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NEW EIGENVALUE PINCHING RESULTS FOR EUCLIDEAN

DOMAINS

JULIEN ROTH AND ABHITOSH UPADHYAY

Abstract. We prove stability results associated with sharp eigenvalue upper
bounds for several operators on embedded hypersurfaces and boundary prob-

lems on smooth domains of the Euclidean space. These upper bounds involve

isoperimetric ratio and mean curvature terms. The stability results derive from
a general pinching result for the moment of inertia.

1. Introduction

There is a wide literature concerning estimates of the eigenvalues of the Laplacian
(and more generally divergence-type second order operators) on hypersurfaces of
space forms. The first upper bound for the first eigenvalue of the Laplacian on
compact hypersurfaces of Rn+1 was obtained by Bleecker and Weiner [4] who showed

(1) λ1 6
1

Vol(M)

∫
M

‖B‖2dvg,

where B is the (real-valued) second fundamental form of the hypersurface M and
Vol(M) its volume. After that, Reilly [15] improved this upper bound by getting
the norm of the mean curvature instead of the second fundamental form. Precisely,
he proved the following estimate:

(2) λ1 6
n

Vol(M)

∫
M

H2dvg,

where H = 1
n tr (B). For these two inequalities, the limiting case is attained if and

only if the hypersurface is a geodesic hypersphere. In fact, in [15] Reilly proved a
sequence of upper bounds involving higher order mean curvatures, for which (2) is
just the particular case r = 0:

(3) λ1

(∫
M

Hrdvg

)2

6 nVol(M)

∫
M

H2
r+1dvg.

We recall here that the higher order mean curvatures Hk, k ∈ {1, · · · , n} are de-

fined by Hk =
1(
n
k

)σk(B), where σk(B) is the k-th elementary symmetric polyno-

mial computed for the principal curvatures κ1, · · · , κn. As the previous ones, these
inequalities are sharp and the limiting cases are also characterized by geodesic hy-
perspheres. Note that the inequalities in (3) are not in general better than (2);
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2 J. ROTH AND A. UPADHYAY

they are not comparable to the other.
The Laplacian is not the only fundamental operator for which extrinsic estimates
have been proved. In particular, comparable upper bounds have been established
for some divergence-type second order elliptic operators as the operators Lr asso-
ciated with the higher order mean curvatures Hr and even for more general elliptic
divergence-free operators, cf. [1, 2, 11].
Assume that M is endowed with two symmetric, positive definite and divergence-
free (1, 1)-tensors S and T . In [16], the first author proved the following upper
bound for the operator LT = −div(T∇(·))

(4) λ1(LT )

(∫
M

tr (S)dvg

)2

6

(∫
M

tr (T )dvg

)(∫
M

H2
Sdvg

)
,

where HS is defined by tr (A ◦ S), where A is the shape operator, that is, the
symmetric endomorphism of TM associated with the second fundamental form B.
The equality case is also characterized. Namely, if Hs does not vanish identically,
then equality occurs in (4) if and only if M is a geodesic hypersphere and tr (S)
is constant. Note that if T and S are chosen as the operators Tr and Ts naturally
associated with Hr and Hs respectively, then (4) is nothing else but the inequality
of Alias-Malacarné [2]:

(5) λ1(Lr)

(∫
M

Hsdvg

)2

6 c(r)

(∫
M

Hrdvg

)(∫
M

H2
s+1dvg

)
,

with Lr = −div(Tr∇(·)). This operator play a crucial role in the study of stable
hypersurfaces with constant r-th mean curvature (see [1] for details).
Note that for all the previous inequalities, the hypersurface M is not supposed to
be embedded but only immersed.
On the other hand, in [15] Reilly proved an upper bound for λ1(∆) on embedded
hypersurfaces of the Euclidean space in terms of some isoperimetric ratio. Namely,
for M a smooth embedded hypersurface bounding a domain Ω of Rn+1, the first
eigenvalue λ1(∆) satisfies

λ1(∆) 6
n

(n+ 1)2
· Vol(M)2

Vol(Ω)2
,

with equality if and only if Ω is a ball. Other estimates of this type were obtain for
the eigenvalues of second order of divergence type as well as for different Steklov-
type problems by the first author in [17]. For instance, for λ1(LT ), we have

λ1(LT ) 6
Vol(M)

(n+ 1)2Vol(Ω)2

∫
M

tr(T )dvg.

The common point between all these upper bounds, with mean curvature terms or
isoperimetric ratio, is that they are obtained by using the coordinates functions Xi

as test functions.
We recall that the moment of inertia of M with respect to the point x0 ∈ Rn+1 is
defined by

Ix0
(M) = ‖X − x0‖2 =

(
1

Vol(M)

∫
M

|X − x0|2dvg
) 1

2

,

where X is the position of M .
The first aim of the article is to prove new eigenvalue upper bounds which are a mix
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between mean curvature and isoperimetric terms. They will be derived in Section
3 from the following lower bound of the moment of inertia.

