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3 in Africa are coupled (e.g., the ozone-climate penalty; [START_REF] Brown | The ozone-climate penalty over South America and Africa by 2100[END_REF]. In addition, as a global model, MUSICAv0 does not require boundary conditions to study a region at high resolution. Global impacts and interactions can be simulated in a consistent and coherent way. This feature is important as inflow from other continents and oceans significantly impacts air quality in Africa. MUSICAv0 has been evaluated over North America [START_REF] Schwantes | Evaluating the impact of chemical complexity and horizontal resolution on tropospheric ozone over the conterminous US with a global variable resolution chemistry model[END_REF][START_REF] Tang | Effects of Fire Diurnal Variation and Plume Rise on US Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0)[END_REF] and is also being developed and tested in other regions around the globe (https://wiki.ucar.edu/display/MUSICA/Available+Grids).

This paper serves as the basis for the future application of MUSICAv0 in Africa. In this study, we develop a MUSICAv0 model grid with regional refinement over Africa. Because MUSICAv0 with Africa refinement is newly developed while WRF-Chem has been previously used for African atmospheric chemistry and air quality studies, here we include results from WRF-Chem to assess the ability of MUSICAv0 in reproducing the regional features of atmospheric composition as simulated by WRF-Chem. We conduct the MUSICAv0 simulation for the year 2017 to compare with a previous WRF-Chem simulation [START_REF] Kumar | Assessment of regional carbon monoxide simulations over Africa and insights into source attribution and regional transport[END_REF]. MUSICAv0 and the WRF-Chem simulation and the observational data used in this study are described in Section 2. The MUSICAv0 model simulation results are evaluated against in situ observations and compared with satellite retrievals in Section 3. In Section 4, we provide an example application of MUSICAv0 over Africa -identifying key potential regions in Africa for future in situ observations and field campaign(s).

Model and data 2.1 MUSICAv0

MUSICA is a newly developed framework for simulations of large-scale atmospheric phenomena in a global modeling framework, while still resolving chemistry at emission-and exposure-relevant scales [START_REF] Pfister | The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA)[END_REF]. MUSICA version 0 (MUSICAv0) is a configuration of the Community Earth System Model (CESM). It is also known as the Community Atmospheric Model with chemistry (CAM-chem) [START_REF] Tilmes | Climate forcing and trends of organic aerosols in the Community Earth System Model (CESM2)[END_REF]Emmons et al., 2020) with regional refinement (RR) down to a few kilometers [START_REF] Lauritzen | NCAR Release of CAM-SE in CESM2.0: A Reformulation of the Spectral Element Dynamical Core in Dry-Mass Vertical Coordinates With Comprehensive Treatment of Condensates and Energy[END_REF][START_REF] Schwantes | Evaluating the impact of chemical complexity and horizontal resolution on tropospheric ozone over the conterminous US with a global variable resolution chemistry model[END_REF]. CAMchem, and thus MUSICAv0, includes several choices of chemical mechanisms of varying complexity. This study uses the default MOZART-TS1 chemical mechanism for gas phase chemistry (including comprehensive tropospheric and stratospheric chemistry; Emmons et al., 2020) and the four-mode version of the Modal Aerosol Module (MAM4; [START_REF] Liu | Particulate air pollution from wildfires in the Western US under climate change[END_REF] for the aerosol scheme.

The MUSICAv0 users have the option to create their own model grid. MUSICAv0 is currently being developed and tested for applications over various regions globally (https://wiki.ucar.edu/display/MUSICA/Available+Grids), including North America, India, East Asia, South America, Australia, and Korea, among others. (e.g., [START_REF] Schwantes | Evaluating the impact of chemical complexity and horizontal resolution on tropospheric ozone over the conterminous US with a global variable resolution chemistry model[END_REF][START_REF] Tang | Effects of Fire Diurnal Variation and Plume Rise on US Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0)[END_REF]Jo et al., 2023). In this study, we develop a model grid for applications in Africa (ne0np4.africa_v5.ne30x4). As shown in Figure 1a, the horizontal resolution is ~111 km ´ 111 km (i.e., 1° latitude ´ 1° equatorial longitude) globally, and ~28 km ´ 28 km (i.e., 0.25° latitude ´ 0.25° equatorial longitude) within the region over Africa. Our simulation uses the default option for vertical layers (i.e., 32 layers from the surface to ~3.64 hPa).

Here we run MUSICAv0 with the model grid for Africa for the year 2017, saving 3-hourly output. We use the Copernicus Atmosphere Monitoring Service Global Anthropogenic emissions, (CAMS-GLOB-ANTH) version 5.1 [START_REF] Soulie | Global anthropogenic emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service Air Quality Forecasts and Reanalysis[END_REF] for anthropogenic emissions and the Quick Fire Emissions Dataset (QFED) for fire emissions [START_REF] Darmenov | The quick fire emissions dataset (QFED)-documentation of versions 2[END_REF]. Plume rise climatology is applied to fire emissions following [START_REF] Tang | Effects of Fire Diurnal Variation and Plume Rise on US Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0)[END_REF]. In addition, we also include open waste burning (https://www.acom.ucar.edu/Data/fire/; Wiedinmyer et al., 2014) emissions in the simulation. The model has the option of a free-running atmosphere or nudging to external meteorological reanalysis. In this simulation, only wind and temperature are nudged to the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; [START_REF] Gelaro | The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[END_REF] with a relaxation time of 12 hours.

