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Bits manipulation in traditional memory writing is commonly done through quasi-static
operations. While simple to model, this method is known to reduce memory capacity. We
demonstrate how a reinforcement learning agent can exploit the dynamical response of a simple
multi-bit mechanical system to restore its memory. To do so, we introduce a model framework
consisting of a chain of bi-stable springs manipulated on one end by the external action of the agent.
We show that the agent learns how to reach all available states for three springs, even though some
states are not reachable through adiabatic manipulation, and that training is significantly improved
using transfer learning techniques. Interestingly, the agent also points to an optimal system design
by taking advantage of the underlying physics. Indeed, the control time exhibits a non-monotonic
dependence on the internal dissipation, reaching a minimum at a cross-over shown to verify a
mechanically motivated scaling relation.

INTRODUCTION

At first sight, memory seems like a fragile property
of carefully crafted devices. However, upon closer
inspection, various forms of information retention are
present in a wide array of disordered systems [1].
Surprisingly, while they are governed by a very rugged
and complex energy landscape, different disordered
systems display similar history-dependent dynamical [2–
5] and static [6, 7] responses. These observations led
to a recent surge of interest in the Preisach model of
hysteresis [8, 9]. The Preisach model views hysteresis
cycles as two-state systems, an embryonic form of non-
volatile memory. Note that other forms of memory
with a different underlying structure exist [10, 11].
Combining these bistable elements in larger structures
generates multi-stable systems with a memory capacity
scaling exponentially with the number of elements. The
simplicity of the model makes it applicable in many areas
of physics including photonic devices [12], glassy [13],
plastic [14, 15] and granular [16, 17] systems, spin ice [18],
cellular automata [19] or even crumpled sheets [20] and
origami bellows [21, 22]. More importantly, the Preisach
model captures some remarkable features of complex
real-life systems, such as return point memory [16, 17,
23–25]. Furthermore, the model allows for information to
be written and read from the underlying system, making
the internal memory mechanism adequate to store data.
For this purpose, however, the Preisach model presents
a major limitation: it stays grounded in the quasi-static
framework of adiabatic transformations. As a result, the
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specific characteristics of each hysteresis cycle [26] or the
addition of internal coupling [20, 22, 27] can considerably
shrink the set of reachable stable states and effectively
reduce the memory capacity of the system. In this paper,
we show that a controller, in the form of a reinforcement
learning agent, can go beyond this limitation and take
advantage of the dynamics to reach all stable states,
including adiabatically inaccessible states, effectively
restoring the memory of the system to its full capacity.
We base our study on a model framework akin to
that introduced in [22, 28], i.e., a chain of bi-stable
springs with three coupled units and internal dissipation
controlled by a force applied on the last mass. Positional
actuation would result in non-local interactions, which
are known to significantly alter the memory structure
of the system [29]. After successfully training the
agent on a specified set of physical parameters, we
demonstrate that transfer learning [30, 31] accelerates the
training on different parameters and extends the region
of parameter space that leads to learning convergence.
Finally, we investigate the change of the dynamical
protocol proposed by the trained control process for a
single transition between two states as a function of the
dissipation’s amplitude. The transition duration presents
a minimum for a critical value of the dissipation that
appears to verify a physically motivated scaling relation,
pointing to the fact that the agent learns how to harness
the physics of the system to its advantage.

RESULTS

Model for a chain of bi-stable springs

We consider a one-dimensional multi-stable mechanical
system composed of n identical masses m connected by
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FIG. 1: Model for a chain of three coupled bi-stable
spring-mass units (see Methods for more details on the
parameters.). a) Schematics view of the model. The
first unit is attached to a fixed wall and an external
force Fe is applied to the last one. b) Deformation u of
all three bi-stable springs under external load Fe. The
switching fields F±

i are defined through Eq. (4). c)
Transition graph where the nodes represent the stable
configurations and the arrows the quasi-statically
achievable transitions between them. The states 001
and 101 are “Garden of Eden” states (see main text)
with this choice of disorder.

