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Paris, France.,
bDepartment of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033,

Japan.,
cLaboratoire Interdisciplinaire des Energies de Demain (LIED), CNRS UMR 8236,
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Abstract

Knitted fabric exhibits avalanche-like events when deformed, which we are
interested in predicting, by analogy with earthquakes. However, as in most
analogous seismic models, the time intermittence and scale-invariance of
these events severely jeopardize this endeavor. But more importantly, such
predictions are hard to assess and not easily compared. Here we introduce
a framework that allows not only to predict seismic-like, rebalanced time se-
ries, but to also evaluate and compare the relevance of competing predictions.
It relies on a reinforcement learning environment that learns risk manage-
ment in a model, seismically active city subjected to the crackling dynamics
observed in the mechanical response of knitted fabric. Relying on exten-
sive experimental data, we show that this mechanism allows to assess the
finite predictibility of seismic-like activity, and to compare the performance
of different approaches in the operational usage of such predictions.
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1. Introduction

A few years ago, the scientific community seemed outdistanced by the
tremendous achievements of corporate machine learning research eg. in
games [1–3] or in natural language processing [4, 5]. Yet the momentum
impulsed by these early developments has now galvanized a growing number
of fields into the use of deep learning in particular. Ranging through robotics
and computer vision [6], exoplanet search [7], particle physics [8], cancer de-
tection [9], protein folding [10], drug design [11], recent use has many times
demonstrated super-human scientific abilities. As potentially every field can
benefit one way or another from these revolutionary tools, it is natural to ac-
tively explore their reach within physics laboratories, which are prolific data
sources.

The geophysics community has been an early adopter of these approaches
[12], with many teams now working on earthquake prediction in the lab [13,
14] and in the field [15–21], and they have recently been invoked in the more
general context of plasticity and crackling noise prediction [22, 23].

In practice though, even if a given predictor achieves a reasonable accu-
racy, it remains unclear how to take advantage of this edge in a practical
situation: on the one hand, accuracy assigns every target with the same
importance regardless of their relative relevance to a specific problem, and
on the other, it doesn’t allow direct comparison of similar problems with
different targets, i.e. from one publication to another.

Here we propose an operational solution to overcome this challenge, based
on the idea that the accuracy in the prediction of a specific quantity should
be evaluated in light of how informative it is to the associated underlying
question, in our case risk management. First, we introduce a range of scalar
targets to be predicted from analogue seismic signals emitted during the ex-
perimental deformation of knitted fabric, and train a generic neural network
at these predictions. Then we define a risk-based metric balancing the impact
of political decisions in an imaginary city living on our system: evacuating
the city results in a given social cost, but failing to evacuate might result in
casualties. Finally, we train an agent to design a policy by minimizing this
penalty over time through reinforcement learning, while having access only
to the predictions of the different forecasters. This bias-free, autonomous
decision making process allows us to quantitatively compare the various tar-
gets and associated parameters, and to give physical meaning to the notion
of accuracy within this context. Finally, we discuss the resulting ranking in
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terms of past and future time scales, assessing in particular the relevance of
the initial forecasting endeavor.

2. Materials and methods

2.1. Experimental set up

In order to gather time series of seismic-like activity, we collect exper-
imental data while mechanically cycling a nylon thread, loose Stockinette
knit, which was recently shown [24] to display a rich, seismic-like response.
We use a setup similar to that reported in [25]. We perform a tensile test,
consisting in varying cyclically the elongation L of the fabric, mesuring the
mechanical response during the stretching phase: the force signal and the
stitches field displacement. This protocol yields a value of the force every
time step of 0.04s, with a cycle duration of 2000s, leading to 50000 points of
mechanical response per cycle, and 400 pictures. We collected dedicated data
from 20 experiments of approximately 30 cycles each, which corresponds to
roughly to 25 millions force points. The raw data for one cycle is shown in
Fig. 1.