We also added carbon monoxide (CO) tracers in the simulation to understand the source and transport of air pollution. CO tracers in CAM-chem/MUSICAv0 are described in detail by [START_REF] Tang | Source contributions to carbon monoxide concentrations during KORUS-AQ based on CAMchem model applications[END_REF]. In this study we include tracers for 6 regions (North Africa, West Africa, East Africa, Central Africa, Southern Africa, and the rest of the world) and 3 emission sources separately (anthropogenic emissions, fire emissions, and open waste burning emissions). In total, there are 18 tagged CO tracers.

WRF-Chem

The Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) is a regional chemical transport model. It has been widely used for air quality studies in Africa. In this study we use model results from a WRF-Chem simulation described by Kumar et al. (2022). The WRF-Chem simulation has a grid spacing of 20 km, slightly higher than the MUSICAv0 simulation, and the model domain is highlighted in Figure 1a. The simulation has 36 vertical levels from the surface to ~50 hPa. The WRF-Chem simulation uses the Model for Ozone and Related Tracers-4 (MOZART-4) chemical mechanism [START_REF] Emmons | Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4)[END_REF] for tropospheric gas phase chemistry, and the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model [START_REF] Chin | Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements[END_REF] for aerosol processes. The European Centre for Medium Range Weather Forecasts (ECMWF) global reanalysis (ERA-Interim) fields are used for initial and boundary meteorology conditions, while another CAM-chem simulation is used for initial and boundary chemical conditions [START_REF] Kumar | Assessment of regional carbon monoxide simulations over Africa and insights into source attribution and regional transport[END_REF]. The WRF-Chem simulation used the global Emission Database for Atmospheric Research developed for Hemispheric Transport of Air Pollution (EDGAR-HTAP v2) for anthropogenic emissions and the Fire Inventory from NCAR version 1.5 (FINNv1.5) [START_REF] Wiedinmyer | The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning[END_REF] for fire emissions. The WRF-Chem output is saved hourly, however we only use 3-hourly output to match the MUSICAv0 simulation.

ATom

The Atmospheric Tomography mission (ATom; Thompson et al. 2022) was designed to study the impact of human-produced air pollution on greenhouse gases, chemically reactive gases, and aerosols in remote ocean air masses. During the project, the DC-8 aircraft sampled the remote troposphere with continuous vertical profiles. There were four seasonal deployments from the summer of 2016 through the spring of 2018. Here we compare the MUSICAv0 simulation with observations from ATom-2 (January-February 2017) and ATom-3 (September-October 2017). Since the ATom flight tracks were mostly outside the WRF-Chem domain (Figure 1a), we do not compare the WRF-Chem simulation with ATom data. However, we compare chemical species from the MUSICAv0 simulation to the 2-minute merged ATom measurements globally to obtain a benchmark and broader understanding of MUSICAv0 performance both within and outside the refined region. The model output is saved along the ATom aircraft flight tracks and with respect to the observational times at run time. Nitric oxide (NO) and ozone (O3) measurements from the NOAA Nitrogen Oxides and Ozone (NOyO3) instrument (Bourgeois et al., 2020[START_REF] Bourgeois | Large contribution of biomass burning emissions to ozone throughout the global remote troposphere[END_REF] and the merged CO data (from Quantum Cascade Laser System and NOAA Picarro CO measurements) are used.

IAGOS

The In-service Aircraft for a Global Observing System (IAGOS) is a European research infrastructure, and was developed for operations on commercial aircraft to monitor atmospheric composition [START_REF] Petzold | Global-scale atmosphere monitoring by in-service aircraft-current achievements and future prospects of the European Research Infrastructure IAGOS[END_REF]. The IAGOS instrument package 1 measures CO, O3, air temperature, and water vapor (https://www.iagos.org/iagos-core-instruments/package1/). CO is measured by infrared absorption using the gas filter correlation technique (Precision: ±5%, Accuracy: ±5 ppb) while O3 is measured by UV absorption at 253.7 nm (Precision: ±2%, Accuracy: ±2 ppb). We use airborne measurements of CO, O3, air temperature, and water vapor from IAGOS for model evaluation. The locations of the IAGOS flight tracks over Africa are shown in Figure 1b. The model results and IAGOS data comparisons are conducted separately for five African sub-regions (defined in Figure 1b).

Ozonesondes

The ozonesonde is a balloon-borne instrument that measures atmospheric O3 profiles through the electrochemical concentration cell using iodine/iodide electrode reactions [START_REF] Thompson | First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone profiles (1998-2016): 2. Comparisons with satellites and ground-based instruments[END_REF], with records of temperature, pressure, and relative humidity from standard radiosondes. We use ozonesonde data from Southern Hemisphere ADditional OZonesondes (NASA/GSFC SHADOZ; [START_REF] Thompson | First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone profiles (1998-2016): 2. Comparisons with satellites and ground-based instruments[END_REF][START_REF] Witte | First reprocessing of Southern Hemisphere ADditional OZonesondes (SHADOZ) profile records (1998-2015): 1. Methodology and evaluation[END_REF][START_REF] Witte | First reprocessing of Southern Hemisphere ADditional OZonesondes profile records: 3. Uncertainty in ozone profile and total column[END_REF]. Specifically, ozonesonde data from four sites are used (Figure 1b): Ascension (Ascension Island, U.K.), Nairobi (Kenya), Irene (South Africa), and La Reunion (La Réunion Island, France). The average O3 measurement uncertainty ranged from 5-9% for the ozonsonde data used in this study.

