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A B S T R A C T   

Satellite based precipitation climate data records (CDRs) have recently emerged and provide new observational 
sources to characterize of the changing nature of global precipitation. These products rely on the use of passive 
microwave instruments. At the daily scale, these CDRs are prone to performance sensitivity resulting from the 
availability of microwave observations. As the configuration of the microwave sounders and imagers fleet 
evolves over time, adding new satellites and instruments or losing old platforms, the climate-oriented perfor
mances of the CDRs are likely impacted. In this study, this effect is quantified using a prototype constellation- 
based quasi-global precipitation product algorithm and data-denial experiments. The constellation change has 
a small impact of the long-term average climatology both in terms of mean and distribution recalling the 
resilience of the climatology of such a multi-platform product to the fluctuations of the amount of available input 
data. The interannual variability on the other hand is more impacted. More large rainfall amounts are relatively 
more perturbed than the lower rain daily accumulation with anomalies up to 30% for some configurations. The 
method to correct for the artefact is detailed and while some aspects of the computations are product-specific, the 
major outcome of this study should apply to various similar products as well.   

1. Introduction 

Water and energy cycles are central to the physics of climate change 
(Stephens et al., 2020). Precipitation is at the heart of these cycles and 
the physical drivers of the change in the precipitation distribution are 
being investigated mainly thanks to modelling efforts (Chen et al., 2019; 
Pendergrass and Hartmann, 2014a) as observational constraints are 
limited (Contractor et al., 2021). Indeed, owing to large natural vari
ability and scarce conventional networks, the observation based docu
mentation of its recent evolution with global warming has remained 
notoriously difficult to achieve (Morin, 2011). A suite of satellite-based 
products has emerged over the past decades offering new insights in the 
recent climate evolution of the water cycle (Levizzani and Cattani, 
2019). While most of these products were not designed for climate ap
plications (Levizzani et al., 2018), there is now a large number of pre
cipitation datasets spanning >20 years, even at the daily scale (Roca 
et al., 2019). These emerging climate data records (CDRs) are making 

use of a variety of satellite observations, ranging from infrared geosta
tionary based radiances up to the passive microwave imagers and 
sounders data from various platforms. 

The products ingesting microwave data have been shown to 
outperform the other products on various climatological metrics (Beck 
et al., 2017; Sun et al., 2018; Maggioni et al., 2016). Over land, satellite 
precipitation products that are calibrated against rain-gauge data 
overall show good performance compared to gridded in-situ datasets in 
monitoring extreme precipitation, and perform better than reanalysis 
based products (Bador et al., 2020; Alexander et al., 2020). The no- 
gauges satellite products do show overall poorer performance with 
respect to their calibrated counterparts. Yet, Liu and Allan (2012) 
showed that some earlier versions of the CDRs exhibit stability issues 
over the length of the record. This is confirmed at daily scale and for the 
most recent versions of the CDRs and further limitations for the repre
sentation of extreme precipitation is identified (Masunaga et al., 2019). 
Investigation of the interannual variability in the daily precipitation 
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distribution also revealed significant departure between the GPCP and 
TRMM 3B42v7 products in the Tropics (Pendergrass and Hartmann, 
2014b). While a number of studies help to document the limitations and 
issues in the satellite data based products, owing to the complexities of 
these Level-4 products, it remains difficult to relate these limitations to 
the algorithm's underlying assumptions and/or data (Roca et al., 2021). 

Indeed, microwave based-precipitation CDR can use a single or 
multiple platform all throughout their record. The Global Precipitation 
Climatology Project (GPCP) for instance, relies on the use of a single 
platform, the 6 PM local equator crossing time microwave imager 
(Huffman et al., 2001). Abrupt breaks in the time series can occur when 
changes of the instruments take place, like the replacement of SSM/I by 
SSMI/S (Adler et al., 2018; Potter et al., 2020). The use of multiple 
platforms, collectively known, as the Global Precipitation Measurement 
(GPM) microwave constellation for precipitation estimates benefit from 
the inputs from many platforms and has been shown to improve the 
overall performance of the product thanks to enhanced sampling (Roca 
et al., 2018; Joyce et al., 2004; Huffman et al., 2018). Yet, the meth
odology to merge these various sources of data is often complex and as a 
consequence, the performances of these new products are sensitive to 
the number of microwave platforms available in a product-specific way 
(Joyce et al., 2004; Ayat et al., 2021; Rajagopal et al., 2021). Chambon 
et al. (2013a) have shown that the configuration of the constellation, i. 
e., the number of microwave imagers in a constellation, can indeed 
significantly alter daily precipitation estimation in the Tropical Amount 
of Precipitation with an Estimate of ERrors (TAPEER) framework 
(Chambon et al., 2012). 

As the configuration of the constellation changes over time, these 
kind of performance issues propagate upscale and the multi-platforms 
CDRs are not free from climate-relevant issues. The constellation 
configuration indeed evolves in time and can be composed of as low as a 
single platform up to >12 (Kidd et al., 2021a). As a consequence, any 
precipitation CDR relying on microwave data is expected to reveal some 
sensitivity to the time-dependent constellation configuration. In this 
study, we propose to quantify such an artefact using a full-fledged pre
cipitation estimate algorithm and data-denial experiments. We also 
propose a way to statistically account for these modifications of the 
constellation on the daily precipitation distribution monitoring. 