bi-stable springs in series, as shown in Fig. 1 a). For
each spring i, we set a reference length li such that the
deformation ui of the spring reads

ui(t) = xi(t)− xi−1(t)− li, (1)

where xi(t) is the position of the i-th mass at time t. The
tunable bi-stability of each spring is achieved through a
generic quartic potential. We thus obtain the cubic force
equations

Fi(ui) = −kui(ui + δ
(0)
i )(ui − δ

(1)
i ), (2)

with k > 0 is the stiffness of the spring, δ
(0)
i > 0 and

δ
(1)
i > 0 correspond to meta stable configurations 0 and
1, and ui = 0 corresponds to an unstable equilibrium.
Other works on similar systems also considered trilinear
forms [14, 28]. Still, our choice generates a smooth
mechanical response and keeps its amplitude moderate
for low deformation. This behavior plays a crucial role
in the scaling analysis that we will present later. The first
spring of the chain is attached to a fixed wall, a condition
that imposes x0 = 0, and we apply an external force Fe

to the last mass. Finally, we consider that the system is
bathed in an environmental fluid, resulting in a viscous
force Ff,i being exerted on each mass such that

Ff,i = −ηẋi, (3)

where the dot indicates the derivative with respect to
time ẋ = dx

dt and η is a viscous coefficient.
Let us first consider the case n = 1 where the system

is a single bi-stable spring attached to a mass. The
solutions for mechanical equilibrium, schematized for
three different springs in Fig. 1 b), displays two critical
amplitudes F± such that

F± = −F (u∓) (4)

u± =
1

3

(
δ(1) − δ(0) ±

√
(δ(0))2 + (δ(1))2 + δ(0)δ(1)

)
(5)

where u± are both solutions of dF
du = 0. Note that F+ >

0 > F− since we defined both δ(0) and δ(1) to be positive.
These two forces are essential to describe the stability
of the system. Indeed, we observe two branches σ of
stable configurations, that we call 0 (for u < 0) and 1
(for u > 0). Both branches present a solution for the
mechanical equilibrium F (u) + Fe = 0 when Fe remains
in the range [F−, F+]: the system has two stable states.
However, as soon as Fe gets beyond this range, either
the branch σ = 0 (for Fe > F+) or σ = 1 (for Fe < F−)
vanishes.
These dynamical properties lead to an hysteresis cycle

that can be described with a simple experiment. We start
with the spring at rest with σ = 0, a configuration which
corresponds to u = −δ(0), and slowly pull on its free end,
increasing Fe while keeping mechanical equilibrium. As
a response, the system slightly stretches and u increases.
This continues until Fe = F+ where the branch σ = 0
disappears. At this point, if we continue to increase Fe,
the system necessarily jumps to the branch σ = 1, with
u > 0. If we now decrease Fe, u decreases accordingly
until Fe = F− where the system has to jump back to the
original branch σ = 0. If we only consider the stability
branches, the described hysteresis cycle corresponds to
a so-called hysteron, the basic block of the Preisach
model [8]. In a Preisach model, a set of n independent
hysterons is actuated through an external field. Each
hysteron has two states, 0 and 1, and two switching
fields, F+

i and F−
i , that characterize when each hysteron

σi switches between states. As long as the switching
fields are unique and the hysterons are independent, i.e.
the switching fields do not change with the state of the
system, and the Preisach model is able to predict the
possible transitions between the 2n configurations. Our
system, n bi-stable spring/mass in series under quasi-
static actuation, fulfills the local mechanical equilibrium
and independence assumptions.