WDCGG

Monthly surface CO measurements from the World Data Center for Greenhouse Gases (WDCGG; operated by the Japan Meteorological Agency in collaboration with the World Meteorological Organization) are used for model evaluation. Data from six sites are used (Figure 1b), namely (Ascension Island, U.K.), Assekrem (Algeria; remote site located in Saharan desert), Gobabeb (Namibia; located at the base of a linear sand dune, next to an interdune plain), Cape Point (South Africa; site exposed to the sea on top of a cliff 230 meters above sea level), Izana (Tenerife, Spain; located on the Island that is ~300 km west of the African coast), and Mare (Seychelles; near an international airport).

Surface PM2.5

At the U.S. embassies, regulatory-grade monitoring data are collected with Beta Attenuation Monitors (BAMs), using a federal equivalent monitoring method, with an accuracy within 10% of federal reference methods [START_REF] Watson | Guidance for using continuous monitors in PM2.5 monitoring networks[END_REF][START_REF] Epa | Quality Assurance Guidance Document 2.12: Monitoring PM2.5 in Ambient Air Using Designated Reference or Class I Equivalent Methods[END_REF]. These instruments are operated by the U.S. State Department and the U.S. EPA, and data are available through AirNow (https://www.airnow.gov/international/us-embassies-and-consulates/). We use the measurements at the U.S. embassy locations in Addis Ababa Central (Ethiopia, 9.06° N, 38.76° E) and Kampala (Uganda, 0.30° N, 32.59° E) for the year 2017 as references (Malings et al., 2020) to match our simulations. The raw data are made available hourly and for this study we use daily mean PM2.5 for comparison with model simulations.

MOPITT

The Measurements of Pollution in the Troposphere (MOPITT) instrument on board the NASA Terra satellite provides both thermal-infrared (TIR) and near-infrared (NIR) radiance measurements since March 2000. Retrievals of CO column density and vertical profiles are provided in a multispectral TIR-NIR joint product which has sensitivity to near-surface as well as free tropospheric CO (Deeter et al., 2011;[START_REF] Worden | Observations of near-surface carbon monoxide from space using MOPITT multispectral retrievals[END_REF]. Here we use the MOPITT Version 9 Level 2 CO column product (Deeter et al., 2022) over Africa to evaluate the MUSICAv0 and WRF-Chem simulations. MOPITT Version 9 has significant updates to the cloud detection algorithm and NIR calibration scheme. The MOPITT satellite pixel size is ~22 km ´ 22 km, and the overpass time is ~10:30 am local time in 2017. When comparing model outputs to MOPITT the recommended data quality filter is applied and model outputs are interpolated to the MOPITT retrievals in space and time. To perform quantitative comparisons, the MOPITT averaging kernel and a priori are used to transform the model CO profiles to derive model column amounts.

OMI NO2 (QA4ECV)

Tropospheric column NO2 from the Ozone Monitoring Instrument (OMI) on board Aura is compared to the model in this study. Specifically, the NO2 product from the quality assurance for the essential climate variables (QA4ECV) project is used (Boersma et al., 2017a;Compernolle et al., 2020). The satellite pixel size is ~13 km ´ 25 km, and the overpass time is ~1:40 pm local time in 2017. A data quality filter was applied following the Product Specification Document [START_REF] Boersma | Product specification document for the QA4ECV NO2 ECV precursor product[END_REF]; processing_error_flag = 0, solar_zenith_angle < 80, snow_ice_flag < 10 or snow_ice_flag = 255, amf_trop/amf_geo > 0.2, and cloud_radiance_fraction_no20 <= 0.5). Model profiles were transformed using the provided tropospheric air mass factor (AMF) and averaging kernels.

OMI HCHO (QA4ECV)

We also use tropospheric column HCHO from OMI in this study. Similar to OMI NO2, we also use OMI HCHO product from QA4ECV (De Smedt et al., 2017a). A data quality filter was applied following the Product User Guide [START_REF] Boersma | Product specification document for the QA4ECV NO2 ECV precursor product[END_REF]; processing_error_flag = 0 and processing_quality_flag = 0). Model profiles were transformed using provided averaging kernels. We note that HCHO retrievals are subject to relatively large uncertainties compared to other satellite products used in this study. Therefore, the comparisons between model results and the OMI HCHO product only indicate the model-satellite discrepancies rather than determining model deficiencies. In addition, the WRF-Chem simulation from [START_REF] Kumar | Assessment of regional carbon monoxide simulations over Africa and insights into source attribution and regional transport[END_REF] does not include HCHO in the output and hence will not be compared.

MODIS AOD

The aerosol optical depth (AOD) product (550 nm) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra NASA Terra satellite is used. Specifically, we used the MODIS Level 2 Collection 6.1 product (MOD04_L2; [START_REF] Levy | MODIS Atmosphere L2 Aerosol Product[END_REF]. Deep Blue Aerosol retrievals are used [START_REF] Hsu | Enhanced Deep Blue aerosol retrieval algorithm: The second generation[END_REF]Levy et al., 2013) to include retrievals over the desert. The MODIS satellite pixel size is ~1 km ´ 1 km, and the overpass time is ~10:30 am local time.

Model comparisons with satellite data and evaluation with in situ observations

Africa includes a wide range of environments and emissions source. Therefore, in this section we separate the continent in five sub-regions for analysis following [START_REF] Kumar | Assessment of regional carbon monoxide simulations over Africa and insights into source attribution and regional transport[END_REF].