The estimation algorithm and the satellite data are first introduced 
along with ground-based evaluation datasets. Then the data-denial 
methodology is presented together with the variations in time of the 
constellation. Results are summarized in Section 4 and a conclusion ends 
the paper. 

2. Data 

2.1. The 2006–2019 GIRAFE record 

2.1.1. The GIRAFE algorithm 
The Global Interpolated RAinFall Estimation (GIRAFE) is a 1◦/daily 

precipitation product developed for monitoring the climate globally, 
ultimately covering the period from 2000 onwards (Roca et al., 2020) 
and is implemented and operated by the European Organization for the 
Exploitation of Meteorological Satellites (EUMETSAT) Satellite Appli
cation Facility on Climate Monitoring (CM SAF). GIRAFE evolves from 
the TAPEER approach (Roca et al., 2018), which is based on the Uni
versally Adjusted GOES Precipitation Index (UAGPI) technique (Xu 
et al., 1999; Kidd et al., 2003). Therefore, the 1◦/daily rain accumula
tion (RACC, in mm day− 1) is computed using the passive microwave 
constellation (sounders and imagers) conditional rain rates (RCOND, in 
mm h− 1 – the intensity parameter) and the fraction of precipitating 
clouds (RFRAC, in % - the detection information) from geostationary 
infrared imagery observations up to 55◦ N/S. Poleward of this, only the 
passive microwave observations are used. In this study, we restrict the 
analysis to the 55◦ N/S region where both microwave and IR data are 
merged together. The observing system (the constellation of PMW and 
geostationary satellites) used behind the GIRAFE algorithm for 
computing the 1◦/daily precipitation are detailed in next sections. Only 
the period 2006–2019 is currently used as some earlier geostationary 
observations requires further quality control and will be implemented in 
the operational product in the near future. 

2.1.2. The GPROF and PRPS Level-2 products 
GIRAFE also retains the flexible feature of TAPEER regarding the use 

of more instantaneous rain rate retrievals from Level-2 (L2) PMW al
gorithms. For the imagers and most of the sounders, the GPROF2017 for 
GPM V05 database data are used (Kummerow et al., 2015). This recent 
version of GPROF benefited from several improvements (e.g., on the 
physical approaches, the cloud and rain profile a-priori databases, the 
determination of a precipitation detection threshold, among others) 
compared to the original version (Kummerow et al., 1996). In order to 
also benefit from the dense tropical sampling of the Megha-Tropiques 
mission (Roca et al., 2015), PRPS L2 using SAPHIR is used (Kidd 
et al., 2021b). We use the most recent PRPS algorithm and database 
version (PRPS2019 for GPM V06 database). The PRPS-SAPHIR rain re
trievals are computed based on the relation between the near surface 
rain rate from the GPM Dual frequency Precipitation Radar (DPR) and 
the brightness temperature (TB) radiances from SAPHIR held in an a- 
priori database. Both the GPROF and PRPS L2 PMW retrievals are 

Fig. 1. Overview of the available geostationary platform from 2002 to 2019. Colors indicate the platform series. Acronyms: MFG = Meteosat First Generation, MSG 
= Meteosat Second Generation. 
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available in the “real time” (L2) and climate (2A-CLIM) database ver
sions. The differences between the L2 and 2A-CLIM lies in the ancillary 
products used in the initial processing step that associates the model's 
parameters with the TBs database observations. The 2A-CLIM products 
make use of the JMA's Global ANALysis (GANAL) and the 2A-CLIM 
products utilize ECMWF ERA- Interim database. We opted for consid
ering the 2A-CLIM product version in view of its long-term availability, 
which makes it possible to access certain platforms (e.g., TMI) that are 
not available in the other database. The GPROF and PRPS data were 
obtained from the NASA Precipitation Processing System (PPS) data- 
access platform. 

GPROF is a well-documented product and is used in GIRAFE as a 
reference for the L2 inputs. Yet GPROF is not free from limitations. In 
general, GPROF indeed tends to overestimate (underestimate) the light 
(heavy) rainfall amounts. The underestimation of heavy precipitation 
volumes by GPROF retrieval algorithm is a known artefact of Bayesian 
approach that averages multiple profiles, which consequently gives less 
weight to most extreme precipitation intensities in the database (You 
et al., 2020). However, over Central Amazon, overestimation of rain 
occurrences can be linked to the ice scattering signals from convective 
clouds (high ice water path contents), which are not always consistently 
related to the surface precipitation (Costa et al., 2018). 

2.1.3. The GEOring archive 
The ring of geostationary meteorological satellites consists in a fleet 

of geostationary satellites located at the specific location along the 
Equator, each providing whole-disk imagery of the Earth, hereafter 
referred to as the GEOring. The GEOring configuration has been 
evolving since 2002 as shown in Fig. 1. Infrared observations from the 
GEOring are used in GIRAFE. Indeed, all sensors feature a ~ 10.5-μm IR 
channel with a spatial resolution ranging from 2 to 5 km at nadir. The 
temporal sampling ranges from 10 to 30 min, including partial scans of 
the Northern and Southern Hemisphere. Level 1 datasets for the entire 
time series have been collected from the corresponding agencies 
(EUMETSAT, NOAA, JMA/JAXA). The open source Python library Satpy 
(Raspaud et al., 2021) is used to read the various binary data formats 
and calibrate raw image counts to brightness temperatures. The GIRAFE 
algorithm does not require intercalibration of geostationary imagers 
(Roca et al., 2020) but resampling to the final grid (partial scans to full 
disk; oversampled to uniformly sampled) and quality control is per
formed. Given the particular characteristics of each platform, all the 
geostationary satellite datasets that comprise the five different regions, 
are processed and quality-controlled independently (Fiolleau et al., 
2020). Images from older sensors, in particular, can have various defects 
that affect the quality of the derived rain estimates. Therefore, it is 
important to identify and exclude these images. For this purpose, an 
automatic quality control algorithm is independently applied to the 
entire IR archive (Szantai et al., 2011). 