To get a better visual representation of the model’s
predictions, the quasi-statically achievable transitions
between states are modeled as the edges of a
directed graph, where the nodes represent the stable
configurations. The allowed transitions correspond to
the switch of a single hysteron. The exact topology
of the transition diagram exclusively depends on the
relative values of the switching fields [26]. If the order
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of the positive and negative switching switching fields
are opposite, i.e. 0 < F+

i < F+
j and 0 > F−

i > F−
j for

all i < j, every state is reachable from any other state.
Otherwise, there exists isolated configurations which can
never be reached again once left. As is customary, we
call these unreachable configurations “Garden of Eden”
(GoE) states (see [22] for a historical account). The
number of GoE states depends on the permutation in the
order of the switching fields [26]. In real systems, these
permutations might come from defects in the conception
of the bistable units with close switching fields, for
instance. An illustration for the case n = 3 is given
in Fig. 1 c) where F−

1 < F−
2 < F−

3 and F+
2 < F+

3 < F+
1 .

In this configuration, both 001 and 101 are GoE states.
The existence of GoE states severely limits the total
number of reachable states, and as a result, the amount
of information that can be stored in the system.

A solution to overcome this limitation is to break
the quasi-static assumption and to take advantage of
the dynamics as a means to reach GoE configurations.
However, this approach foregoes a major upside of
the Preisach model, its simplicity. Indeed, applying
Newton’s second law of motion to each mass yields a
description of the dynamical evolution for the system
through a system of n coupled non-linear differential
equations{

mẍi = Fi(ui)− Fi+1(ui+1) + Ff,i for 0 < i < n,

mẍn = Fn(un) + Fe(t) + Ff,n.

(6)

While providing a clear experimental protocol to make
the system change configuration is straightforward in the
quasi-static regime, the non-linear response of the springs
and the coupling between the equations make a similar
analysis a hefty challenge in the dynamical case. In
particular, other methods of dynamical control like linear
quadratic regulators do not manage to properly handle
the transitions to GoE state for all physical parameters
and initial conditions (see Supplemental Materials). In
the following, we demonstrate how the use of artificial
neural networks and reinforcement learning unlocks this
feat.

Reinforcement learning to control the dynamics

Reinforcement Learning (RL) is a computational
paradigm that consists in optimizing, through trial-and-
error, the actions of an agent that interacts with an
environment. RL has been shown to be an effective
method to control multistable systems with nonlinear
dynamics [32–35]. In RL, the optimization aims to
maximize the cumulative reward associated with the
accomplishment of a given task. At each step t, the
environment is described by an observable state st. The
agent uses this information, in combination with a policy
µ, to decide the action at to be taken, i.e. µ(st) = at.

This action brings the environment to a new state st+1,
and grants the agent with a reward rt quantifying its
success with respect to the final objective. An episode
ends when that goal is reached or, if not, after a finite
time. The goal of training is to learn a policy that
maximizes the agent’s cumulative reward over an episode.
When the control space is continuous, one can resort to
an actor-critic architecture [36], which is based on two
Artificial Neural Networks (ANN) learning in tandem.
One network, called the actor, generates a sensory-motor
representation of the problem in the form of a mapping
of its parameter space θ into the space of policies, such
that µ = µθ. This setup limits the type of policy
considered and makes the search for an optimal policy
computationally tractable. The optimization of the actor
necessitates an estimation of the expected reward at long
time. This is the role of the second ANN, the critic,
which learns to evaluate the decisions of the actor, and
how it should adjust them. This is done through the
same bootstrapping of the Bellman’s equation as that
used in Q-learning [37]. The successive trials - resulting
in multiple episodes - are stacked in a finite memory
queue (FIFO), or replay buffer, and after each trial the
ANN tandem is trained on that buffer, thus progressively
improving their decision policy and the quality of the
memory. After testing multiple RL algorithms (see
Supplementary Materials), we found that an architecture
based on the Twin Delayed Deep Deterministic Policy
Gradient (TD3) [38] worked best for the task at hand.