<F(L)> = b + aL
f(L) = F(L) - <F(L)>

A B

Figure 1: A: mechanical response of the fabric for one complete cycle of elongation followed
by a compression between Li and Lf . The knitted fabric becomes entirely 2D around
L = 195mm. The slow velocity part between 210 and 220 mm is zoomed in the upper left
corner, and the affine response is highlighted in red. B Picture of the full knitted fabric
taken during an experiment, decorated by the non-affine part of the stitch displacement
field (see [24] for more details). The color encodes the corresponding vorticity in arbitrary
units.
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2.2. Data preprocessing

Upon stretching, the mechanical response of the fabric displays large fluc-
tuations around an affine response that is removed by a linear detrending
(Fig. 1). The amplitude of these fluctuations is however non-stationary over
the cycles, signaling the wear of the fabric over time. In order to build a
robust normalization of this signal, we first remove the temporal mean of the
data and scale it by its standard deviation, these quantities being different
from one cycle to the next. Furthermore, within a given cycle, we observe
that the amplitude of the fluctuations increases linearly with the extension.
We thus apply a second such normalization, where the statistics are collected
over a sliding time window across all cycles, which achieves a signal f with
a stationary distribution.

2.3. Event statistics : a seismic analogue system

Upon closer inspection, the normalized fluctuations f exhibit a complex,
”stick-slip”-like behavior, with linear loading phases interrupted by abrupt
drops, as can be seen in Fig. 2 A. These force drops, or ”slip-events”, were
shown in [24] to be concomitant and correlated in amplitude with time-
intermittent, spatially extended fault-like plastic events like those shown in
Fig. 1 B (see Appendix B for morphological aspects of this analogy).

They are thus very reminiscent of the seismic ”quakes” that threaten
populations, and are as such at the heart of our prediction endeavor. We
therefore define the quantity δf at each time step t by:

δf(t) =

{
∆f if t is the beginning of a drop
0 else.

(1)

where we characterize each drop by its amplitude ∆f (see Fig. 2A). Following
this construction, more than 93% of δf ’s values are zeros. The distribution
of the events ∆f displays three different regimes: noisy structureless at low
amplitude, a scale-invariant regime that extends over slightly more than 3
decades with an exponent of -1.3, and an exponential cut-off for very large
and rare events. This distribution is characteristic of the avalanching dy-
namics found in seismic activity (see [26] and references within).

This long-tailed statistics suggests defining classes of event severity in a
logarithmic scale. As an illustrative example, we will pick either N= 5 classes
centered on the decimal magnitudes in the event number count distribution,
or N=2 classes with two different thresholds a and b, isolating either the
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threshold a threshold b

2 classes 
(threshold b)

2 classes 
(threshold a)

5 classes 

-1.3

13.3% 35.4%30.1% 20.2% 1%

A B

Δf

Figure 2: A: Zoom on the normalized fluctuation signal displaying ”stick” phases in blue,
and ”slip” phases in red. A scalar event ∆f is defined by the (positive) amplitude of
a ”slip” phase. B: Number count distribution function of force drops amplitudes in the
normalized force fluctuations. It displays a power law regime with exponent −1.3. The
division into five classes is arbitrary and based on the decimal magnitude of the force
drops. The thresholds a and b used for two-class learning separate respectively the noise
from the events, and ”small” from ”large” events. The figures correspond to the relative
proportion of events in each of the five class.

noise or the large events, as shown in Fig. 2B. Class zero events correspond
to noise, extended to a small event class 1. Then medium-sized events (class
2) and large events (class 3) potentially qualify as non-severe and severe
respectively, while class 4 corresponds to very rare, catastrophic quakes.

3. Results

3.1. Predicting extreme events throught supervised machine learning

In this section we describe in detail the machine learning procedure we de-
signed in order to predict various notions of danger imminence based on past
measurements. We tackle time series forecasting using an artificial neural
network whose architecture is detailed below.

Because most of the δf ’s are zeros, the NN would only learn to predict
zero without a proper rebalancing of the dataset. We deal with this issue by
introducing a future horizon window of size τ (in time steps) and predicting
the severity of future events within that window. We consider three strategies
for aggregating the events in the near future:
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• Target 1:
T1(t) = max

t′∈[t,t+τ ]
δf(t′) (2)

This target focuses only on the largest event in the near future discard-
ing the temporal information,

• Target 2:
T2(t) = Σt′=t+τ

t′=t δf(t′) (3)

aggregates the amplitudes of events in the near future,

• Target 3:

T3(t) = Σt′=t+τ
t′=t e

−(t′−t)
(τ/3) δf(t′) (4)

confers more weight to more imminent events.