Proposition 1.1. Let M be a closed hypersurface of Rn+1 bounded a domain Ω
and x0 ∈ Rn+1 a fixed point. Assume that S is a symmetric, positive definite
and divergence-free (1, 1)-tensor over M such that HS does not vanish identically.
Then, for any α ∈ [0, 1], the moment of inertia of M with respect to x0 satisfies

Ix0
(M) >

(n+ 1)αVol(Ω)α
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2

,

with quality if and only if Ω = B(x0, Ix0(M)) and tr (S) is constant.

Note that we assume that S is positive definite in order to avoid the possibility that∫
M

tr (S)dvg = 0.

Moreover, for α = 0 and α = 1 respectively, we get the following estimates:

Ix0
(M) >

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣
Vol(M)‖HS‖2

and Ix0
(M) >

(n+ 1)Vol(Ω)

Vol(M)
.

Note that the first one has already be proven in [18] and there is no embeddedness
assumption to get it. However, for α ∈ (0, 1], embeddedness is required.
In the sequel, for a lack a simplicity and without loss of generality, we will con-

sider again, up to a possible translation, that

∫
M

Xdvg = 0 and so we will

deal with the moment of inertia with respect to 0, that is I0(M) = ‖X‖2 =(
1

Vol(M)

∫
M

|X|2dvg
) 1

2

.

For ε > 0, s ∈ (1,+∞) and α ∈ [0, 1], we introduce the following pinching condition
on the moment of inertia

(Iε,s,α) I0(M)2 6 (1 + ε)

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)

Vol(M)2‖HS‖2(1−α)
2s

.

Note that we write the pinching condition with the square of the moment of inertia,
which will be more convenient for getting applications to eigenvalue pinching in
Section 3. Note also that we consider the pinching condition associated with the
L2s-norm of HS instead of its L2-norm. This is due to a technical reason that will
appear in the proof of the main result.

Theorem 1.2. Let n > 2 and (Mn, g) be a connected, oriented and closed Rie-
mannian manifold isometrically embedded into Rn+1 by X. We denote by Ω the
compact domain bounded by X(M). Assume that S is a symmetric, positive def-
inite and divergence-free (1, 1)-tensor over M such that HS does not vanish iden-
tically. Let q > n, s > 1 and α ∈ [0, 1] three reals numbers. Then there ex-
ists three positive constants, ε0 and C, depending n, s, q, α and Vol(M)‖B‖nq ,
and β depending only on n and q such that if (Iε,s,α) holds with ε < ε0,
then M is diffeomorphic and Cεβ-almost-isometric to the sphere S(0, r) of radius
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r =

(n+ 1)αVol(Ω)α
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2s

. That is, there exists a natural diffeomor-

phism
F : (M,d1)→ (S(0, r), d2)

we have
|d2(F (x1), F (x2))− d1(x1, x2)| 6 Crεβ ∀x1, x2 ∈M.

After proving this theorem in Section 2, we obtain, in Section 3 several new opti-
mal eigenvalue estimates and we derive from Theorem 1.2 several stability results
associated with these estimates.

2. Proof of the main result

2.1. Proof of Proposition 1.1. For a sake a simplicity, but without loss of gen-
erality, we can assume that x0 = 0.
First, we have divΩ(X) = n+ 1, which give after integrating over Ω

(n+ 1)Vol(Ω) =

∫
Ω

divΩ(X)dvg

By the divergence theorem, we get

(n+ 1)Vol(Ω) =

∫
M

〈X, ν〉dvg(6)

Second, since S is divergence free, we have the following generalized Hsiung-
Minkowski formula (see [11, 16])∫

M

(tr (S) +HS〈X, ν〉) dvg = 0.(7)

From (6) and (7), we have

(n+ 1)αVol(Ω)α
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α =

(∫
M

〈X, ν〉dvg
)α ∣∣∣∣∫

M

HS〈X, ν〉dvg
∣∣∣∣1−α

6

(∫
M

|X|dvg
)α(∫

M

H2
Sdvg

) 1−α
2
(∫

M

〈X, ν〉2dvg
) 1−α

2

6 Vol(M)
α
2

(∫
M

|X|2dvg
)α

2
(∫

M

H2
Sdvg

) 1−α
2
(∫

M

|X|2dvg
) 1−α

2

= Vol(M)‖HS‖1−α2 I0(M),

which gives

I0(M) >
(n+ 1)αVol(Ω)α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2

.