CO is a good tracer of anthropogenic and biomass burning emissions and modeled CO tracers are used in this section to understand sources. Figure 2 shows the seasonal averages of CO column distributions over Africa from MOPITT along with the MUSICAv0 and WRF-Chem biases. The highest levels of CO in these maps are primarily associated with biomass burning, which moves around the continent with season. Both MUSICAv0 and WRF-Chem simulations underestimate the CO column compared to MOPITT (Figures 3a and3b). Overall, MUSICAv0 agrees better with the OMI tropospheric NO2 column (Figure 3c) and MODIS AOD (Figure 3e) than WRF-Chem (Figures 3d and3f). The MUSICAv0 simulation overall has lower tropospheric HCHO column than OMI in all regions and seasons (Figure 3g). Spatial distributions of model biases against the OMI tropospheric NO2 column, MODIS AOD, and OMI tropospheric HCHO column are included in Figures S1-S3. In this section we compare the model results with satellite data and in situ observations over sub-regions in Africa and oceans near Africa (Figure 1b).

North Africa

Over North Africa, both MUSICAv0 and WRF-Chem simulations underestimate the CO column during 2017 (Figures 2 and3). As shown by the tagged model CO tracers (Figure 4), CO over North Africa is mainly driven by transport of CO from outside the continent and anthropogenic emissions. The model underestimation compared to the MOPITT CO column is consistent with the results of the comparisons with surface CO observations from WDCGG at the two sites located in North Africa (Assekrem and Izana; Figures 5a and5c). At the two surface sites, the composition of source types and source regions are close to the composition of source types and source regions of the column average over North Africa (Figure 4 and Figures S4 andS5), hence the two sites are representative of the background conditions of North Africa. Compared to MODIS AOD, WRF-Chem has a mean bias of 0.36 whereas MUSICAv0's mean bias is 0.17 for 2017. The model AOD biases over North Africa are likely driven by dust. No comparison is made with IAGOS O3 in North Africa due to data availability.

West Africa

Over West Africa, fire and anthropogenic emissions are both important for CO pollutant and fire impacts peak in DJF (December, January, and February). Compared to the MOPITT CO column, the mean bias of MUSICAv0 and WRF-Chem for West Africa peak around Februarythe dry season of the Northern Hemisphere (Figure 3). In February, the MUSICAv0 mean bias is -1.1´10 18 molecules/cm 2 and WRF-Chem mean bias is -7.5´10 17 molecules/cm 2 , which are likely driven by fire emission sources (Figure 4). Model comparisons with IAGOS CO also show a similar bias -both model simulations underestimate CO at all vertical levels. The underestimation peaks during DJF and below 600 hPa (Figure 6). As for MODIS AOD, WRF-Chem has the mean bias 0.69 whereas MUSICAv0's mean bias is 0.15, respectively. Similar to North Africa, the model biases in AOD over West Africa are also likely driven by dust and biomass burning. We also compare modeled O3 with IAGOS O3 observations (Figure 7).

Over West Africa, both models agree well with the IAGOS O3 observations below 800 hPa (mean bias ranges from -1 to -4 ppb). Above 800 hPa over West Africa, WRF-Chem underestimates O3 while MUSICAv0 overestimates O3. Overall, MUSICAv0 consistently overestimates O3 above 800 hPa in all seasons while the direction of WRF-Chem bias changes with seasons (Figure 7). When MUSICAv0 overestimates O3, the bias is in general larger at the higher altitude of the troposphere. The concentration of the model stratospheric ozone tracer, O3S, is also larger at the higher altitude in DJF (Figure 9). The correlation of modeled O3 and O3S is 0.54, and the correlations of O3S and model O3 bias (modeled O3 minus IAGOS O3) is 0.35 over West Africa, implying the overestimation of O3 in the upper troposphere could be partially driven by too strong stratosphere-to-troposphere flux of ozone. Lightning NO emissions can also impact O3 in the upper troposphere. The MUSICAv0 simulation has somewhat (~3 times) higher lightning NO emissions (Figure S6) compared to a standard CAM-chem simulation (not shown), therefore the high ozone in the upper troposphere may be due to an over-estimate of lightning NO. Impacts of lightning NO emissions on upper troposphere O3 in MUSICAv0 will be investigated and evaluated further in the future. A brief comparison with IAGOS measurements of air temperature and water vapor profiles over West Africa as well as other sub-regions shows that MUSICAv0 overall agrees well with these meteorological variables (Figure S7).

Central Africa

Compared to MOPITT CO column, the mean bias of MUSICAv0 and WRF-Chem for Central Africa varies with seasons (Figure 3) but peaks during the dry season in September (MUSICAv0 mean bias of -1.0´10 18 molecules/cm 2 ; WRF-Chem mean bias of -1.2´10 18 molecules/cm 2 ). The tagged model CO tracers show that in September, local fire emissions are the dominant driver of CO in Central Africa (Figure 4). Compared to the IAGOS CO profiles (Figure 6), both models have the largest bias over Central Africa among the sub-regions in Africa -mean bias of MUSICAv0 and WRF-Chem are -46 ppb and -36 ppb, respectively. The high bias over Central Africa mainly occurs during the fire season. In central Africa, both models also underestimate NO2 (mean biases of MUSICAv0 and WRF-Chem are -1.5´10 14 and -5.5´10 14 molecules/cm 2 , respectively). The underestimations in both CO and NO2 by the two model simulations are likely driven by the underestimation in fire emissions. Indeed, the emission estimates from the newest version of FINN (FINNv2.5; [START_REF] Wiedinmyer | Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste[END_REF] are higher compared to both QFED (used in the MUSICAv0 simulation) and FINNv1.5 (used in the WRF-Chem simulation) in this region.