These scalar targets are then mapped to discrete labels for classification,
denoted Y(t) in the following, first with two classes separated by two different
thresholds, one separating the noise from the events, denoted as a, and the
second one separating significant against unsignificant events, denoted as b,
and then with 5 classes matching the events statistics discussed earlier.

Target Class 0 Class 1 Class 2 Class 3 Class 4

δf 94% 2.2% 2.3% 1.42% 0.08%
T1 33.5% 13% 26% 26% 1.5%
T2 33.2% 11% 25% 29% 1.8%
T3 49% 15.8% 23% 12% 0.2%

Table 1: Example of class rebalancing: percentage of the data - raw δf and the 3 targets
evaluated for τ = 20 - falling in the 5 classes defined in the text.

We have tested different choices of τ = 20, 40, 60 time steps, which
roughly coincide with the average time delay between events from class 1
to 3. The class rebalancing achieved by all targets for τ = 20 is displayed
in Table 1. Note that our approach is somewhat hybrid (via the use of τ)
with respect to other choices of the literature, where, eg. the prediction task
focused on either time to failure regardless of amplitude [13] or amplitude of
next event regardless of when it happens [20].

The input of the NN is built by stacking together three 1D arrays:
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5 classes

2 classes (threshold a) 

2 classes (threshold b) 

A B

Figure 3: A: Accuracy and F1-score for all models with respect to a random prediction.
B: Learning performance in the false positive (x-axis) and false-negative (y-axis) space
between noise and extreme events only for all models.

• (f(t− n− 1), . . . , f(t− 1)),

• (δf(t− n− 1), . . . , δf(t− 1)),

• (Y (t− n− τ − 1), . . . , Y (t− τ − 1)).

Here, n is a past horizon that we set to 256 time steps.
We investigated different NN architectures and found that convolutional-

based NNs achieved the best results. We will thus only report the results
obtained with a ResNet18 [27] (see Appendix G for details). The whole
dataset of 27M sequences was split into 22M of them for training, 2.5M for the
validation, and 2.5M for testing. The training sequences are then subsampled
in order to enforce equiprobability of the associated labels. The test set is
however not subsampled since we want to probe our model’s abilities on
realistic data.

We would like to be able to compare our results with those found in the
literature [13–21], but the choice in machine learning strategy makes this
comparison difficult, even counter intuitive. Indeed, the two-class models
preferred in the literature present the best accuracy, whereas we find it not
very helpful to predict extreme events only. Moreover, for N=5, the accuracy
value alone fails to qualify that ability, due in particular to the proportion
of events in each class being highly imbalanced in the test set.

We thus also report the F1-score, which is the harmonic mean of recall
and precision, two additional and complementary metrics [20] (see Appendix
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C for definitions), which more precisely qualifies the ratio of true positives
and true negatives for each class. Both these indicators, normalized by the
value they would assume with a random prediction, are displayed in Fig. 3A:
the NN is indeed able to learn and generalize from the training set, and
increasing the number of classes or the future horizon τ typically leads to
better performance. The target T2, which is simply the sum of the slip
amplitudes in the future horizon, also seems to be mildly favored.

This result is confirmed by the direct study of false positive and false
negative rates restricted to the two edge classes, noise versus extreme events
only, as seen in Fig. 3B: increasing the number of event classes greatly reduces
both the risk of predicting low class events when a major event is in fact going
to happen, and the risk of overestimating the danger.

Furthermore, although these false positive and negative rates may seem
very low (around 1% for the best model in the bottom left corner of Fig. 3B),
this is still far from being perfect because extreme events have themselves an
even lower occurrence rate (around ten times smaller).

As stated in the introduction, these predictions are not handy to read or
use, and a quantitative assessment of their differential quality is still lacking
at this point. One way around these difficulties consists in defining exactly
what we mean by a useful prediction: within the georisk context, a prediction
is useful if it allows policy-makers to make better informed decisions, in order
in particular to save more lives while sparing the local economic activity as
much as possible. In the next section we thus describe a second layer of
(reinforcement) learning meant to design a risk-management policy based
on the predictions of this first layer. We may on the one hand be able to
compare the different models in terms of a single risk-based metric. On the
other, upon inspection of the past predictions of the model, we may be able to
improve the decisions with respect to some naive policy by taking advantage
of the dynamics of the past predictions of event severity.