Note that we have used 〈X, ν〉 6 |X| and Cauchy-Schwarz inequality. The inequal-
ity is proved. Moreover equality occurs if and only if equality occurs in tall these
inequalities, in particular, we have 〈X, ν〉 6 |X| everywhere which implies that
|X| is constant and M is contained in the sphere S(0, |X|) and I0(M) = |X|. In
addition, since M has no boundary, M = S(0, I0(M)) and so Ω = B(0, I0(M)).
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Moreover, from equality in Cauchy-Schwarz inequality and since 〈X, ν〉 is constant,
then we get that HS is constant. But, M is a sphere, so M is totally umbilical.
Hence, from the definition of HS = tr (A ◦ S), this implies in fact that tr (S) is
constant.
Conversely, if Ω is a ball and tr (S) is constant, then first, M is a ball of radius
r = I0(M) (we still assume that x0 = 0). Hence, the shape operator of M is

A =
1

r
Id , Vol(Ω) =

rn+1ωn
n+ 1

and Vol(M) = rnωn, where ωn is the volume of the

n-dimensional unit sphere. Moreover, we have HS = tr (A◦S) = tr
(

1
rS
)

= 1
r tr (S).

So, we have

(n+ 1)αVol(Ω)α
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2

=
(n+ 1)αVol(Ω)αtr (S)1−αVol(M)1−α

Vol(M)
1

r1−α tr (S)1−α

=

(n+ 1)α
rα(n+1)ωαn
(n+ 1)α

rn(1−α)ω1−α
n

rnωn
1

r1−α
= r

= I0(M).

Hence, equality occurs. �

2.2. Proof of Theorem 1.2. The proof is divided into three steps. First, we
show that the pinching condition (Iε,s,α) implies an integral proximity between M
and the sphere S(0, r).
Second, we show that this integral proximity induces a pointwise proximity. This
step does not require the use of the pinching condition and is based on an iteration
process.
Finally, using the second step, we construct the appropriate diffeomorphism and
conclude.

Step 1 : Integral proximity. We begin with the following two lemmas
which give us an integral proximity of M to a sphere. The first lemma gives an
estimates of the smallness of ‖X‖2 − ‖X‖1 under the pinching condition (Iε,s,α).
This will be useful in particular in Step 2 to show that M is contained between
two spheres of close radii. Namely, we have the following

Lemma 2.1. There exists a positive constant K = K(α, s) so that if (Iε,s,α) holds
for ε < 1, then

1− ‖X‖1
‖X‖2

6 Kε.
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Proof: From the pinching condition (Iε,s,α) first and the divergence theorem after,
we have

‖X‖22 6 (1 + ε)

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖2(1−α)

2s

6 (1 + ε)

(
(n+ 1)Vol(Ω)

Vol(M)

)2α


∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣
Vol(M)‖HS‖2s


2(1−α)

6 (1 + ε)


∫
M

〈X, ν〉dvg

Vol(M)


2α

∣∣∣∣∫
M

HS〈X, ν〉dvg
∣∣∣∣

Vol(M)‖HS‖2s


2(1−α)

where we have use divΩ(X) = n + 1 with the divergence theorem as well as the
Hsiung-Minkowski formula (7). Now, using that 〈X, ν〉 6 |X| and Hölder inequality,
we have

‖X‖22 6 (1 + ε)‖X‖2α1

(
‖HS‖2s‖X‖ 2s

2s−1
Vol(M)

Vol(M)‖HS‖2s

)2(1−α)

6 (1 + ε)‖X‖2α1 ‖X‖
2(1−α)

2s
2s−1

.

Moreover, since s > 1, we have 2s
2s−1 ∈ (1, 2) and by the log-convexity of || · ||t with

respect to t, we have:

‖X‖ 2s
2s−1

6 ‖X‖1−
1
s

1 ‖X‖
1
s
2 ,

which reported in the last inequality gives

‖X‖
2(s−1+α)

s
2 6 (1 + ε)‖X‖

2(s−1+α)
s

1

and so

1− ‖X‖1
‖X‖2

6 1−
(

1

1 + ε

) s
2(s−1+α)

.

Moreover, there exists a positive constant K depending only on s and α so that for

ε < 1, we have

(
1

1 + ε

) s
2(s−1+α)

> 1−Kε which gives

1− ‖X‖1
‖X‖2

6 Kε.

�
Now, we have this second lemma that will allow us in particular to show that the
radial projection of M onto S(0, r) is the desired diffeomorphism. Precisely, we
have