Model mean bias of HCHO (-1.3´10 16 molecules/cm 2 for the whole 2017) over Central Africa is the largest among the five regions (Figure 3). The spatial distribution of HCHO bias (Figure S4) largely co-locates with the vegetation (Figure 8). Over the barren or sparsely vegetated area in North Africa and along the west coast of Southern Africa, HCHO biases are relatively small while over the vegetated area HCHO bias are relatively large. Over North Africa, the mean bias is -0.66´10 16 molecules/cm 2 for the whole 2017 whereas over the other four regions, the mean bias ranges from -0.93´10 16 molecules/cm 2 to -1.31´10 16 molecules/cm 2 for the whole 2017. This indicates that the negative bias in MUSICAv0 HCHO could be due to underestimated biogenic emissions in the model. In addition, the underestimation of HCHO in Central Africa (Figure S4) co-locates with the underestimation of CO during fire season (Figure S1), implying that fire emissions may also contribute to the HCHO underestimation in MUSICAv0. It is important to note that the uncertainty of OMI tropospheric HCHO column is relatively large compared to other satellite products. Here the averaged retrieval uncertainty (random and systematic) is ~120%.

When compared to the IAGOS O3 profiles over Central Africa (Figure 7), both models agree well with the IAGOS O3 observations below 800 hPa (mean bias ranges from -1 to -4 ppb). Above 800 hPa, WRF-Chem underestimates O3 while MUSICAv0 overestimates O3. The correlation of modeled O3 and O3S is 0.67, and the correlations of O3S and model O3 bias is 0.50 over Central Africa, indicating O3 overestimation in Central Africa are more likely to be impacted by stratosphere-to-troposphere flux of ozone than that in West Africa. 

East Africa

CO over East Africa is dominated by local emissions and inflow from outside the continent. Fire and anthropogenic emissions contribute approximately the same to CO over East Africa (Figure 4). Both MUSICAv0 and WRF-Chem simulations underestimate the CO column compared to MOPITT (Figure 3), and the WRF-Chem simulation also underestimate the tropospheric NO2 column compared to OMI. The biases in CO column and tropospheric NO2 column peak in September, likely driven by fire emissions (Figure 4).

Compared to IAGOS O3 profiles over East Africa, biases of MUSICAv0 below 600 hPa has a seasonal variation while over 600 hPa are consistently positive (Figure 7). The correlations of O3S and model O3 bias against IAGOS data is 0.50 in the region. The correlations between O3S and model O3 bias are highest over Central and East Africa compared to other regions, indicating stratosphere influence are strongest in these two regions among the sub-regions. Central and East Africa are relatively more mountainous therefore topography driven stratospheric intrusions might be expected. The Nairobi ozonesonde site is located in East Africa (Figure 1b). When comparing to the O3 profiles from ozonesondes (Figure 9), MUSICAv0 overall overestimates O3 in the troposphere at the four sites while WRF-Chem tends to underestimate O3 in the free troposphere (below 200 hPa). The Nairobi site is an exception where both MUSICAv0 and WRF-Chem simulations significantly overestimate O3 in all seasons (mean bias of MUSICAv0 and WRF-Chem below 200 hPa are 27 ppb and 20 ppb, respectively). Among the four ozonesonde sites, correlations of model bias of O3 and O3S are highest at the Nairobi site (0.74) where the model significantly overestimates O3. The results of model-ozonesonde comparisons are consistent with the results of model-IAGOS comparisons and indicate a potential issue in modeled stratosphereto-troposphere flux of ozone.

There are two surface PM2.5 sites in East Africa (Addis Ababa and Kampala; Figure 1b). Despite using different aerosol methods and emission inventories, both MUSICAv0 and WRF-Chem underestimate surface PM2.5 when compared to observations at the two sites (Figure 10). The errors in PM2.5 concentrations at the U.S. Embassy in Kampala are especially prominent. However, both models approximate the variation of the PM2.5 in both locations. Many factors contribute to the inconsistency in the magnitude of modeled PM2.5 concentrations. For instance, emission inventories in this region require additional improvement. In Uganda, increasing motor vehicle ownership and burning biomass for domestic energy use contribute to ambient PM2.5 levels [START_REF] Clarke | A Social Vulnerability Index for Air Pollution and Its Spatially Varying Relationship to PM2. 5 in Uganda[END_REF][START_REF] Petkova | Particulate matter pollution in African cities[END_REF]. Detailed PM2.5 composition measurements would also help to pinpoint the cause of inaccuracies. In addition, model resolutions could also be a potential reason for the underestimation.

Southern Africa

Among the five regions, MUSICAv0 has the lowest mean bias (-3.2´10 17 molecules/cm 2 annually) over Southern Africa (Figure 3). WRF-Chem also has low mean bias and RMSE over Southern Africa except for the months of September, October, and November (SON) period where WRF-Chem has larger CO mean bias (-6.2´10 17 molecules/cm 2 ) than MUSICAv0. Tagged model CO tracers indicate that CO over Southern Africa is significantly impacted by CO emissions from Central Africa, East Africa, Southern Africa, and inflow from outside the continent. As for the source types, anthropogenic and fire emissions are both important and fire impacts peak in September. There are two WDCGG sites located in Southern Africa (Figure 1b; Gobabeb and Cape Point). When compared to surface CO observations from WDCGG, both models consistently underestimate CO by up to 40% at most sites. The Cape Point site in Southern Africa is an exception (Figure 5) where MUSICAv0 overestimates CO by 40 ppb (annual mean; and up to 78 ppb in May 2017). CO tracers in the model (Figures S4 and S5) show that CO at Cape Point is mainly driven by anthropogenic CO emissions from Southern Africa. Therefore, the overestimation of CO by MUSICAv0 should be due to the overestimation of anthropogenic emissions from Southern Africa used in the model. As for NO2, WRF-Chem underestimates tropospheric NO2 column in most regions except for Southern Africa (Figure 3). Over Southern Africa, WRF-Chem overestimates NO2 especially during June, July, and August (JJA). MUSICAv0 also tends to overestimates NO2 at the same location in JJA however the bias is not as large as for WRF-Chem.