3.2. Assessment of the results: Game Theoretical Framework

In this section, we introduce KnitCity, a virtual city that is subjected
to ”quakes” based on the crackling dynamics extracted from the mechanical
response of the knitted fabric. KnitCity laboratory keeps track of all past
seismic data, and has access to all past predictions of one of the previously
designed model.

At each time step, the mayor must decide whether to evacuate the city or
not based on these predictions. Such a decision is a trade-off between the risk
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of exposing citizens to catastrophic quakes, resulting in a severe human loss,
and the risk of evacuating the city for nothing, to which we may associate a
”social cost”, related to the corresponding economic loss for example. Such
a social cost will be denoted λ for each day spent out of the city.

On the other hand, we model the human cost with the following weights
corresponding respectively to events from class 0 to 4:

damage = µ [0, 0, 0, 1, 10] (5)

where µ is a free parameter. Such a modeling choice reflects the fact that
for actual earthquakes, there is a threshold ”magnitude” below which human
cost vanishes. Also, increasing by an order of magnitude the damages caused
by class 4 events with respect to class 3 events reflects the fact that amplitude
drops, which embody the events severity, increase exponentially with class
labels. Since the ratio µ/λ is the only parameter that drives the trade-off
between casualties and time out, λ can be arbitrarily set to 1. There are then
two limiting behaviors: if µ goes to infinity, the optimal choice is to always
stay out of the city, and to always stay in if µ goes to zero, though µ cannot
be estimated a priori since it is based on social considerations.

Using Eq. (5) and the event statistics, we may estimate typical values
of µ by requiring that a random policy that evacuates the city p percent of
the time yields a social cost of the same order of magnitude as the human
cost. Values of p around 0.2 for example (see results section below) led to the
order of magnitude: µ = O (20). The influence of µ on the following results
is discussed in Appendix E.

A decision policy π can be evaluated by a reward given by the sum over
an episode:

R =
∑

t∈episode

s(a(t)) + h(a(t), δf(t)) (6)

where s (0 or -1) is the social cost determined by action a at time t, and h
is the human cost that depends on both the action and the actual event δf :

s(a) =

{
−λ if action: leave
0 if action: stay.

(7)

h(a, δf) =

{
0 if action: leave
−damage(δf) if action: stay.

(8)
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In the following, we shall also use two more quantities in order to represent
policy performances. We define

η = 1− actual casualties following the policy

maximum casualties
(9)

the life saving rate averaged over episodes and

κ = 1− number of steps where we evacuate

number of steps in the episode
(10)

the population retention rate averaged over episodes: the policy consisting
of always staying in the city has coordinates (0, 1) in the (η, κ) plane, while
the policy consisting in always evacuating the city has coordinates (1, 0) (see
Fig. 4A). An agent that randomly evacuates the city at some rate p should
on average expect casualties proportional to 1 − p and thus the set of all
possible random policies must lie on average on the y = 1− x straight line.

The optimal policy that consists in evacuating the city only when the
damages are larger than the social cost can be evaluated by simply looking
into the future: we find η = 1 and κ also very close to 1 since dangerous events
are very scarce. If we moreover add that the evacuation rate is fixed and
continuously varying from 0 to 1, then we may define ”an optimal frontier”
as being the green straight lines in Fig. 4A.

The average reward by time step can also be mapped as r = r(κ, η) =
−A1 + κ + A2η via the previous equations, for two constants A1 and A2

that can be computed given the signal statistics and µ. Models can thus be
ranked with respect to the average reward per time step; constant rewards
are decreasing straight lines in that space, see e.g. Fig. 4A. The relationships
between r, R, η, κ, A1 and A2 is discussed in Appendix D.

Using the NN’s predictions discussed above, we first manually define a
naive policy based only the last available prediction, where we evacuate at
every alert beyond the threshold λ, ie. every time an event of class 3 or 4 is
predicted:

πnaive =

{
leave if damage(prediction) > λ
stay else.