2.1.4. Implementation aspects 
The implementation of the GIRAFE algorithm requires a definition of 

a training data set to determine Rcond and another one to determine the 
rain-no rain IR threshold (Roca et al., 2020) which can influence the 
performance of the product (Roca et al., 2018). Here the same training 
data set is used for the two steps and is set to 5◦x5◦x5 days in order to 
accommodate the earlier part of the record with a less populated 
constellation than for the recent epoch. Following a sensitivity study of 
the GPROF product, a threshold of 0.5 mm h− 1 is used for detection. The 
computation of Rcond is performed using a larger threshold of 1.5 mm 
h− 1 to avoid the estimate to be biased low because of light rains, espe
cially over the ocean (Roca et al., 2018). The framework training volume 
of 5◦ x 5◦ x 5 days was adopted for both the intensity and detection 
parameters. 

2.2. Ground based data for validation 

In order to assess the suite of data-denial experiments from the 
multiple constellation configurations' periods carried out during two 
different seasons: June–July-August (JJA) of 2014 and December–Jan
uary-February (DJF) of 2014/5, for two tropical regions West Africa and 
Brazil, respectively. Over both regions, a consolidated daily accumu
lated precipitation database of several gauged-networks is available. 
Over West Africa, during the monsoon, Niger experiences precipitation 
from both local convection and organized convective systems. There
fore, the assessments are focused on the AMMA-CATCH observatory 
(AMMA-CATCH, 1990); specifically over the 1◦ Niger site (AMMA- 
CATCH Niger, 1990). The 1◦x1◦/daily rainfall amount is estimated from 
this high-quality rain-gauges thanks to block-kriging. This dataset has 
been considered as a reference by several studies under the assessments 
of satellite precipitation estimates (e.g., Roca et al., 2010; Kirstetter 
et al., 2013; Gosset et al., 2018). 

Over Brazil, the analyses were carried out for the whole country 
during the period of DJF of 2014/5 - the rainy season in much of Brazil. 
A daily gridded precipitation database (at 1◦/daily of spatial/temporal 
resolution), is composed of several daily accumulated precipitation 
observations distributed over the country and are considered as ground 
reference for the data-denial experiments' assessments. The daily 
gauged-precipitation observations, recorded from 12 to 12 UTC, used for 
composing the gridded precipitation fields, were obtained from multiple 
agencies, primarily from the Centre for Weather Forecasting and Cli
matic Studies [Centro de Previsão de Tempo e Estudos Climáticos 
(CPTEC)] of the Brazilian National Institute for Space Research [Insti
tuto Nacional de Pesquisas Espaciais (INPE)] and from HYdro- 
geochemistry of the AMazonian Basin (HYBAM), which are respon
sible to collect and apply a primary quality control (QC). The rain gauges 
are operated by multiple federal and regional institutions, such as the 
Brazilian National Water and Sanitation Agency [Agência Nacional de 
Águas e Saneamento Básico (ANA) in Portuguese], Brazilian National 
Institute of Meteorology [Instituto Nacional de Meteorologia (INMET)], 
Foundation Cearense for Meteorology and Water Management 
[Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME)] 
and other regional agencies. In this study, grid cells of 1◦/daily resolu
tion with 100% temporal coverage and containing at least 5 rain gauges 
are considered for the period under investigation. 

It is worth mentioning that one of the main characteristics of the DJF 
climatology over Brazil, is the remarkable spatial variability of precip
itation due to both the occurrence and intensity of precipitation, which 
are a consequence of multiple atmospheric mechanisms that drive the 
South American monsoon system (SAMS) life cycle (Raia and Cav
alcanti, 2008; Marengo et al., 2012). Given that, the contribution of 
distinct precipitating systems acting from local to synoptic scales, as well 
as the influence of remote forcing, i.e., the El Niño–Southern Oscillation 
(ENSO), can distinctly impact and modulate the quality of rainy-season 
distribution across the country (Reboita et al., 2010; Cai et al., 2020). 
For instance, the DJF 2014/5 rainy season experienced the influence of 
large-scale weather conditions that produced negative anomalies over 
the southeast of Brazil (Coelho et al., 2016). Over the Central Amazon, in 
addition to meso- and large-scale factors, several local influences play an 
important role modulating the rainfall occurrences, which affected the 
onset and end of the DJF 2014/5 rainy season in Central Amazon 
(Marengo et al., 2017) (Biscaro et al., 2021). 

2.3. Preliminary assessment of GIRAFE/GPROF 

The current implementation of the GIRAFE product is a prototype 
product that will evolve with the use of a reprocessed set of L2 rain-rate 
estimations in the future. The current GIRAFE product is a microwave 
and IR only product and does not include any adjustments of the GPROF 
dataset using radar observations. Similarly, unlike most of the daily 
gridded satellite products (Roca et al., 2019), no calibration against rain- 
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gauges is performed. As a consequence, such an experimental product is 
likely to well reflect the L2 related uncertainty. We provide a pre
liminary assessment of the protype product below. The conditional 
mean rainfall for the quasi-global land masses over the 2006–2019 

period averages to 8.9 mm day− 1 and to 15 mm day− 1 for the oceanic 
regions. 