MUSICAv0 simulation overall has a lower mean bias (0.14 annually) than the WRF-Chem simulation (mean bias of 0.31 annually) compared to MODIS AOD with Southern Africa being the only exception (Figure 3). Over Southern Africa, MUSICAv0 overestimates AOD by ~0.21 annually (Figure 3) and the bias peaks in January (mean bias=0.45). This overestimation in AOD over Southern Africa is not seen in WRF-Chem. It is likely that the MUSICAv0 overestimation in AOD over Southern Africa is also due to biases in modeled dust as the AOD bias is co-located with the only barren or sparsely vegetated area in Southern Africa (Figure 8 and Figure S3).

Over Southern Africa, MUSICAv0 tends to overestimate O3 compared to IAGOS at all levels at all seasons in 2017 (Figure 7). The concentration of O3S over Southern Africa is higher than those over other regions. However, the correlation of O3S and model O3 bias is lower than other regions (0.13) indicating stratosphere-to-troposphere flux of ozone may not be the main driver of O3 bias over Southern Africa even though stratosphere-to-troposphere flux of ozone are relatively strong in the region. The Irene ozonesonde site is located in Southern Africa (Figure 1b). Compared to the ozonesonde O3 profiles at the Irene site, however, the MUSICAv0 performance has a seasonal variation (Figure 9e-9h). Compared to other ozonesonde sites, the correlation of O3S and model O3 bias over Southern Africa is lower (0.14) and MUSICAv0 agrees relatively well with observations, which is consistent with the comparison results with IAGOS data (Figure 7).

Oceans near Africa

We compare the CO, NO, and O3 from the MUSICAv0 simulation with measurements from ATom-2 and ATom-3 in 2017 (Figure 1a) to provide a global benchmark. Measurements made over the Atlantic Ocean and Pacific Ocean, and in January-February (Jan-Feb) and September-October (Sep-Oct) are compared separately (Figures 11 and12). The comparison was made with data averaged into 10° latitude and 200 hPa bins. Overall, the model consistently underestimates CO globally in both seasons. The underestimation of CO is a common issue in atmospheric chemistry models and could be due to various reasons, including emissions, deposition, and chemistry (e.g., [START_REF] Fisher | Improved method for linear carbon monoxide simulation and source attribution in atmospheric chemistry models illustrated using GEOS-Chem v9[END_REF][START_REF] Shindell | Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes[END_REF][START_REF] Stein | On the wintertime low bias of Northern Hemisphere carbon monoxide found in global model simulations[END_REF][START_REF] Tilmes | Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1. 2)[END_REF]Tang et al., 2018;Gaubert et al., 2020). Specifically for our MUSICAv0 simulation in this study, the model bias in CO is relatively large (up to 52 ppb) over the Northern Hemisphere (especially at high latitude and near the surface) and small over the Southern Hemisphere (Figures 11 and12). Over the Atlantic Ocean, the bias in CO is larger in September-October than Jan-Feb in both the Northern Hemisphere (-30 ppb in Jan-Feb versus -34 ppb in Sep-Oct) and Southern Hemisphere (-11 ppb in Jan-Feb versus -14 ppb in Sep-Oct). Over the Pacific Ocean, however, the CO bias is similar for both time periods in the Northern Hemisphere (-30 ppb) while in the Southern Hemisphere, the CO bias changes significantly from -8 ppb in Jan-Feb to -16 ppb in Sep-Oct. The changes in CO bias over the Southern Hemisphere are likely due to seasonal change in fire emissions. Overall, the mean biases (Figures 11 and12) suggest that the simulation agrees better with ATom observations in the Southern Hemisphere than in the Northern Hemisphere, and in Jan-Feb than in Sep-Oct (Figures 11 and12), consistent with Gaubert et al. (2016).

In both seasons and both hemispheres, the model in general overestimates O3 in the stratosphere/UTLS (upper troposphere and lower stratosphere) by up to 38 ppb (above 200 hPa). In the troposphere (below 200 hPa), the model overall agrees well with the ATom data over the Pacific Ocean in the Southern Hemisphere (in most cases the bias is less than ±5 ppb). However, over the Atlantic Ocean in the Southern Hemisphere, MUSICAv0 tends to overestimate O3, especially in Jan-Feb. In the troposphere of the Northern Hemisphere, MUSICAv0 consistently overestimates O3 over both oceans and both seasons. The positive bias in O3 decreases from the upper troposphere towards the surface, indicating that the overestimation of O3 in the troposphere may be due to stratosphere-to-troposphere flux of ozone. This was also noted for other global models [START_REF] Bourgeois | Large contribution of biomass burning emissions to ozone throughout the global remote troposphere[END_REF]. As for NO, the model tends to overestimate NO above 200 hPa (approximately the stratosphere and Upper Troposphere-Lower Stratosphere; UTLS) by up to 50 ppt. Overall, the NO biases can be either positive or negative depending on location and season. The distributions of NO bias (Figures 11 and12) do not show an overall spatial pattern, unlike those for CO (which changes monotonically with latitude) or O3 (which changes monotonically with altitude).

