),
using Eq. (18). In the table (which one), µ∞ and ∂kΣ∞
correspond to the chemical potential and the slope ob-
tained using extrapolated self-energies extrapolated.

Estimation of Errors

Since all matrix elements needed for the Greens func-
tion/ self-energy are calculated within the same QMC
simulations, the errors are not independent. Therefore,
we have estimated the final uncertainty of our self-energy,
by determining its spread over several independent cal-
culations and different twist angles in GC-TABC.

The systematic errors for all quantities given in the ta-
bles are estimated by looking at how the χ2 value varies
with respect to the fitted value. Fits of GC-TABC curves
usually yield values of χ2 close to one per degree of free-
dom. The χ2 value of the fits for canonical simulations
at the Γ point are typically larger, in particular for the
N = 38 and N = 66 systems, because of the irregular
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2
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PBC: N=38
N=66

GC-TABC: N=38
N=66

GC-TABC: BF N=38
N=54

FIG. S.3: Static self-energy for rs = 1 using SJ-VMC trial
wave functions for simulations with periodic boundary con-
ditions (PBC) and GC-TABC for N = 38 and N = 66 to-
gether with those from BF-VMC trial wave functions with
GC-TABC N = 38 and N = 54. All curves in the main plot
are size corrected according to Eq. (17) of main text, the line
is the G0W0 self energy. The inset shows the uncorrected val-
ues (only SJ for clarity), the lines show the size corrections
based on Eq. (17) of the main text on the G0W0 curve.

filling of the shells of states, and the fewer k values close
to kF .

Finite Size Data

In the table of the main text, we have reported SJ and
BF values from size extrapolated GC-TABC using sys-
tems with N = 66, and N = 54, respectively. Due to the
systematic uncertainty of results with different sizes, we
did not attempt further numerical extrapolation. Table
S.2 reports the data without size-corrections.

In Fig. S.3 we further illustrate the changes due to size
corrections for the self-energy at rs = 1.

Comparison with Reference [14]

In Ref. [14] an apparent effective mass was determined
assuming a mapping between energy eigenstates and oc-
cupations of the orbitals used in SJ and BF wave func-
tions in the spirit of Landau’s energy functional. As we
have outlined in the main text, relating quasi-particle
energies to exact energy eigenstates of a finite system,
though highly intuitive, is problematic and without firm
theoretical justification. Differences our our values of m∗

compared to those given in Ref. [14] are therefore mainly
due to the different methodology used here, and not to
differences in the VMC wave functions, nor to the use of
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rs Ψ BC N µN µ∞ mk−1
F ∂kΣN mk−1

F ∂kΣ∞

1 SJ Γ 38 0.62240.632
0.618(8) 0.6280.637

0.626(3) 0.0950.114
0.068(3) 0.180.20

0.16(1)

66 0.6280.632
0.623(1) 0.6290.641

0.627(4) 0.1080.112
0.091(4) 0.180.20

0.16(2)

GC-TABC 38 0.6320.634
0.621(1) 0.6340.639

0.623(1) 0.0890.117
0.079(4) 0.1820.22

0.14(6)

66 0.6340.635
0.629(3) 0.6350.640

0.632(2) 0.090.11
0.08(2) 0.170.18

0.16(1)

BF GC-TABC 38 0.6280.629
0.623(1) 0.6330.637

0.628(2) 0.0860.097
0.077(8) 0.170.18

0.15(1)

54 0.6280.629
0.619(1) 0.6340.637

0.622(4) 0.0970.112
0.078(4) 0.1670.179

0.157(4)

2 SJ Γ 38 0.20820.2090
0.2070(5) 0.21100.2088(5) 0.1900.207

0.185(4) 0.3340.370(4)

66 0.2350.241
0.222(2) 0.2500.251

0.230(2) 0.1730.218
0.150(6) 0.2600.33(6)