Fig. 2 presents the Boreal Summer and Winter averages of the 
product that reveals the well-known features of the precipitation 

Fig. 2. The multi-year average (2006–2019) daily precipitation amount (in mm day− 1) for the Boreal a) Winter (December–January-February) and b) Summer 
(June–July-August) between 55◦N/S, from GIRAFE product. 

Fig. 3. Comparative analysis of the daily precipitation amounts (dark gray) and occurrences (light gray) between the GIRAFE product and the ground-based ob
servations (AMMA-CATCH gridded data) over Niger site from 2006 to 2019: a) Probability density functions of precipitation volume and occurrence for the ground- 
based observations (upper-panel) and the GIRAFE (bottom-panel); and b) Continuous (KGE) and categorical (HSS) verification statistics as a function of the pre
cipitation. Lines (shaded areas) represent the medians (standard deviation) multi-year distributions. Note that the x-axis is in the log-scale. 
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distribution. One can also note a smooth continuity between the ocean 
and the land masses. 

While the large-scale features are well represented and most of the 
distribution is well characterized, the current product suffers from dif
ficulties in the representation of the large accumulation. Comparison 
with the Niger site ground observations highlights the weaker perfor
mance of the product for rain accumulation above 20 mm day− 1 where 
KGE and HSS scores drop significantly compared to accumulation below 
20 mm day− 1 where the product performance is good (Fig. 3). 

This limitation of the experimental product is mainly rooted in the 
characteristics of the GPROF retrievals. Comparison with ground based 
radar indeed revealed that the uncertainties over the Central Amazon 
and West Africa regions are also linked to the precipitation regime, 
system structure, and degree of organization: the rainfall overestimation 
can be attributed to deep-organized regimes while the underestimation 
is related to shallow and deep-unorganized regimes (Petković and 
Kummerow, 2017). Performance characteristics of GPROF can be also 
attributed to the substantial overestimation of the magnitude of the 
condensed water content profiles of the stratiform precipitation (Utsumi 
et al., 2020). Such performance characteristics are regardless of the 
surface type, despite less pronounced over land (i.e., vegetation) than 
over ocean surfaces – in-land water, coastal and semiarid regions also 
pose particular issues that lead to systematic increases in the false alarms 
(Oliveira et al., 2016; Tan et al., 2018). It is important to note that 
GPROF data are generally used to support higher level products for 
which, various adjustments (to radar-radiometer products and/or to 
rain-gauges) are performed (e.g., Huffman et al., 2018), partly miti
gating these limitations. In short, the highlighted deficiencies of the 
experimental product are not detrimental to the sensitivity study and the 
data denial experiments, although the weaker performances of the 
product for high accumulation should be kept in mind when interpreting 
the results. 

3. Method 

3.1. Rationale and data denial experiments set-up 

The rationale for our estimation of the sensitivity of the precipitation 
estimation to the configuration of the constellation consists in identi
fying a reference period for which the constellation is characterized by a 
maximum number of platforms. The precipitation estimation for that 
same period is done using various configurations where the baseline 
configuration is altered, through to data denial experiments. The two 
estimates are then compared to assess the sensitivity of the precipitation 
estimation to the configuration of the constellation. In this sense, our 
evaluation of the uncertainty associated to the changes of the configu
ration of the constellation is relative to the reference period. 

The various configurations and the reference period are identified 
from the historical record to represent the evolution of the configuration 
over the last two decades (Fig. 4). We have here opted to pick the 
reference as the period that, over the few last decades, had the most 
contemporaneous operational platforms to emphasize the sensitivity to 
the number of sounders and imagers platforms in the configuration of 
the constellation. This focus was decided after evaluating the impact of 
the individual instrument performances or resolution changes, guided 
by previous results (Roca et al., 2018). Our data denial experiments are 
indeed limited to the inclusion or rejection of a full platform as to mimic 
the various configurations encountered over the past. Yet, the details of 
the Equator crossing times are not accounted for in these experiments 
but comparisons over land and ocean, show this to have a small impact. 
The current implementation hence tends provide the upper bound of the 
associated uncertainty. As shown below the small magnitude of such an 
upper bound of the uncertainty suggests a strong resilience of the 
GIRAFE approach to the configuration of the constellation. The com
parisons between the experiments and the references are performed by 
pooling all the data by rain accumulation and the three-month long 

Fig. 4. Availability of PMW satellites showing the time-evolution of the constellation configuration of sounders (green) and imagers (blue) from 1998 to 2021 (solid 
lines) and the projected future mission up to 2025 (dashed lines). Solid black line is the total number of platforms. Shaded areas in dark and light gray correspond to 
the TRMM-to-GPM era transition and the GPM era periods, respectively. The data source is based upon the World Meteorological Office (WMO) Observing Systems 
Capability Analysis and Review Tool (OSCAR) database and the National Aeronautics and Space Administration (NASA) Precipitation Processing System (PPS) data 
archive for the Global Precipitation Measurement (GPM) mission. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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experiments hence provide sufficient samples to yield statistically sound 
results. 