Model application: identifying key regions in Africa for future in situ observations and field campaign(s)

As a demonstration of the application of MUSICAv0, here we use the results of modelsatellite comparisons to identify potential regions where the atmospheric chemistry models need to be improved substantially. More field campaigns and more in situ observations would not only provide observational benchmark dataset to understand and improve the modeling capability in the region, but would be also useful for the validation and calibration of satellite products. Here we use Taylor score to quantify model-satellite discrepancies. Taylor score [START_REF] Taylor | Summarizing multiple aspects of model performance in a single diagram[END_REF] is defined by

S = !(#$%) (' ( ! $#/' ( ! ) " (#$% # )
where σ $ * is the ratio of σ * (standard deviation of the model) and σ + (standard deviation of observations), R is correlation between model and observations, and R , is the maximum potentially realizable correlation (=1 in this study). Taylor score ranges from 0 to 1 and a higher Taylor score indicates better satellite-model agreement. To identify potential locations, we separate the Africa continent into 5° ´ 5° (latitude ´ longitude) pixels as shown in Figure 13. And for each pixel, we calculate Taylor scores of MUSICAv0 compared to the three satellite Level 2 products (e.g., MOPITT CO column retrievals, OMI tropospheric NO2 column retrievals, and MODIS AOD) separately. And then three Taylor scores are summed up to obtain the total Taylor score for MUSICAv0 (ranges from 0 to 3) as shown in Figures 13a-13e. A similar calculation is conducted for WRF-Chem (Figures 13f-13j). Note that we did not include Taylor scores for HCHO in the total Taylor score due to that (1) WRF-Chem simulations did not save HCHO output, and (2) the HCHO retrievals have relatively high uncertainties (Taylor scores of MUSICAv0 compared to OMI tropospheric HCHO column retrievals are provided separately in Figure S8).

Overall, both MUSICAv0 and WRF-Chem have low total Taylor scores in the 30°E -45°E, 5°S -5°N region in East Africa (a region of 15° longitude ´ 10° latitude) during MAM (March, April, and May), JJA (June, July, and August), and SON (September, October, and November), as highlighted in Figure 13, indicating relatively large model-satellite discrepancies in the region. Moreover, this is also the region where the Nairobi ozonesonde site and the Kampala surface PM2.5 site are located (Figure 1b). As discussed above, both MUSICAv0 and WRF-Chem significantly overestimate O3 (Figure 9) and largely underestimate PM2.5 (Figure 10) in the region. More in situ observations or future field campaigns in the region can substantially help in the understanding model-satellite and model-in situ observation discrepancies and improving model performance.

The 30°E -45°E, 5°S -5°N region in East Africa is potentially a favorable location for future field campaign(s) not only because of the large model-satellite and model-in situ observation discrepancies, but also due to that the population density is high and landcover are diverse in the region (Figure 8). The relatively high population density in the region indicates that improved air quality modeling in the region can benefit a large population. And a diverse landcover indicates more processes/environments can be sampled. CO tracers in the model (Figure 14) show that CO over the region is mainly driven by both anthropogenic and fire emissions. Anthropogenic emissions play a more important role in this region compared to East Africa in general (Figures 4 and 14). In terms of source regions, emissions from East Africa and inflow from outside the continent are the dominant source, with some contributions from Central Africa. Note that the source analyses using model tracers may be subject to uncertainties in the emission inventories. As discussed above (e.g., Section 3.4), there might be missing sources in the region. Therefore, a field campaign in the region can help address this issue.

We would like to point out that in this analysis, the key area is selected using 3 satellite products/chemical species and two models. The Taylor score is a comprehensive measure of model performance that accounts for variance and correlation, however, other models and types of comparisons may provide different answers.

Conclusions

Africa is one of the most rapidly changing regions in the world and air pollution is a growing issue at multiple scales over the continent. MUSICAv0 is a new community modeling infrastructure that enables the study of atmospheric composition and chemistry across all relevant scales. We developed a MUSICAv0 grid with Africa refinement (~28 km ´ 28 km over Africa and ~110 km ´ 110 km for the rest of the world) and conducted the simulation for the year 2017. We evaluated the model with in situ observations including ATom-2 and ATom-3 airborne measurements of CO, NO, and O3, IAGOS airborne measurements of CO and O3, O3 profiles from ozonesondes, surface CO observations from WDGCC, and surface PM2.5 observations from two U.S. Embassy locations. We then compare MUSICAv0 with satellite products over Africa, namely MOPITT CO column, MODIS AOD, OMI tropospheric NO2 column, and OMI tropospheric HCHO column. Results from a WRF-Chem simulation were also included in the evaluations and comparisons as a reference. Lastly, as an application of the model, we identified potential African regions for in situ observations and field campaign(s) based on model-satellite discrepancies (quantified by Taylor score), with regard to model-in situ observation discrepancies, source analyses, population, and land cover. The main conclusions are as follows.

(1) When comparing to ATom-2 and ATom-3, MUSICAv0 consistently underestimates CO globally. Overall, the negative model bias increases with latitude from the Southern Hemisphere to the Northern Hemisphere. MUSICAv0 also tends to overestimate O3 in the stratosphere/UTLS, and the positive model bias overall decreases with altitude.
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(2) The MUSICAv0 biases in O3 when compared to ATom, IAGOS, and ozonesondes are likely driven by stratosphere-to-troposphere fluxes of O3 and lightning NO emissions.