Lemma 2.2. If (Iε,s,α) holds, then

||X>||22 6 ε‖X‖22.
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Proof: We have

||X>||22Vol(M) =

∫
M

‖X‖2dvg −
∫
M

〈X, ν〉2dvg

6 ‖X‖22Vol(M)−
(∫

M

〈X, ν〉2dvg
)α(∫

M

〈X, ν〉2dvg
)1−α

6 ‖X‖22Vol(M)−

(∫
M

〈X, ν〉dvg
)2α

Vol(M)α

(∫
M

〈X, ν〉2dvg
)1−α

6 ‖X‖22Vol(M)− (n+ 1)2αVol(Ω)2α

Vol(M)α

(∫
M

〈X, ν〉2dvg
)1−α

by Cauchy-Schwarz inequality and divergence theorem. Moreover, we have

∫
M

〈X, ν〉2dvg >

(∫
M

〈X, ν〉dvg
)1/2

Vol(M)1/2

>

(∫
M

〈X, ν〉dvg
)1/2(∫

M

H2dvg

)1/2

‖H‖2sVol(M)

>

∫
M

HS〈X, ν〉dvg

‖H‖2sVol(M)

>

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣
‖H‖2sVol(M)

where we have used the Cauchy-Schwarz inequality twice and finally the Hsiung-
Minkowski formula (7). Thus, we get

||X>||22Vol(M) 6 ‖X‖22Vol(M)− (n+ 1)2αVol(Ω)2α

Vol(M)α


∫
M

HS〈X, ν〉dvg

‖H‖2sVol(M)


1−α

Now, using the pinching condition (Iε,s,α), we obtain

6 ‖X‖22Vol(M)

(
1− 1

1 + ε

)
6 ‖X‖22Vol(M)ε.

Hence, we get ||X>||22 6 ε‖X‖22. �

Step 2: From integral to pointwise proximity. Now, we recall with-
out proof the two following lemmas which are independent of any pinching
conditions and which are based on classical iteration processes.
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Lemma 2.3. [12] Let q > n be a real number. There exists a constant Γ(n, q) > 0
so that for any isometrically immersed, compact hypersurface Mn of Rn+1 we have

‖|X| − ‖X‖2‖∞ 6 Γ
(
Vol(M)‖H‖nq

) γ
n ‖X‖2

(
1− ‖X‖1
‖X‖2

) 1
2(γ+1)

,

where γ = nq
2(q−n) .

Note that this lemma implies in particular that

(8) ‖X‖∞ 6 Γ
(
Vol(M)‖H‖nq

) γ
2 + 1)‖X‖2

and so

(9) ‖X‖∞ 6 Γ
(
Vol(M)‖B‖nq

) γ
2 + 1)‖X‖2

Lemma 2.4. [19] Let q > n be a real number. There exists a constant Γ′ = Γ′(n, q),
so that for any isometrically immersed, compact hypersurface Mn of Rn+1 we have

‖XT ‖∞ 6 Γ′
(
Vol(M)‖B‖nq ‖X‖∞

) γ
γ+1 ‖XT ‖

1
γ+1

2 .

Note that γ is the same that in Lemma 2.3, that is , γ = nq
2(q−n) .

Now, using these lemmas, we can finish in a now classical way the proof of Theorem
1.2. First, combining Lemmas 2.1 and 2.3, we get

(10) ‖|X| − ‖X‖2‖∞ 6 Γ(Vol(M)‖H‖nq )
γ
2 ‖X‖2K

1
2(γ+1) ε

1
2(γ+1)

Now, assuming that ε < 1, we get from (Iε,s,α) that

‖X‖2 6 2

(n+ 1)αVol(Ω)α
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2s

.

For more compactness in the formulas, we will denote

r =

(n+ 1)αVol(Ω)α
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2s

and so we have

(11) ‖X‖2 6 2r.

Thus, we have

‖|X| − r‖∞ 6 ‖|X| − ‖X‖2‖∞ + |‖X‖2 − r|

6 2rΓ(Vol(M)‖H‖nq )
γ
2K

1
2(γ+1) ε

1
2(γ+1) + rε

6 r(2Γ(Vol(M)‖H‖nq )
γ
2K

1
2(γ+1) ε

1
2(γ+1) + ε)

6 C1rε
1

2(γ+1) ,(12)

where C1 = 2Γ(Vol(M)‖H‖nq )
γ
2K

1
2(γ+1) + 1. Note that the last line comes from the

fact that 1
2(γ+1) < 1 and we have assumed ε < 1 so that ε 6 ε

1
2(γ+1) . We want to

point out that the constant C1 depends on n, q, s and Vol(M)‖H‖nq . We deduce
immediately from this that

(13) ‖X‖∞ 6 r
(

1 + C1ε
1

2(γ+1)

)
.
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�

On the other hand, from Lemma 2.4, we have

‖X>‖∞ 6 Γ′
(
Vol(M)‖B‖nq ‖X‖∞

) γ
γ+1 ‖XT ‖

1
γ+1

2

which gives by Lemma 2.2

‖X>‖∞ 6 Γ′
(
Vol(M)‖B‖nq ‖X‖∞

) γ
γ+1 ‖X‖

1
γ+1

2 ε
1

2(γ+1)