In our system, the environment consists in the
positions and velocities of the masses, an action is a
choice for the values of the force applied to the last mass
in the chain at time t, and the goal is to bring the system
close to a given meta-stable memory state in a given time
tmax - close enough that it cannot switch states if let free
to evolve. At the start of an episode, the environment
is randomly initialized, and a random target state is set.
The information provided as an input to the networks
includes the position x and velocity ẋ of all the masses
in addition to the one-hot encoded target configuration.
Then the policy decides on the force Fe applied to reach
the next step. Fe is taken from a predefined interval
[−Fmax, Fmax]. Here, we set Fmax to 1 N. With this
external force, the dynamical evolution of the system for
a single time step is simulated by solving the differential
equations (6) numerically with a Runge-Kutta method
of order 4. The reward from this action is computed
relative to the newly reached state: we give a penalty
(rt < 0) with an amplitude proportional to the velocity
of the masses and to the distance of the masses from
their target rest positions (see equation (12)). After every
step, the replay buffer is updated with the corresponding
data. The critic is optimized with a batch of data every
step, while the actor is optimized every two steps. The
episode stops if the system is sufficiently close to rest in
the correct configuration, in which case a large positive
reward (rt ≫ 1) is granted, or after tmax. Then a new
episode is started, and the algorithm is repeated for
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a predefined number of episodes. More details on the
learning protocol are available in Methods.
Using the described method, we trained our ANNs on

a chain of three bi-stable springs specifically designed to
display GoE states, as detailed inMethods and illustrated
in Fig. 1 c. Interestingly, the networks achieve a 100%
success rate at reaching any target state - including the
GoE states - in less than 10 000 episodes, as shown
in Fig. 2. a). This approach remains successful even if
we only keep the first two decimals of the environment
states, a promising behavior for real-life applications
(see Supplementary Materials). We thus accomplished
our initial objective and designed a reliable method
that produces protocols for the transitions to any stable
configurations, restoring the memory of the device to its
full capacity.
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FIG. 2: Training dynamics of the RL agent on the
model presented in Fig. 1 and different values of the
viscous coefficient. a) Evolution of the success rate over
a sliding span of 100 episodes during training. For the
blue, green, and orange curves, the ANN was initialized
randomly. For the purple curve, the ANN was
initialized using the weights of a previously model
trained with η=4 Kg/s. b) Learning time against the
viscous coefficient with and without TL.

In order to evaluate the robustness of the decision
making process of the policy and gain insights on

the mechanisms involved, we study how the physical
parameters of the system influence the designed
solutions. We chose to focus on a quantity that deeply
affects the dynamics of the masses and has simple
qualitative interpretation: the viscous coefficient η. To
observe its effect on the designed policy, we trained
agents with random initialization of weights for a range of
η while keeping all other physical parameters fixed. The
learning time, defined as the number of episodes before
the success rate reaches 80% during training, is shown in
Fig. 2 b) as a function of η. Even though the algorithm
manages to learn the transitions for a wide range of η, the
learning time varies significantly. Notably, the learning
time gets longer for very low viscous coefficients (here
η < 0.1 kg/s) but also seems to diverge at very high η.
Due to the continuous nature of the system, we

expect minor modifications of the physical parameters
to not catastrophically change the dynamics. With
this assumption, we employed Transfer Learning (TL)
techniques [30, 31, 39] to accelerate the learning phase.
We initialized the ANNs with the weights of ANNs
already trained on a similar physical system instead of
random weights. The expectation is that some physical
principles learned during training remain applicable for
solving the new problem. Thus, the transfer of weights
initializes the networks closer to a good solution. Please
note this assumption might not hold if the change of
parameters leads to the appearance of a significantly
different solution [39], for instance in the presence of
bifurcations. In our system, TL results in quicker
learning. In Fig. 2. b), we compare the learning time,
defined as the number of episodes it takes for the success
rate to reach 0.8 for the first time, for networks initialized
with and without TL. For networks trained with TL,
we slowly increased η from 2 kg/s up to 10 kg/s and
decreased it from 2 kg/s to 0 kg/s, transferring the
learned weights at each increment. TL effectively divides
by up to 30 the learning time for very high viscosity and
allows to reach otherwise non-converging regions. We
also noticed that smaller increments of the parameters
lead to faster learning (see Supplementary Materials).
Consequently, we can use finer discretizations to explore
the physical parameters while keeping computation time
reasonable.
By mixing RL and TL, we generated an algorithm

that quickly produces precise transition protocols to any
stable state for chains of bi-stable springs, including GoE
states. In the next section, we analyze the properties of
the force signals produced by the ANN and investigate
how they relate to the dynamics of the system as the
viscous coefficient η is varied.