(3) Overall, the performance of MUSICAv0 and WRF-Chem are similar when compared to the surface CO observations from six WDCGG sites in Africa.

(4) Both models have negative bias compared to the MOPITT CO column, especially over Central Africa in September, which is likely driven by fires.

(5) Overall, MUSICAv0 agrees better with OMI tropospheric NO2 column than WRF-Chem. ( 6) MUSICAv0 overall has a lower tropospheric HCHO column than OMI retrievals in all regions and seasons. Biogenic and fire emissions are likely to be the main driver of this disagreement.

(7) Over Africa, the MUSICAv0 simulation has smaller mean bias and RMSE compared to MODIS AOD than the WRF-Chem simulation.

(8) The 30°E -45°E, 5°S -5°N region in East Africa is potentially a favorable location for future field campaign(s) not only because of the large model-satellite and model-in situ observation discrepancies, but also due to the population density, landcover, and pollution source in this region.

Overall, the performance of MUSICAv0 is comparable to WRF-Chem. The underestimation of CO is a common issue in atmospheric chemistry models such as MUSICAv0 and WRF-Chem. The overestimation of O3 in MUSICAv0 is likely driven by too strong of stratosphere-to-troposphere fluxes of O3 and perhaps an over-estimate of lightning NO emissions, however, future studies are needed to confirm and solve this issue. The significant underestimation in surface PM2.5 at two sites in East Africa and the overall overestimation in AOD in Africa compared to MODIS imply missing local sources and an overestimation of dust emissions, and require further study. Field campaigns and more in situ observations in 30°E-45°E, 5°S-5°N region in East Africa are necessary for the improvement of atmospheric chemistry model(s) as shown by the MUSICAv0 and WRF-Chem simulations. In the future, we plan to conduct a model simulation for multiple years and develop additional model grids with potentially higher resolution in Africa sub-regions based on the current MUSICAv0 Africa grid. 
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  /www.airnow.gov/international/us-embassies-and-consulates/ (last access: 3 April 2023)/search.earthdata.nasa.gov/search (last access: 3 April 2023). OMI NO2 and OMI HCHO data are available at https://www.temis.nl/qa4ecv/no2.html (last access: 3 April 2023) and https://www.temis.nl/qa4ecv/hcho.html (last access: 3 April 2023), respectively. North Africa (green), West Africa (pink), East Africa (orange), Central Africa (blue), and Southern Africa (yellow). Location of in situ observations are labeled on the map. Flight tracks of the Inservice Aircraft for a Global Observing System (IAGOS) are shown with black lines. Four ozonesonde sites are shown by pentagrams (Ascension, Irene, Nairobi, and La Reunion); six sites from the World Data Centre for Greenhouse Gases are shown by triangles (Assekrem, Cape Point, Izana, Gobabeb, Mare, and Ascension); two surface sites for PM2.5 are shown by squares (Addis Ababa and Kampala).
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 23 Figure 2. Comparisons of MUSICAv0 and WRF-Chem simulations to MOPITT CO column (molecules/cm 2 ) for each season of 2017. (a-d) Averaged MOPITT CO column: MAM (March, April, and May), JJA (June, July, and August), SON (September, October, and November), and DJF (December, January, and February). (e-h) MUSICAv0 model biases against MOPITT CO column for MAM, JJA, SON, and DJF. (i-l) is the same as (e-h) but for WRF-Chem. All data are gridded to 0.25 degree ´ 0.25 degree for plotting.
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 5 Figure 5. Monthly mean CO (ppb) from in situ observations (black), MUSICAv0 (red), and WRF-Chem (blue) during 2017 at (a) Assekrem, (b) Cape Point, (c) Izana, (d) Gobabeb, (e) Mare and (f) Ascension (see Figure1bfor locations). Monthly means are calculated from 3-hourly data. The range for each data point shows the variation of the 3-hourly data on that day (25% quantile to 75% quantile). Observational data are from World Data Centre for Greenhouse Gases (WDCGG).

  Figure 12. Same as Figure 9 but for over the Pacific Ocean.
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Figure 14. Monthly time series of column-averaged CO tracers in the 30°E -45°E, -5°S -5°N region in East Africa. (a) CO tracers of emissions from North Africa (green), West Africa (pink), East Africa (orange), Central Africa (blue), Southern Africa (yellow), and the rest of the world (grey). (b) CO tracers of fire emissions (red), anthropogenic emissions (green), and waste burning emissions (yellow).
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The MUSICAv0 model source code and the model documentation can be downloaded through https://wiki.ucar.edu/display/MUSICA/MUSICA+Home (last access: 3 April 2023). CAMS-GLOB-ANTH version 5.1 emissions can be found at https://eccad3.sedoo.fr/data (last access: 3 April 2023). QFED emissions can be found at https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/ (last access: 3 April 2023). MERRA-2 data can be found at https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 (last access: 3 April 2023). ATom data are available at https://espoarchive.nasa.gov/archive/browse/atom (last access: 3 April 2023). WDCGG data are available at https://gaw.kishou.go.jp/ (last access: 3 April 2023). IAGOS data are available at https://www.iagos.org/iagos-data/ (last access: 3 April 2023). NASA/GSFC SHADOZ data are available at https://tropo.gsfc.nasa.gov/shadoz/ (last access: 3 April 2023). The surface PM2.5 data https://doi.org/10.5194/gmd-2023-50 Preprint. Discussion started: 4 May 2023 c Author(s) 2023. CC BY 4.0 License.