6 Γ′
(
Vol(M)‖B‖nq

) γ
γ+1 ‖X‖

γ
γ+1
∞ ‖X‖

1
γ+1

2 ε
1

2(γ+1)

Moreover, by (13), we get

‖X>‖∞ 6 Γ′(Vol(M)‖B‖nq )
γ
γ+1 r

γ
γ+1

(
1 + C1ε

1
2(γ+1)

) γ
γ+1 ‖X‖

1
γ+1

2 ε
1

2(γ+1)

Using (11) and the fact that ε < 1, we get

‖X>‖∞ 6 Γ′(Vol(M)‖B‖nq )
γ
γ+1 (1 + C1)

γ
γ+1 r

γ
γ+1 (2r)

1
γ+1 ε

1
2(γ+1)

6 2rΓ′(Vol(M)‖B‖nq )
γ
γ+1 (1 + C1)

γ
γ+1 ε

1
2(γ+1)

6 C2rε
1

2(γ+1) ,(14)

where C2 = 2Γ′(Vol(M)‖B‖nq )
γ
γ+1 (1 + C1)

γ
γ+1 is a constant depending only on

n, p, q and Vol(M)‖B‖nq .

Step 3 : Conclusion Now, we set ε1 = inf
{√

2−1√
2C1

, 1
2C2

}2(γ+1)

. Note that

ε1 depends only on n, q and Vol(M)‖B‖nq and if ε 6 ε1, we have

C1ε
1

2(γ+1) < 1, C2ε
1

2(γ+1) < 1 and
(

1− C1ε
1

2(γ+1)

)2

−
(
C2ε

1
2(γ+1)

)2

>
1

4
.

From this last inequality, with (13) and (14), we deduce that

〈X, ν〉2 = |X|2 − |X>|2

> (r − ‖|X| − r‖∞)
2 − ‖XT ‖∞

> r2

[(
1− C1ε

1
2(γ+1)

)2

−
(
C2ε

1
2(γ+1)

)2
]

>
r2

4
.(15)

Now, we consider the map

F : M −→ S(0, r)

x 7−→ r X(x)
|X(x)| .

First of all, from (12) and the fact that C1ε
1

2(γ+1) < 1, we get ‖|X| − r‖∞ < r.
Therefore |X| never vanishes and so F is well defined. Now, we will compute the
differential of F . Let u ∈ TxM be a unit vector. We get immediately that

dFx(u) =
r

|X|

(
u− 〈u,X〉

|X|2

)
,
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and so ∣∣|dFx(u)|2 − 1
∣∣ 6 ∣∣∣∣ r2

‖X‖2
− 1

∣∣∣∣+
r2

‖X‖4
〈u,X〉2

6
1

|X|2
∣∣|X| − r∣∣ · ∣∣|X|+ r

∣∣+
r2|X>|2

|X|4

Now, from (12), (13), (14) and the fact that C1ε
1

2(γ+1) < 1, we get

∣∣|dFx(u)|2 − 1
∣∣ 6 2r2C1ε

1
2(γ+1)

|X|2
+
r3C2ε

1
2(γ+1)

|X|3
.

Finally, from (15), we deduce that 1
|X| 6

2
r and so

∣∣|dFx(u)|2 − 1
∣∣ 6 2C1 + C2

4
ε

1
2(γ+1) = C3ε

1
2(γ+1)(16)

We put ε0 = inf

{
ε1,
(

1
2C3

)2(γ+1)
}

. We get from this that |dFx(u)|2 > 1
2 which

implies that F is a local diffeomorphism. Since M and S(0, r) are connected, M is
closed and S(0, r) is simply connected, then F is a global diffeomorphism.
Moreover, from (16), we get that for any x, y ∈M

|d2(f(x), f(y))− d(x, y)| 6 md1(x, y),

where d1 and d2 are the Riemannian distance on M and S(0, r) respectively and
m = sup

{∣∣|dFx(u)|2 − 1
∣∣ , x ∈M u ∈ UxM

}
. Hence, we deduce that

|d2(f(x), f(y))− d(x, y)| 6 2πrC3ε
β ,

where β = 1
2(γ+1) and so depends only on n and q.

3. Applications

In this section, we will prove as corollaries several applications of Proposition 1.1
and Theorem 1.2. Precisely, we will state new optimal estimates with ball as
limiting domains and the associated stability results. Before stating the results,
we will introduce in the following subsections the different operators and boundary
value problems for which will obtain new eigenvalue estimates. The estimates as
well as the associated stability results will be stated in Subsection 3.7.