(11)

Results of such a naive policy are shown in Fig.4A. The natural question is
then whether we can go beyond the naive policy by leveraging the sequence
of past NN’s predictions through the training of a reinforcement learning
agent.
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We therefore trained an unsupervised model consisting in a Categorical
Deep-Q-Learner [28] belonging to the wide class of Reinforcement Learning
(RL) Agents that have achieved remarkable performance in many areas that
need the time component and memory to be taken into account : from games
to control, auto-pilots, etc. Such a network learns the probability distribution
function of the expected rewards for a given action and a current state, and
acts by sampling it. Details about the chosen hyperparameters are explained
in Appendix H. We trained multiple RL agents that had access to a varying
number of past predictions. We set µ = 20 and train the RL agent for
the 27 models obtained in the previous section, with either 1, 4 or 16 past
predictions made available to the RL agent. We will denote RL(1), RL(4)
and RL(16) these models. In terms of the average reward per step, the results
in Fig. 4 clearly shows that RL agents improve upon the naive policy. Notice
also that some of the models converge to the ”always in” policy (especially
RL(1) models).

Zooming in on the best performing models with a reward per time step
|r| below 0.4, we can return a list of best models. Irrespective of the number
of past data fed to the RL agent, the best model is systematically the one
that uses N = 5 classes with target T3 and a future horizon of 20 or 40.

r=-0.50

r=-0.45

r=-0.40
r=-0.35

A B

Figure 4: A: Ranking of learned policies with an RL agent compared to the naive policy
for the 27 different models trained in the previous section. Also shown are the lines of
constant reward per time-step. B: Ranking of learned policies for the model defined with
N = 5 classes and target T3. The largest impact on the results comes from the size of the
future horizon, with τ around 20 being clearly favored. The number of past predictions fed
to the RL agent is less sensitive, although we find a best model for n = 4 past predictions,
and a slight decrease of learning performance if we feed too many of them. Here the reward
per step is plotted in absolute value, and best models have the lowest |r| values.
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Exploring further our results, we now fix the model (target 3 and N = 5),
and vary τ in the range (1, 20, 40, 60) and for (1, 2, 4, 8, 16, 32) past predictions
made available to the RL agent. The results, displayed in Fig. 4B, show that
RL(4) and τ = 20 are the best hyperparameters to use.

4. Discussion

In an effort to gain insights into the immediate future crackling activity
in the dynamometric signal of a knitted fabric, we have established a general
framework, applicable de facto to any time series prediction for which a clear
motivation can be rationalized, in which we can on the one hand compare
through a common rating the predictive power of the predictor, and on the
other explicitly construct a step by step action plan answering the initial
motivation by efficiently exploiting the predictions. This development allows
in particular to rank the relevance of the various targets with past and fu-
ture horizons used in neural network predictors for the risk management in
a model seismic environment. Our strategy, which consists in balancing in-
stantaneous deleterious events with a time integrated quantity spontaneously
produces interesting policies, can be extended to real-world situations when
the cost function can be estimated, i.e. geological or climatic hazard. Encour-
agingly, our analysis clearly shows that these predictors yield some valuable
information about the future.

Of course many challenges remain to be tackled within our approach.
Extensive optimization of hyperparameters would certainly allow substantial
refinement both in the quality of the predictor and that of the decision-
making agent: our work only provides a proof of concept of the type of
insights that can be obtained within the model environment of KnitCity,
and was not fully fine-tuned. Building on our findings, it would be worth
further investigating the role of the number of output classes, even going to
the regression limit.

Furthermore, our dataset allows for spatially resolved predictions [24]
which would of course also be beneficial within the geoseismic context as
satellite imaging enables such analysis: this approach is high on our list of
future priorities. However, establishing a quantitative correspondence be-
tween the space and time scales in our system and those in the geophysical
context would be required if we were to export the machinery introduced
above to real-world situations, and this preoccupation will be at the heart of
our future work on spatially resolved prediction.
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Appendix A. Knitted Fabric and Experimental Protocol

The knits were crafted using a Toyota KS858 single bed knitting ma-
chine with nylon mono-filament (Stroft® GTM) of diameter d = 150µm and
length 25.4 m. All samples are 83 × 83 stitches with an average lateral and
longitudinal stitch size of, respectively, 3.9 and 2.8 mm. The yarn Young’s
modulus E ≈ 5.1 GPa was measured in a standard tensile test.

Lc
Figure A.5: Color. Experimental setup: a clamped knitted fabric is set into an unixial
traction device. We record both the tensile force and images of the fabric upon stretching.