How damping affects the control strategy

The intensity of the damping impacts the dynamical
response of the system, which significantly affects the
actuation protocol proposed by the ANN. To study
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these variations, we selected a unique transition (111
→ 001), recorded the signal of the force generated by
the agent, and computed the corresponding mechanical
energy injected into the system at each time step for
different values of η, as shown in Fig. 3. Please note that
the state 001 is a GoE state. We observe that the relation
between η and the time it takes to reach the target state
is non-monotonic. We identify the minimum episode
duration, corresponding to the most efficient actuation,
with a critical viscous coefficient η = ηc. Interestingly,
this minimum also marks the transition between two
qualitatively different behaviors of the control force: a
high-viscosity regime (η > ηc) and a low-viscosity regime
(η < ηc) as shown in Fig. 3 c) and d). In the high-
viscosity regime, Fe always saturates its limit value, and
only changes sign a few times per episode. Remarkably,
each sign change occurs roughly when a mass is placed at
the correct position. In contrast, the force signal in the
low-viscosity regime appears less structured, with large
fluctuations between consecutive steps.

In order to qualitatively explain these different
behaviors, we focus our analysis on the energy transfer
between the external controller and the system. The
starting and the final states are stable configurations at
rest. Consequently, they both correspond to local energy
minima and the agent has to provide mechanical energy
to the system in an effort to overcome the energy barriers
between these configurations. After crossing the barriers,
the surplus of kinetic energy has to be removed to slow
down the masses and trap them in the well associated
with the targeted minimum. In the low-viscosity regime,
the internal energy dissipated due to viscosity is small.
As a result, the protocols require phases where the agent
is actively draining energy from the system. After a
short initial phase of a few steps, where much energy
is introduced into the system by setting the external
load to its maximal value, a substantial fraction of the
remainder of the episode involves careful adjustments to
remove the kinetic energy. We expect this precise control
of the system’s internal energy to be the underlying
reason behind the increase of the learning time at low
η. In the high-viscosity regime on the other hand, the
viscosity is able to dissipate the extra energy without
further intervention. However, it also slows the dynamic,
effectively translating into increased episode duration.

While we established the characteristics of the designed
protocols in both regimes, we have yet to define a
quantitative estimation of the crossover between regimes.

Drawing inspiration from these protocols, we consider
a simplified situation where the external force saturates
the constraint Fe(t) = Fmax, and where the switching
fields are very small, i.e. Fmax ≫ |F±

i |, i = 1, 2, 3.

Since all the masses start in a stable equilibrium, the
mechanical response of the chain to the external load is
very soft, at least for small enough displacements at the
start of the episode.

Thus, we can approximates the dynamics of the last
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FIG. 3: Analysis of the protocol proposed by the RL
agent for the transition 111 → 001 with different values
of the viscous coefficient. a) Force signal and b) injected
energy during the transition. The injected energy is
computed by multiplying the chain’s elongation with
the value of the external force. c) Force signal and e)
deformation of each bi-stable spring during the
transition for η = 0 kg/s (low-viscosity regime). The
colors blue, orange, and green correspond to the
deformation of the first, second, and third spring,
respectively. The subplots for the deformations all have
the same height with edge values [-0.07, 0.19] meter.
The dashed lines represent the stable equilibria δ(0)

(black) and δ(1) (red). d) Force signal and f)
deformation of each bi-stable spring during the
transition for η = 9 kg/s (high-viscosity regime). The
subplots for the deformations all have the same height
with edge values [-0.14, 0.24] meter.

mass by the ordinary differential equation

τ ẍ3 ≈ vmax − ẋ3, (7)

which solves into

ẋ3(t) = vmax(1− e−t/τ ). (8)

with a relaxation time τ = m
η and a saturation velocity

vmax = Fmax

η . The relaxation time τ corresponds to the

time it takes for dissipation to take over inertia. This
transition is also associated to a length scale Lη such
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that