3.1. Extrinsic radius. The extrinsic radiusR(M) of a closed hypersurface of Rn+1

is the smallest radius of a ball containing M , that is

R(M) = inf{r > 0 | ∃x ∈ Rn+1, M ⊂ B(x, r)}.

By compactness, there exists a point x0 so thatM ⊂ B(x0, R(M)). Thus, obviously,
we have

R(M) > Ix0
(M).

where Ix0
(M) is the moment of inertia of M with respect to x0.
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3.2. LT operators. For a positive definite symmetric and divergence-free (1, 1)-
tensor T on M , we consider the operator LT by

LTu = −div(T∇u).

This operator is positive, elliptic, self-adjoint and so, has a discrete spectrum of
nonnegative eigenvalues

0 = λ0,T < λ1,T 6 λ2,T · · · 6 λk,T 6 · · · −→ +∞.

The eigenvalue 0 is simple and the corresponding eigenfunctions are the constants
so that λ1,T is the first positive eigenvalue.

3.3. Generalized Steklov problems. In this section, we will consider some gen-
eralized Steklov problems for a smooth domain Ω of Rn+1 with boundary ∂Ω = M .
We consider T a positive symmetric and divergence-free (1, 1)-tensor defined on
Ω and LT defined for any C2 fonction u on Ω by LT u = −div(T∇u), where ∇ is
the Euclidean connection on Ω. Then, we can consider the following generalized
weighted Steklov problem

(ST )


LT u = 0 on Ω,

∂u

∂νT
= σu on M,

where
∂u

∂νT
=< T (∇u), ν >. For T = Id , this problem reduces to the usual Steklov

problem.
From [3], we know that this problem also have a discrete nonnegative spectrum

0 = σ0,T < σ1,T 6 σ2,T · · · 6 σk,T 6 · · · −→ +∞.

Here also, 0 is a simple eigenvalue with constant functions as corresponding eige-
functions. Hence, σ1,T is the first positive eigenvalue.

3.4. Steklov-Wentzell problem. Let b be a nonnegative constant. We consider
the following Steklov-type problem for the Laplacian ∆ with the so-called Wentzell
boundary condition. Namely, we consider

(SW)


∆u = 0 on Ω,

−b∆u− ∂u

∂ν
= αu on M = ∂Ω.

Here, ∆u and ∆ are the respective Laplacians on Ω and M .
Obviously, if b = 0, then, we recover the classical Steklov problem. The spectrum of
this problem is an increasing sequence of nonnegative eigenvalues denoted {αj}j∈N
(see [8]). The first eigenvalue α0 = 0 is simple and the corresponding eigenfunctions
are the constant ones. We will consider α1 its first positive eigenvalue.
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3.5. Biharmonic Steklov problem. Let τ be a positive constant. We consider
the following biharmonic Steklov problem

(BS)



∆
2
u− τ∆u = 0 on Ω,

∂2u

∂ν2
= 0 on M = ∂Ω,

τ
∂u

∂ν
− divM

(
PM ((∇2u)ν)

)
− ∂∆u

∂ν
= βu on M = ∂Ω.

where PM is the projection over the tangent space of M . From the physical point
of view, this problem raised when studying linear elastic structures (see [6] for in-
stance). Here also, this problem has a discrete spectrum consisting in an increasing
sequence of nonnegative numbers {βj}j∈N (see [7]) with β0 = 0 is the (simple) first
eigenvalue, with constant functions as corresponding eigenfunctions. Hence, β1 is
the first positive eigenvalue.

3.6. p-Laplacian and p-Steklov problem. For p ∈ (1,+∞), we consider the
so-called p-Laplacian defined by

∆pu = −div(‖∇u‖p−2∇u)

for any C2 function. For p = 2, ∆2 is nothing else than the Laplace-Beltrami oper-
ator of (Mn, g).
Over the past years, this operator ∆p, and especially its spectrum, has been inten-
sively studied, mainly for Euclidean domains with Dirichlet or Neumann boundary
conditions (see for instance [13] and references therein) but also on Riemannian
manifolds [9, 14, 20].
We will also consider the Steklov problem associated with the p-Laplacian on sub-
manifolds with boundary of the Euclidean space. Namely, we consider the p-Steklov
problem which is the following boundary value problem

(Sp)

 ∆pu = 0 in Ω,

‖∇u‖p−2 ∂u
∂ν = λ|u|p−2u on M,

where ∆p is the p-Laplacian on Rn+1 and ∂u
∂ν is the derivative of the function u with

respect to the outward unit normal ν to the boundary ∂M . Note that for p = 2,
(Sp) is the usual Steklov problem (the reader can for instance refer to [10] for an
overview of results about the spectral geometry of the Steklov problem). Little is
known about the spectra of the p-Laplacian on M or this p-Steklov problem. For
both we know that there exists a sequence of positive eigenvalues