The knit is clamped on its upper and lower rows by means of screws
holding each stitch individually, imposing a constant spacing between them
along the corresponding rows. Starting from an initial configuration with
height Li = 170 mm and width Lc = 360 mm, we perform the tensile test
using an Instron® (model 5965) dynamometer mounted with a 50 N load
cell. The elongation L of the fabric between the jaws is varied cyclically
between Li and Lf = 220 mm. The force signal is recorded at high frequency
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(25 Hz) during the stretching phase on a shorter elongation range, between
Lm = 210 mm and Lf , and pictures of the knit are taken every Lf = 5 s.
To approach the quasi-static deformation limit in the interval [Lm, Lf ], we
impose a constant loading speed and set it at a small value v = 5µm/s.
To reduce the duration of the experiment, we fix v = 5 mm/s outside this
measurement window.

Appendix B. Event Morphology
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Figure B.6: Color. A: Non-affine part of the stitches displacement field surrounding an
isolated event. Each stitch is colored by the norm of its displacement (arbitrary scale).
B: The emergence and propagation of a fault line observed with a high-speed camera.
C: Picture of the a full knitted fabric with stitches colored by their vorticity values. D:
Corresponding vorticity profile of each event (1 to 4) highlighted in C.

To strengthen our argument that the slip events display a deep similarity
with earthquakes and fault slips, we describe in more details the spatial
morphology of the shear lines inducing the slip events. In Fig.B.6 A, we can
clearly distinguish an extended shear on both sides of the fault line, strongly
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reminiscent of GPS displacement data obtained across active geophysical
faults, such as that shown in [29].

In Fig.B.6 B, we measure the displacement of the stitches with a fast cam-
era (Photron APX RS 3000) at different time steps from a reference frame,
and compute the corresponding vorticity field for each time step. We com-
pute the position Y of each stitch along the fault direction eY . The profile of
the fault is then obtained by summing for each position Y the vorticity of the
corresponding stitches. Each profile line in the plot is separated by 50 ms,
which corresponds to an elongation of the fabric of 37.5µm as it is loaded
at a constant speed of 0.75 mm for this specific experiment. Two snapshots,
where each pixel represents a stitch and is colored by its vorticity value, are
also shown. We observe that a fault is growing progressively from a point
(first snapshot), but then seems to trigger another event as the growth devel-
ops from another position. This observation is compatible with propagating
faults and avalanching events.

In Fig.B.6 C, 4 events, colored by their vorticity values, can be detected
in the knitted fabric, and are labeled from 1 to 4. The corresponding vorticity
profile of each event is shown in Fig.B.6 D. While the less extended events
seem to present a peaked profile, extended ones like number 4 show multi-
modal profiles. This multi-modality is very reminiscent of that measured in
geophysical faults, which are usually constituted of several interacting faults,
producing distinct displacement maxima, as observed for example in [30].

Appendix C. Supervised Learning Metrics

We recall the definition of standard classification metrics for reference.

accuracy =
number of true predictions

total number of elements
(C.1)

f1-score =
2 ∗ precision ∗ recall

precision + recall
(C.2)

mean precision =
1

number of classes

∑
i

precision(i) (C.3)

mean recall =
1

number of classes

∑
i

recall(i) (C.4)
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precision(i) =
number of true predicitons in class i

number of elements predicted in class i
(C.5)

recall(i) =
number of true predicitons in class i

number of elements in class i
(C.6)

Appendix D. Relations between parameters in the
Game Theoritical Framework

Our models are all evaluated on the same set of episodes, over which the
κ and η metrics are averaged. We can then express the maximum casualties,
over this set, as a function of the probabilities of occurence of the events,
such as damage(δf) 6= 0 : pd3 = P(δf ∈ class3) and pd4 = P(δf ∈ class4).

maximum casualties = T ∗ µ ∗ (d3pd3 + d4pd4) (D.1)

with T being the number of time step in an episode, d3 = damage(δf ∈
class3) and d4 = damage(δf ∈ class4). Thus, we can write the average
reward by episode < R > as a function of η and κ:

R =
∑

t∈episode

s(a(t)) + h(a(t), δf(t))