Lη = τvmax =
mFmax

η2
(9)

Let us now define more precisely what we mean by
small displacement. With our assumptions, and due to
the asymptotic shape of the potential, the typical relative
distance Le for which the mechanical response becomes
of the same magnitude as the external load verifies

kL3
e ∼ Fmax (10)

It is thus clear that if Lη ≪ Le, the system will be
dominated by dissipation and converge to equilibrium
without further oscillations. On the other hand, if Lη ≫
Le, neighboring masses will rapidly feel differential forces
and inertia will dominate. Interestingly, equating these
two length scales allows to point to a critical dissipation
at the frontier of these two regimes

ηc ∼ m1/2k1/6F 1/3
max (11)

To test this prediction, we investigate how the
damping crossover ηc observed in designed policies varies
as the masses m and the maximum force Fmax are
varied, exploring more than two orders of magnitude
for both parameters. As show in Fig.4, the results
present an excellent agreement with the proposed scaling
argument [11].
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FIG. 4: Evolution of the critical viscous coefficient ηc
with respect to a) the masses m and b) the maximum
amplitude of the external load Fmax. The lines show the

scaling behavior ηc ∝ m1/2F
1/3
max.

DISCUSSIONS

We have shown a proof of concept of general memory
writing operations in a strongly non-linear system of
coupled bi-stable springs by a reinforcement learning
agent. In particular, we found that this technique
allows reaching otherwise unreachable memory states
dynamically. Interestingly, the agent appears to learn
how to harness the physics underlying the behavior of
the system: its control strategy changes qualitatively
as the viscous coefficient is varied, from a relatively
simple actuation in the large dissipation regime to a

jerky dynamical behavior aimed at extracting the excess
energy in the small dissipation regime, two significantly
different modes of control. This transition coincides
with a change in the system’s internal response, from
an over-damped to an inertial response. In that sense,
the networks were able to gather and share with the
authors some insightful knowledge about the physics
of the memory system, thus displaying some form of
intelligence in understanding the challenges it was asked
to tackle, though it is unclear at this point whether this
result is specific to this controller. Key stakes of future
works will consist in identifying the cognitive structures
established by the agent to complete the learned tasks,
i.e. by rationalizing its neural activity and learning
dynamics, using this knowledge to learn transitions for
a higher number of coupled units. Indeed, while we
managed to successfully train networks on a system of
up to six springs, systems with more than four springs
required a significant change in the architecture of the
neural network (see Supplement Materials). Another
promising path is to look into optimizing the control
signal. Here, we present how the ANNs found one
method to reach GoE states. We expect further tweaking
of the reward, for instance by penalizing longer episodes
or higher energy transfer between the agent and the
system, to lead to better control patterns. Finally, our
study is anchored on the Preisach model, a generic model
applicable to a large variety of physical systems. We
believe the reinforcement learning method to reach GoE
states remains relevant in many real-life situations. We
leave the confirmation to future studies.

DATA AVAILABILITY

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

CODE AVAILABILITY

The code used to produce the results of this study is
available online [40].

ACKNOLEDGEMENTS

Research by T.J. was supported in part by
the Raymond and Beverly Sackler Post-Doctoral
Scholarship.

AUTHOR CONTRIBUTIONS

T.J., F.L. and A.D designed research; T.J., L.M and
A.D. wrote algorithms; L.M. produced and analyzed



7

data; T.J. produced scaling analysis; T.J., L.M. and F.L.
wrote the paper.

COMPETING INTERESTS

The authors declare no competing interests.

[1] N. C. Keim, J. D. Paulsen, Z. Zeravcic, S. Sastry, and
S. R. Nagel, Reviews of Modern Physics 91, 035002.

[2] A. Kovacs, Adv. Polym. Sci 3, 394 (1963).
[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.