GC-TABC 38 0.2300.232
0.222(1) 0.2340.240

0.221(1) 0.1680.165
0.183(5) 0.3100.336

0.300(5)

66 0.2330.234
0.226(2) 0.2370.243

0.238(4) 0.1860.190
0.167(5) 0.300.31

0.28(2)

BF GC-TABC 38 0.2260.233
0.217(2) 0.2330.235

0.226(2) 0.150.18
0.13(1) 0.280.29(1)

54 0.2120.215
0.206(1) 0.2190.209(2) 0.2010.227

0.161(4) 0.3090.361
0.280(6)

4 SJ Γ 38 −0.660−0.656(1) −0.655−0.654
−0.656(1) 0.3120.279(3) 0.5110.555

0.457(3)

66 −0.638−0.631
−0.650(7) −0.636−0.625

−0.646(7) 0.320.37
0.28(3) 0.500.56

0.47(3)

GC-TABC 38 −0.633−0.629
−0.644(2) −0.628−0.622

−0.644(1) 0.320.30
0.34(1) 0.530.57

0.51(1)

66 −0.633−0.628
−0.646(3) −0.632−0.623

−0.650(4) 0.350.37
0.31(1) 0.550.45(2)

BF GC-TABC 38 −0.653−0.652
−0.661(2) −0.649−0.645

−0.663(2) 0.2850.301
0.278(8) 0.510.52

0.48(1)

54 −0.668−0.661
−0.672(3) −0.666−0.656

−0.671(2) 0.340.36
0.31(1) 0.5380.549

0.491(7)

5 SJ Γ 38 −1.1137−1.1110
−1.1172(8) −1.1090−1.1067

−1.1134(8) 0.3570.370
0.309(2) 0.5920.637

0.530(4)

66 −1.105−1.100(2) −1.098−1.092(2) 0.400.38(1) 0.600.57(1)

114 −1.114−1.113
−1.117(5) −1.113−1.108

−1.115(5) 0.430.48
0.39(3) 0.620.66

0.58(3)

GC-TABC 38 −1.089−1.085
−1.102(3) −1.083−1.080

−1.102(3) 0.380.41
0.36(2) 0.620.67

0.61(2)

66 −1.085−1.082
−1.092(3) −1.079−1.078

−1.097(4) 0.4150.424
0.390(9) 0.6100.624

0.596(9)

114 −1.088−1.091
−1.072(4) −1.080−1.047

−1.088(4) 0.480.43(2) 0.640.65
0.56(2)

BF GC-TABC 38 −1.114−1.111
−1.127(2) −1.105−1.104

−1.127(2) 0.350.36
0.33(1) 0.5730.613

0.570(5)

54 −1.118−1.114
−1.137(3) −1.112−1.121(2) 0.350.44(1) 0.560.65(1)

10 SJ Γ 38 −3.510−3.532(1) −3.535−3.527
−3.539(2) 0.6040.544(2) 0.8090.891(7)

66 −3.541−3.540
−3.555(2) −3.535−3.527

−3.550(2) 0.610.70(1) 0.910.98
0.87(1)

114 −3.552−3.543
−3.572(5) −3.540−3.535

−3.560(5) 0.660.69
0.56(2) 0.880.92

0.81(2)

162 −3.563−3.533
−3.575(10) −3.554−3.533

−3.571(10) 0.700.75
0.62(5) 0.910.95

0.85(5)

GC-TABC 38 −3.514−3.507
−3.524(5) −3.509−3.504

−3.538(5) 0.710.74
0.65(3) 1.081.16

0.89(3)

66 −3.502−3.491
−3.535(6) −3.494−3.491

−3.522(6) 0.680.73
0.65(2) 0.971.03

0.91(3)

BF GC-TABC 38 −3.536−3.534
−3.555(5) −3.5260.518

−3.553(7) 0.580.61
0.53(2) 0.930.96

0.86(2)