⇒ < R > = T ∗ {−λ ∗ (1− κ)− µ ∗ (d3pd3 + d4pd4)(1− η)}
(D.2)

To eliminate the dependency on the number of steps per episode, we define
the average reward by step, over all the episodes of the set, by:

r =
< R >

T
= −1− µ ∗ (d3 ∗ pd3 + d4 ∗ pd4) + κ+ µ ∗ (d3 ∗ pd3 + d4 ∗ pd4) ∗ η

(D.3)

which is indeed of the form r = −A1 + κ + A2η where A1 = −1 − µ ∗ (d3 ∗
pd3 + d4 ∗ pd4) and A2 = µ ∗ (d3 ∗ pd3 + d4 ∗ pd4) being the constants we refer
to in the main text. In particular, the relation between r and < R > follows
from the definition of η and κ.

By definition, we have

κ = 1− T*p

T
= 1− p (D.4)
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To relate η and p, we must first define the probability of staying while an
event of class 3 occurs: P(action = stay ∩ δf ∈ class3), and the probability
of staying while an event of class 4 occurs : P(action = stay ∩ δf ∈ class4).
Then we can write casualties following the policy as

casualties = T ∗ µ ∗ (d3 ∗ P(action = stay ∩ δf ∈ class3)

+ d4 ∗ P(action = stay ∩ δf ∈ class4))
(D.5)

where P(action = stay ∩ δf ∈ class3) and P(action = stay ∩ δf ∈ class4)
have a non trivial relation to p. However, in the particular case when p is
chosen randomly, P (action = stay) = 1 − p and P (δf ∈ class3) or P (δf ∈
class4) become independent, allowing us to simplify the expressions (D.5)
and (9), leading to η = p and κ = 1− η.

Appendix E. Effects of µ

We report on the effect of varying the parameter µ, summarized in Fig.
E.7. Points here are trained models grouped by values of µ. This allows to
see a smooth evolution from always-in (low µ) to always-out (high µ) policies
as expected. Again, this figure emphasizes that there is no unique way to
define an optimal policy when predictions are not perfect; instead we get a
family of trained decisional agents that are µ dependent. However the point
is that the framework we introduced now provides with both quantitative and
qualitative tools to explore and rank decision policies, and most importantly
it allows to compare predictions of possibly completely different nature.

Appendix F. Data and materials availability

All raw and processed data are available under CC-By licence at
https://osf.io/nf847/ in the KnitQuakesForecast Project
(DOI 10.17605/OSF.IO/NF847). The source code of the data analysis can
be found at https://github.com/adeledouin/ KnitAnalyse open/, and is plug
and play with the above data set.

Appendix G. Machine learning neural net

The Neural Network used in this work is a ResNet18 – inspired by the
one coded in
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Figure E.7: Color. Typical positions of optimal learned policies in the η, κ space when µ
is varied; for models with T3, N = 5 classes and τ in the tuple (20, 40, 60), and different
number of past predictions. Colored lines are iso-r associated to each value of µ.

https://github.com/pytorch/vision/ with blocks size = [64, 128, 256, 512],
deepths = [2, 2, 2, 2], and ResNetBasickBlocs - but with 1D convolution in-
stead of 3D. The code source can be found at
https://github.com/adeledouin/KnitQuakesForecast open/. We used Adam
as an optimizer with an initial learning rate of 0.01, a weight decay of 1.10−4

and a learning rate decay of 0.5 every 50 epochs for 300-epoch runs. As
criterion we used the cross entropy loss of Pytorch – with the weight of each
classes.

Appendix H. Reinforcement learning environment and model

We developed a Gym environment, and used a Categorical Deep-Q-Learner
from the prfl package that can be found at https://github.com/pfnet/pfrl/.
We use a distributional Q-function with discrete action of 51 atoms, with
2 hidden layers of 64 neurons. As optimizer we use Adam with an 1.10−3

rate, and a discounting factor γ of 0.95. We subsampled the test set of the
previous Section 3.1.2 in a set of 75 episodes, or ”games” of 5000 time steps
each (such that on average, two major events of class 4 are present in each
game), and validate on unseen data grouped in 50 episodes of 5000 steps.
All models are then tested on 180 new unseen episodes of the same number
of steps. The code source can be found at
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https://github.com/adeledouin/KnitQuakesForecast open/.
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