Williams, Nature 453, 80 (2018).
[4] A. Prados and E. Trizac, Physical Review Letters 112,

198001.
[5] T. Jules, F. Lechenault, and M. Adda-Bedia, Physical

Review E 102, 033005.
[6] K. Matan, R. B. Williams, T. A. Witten, and S. R. Nagel,

Phys. Rev. Lett. 88, 076101 (2002).
[7] J. Diani, B. Fayolle, and P. Gilormini, European Polymer

Journal 45, 601 (2009).
[8] F. Preisach, Zeitschrift für Physik 94, 277 (1935).
[9] I. D. Mayergoyz, Physical Review Letters 56, 1518.

[10] Y. Abu-Mostafa and J. S. Jacques, IEEE Transactions
on Information Theory 31, 461.

[11] K. Deng, S. Zhu, G. Bao, J. Fu, and Z. Zeng, IEEE
Transactions on Neural Networks and Learning Systems
, 1 (2021).

[12] C. Valagiannopoulos, A. Sarsen, and A. Alu, IEEE
Transactions on Antennas and Propagation 69, 7720
(2021).

[13] C. W. Lindeman and S. R. Nagel, Science Advances 7,
eabg7133 (2021).

[14] G. Puglisi and L. Truskinovsky, Continuum Mechanics
and Thermodynamics 14, 437 (2002).

[15] I. Regev, I. Attia, K. Dahmen, S. Sastry, and M. Mungan,
Physical Review E 103, 062614.

[16] N. C. Keim, J. Hass, B. Kroger, and D. Wieker, Physical
Review Research 2, 012004 (2020).

[17] N. C. Keim and J. D. Paulsen, Science Advances 7,
10.1126/sciadv.abg7685.

[18] A. Libál, C. Reichhardt, and C. O. Reichhardt, Physical
Review E 86, 021406 (2012).

[19] J. Goicoechea and J. Ort́ın, Physical review letters 72,
2203 (1994).

[20] H. Bense and M. van Hecke, Proceedings of the National
Academy of Sciences 118 (2021).

[21] H. Yasuda, T. Tachi, M. Lee, and J. Yang, Nature
communications 8, 1 (2017).

[22] T. Jules, A. Reid, K. E. Daniels, M. Mungan, and
F. Lechenault, Physical Review Research 4, 013128
(2022).

[23] J. A. Barker, D. E. Schreiber, B. G. Huthand, and D. H.
Everett, Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences 386, 251 (1983).

[24] J. M. Deutsch, A. Dhar, and O. Narayan, Phys. Rev.
Lett. 92, 227203 (2004).

[25] M. Mungan and M. M. Terzi, Annales Henri Poincaré 20,
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δ
(0)
1 δ

(1)
1 δ

(0)
2 δ

(1)
2 δ

(0)
3 δ

(1)
3 (m) m (Kg) k (N/m3)

0.050 0.050 0.040 0.020 0.030 0.045 1 88.7

TABLE I: Physical parameters for the system with
three springs.

Learning protocol

Agent Environment

ANN st+1, rt+1, 
done

st+1, 
rt+1, 
done

st+1Fe(t) ∈ [Fmin, Fmax]
Update
system RK4

Replay Buffer

st+1, rt+1

experiences

update
weights rt+1, 

done

FIG. 5: Architecture of the learning protocol.

We used the TD3 agent implemented in [41] combined
with Gym environments [42] to solve our control problem.
We provide a schematic view of the learning protocol
in Fig. 5 and we present more details about the TD3
algorithm and Gym environments in Supplementary
Materials. The precise architecture of both the policy
(Actor) and the Q-functions (Critics) are summarized in
Fig 6 and table II. We start the training with random
initial policy and Q-functions parameters. The weights
and biases of each of layer are sampled from U(−

√
l,
√
l)

where U is the uniform distribution and l = 1
in features l ,

in features l being the size of the input of the layer.

FIG. 6: Architecture of the actor and critic. “DNN”
corresponds to the neural networks detailed in table II.