54 −3.567−3.563
−3.580(5) −3.558−3.553

−3.576(5) 0.620.68
0.57(2) 0.900.98

0.88(2)

TABLE S.2: Summary of various QMC calculations using Slater-Jastrow (SJ) and Slater-Jastrow backflow (BF) wave functions
(Ψ) for simulations using periodic (Γ) and grand-canonical twist averaged (GC-TABC) boundary conditions (BC). Here, µN is
the chemical potential in units of ~2k2F /2m, mk−1

F ∂kΣN the dimensionless slope of the self-energy at kF , both for calculations
of finite volume ∼ N ; µ∞ and ∂Σ∞ denote the corresponding values obtained adding the leading finite size corrections due to
the Coulomb singularity. The statistical uncertainty of the fit in the least significant digit is indicated in parentheses, whereas
upper and lower indices indicate systematic shifts due to fitting range and order of the polynomial fit. Results were obtained
from fitting with a linear function in a region |k − kF |/kF ≥ 0.2, systematic errors by fitting with up to a quadratic function

DMC in Ref. [14] as we will shown in the following.

In our calculation of the static self energy, ΨN±1
1 was

chosen to provide a reasonable approximation for an ex-
cited energy eigenstate of the N ± 1 particle system with
momentum ±k. We can therefore directly compare the
energy expectation value, and in particular the ”band”

dispersion

E(k) = θ(|k| − kF )
[
EN+1

11 (k)− EN0
]

+θ(kF − |k|)
[
EN0 − EN−1

11 (k)
]

(S.31)

with those given in Ref. [14].

Fitting this energy dispersion by a Padé or polynomial
fit, the effective mass of Ref. [14] was determined by the
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FIG. S.4: Dispersion of the energy expectation values E(k)
based on ΨN±1

1 for SJ wave functions for rs = 1 using N = 38
and N = 66 electrons compared to the bare k2/2m behavior
of non-interacting electrons. The line through our data points
is based on a 4th order polynomial fit to the N = 66 system.
From the fit at kF we obtain (k−kF )kF /meff with meff/m '
0.93 close to the Fermi surface which is close to 0.915(1) given
in Ref. [14] extrapolated to infinite systems sizes.
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FIG. S.5: Dispersion of the energy expectation values E(k)
based on ΨN±1

1 for SJ wave functions for rs = 10 using
N = 38, N = 66, and N = 162 electrons compared to the
bare k2/2m behavior of non-interacting electrons. The line
through our data points is based on a 4th order polynomial
fit to the N = 162 system. From the fit at kF we obtain
(k − kF )kF /meff with meff/m ' 0.83 close to the Fermi
surface. The difference to 0.75(1) given in Ref. [14] for the
infinite system is compatible with the 1/N finite size effects
shown there.

slope at the Fermi surface

E(k) = (|k| − kF )kF /meff, k → kF (S.32)

where we denote meff the thus obtained ”effective mass”
to avoid confusion with m∗ characterizing quasi-particle
excitation energies.

In Figs. S.4 and S.5, we show the SJ band dispersion
for rs = 1 and rs = 10. In agreement with the results of
Ref. [14], the dispersion of the band is steeper than the
one of non-interacting electrons. Using a fourth order
polynomial fit for E(k) of our largest systems, we get
meff/m ' 0.93 for rs = 1, 0.90 for rs = 2, 0.88 for
rs = 4, 0.86 for rs = 5, and 0.83 for rs = 10. Those
values are consistent and in quantitative agreement with
those of Ref. [14] at comparable sizes. Optimization of
excited state wave functions as done in Ref.[14] as well
as stochastic improvement via DMC make only a small
change in meff, as already noticed in Ref.[14]. Therefore
the qualitative and quantitative difference of our values
of m∗ in table I compared to meff calculations [14] are
due to the different methodology. The interpretation of
meff as effective mass of quasi-particles invoking Landau’s
energy functional is problematic.
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