As previously mentioned, the series of data-denial experiments were 
designed and conducted based on distinct constellation configurations, 
which correspond to the period of satellite availability over the last few 
decades. In this case, a “golden era” satellite constellation, with 12 
available passive microwave platforms, was found during the period 
from 2014 to 03-04 to 2015-04-08 (with the TRMM and GPM overlap 

period) and are adopted as a reference period (REF). Other seven ho
mogeneous constellation configurations, with distinct platform types (i. 
e., number of available sounders and imagers), were identified between 
1998- and 2017-years (PER01 for the oldest to PER07 to the most recent 
constellation period configuration). In addition, in order to investigate 
an extreme impact on the number of platforms to the overall precipi
tation uncertainty distributions, two other empirical configurations, 
which refer to period 1998, are considered: the so called “PER99”, 
corresponding to the idealized case of a single SSM/I sensor, and the 
“PER00”, aiming to simulate the impact of the group of SSM/I sensors 
(three platforms are considered) compared to a full constellation 
configuration. Fig. 5 and Table 1 summarize the adopted constellation 
configurations and their respective platforms and periods considered. As 
the rain-no rain detection step is deterministic, a single threshold of 0.5 
mm h− 1 for each platform is adopted for both the detection and intensity 
parameters. The analyses are carried out at the final daily accumulated 
precipitation over a quasi-global zone between 55◦ N/S, to benefit from 
the constellation of geostationary satellites. In order to exploit the sea
sonal impact on the daily precipitation uncertainties, the data-denial 
experiments were performed over two periods (JJA of 2014, DJF of 
2014/5). Given that the same precipitation regime characteristics are 
considered and the associated uncertainties, consequently, would rely 
on the differences attributed to the group of satellites' changing (i.e., the 
impact of the constellation member in turn). 

3.2. Comparison to the reference period 

3.2.1. Satellite-satellite comparison 
The distribution of uncertainty, here expressed as a relative differ

ence between a period and the reference period, is very sensitive to the 
actual rainfall accumulation and to the configuration of the constellation 
(Fig. 6). Overall, the relative uncertainty can be as large as 200% in the 
low rain accumulation regimes, and decreases strongly with the rainfall 
amount. While PER99 is considered as an idealized worst-case scenario, 
it is also a good representation of single platform products (e.g., GPCP). 
The drastic differences shown here when compared to the full constel
lation demonstrates how strongly the uncertainty of daily rainfall can be 
impacted when different number of platforms are used (Chambon et al., 
2013b). Beyond this extreme case, the relative uncertainty is not very 
large and is bounded within ~10%. 

Overall, for each period, the uncertainty is slightly larger over ocean 
than over land at low-moderate precipitation amounts (<10 mm day− 1). 
On the other hand, at larger precipitation accumulations (e.g., > 50 mm 
day− 1), the uncertainties are larger over land than over ocean surfaces, 

Fig. 5. Periods correspondent to the constellation configurations under consideration for the data denial experiments. Note that the Reference period (REF) is placed 
during the TRMM-to-GPM era transition (2014–2015), the so-called golden-era period. See text for details. 

Table 1 
Data denial experiments and their respective constellation configurations based 
on its correspondent period of satellite availabilities since 1998. The experi
ments were carried out globally (55◦ N/S), during JJA of 2014 and DJF of 2014/ 
5.  

Experiment Period Number of Platforms Platforms from the 
reference period 

Imagers Sounders 

REF 
2014-03- 
04–2015-04- 
08 

6 6 
SSMI/S (3), GCOMW1, 
TMI, GMI, SAPHIR, MHS 
(4), ATMS 

PER07 
2015-04- 
09–2020-12- 
31 

5 6 
SSMI/S (3), GCOMW1, 
GMI, SAPHIR, MHS (4), 
ATMS 

PER06 
2012-07- 
10–2014-03- 
03 

5 5 
SSMI/S (3), GCOMW1, 
TMI, SAPHIR, MHS (3), 
ATMS 

PER05 
2011-10- 
11–2012-07- 
09 

4 5 
SSMI/S (3), TMI, SAPHIR, 
MHS (3), ATMS 

PER04 
2005-05- 
25–2010-09- 
15 

5 5 
SSMI/S (3), GCOMW1, 
TMI, MHS (4), ATMS 

PER03 

2002-06- 
01–2005-05- 
24 
2010-09- 
16–2011-10- 
10 

5 3 
SSMI/S (3), GCOMW1, 
TMI, MHS (3) 

PER02 
2000-01- 
01–2002-05- 
31 

4 2 SSMI/S (3), TMI, MHS (2) 

PER01 
1998-01- 
01–1999-12- 
31 

4 0 SSMI/S (3), TMI 

PER00 Before the 
1998's 

3 0 SSMI/S (3) 

PER99 
Before the 
1991's 1 0 SSMI/S (1)  
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with a slight tendency to increase as precipitation accumulation in
creases. These land-ocean differences are attributed to the distinct pre
cipitation regimes, driven by multiple precipitating systems and their 
extremes, which have considerable contributions of MCS's over tropical 
regions (Roca and Fiolleau, 2020). In fact, such characteristics can be 
evidenced according to the systematic artefact of sampling, which the 
satellite constellation configuration under consideration (i.e., the num
ber and type of platform) impacts the quantification of the rainfall 

distribution over both the land and ocean surfaces globally differently. 
The uncertainty generally decreases with time, except for the PER05. 
PER05 is a short (~6 months) period in the first half of 2012 for which, 
both the AMSR-2 and AMSR-E imagers are absent – the AMSR-E (AQUA) 
imager reached it's 9+ year lifetime and was no longer available and the 
AMSR-2 imager on board GCOMW1 was not yet operational. Given that 
PER05 kept the same configuration as REF with respect to the sounders, 
the largest difference was on the imagers' sampling, due to the absence 