λ0,p = 0 < λ1,p 6 λ2,p 6 · · · 6 λk,p 6 · · ·
and

σ0,p = 0 < σ1,p 6 σ2,p 6 · · · 6 σk,p 6 · · ·
consisting in the variational spectrum and obtained by the Ljusternik-Schnirelmann
theory (see [13, 21] for instance). One can refer to [5] for details about the
Ljusternik-Schnirelmann principle. Note that, as mentionned in [14, Remark 1.1],
the arguments used in [13] can be extended to domains on Riemannian manifolds
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and we have that there exists a non-decreasing sequence of variational eigenvalues
obtained by the Ljusternik–Schnirelman principle. Moreover, for both cases the
eigenvalue 0 is simple with constant eigenfunctions and is isolated, that is there is
no eigenvalue between 0 and λ1,p or between 0 and σ1,p. Note that all the other
eigenvalues of each of both sequences also have a variational characterization but
we do not know if all the spectrum is contained in this sequence.

3.7. New eigenvalues estimates and associated pinching results. Now, we
are in position to state the following new upper bounds for all the first eigenvalues of
the above operators and problems. These bounds hold for embedded hypersurfaces
and are mix between isoperimetric bounds and extrinsic bounds in term of mean
curvatures. Namely, we have

Proposition 3.1. Let n > 2 and (Mn, g) be a connected, oriented and closed
Riemannian manifold isometrically embedded into Rn+1 by X. We denote by Ω the
compact domain bounded by X(M).
Let b > 0, τ > 0, p > 2 and assume that T and T are symmetric, positive definite
and divergence-free (1, 1)-tensors on M and Ω respectively.
Assume that S is a symmetric, positive definite and divergence-free (1, 1)-tensor
over M so that HS does not vanish identically.
Then, for any α ∈ [0, 1], the following inequalities hold:

(17) R(M) >
(n+ 1)αVol(Ω)α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2

,

(18) λ1,T 6

(∫
M

tr (T )dvg

)
Vol(M)‖HS‖2(1−α)

2

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)
.

(19) σ1,T 6

(∫
Ω

tr (T )dvg

)
Vol(M)‖HS‖2(1−α)

2

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)
.

(20) α1 6
[
(n+ 1)Vol(Ω) + bnVol(M)

] Vol(M)‖HS‖2(1−α)
2

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)
.

(21) β1 6
Vol(M)‖HS‖2(1−α)

2 (n+ 1)1−2αVol(Ω)1−2α∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)
.

(22) λ1,p 6
np/2(n+ 1)

p−2
2 −αpVol(M)p‖HS‖p(1−α)

2

Vol(Ω)αp
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣p(1−α)
.
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(23) σ1,p 6
(n+ 1)(1−α)p−1Vol(M)p−1‖HS‖p(1−α)

2

Vol(Ω)αp−1

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣p(1−α)
.

Moreover, if equality occurs in one of these inequalities, then Ω is a ball or radius

r =

(n+ 1)αVol(Ω)α
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2s

and tr (S) is constant.

Proof: First, (17) is a direct consequence of the fact that R(M) > Ix0(M), where
x0 the the center of the ball of radius R(M) which contains X(M) together with
the lower bound of I0(M) given in Proposition 1.1.
The other bounds are also a consequence of Proposition 1.1 together with the
following inequalities obtained by using the coordinates Xi, 1 6 i 6 n+ 1 into the
respective variational characterizations of the corresponding eigenvalues (up to a
possible translation to ensure that these coordinates are eligible to be test functions:

λ1,T

∫
M

|X|2dvg 6
∫
M

tr (T )dvg,

σ1,T

∫
M

|X|2dvg 6
∫

Ω

tr (T )dvg,

α1

∫
M

|X|2dvg 6 (n+ 1)Vol(Ω) + bnVol(M),

β1

∫
M

|X|2dvg 6 nτVol(Ω),

λ1,p

(
1

Vol(M)

∫
M

|X|2dvg
)p/2

6 n
p
2 (n+ 1)

p−2
2 .

σ1,p

(
1

Vol(M)

∫
M

|X|2dvg
)p/2

6 (n+ 1)p−1 Vol(Ω)

Vol(M)
.

We can refer to [9, 17, 18] for a proof of these different inequalities. Once we have
them, the proof of the different inequalities is immediate with the lower bound of
I0(M) given by Proposition 1.1. Therefore, the equality case is also immediate
from Proposition 1.1. �

Now, we introduce the following seven pinching conditions in order to study
the stability of the limitting case for the above optimal inequalities. For ε > 0,
s > 1, α ∈ [0, 1] and p > 2, we set

(Rε,s,α) R(M)2 6 (1 + ε)

(n+ 1)αVol(Ω)α
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2s

(Tε,s,α) λ1,T > (1− ε)
(∫

M

tr (T )dvg

)
Vol(M)‖HS‖2(1−α)

2s

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)
.