The task of the agent involves reaching a stable
configuration close to rest, starting from random initial
conditions. At the beginning of an episode, a target state
is randomly chosen and the initial positions and velocities

are randomly sampled from the respective intervals [δ
(0)
i

- 0.2, δ
(1)
i + 0.2] and [-0.1, 0.1]. For the first 10 000

Policy layer Policy activation

Linear (400) Relu
Linear (300) Relu
Linear (1) Tanh

Q-function layer Q-function activation

Linear (400) Relu
Linear (300) Relu
Linear (1) None

TABLE II: Policy (Actor) and Q-function (Critic)
models.

steps, actions are sampled uniformly from [-Fmax, Fmax]
without concerting the policy or Q-functions. Once this
exploratory phase is completed, the agent starts following
the policy generated by the ANNs. At each time step
t, the agent observes the current state of the system st
(composed of the position, the velocity and the target
state of each mass) and chooses a force Fe(t) in the
interval [-Fmax, Fmax] in consequence. The selected
force, to which is added a noise taken from a Gaussian
distribution of mean 0 and standard deviation 0.1, brings
the system to a new state st+1 computed by Runge-
Kutta method of order 4. The parameters controlling the
added noise were taken directly from [41] without further
optimizations. At each time step (constant Fe(t)), the
RK4 method is done through 10 successive iterations for
a total duration of 0.1 s. Each of those iterations changes
the state of the system. Once the numerical resolution
is completed, the agent receives a reward rt given by
function (12)

rt = −
N∑
i=1

(u
(t+1)
i − δ

(target)
i )− 1

2

N∑
i=1

ẋi
(t+1) (12)

where target is a variable equal to 0 or 1, u
(t+1)
i and

ẋi
(t+1) are respectively the displacement and velocity

of the ith mass at time t+1. The parameters of the
environment are summarized in the table III.
All the steps are stocked in the replay buffer, which

possesses a finite maximal size of 1e6 steps. Each new
step overwrites the oldest stored one when the buffer is
full. This process allows for the continuous improvement
of the available training dataset during training. The
Q-functions and the policy are then updated. The Q-
functions are updated at every step, while the policy
is updated every two steps. Both the Q-functions and
the policy are updated using the Adam algorithm [43]
with a learning rate of 0.001 and a batch size of 100
experiences randomly sampled from the Replay Buffer.
The hyperparameters for optimization are summarized
in table IV. The operation goes on until either the agent
reaches the goal, at which point it receives a reward of 50,
or 200 steps are exceeded. At this stage, the environment
is reset, giving place to a new episode. This algorithm is
repeated for a predefined number of episodes.
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Parameter Value

Fmax 1 (N)
dt 0.1 (s)

n res 10
max episode len 200

success pos 0.005 (m)
success vel 0.01 (m/s)
success r 50

penalty pos 1
penalty vel 1

2

TABLE III: Environment parameters. dt :
discretization time, n res : number of iterations for the
numerical resolution, max episode len : maximum
number of steps per episodes, success pos : success
condition on the position, success vel : success
condition on the velocity, success r : success reward,
penalty pos : penalty coefficient on the position,
penalty vel : penalty coefficient on the velocity.

Hyper-parameter Value

Policy optimizer Adam
Policy learning rate 0.001
Q-function optimizer Adam

Q-function learning rate 0.001
γ 0.99

Replay buffer size 1e6
Exploration time 10 000 (steps)

Batch size 100
Policy update interval 2 (steps)

Q-function update interval 1 (step)

TABLE IV: TD3 agent hyperparameters.

Transfer Learning

We employed TL when changing only a single physical
parameter for all of the numerical experiments presented
in this paper. For the initial exploration presented in
Fig. 3, we started with Fmax = 1 N, m = 1 kg and
η = 2 kg/s. Then, we slowly explore the space of η with
TL as detailed in Results. We used these new trained
networks as the starting point of another TL, this time
either changing the mass m of the maximum external
force Fmax. These led to the scaling of ηc with respect to
these parameters presented in Fig 4.
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