Fig. 6. The uncertainty distribution (left y-axis, in %) as a function of the rain (x-axis in log-scale, in mm), represented through the boxplot elements: the whiskers 
(25th/75th ± IQR*1.5, light gray shading), the IQR range (25th to 75th, dark gray shading) and the median (50th, in blue when negatively and in red when 
positively biased). The relative sample contribution of the actual sample (filtered out the outliers – within the range of 25th/75th ± IQR*1.5), related to the overall 
sample, are depicted by dashed lines on each panel (right y-axis, in %). The constellation-configuration experiments are compared to the “golden-era” constellation- 
period configuration as reference (REF), during JJA of 2014, over a) Land and b) Ocean surfaces and between 55◦N/S global zones. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Quasi-global (55◦ N/S) seasonal continuous (KGE, upper panels) and categorical (HSS, bottom panels) statistics for June–July-August of 2014, over a) Land 
and b) Ocean surface types, for each constellation period configuration experiment (y-axis), taking the “golden-era” constellation configuration as reference (REF). 
Note that the x-axis is in the log-scale. 
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of both AMSR-2 and GMI imagers. As a result, PER05 uncertainty is 
larger than for the previous and following periods, with negative median 
bias over both the land and ocean surfaces along the entire rain range. 
The largest over-land (− ocean) negative median bias for PER05 was 
found at low-moderate (high, >50 mm day− 1) daily precipitation 
amounts, with about − 15% (− 12%). The over-land PER05 25th and 
75th were about − 30% and − 2%, respectively, whereas the over-ocean 
25th and 75th were about − 25% and 30% (spread of ~55%), 
respectively. 

PER07 corresponds to the reference period minus TRMM/TMI and is 
shown to perform slightly less well than the reference, especially over 
the ocean, consistent with the estimated contribution of TRMM/TMI to 
tropical daily estimates (Roca et al., 2018). More quantitatively, when 
considering the 10 mm day− 1 bin for instance, the spread in the differ
ences over ocean as indicated with the 25th (75th) percentile, is larger 
by 15% (30%) than over land for the PER99 experiment. For PER07, the 
spread over land is small, with a value of the 25th (75th) percentile of 
− 2.6% and + 0.7% and while the spread over the ocean remains small, it 
is larger by a factor of 2. The median of the distribution is mainly slightly 
negative and bounded by − 8% and + 1.25%, for PER99 over ocean and 
PER03 over land, respectively. 

Fig. 7 summarizes the constellation-period configurations' contin
uous and categorical statistical performances, through the Kling–Gupta 
Efficiency (KGE) and Heidke Skill Score (HSS) metrics, respectively 
(Gupta et al., 2009; Wilks, 2011; Kling et al., 2012). The land and ocean 
performance distributions are presented as a function of precipitation, 
for the period of JJA of 2014 and over a quasi-global (55◦ N/S) domain. 
The daily precipitation distributions, from each constellation configu
ration (PER99, PER00, …, PER07), are assessed via pixel-by-pixel 
comparison considering the ‘golden era’ configuration as a reference 
database (REF). In general, this analysis reveals how can the different 
constellation configurations modify the precipitation distribution, 
affecting the representation of both the detection and intensity of 

precipitation according to the surface type condition. Overall it is noted 
that the intensity-scale performances vary primarily according to the 
constellation configuration and, secondly to the surface type under 
consideration. The land/ocean differences were most evident in terms of 
intensity performance (KGE), even for high precipitation amounts. 
Further back in the constellation period, decreasing detection perfor
mance (HSS) is observed at high precipitation amounts. However, no 
impacts on precipitation detection were observed in any configuration 
greater than ~80 mm day− 1. Recent periods, especially the PER06 and 
PER07, followed by the PER03 and PER04, presented almost no impact, 
with both the KGE and HSS scores being very close to 1 (optimum skill 
score), regardless of both the precipitation threshold and the surface 
type conditions. Noteworthy, large precipitation systems are observed 
even with fewer samples, whereas small precipitating systems need 
better sampling to capture them properly and this can lead to large 
differences depending on the number and types of platform under 
consideration. On the other hand, the earlier configuration periods, 
including the PER05, has experienced larger KGE and HSS performance 
impacts, affecting the full precipitation range performances, especially 
seen at precipitation amounts from 10 to 60 mm day− 1, producing the 
lowest KGE values (between 0.6 and 0.7). The PER99 idealized case 
generated the lowest skill scores, underperforming where precipitation 
is between 20 and 50 mm day− 1, and more prominent over land with 
about 0.6 (~0.72 over ocean). 

This suggests that the precipitation distribution, retrieved from the 
REF period, can be preserved even with the absence of certain platforms. 
In the meantime, it reveals the importance/predominance of certain 
platforms to the overall constellation configuration, which can lead to 
affect the performance distributions, especially the moderate-large 
precipitation amounts (10–50 mm day− 1), both in terms of detection 
and intensity. The modification of the constellation configuration, even 
considering an extreme situation (i.e., the PER99 case), did not show any 
impact on highest precipitation accumulations (e.g., >80 mm day− 1) in 

Fig. 8. Assessments of the constellation-period configurations using the ground-based precipitation as reference at a) Niger (JJA of 2014) and over b) Brazil (DJF of 
2014/5). The intensity-scale statistical performances are summarized through the KGE (upper panels) and HSS (bottom panels) metrics. Over Brazil (regional scale), 
the statistical scores' distributions are represented by the mean (μ) and standard deviation (σ). The overall KGE and HSS variabilities, varying through the different 
constellation-period configurations – including (black solid line) and excluding (gray solid line) the PER99 and PER00 experiments, are depicted by the standard 
deviation (σConfig) on each log-binned rain intensity. 
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terms of detection, differently for the quantification performances. 
Hence, the performances can be attributed to distinct and joint as
sumptions, e.g., differences among the sensors, the retrieval ‘ability’, the 
number of samples, among others. 