NEW EIGENVALUE PINCHING RESULTS FOR EUCLIDEAN DOMAINS 15

(Sε,s,α) σ1,T > (1− ε)
(∫

Ω

tr (T )dvg

)
Vol(M)‖HS‖2(1−α)

2s

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)
.

(Wε,s,α)

α1 > (1− ε)
[
(n+ 1)Vol(Ω) + bnVol(M)

] Vol(M)‖HS‖2(1−α)
2s

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)
.

(Bε,s,α) β1 > (1− ε)Vol(M)‖HS‖2(1−α)
2s (n+ 1)1−2αVol(Ω)1−2α∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)
.

(Lp,ε,s,α) λ1,p > (1− ε)n
p/2(n+ 1)

p−2
2 −αpVol(M)p‖HS‖p(1−α)

2s

Vol(Ω)αp
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣p(1−α)
.

(Σp,ε,s,α) σ1,p > (1− ε) (n+ 1)(1−α)p−1Vol(M)p−1‖HS‖p(1−α)
2

Vol(Ω)αp−1

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣p(1−α)
.

Note that like for (Iε,s,α), we consider L2s-norm fo HS instead of its L2-norm, for
s > 1.
We have the following proposition which gives a link between the las seven pinching
condition and the pinching of I0(M).

Proposition 3.2. • If (Rε,s,α) holds then also holds (Iε,s,α)
• If one of the pinching conditions (Tε,s,α), (Sε,s,α), (Wε,s,α), (Bε,s,α),

(Lp,ε,s,α) or (Σp,ε,s,α) holds for ε ∈ (0, 1
2 ), then also holds (I2ε,s,α).

Proof: First, obviously, for the extrinsic radius, we have R(M) > I0(M), where, up
to a possible translation, we have 0 is the center of the ball of radius R(M) which
contains M . Hence, we have (Rε,s,α) implies (Iε,s,α).
Now, we consider the other cases without giving the details for all cases since they
are similar. For instance, for λ1,T , we have, from the variational characterization
used with coordinates as test function, as seen in the proof of the last proposition,
that

λ1,T

∫
M

|X|2dvg 6
∫
M

tr (T )dvg,

or in other words

(24) λ1,T I0(M)2V (M) 6
∫
M

tr (T )dvg.

Moreover, from the assumption that (Tε,s,α) holds, we have

λ1,T > (1− ε)
(∫

M

tr (T )dvg

)
Vol(M)‖HS‖2(1−α)

2s

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)
,
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which gives together with (24)

I0(M) 6
1

1− ε

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)

Vol(M)2‖HS‖2(1−α)
2s

.

If we take ε < 1
2 , then we get

I0(M) 6 (1 + 2ε)

(n+ 1)2αVol(Ω)2α

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣2(1−α)

Vol(M)2‖HS‖2(1−α)
2s

.

which means that is ε < 1
2 , then the condition (Tε,s,α) implies (I2ε,s,α).

The proof is exactly the same for the other conditions (Sε,s,α), (Wε,s,α), (Bε,s,α),
(Lp,ε,s,α) or (Σp,ε,s,α). �

We finish by the following corollary which answers to question of the stabil-
ity of the limitting case of Proposition 3.1. It is an immediate consequence of the
above propsition together with Theorem 1.2.

Corollary 3.3. Let n > 2 and (Mn, g) be a connected, oriented and closed Rie-
mannian manifold isometrically embedded into Rn+1 by X. We denote by Ω the
compact domain bounded by X(M).
Let q > n, b > 0, τ > 0, p > 2, T and T two symmetric, positive definite and
divergence-free (1, 1)-tensors on M and Ω respectively.
Assume that S is a symmetric, positive definite and divergence-free (1, 1)-tensor
over M so that HS does not vanish identically.
Then there exists three positive constants, ε1 and C ′, depending n, q, and
Vol(M)‖B‖nq , and α depending only on n and q such that if one of (Rε,s,α),
(Tε,s,α), (Sε,s,α), (Wε,s,α), (Bε,s,α), (Lp,ε,s,α) or (Σp,ε,s,α) holds with ε < ε1,
then M is diffeomorphic and C ′εα-almost-isometric to the sphere S(0, r) of radius

r =

(n+ 1)αVol(Ω)α
∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣1−α
Vol(M)‖HS‖1−α2s

.

Proof: We just apply Proposition 3.2 and then Theorem 1.2 with 2ε. Hence ε
should be smaller than ε1 = ε0

2 and M is diffeomorphic and C(2ε)α = C ′εα, with
C ′ = 2αC, where ε0, C and α are given in Theorem 1.2. �
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