Finally, the experiment shows little to no sensitivity to the season
ality and the results are very similar when replicated for DJF instead of 
JJA (not shown). 

3.2.2. Satellite and ground-based networks comparison 
Fig. 8 summarizes, through the KGE and HSS skill scores, the per

formances of the constellation-period configurations with a focus on the 
two ground-based networks. Over Brazil, as the analyses were con
ducted for the whole country, the inter-pixel means μ and standard 
deviation σ were calculated for both KGE and HSS metrics. Additionally, 
the overall intensity-scale variabilities among all the constellation con
figurations σConfig are also computed inclusive or not of the PER99 and 
PER00 experiments. 

As shown in the satellite-satellite comparisons, the constellation 
configuration results in a slight impact on the overall intensity-scale 
performance distributions. The decay of both the continuous and cate
gorical performances with the increase of daily rainfall intensity is seen 
regardless of constellation configuration. This is clearly observed at the 
local scale (over Niger), despite the sample limitations of large daily rain 
intensities (i.e., >20 mm day− 1), as well over Brazil, which has stronger 
regional variability signals, especially around 15–35 mm day− 1. The 
ability to quantify and detect moderate to high rainfalls, for instance 
around the 15–35 mm day− 1 thresholds, are negatively skewed, seen 
both locally (Fig. 8a) and regionally (characterized by lower μ and 
higher σ values, Fig. 8b). Over Brazil, the largest regional uncertainty 
contrasts, were found in quantitative terms, i.e., KGE σ ranging from 0.2 
to 2.0. The minimum (maximum) peaks of KGE μ (σ) were mostly 
concentrated around 15–35 mm day− 1 (15–50 mm day− 1), including the 
PER99. Qualitatively, the minimum (maximum) values of HSS μ (σ), 
lower (greater) than 0.2, were observed at precipitation thresholds >30 
mm day− 1, except above 60 mm day− 1, which presented the lowest HSS 
σ (between 0.05 and 0.15) among all precipitation classes and all the 
constellation configurations. 

Therefore, these overall local and regional characteristics leaded to 
the largest skill variations among all the constellation configurations 
(σConfig), that were mostly evident through the KGE and specially for 
precipitation intensities >10 mm day− 1. Below this threshold of ~10 
mm day− 1, no considerable σConfig differences, between with and 
without the PER99 and PER00, were encountered through both KGE and 
HSS. Over Niger, the highest KGE σConfig (~0.25) was observed at pre
cipitation intensities roughly 25 mm day− 1, where the differences of 

whether or not considering the PER99 and PER00 were slightly higher 
compared to other precipitation classes. These σConfig KGE and HSS re
sults on the local scale are confirmed regionally. The largest KGE σConfig 
around 25 mm day− 1, demonstrated through both KGE μ and σ, was 
observed whether or not considering the PER99 and PER00 experiments. 
In fact, the largest KGE skill variability differences were mainly 
encountered at precipitation >50 mm day− 1, where the PER99 and 
PER00 experiments contribute to increase the variability with about 
0.33 of σKGEConfig (~0.2 without the PER99 and PER00). Through the 
categorical verification, almost no differences in the σConfig were found 
on HSS σ. For precipitation intensities above 50 mm day− 1, the highest σ 
peaks between 0.15 and 0.19 were found, whereas other categories of 
precipitation experienced HSS σ values below 0.025. Thus, the detec
tion, was found to be less sensitive to the constellation configuration 
modification according to the intensity-scale performance, despite older 
configurations having decreased ability to detect events above 30 mm 
day− 1, versus 50 mm day− 1 for more recent configurations (clearly 
noted at local scale). Regionally, the differences among the constellation 
configurations are negligible, although at higher accumulations the 
signs of performance variability are clearer. 

4. Application to the GIRAFE 2006–2019 record 

4.1. Approximation of the uncertainty distribution 

In order to make use of these uncertainty distribution and instead of 
using these differences as look-up tables, the distributions have been 
successfully summarized by fitting with a Gaussian Mixture Model 
(GMM, Lerch et al., 2020). The details of the implementation of the 
fitting model and its evaluation are presented in a companion paper 
(Oliveira and Roca, 2022). The coefficients of the GMM have been fitted 
separately over land and over ocean for each of the listed periods. These 
approximate GMMs are then used for bootstrapping computations as 
discussed below. 

4.2. Time-dependent uncertainty bootstrapping 

The results of the previous section are now put back into a physical 
time line. For each JJA season from 2006 to 2019, the relevant period is 
first identified thanks to Fig. 5 data. The corresponding GMM co
efficients are used to simulate the GIRAFE histogram that would account 
for the constellation change. For each day of JJA for each year, for each 
grid point, 1000 random samples are taken from the GMM uncertainty 
model. The anomaly is added to the actual grid point value and a 
“bootstrapped” histogram is built. The procedure is repeated for each 

Fig. 9. Multi-year average distribution of occurrence as a function of the daily precipitation accumulation (probability density function) for GIRAFE (in red) and 
GIRAFE-corrected (in green), over a) land and b) ocean, for the 55◦N/S global zone and during the period from 2006 to 2019. The correspondent daily precipitation 
conditional means are also indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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day of the season. The final histogram is divided by 1000 to ensure 
consistency with the raw dataset. Ocean and land are processed sepa
rately to account for the previously highlighted differences in the impact 
of the constellation change. Results below do not show a strong sensi
tivity to the number of simulations as long as the sampling is greater 
than ~200. 

4.3. Long term average and interannual variability 

For long term averages, the impact of changes in the constellation 
over time are negligible. Multi-year conditional average precipitation 

over both land and ocean varies by less of 5% when the change in 
constellation is accounted for. Similarly, the multi-year average distri
bution of occurrence exhibits a very small sensitivity to the changes of 
configuration of the constellation (Fig. 9). 

Fig. 10 shows the time series of the annual histogram of daily pre
cipitation for the raw GIRAFE record and the bootstrapped one for land 
and ocean over the 2006–2020 period. Again, the differences seem 
small. Yet, the analysis reveals a dependency of the difference in the rain 
accumulation intensity. In agreement with the results presented in the 
previous sections, the large accumulation (>40 mm day− 1) are affected 
relatively more than the other part of the distribution, more so over land 

Fig. 10. Time evolution of the occurrence distribution as a function of the daily rainfall accumulation. For 55◦s-55◦n land (left) and ocean (right). For GIRAFE (top) 
and GIRAFE corrected (top-middle). Relative difference (bottom). The true zero of the differences are shown in white. Small digits at the lower end of the spectrum 
indicate the corresponding period identifier for each year. 
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than over ocean. As expected the periods after 2012 (PER06 and PER07) 
are very close to the reference PER08 (in 2014) and as not associated 
with strong correction (See Section 3). On the other hand, the period 
before 2012, corresponding to PER03, departs more from the reference 
and consequently is associated with a stronger impact on the distribu
tion. In 2012, the summer is split into PER06 and period PER05, asso
ciated with a strong departure from the reference, that explain the 
stronger correction observed for this year over land. Prior to the 2010 
epoch, the large rain accumulations are mainly impacted with amounts 
larger than 70 mm day− 1 being 5–10% less frequent over the ocean, once 
the constellation change is accounted for (Fig. 10 bottom-right). 

Over the ocean, the time series of the GIRAFE histogram indicates an 
anomalous year in 2012 with a greater skewed distribution compared to 
the other years that corresponds to PER05 and PER06. This is also seen 
in GIRAFE-Bootstrapped (Fig. 10) suggesting that this feature is not an 
artefact from changes in the constellation. It is also interesting to note 
that in 2009, the replacement of one SSM/I instrument by a newer SSM/ 
IS instrument does not seem to impact the constellation based product, 
unlike it does for single platform product (Potter et al., 2020). 

5. Conclusions 

A prototype version of a climate-oriented global precipitation algo
rithm is used to explore the impact of the changing passive microwave 
constellation configuration on the precipitation estimate. The experi
mental product exhibits the well-known precipitation climatological 
features and compares well with a limited validation dataset, but for the 
very high daily accumulation that do not show as good performances as 
for the moderate accumulation. Data denial experiments are performed 
to mimic the evolution of the passive microwave constellation config
uration over the last decades. The resulting differences are analyzed 
with respect to a reference period that correspond to the most populated 
constellation (in 2014). The differences are shown to depend on the 
period and the number of platforms available as well as on the rain 
accumulation. To a lesser extent, the uncertainty is slightly larger over 
ocean than over land. Also, the more the period under consideration is 
different from the reference period, the larger the differences. The dis
tribution of uncertainty per period is used in the time chronology to 
rebuild a corrected time series of the product that account for the 
changes in time of the constellation configuration. The results indicate a 
negligible impact for long term global average and a significant (>10%) 
impact on the interannual variability, mainly over land and for accu
mulation >25 mm day− 1. The approach presented here is very generic 
and while illustrated using the GIRAFE framework, it is likely to be 
representative of various precipitation CDRs built using the GPM 
constellation. 

Future work will be directed to source of uncertainty compared to 
other source of uncertainties for climate trends analysis. The operational 
GIRAFE product will have a global coverage and further work is required 
to assess how the regions poleward of 55◦ are impacted with emphasis 
on the latitudinal sampling from the precessing missions (e.g., TRMM, 
Megha-Tropiques and GPM). Generally, regional investigation would 
also be a way to analyze the sensitivity of specific-rainfall regimes to the 
configuration of the constellation but the adequation of the duration of 
the data denial experiments would need to be reassessed for that 
endeavor. 

While this study is focused on precipitation, the methodology and 
rationale developed here should be also useful for improving CDRs for 
other ECVs that also depend on a suite of platforms, if not a constella
tion, such as SST (Donlon et al., 2012) or cloud climatology (Karlsson 
et al., 2017). To a large extent, such an effort could in principle also 
guide the assessment of reanalysis that suffers from the same time- 
dependent amount of assimilated data (Hersbach et al., 2020). 
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original draft. Rémy Roca: Conceptualization, Writing – original draft. 
Stephan Finkensieper: Data curation, Writing – original draft. Sophie 
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