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Abstract

Despite significant progress in deciphering the mechanical properties of nanoporous

materials, the intimately-related phenomenon of acoustic wave propagation in such

solids remains largely unexplored at this vanishing length scale (i.e. the molecular

scale). Here, we report a multiscale approach to estimate the acoustic properties of

zeolites – a prototypical class of nanoporous materials – by combining molecular dy-

namics simulations and a rigorous upscaling approach using continuum mechanics.

Two different zeolites are considered, i.e. RHO and JST zeolites; while they share a

simple yet different crystallographic structure, the latter shows auxeticity. First, micro-

scopic simulations are used to calculate the speed of sound from the phonon spectrum

as obtained using molecular displacement and velocity data. As an alternate route,

macroscopic mechanical constants of the materials are also determined to confirm the
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inferred acoustic velocities by solving the Kelvin-Christoffel equation. With the second

approach, the data are obtained using either the strain fluctuations in a simulation per-

formed at equilibrium or from the slope of the stress-strain curve assessed using simple

mechanical tests. Second, we propose a nano-to-macro modelling strategy in which

the inputs for the continuum-level upscaled model are the specific outcomes from the

molecular calculations (e.g. speeds of sound, mechanical parameters). This strategy al-

lows determining the acoustic properties of an empty double porosity material formed

by adding an extra scale of porosity to a nanoporous skeleton. Such extra scale of

porosity can represent larger pores, voids in between consolidated nanoporous grains,

and/or possible large defects or microfractures in the nanoporous skeleton whose ef-

fects can be probed by acoustic waves. This work paves the way for further studies

in the field of nanoscale acoustics – especially in the context of applications involving

nanoporous materials.

1. Introduction

Nanoporous materials are either crystalline or amorphous solids displaying a porous morphol-

ogy with pore diameters ranging from ∼1 nm to 100 nm.1–3 Owing to strong confinement and

surface effects in their very narrow porosity, this class of materials keeps receiving interest in

various fields relevant to both science and engineering. From a fundamental viewpoint, when

confined to nanoscale dimensions such as in nanoporous materials, fluids exhibit unique ther-

modynamic and dynamical properties that are drastically influenced by the surface forces

and confinement effects.2,4–7 From a practical viewpoint, the large surface-to-volume ratio,

large porosity and narrow pore size in nanoporous materials make them ideal candidates

for many functional applications such as in adsorption, catalysis, sensing, separation, etc.8

Beyond such applications, nanoporous materials like natural zeolites are also used for im-

portant practical implementations relying on their mechanical properties.9–12 This includes

applications such as mixing with concrete, which was found to improve the durability and
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permeability of concrete while reducing its overall weight.13 Moreover, there has also been

considerable interest in the compressibility14–17 or collapse18–20 of nanoporous materials –

either empty or filled with an adsorbed fluid – to design shock absorbers, energy storage

devices, or molecular springs. In particular, the mechanical properties of zeolites have been

shown to display pressure-induced amorphization with a pressure threshold that can be tuned

by inserting fluids inside their nanoporosity.21,22

Despite unquestionable advantages linked to their low weight-to-strength ratio, nanoporous

structures can undergo significant mechanical deformations – especially upon guest molecule

adsorption within their porosity. On the one hand, for dense materials, many experimental

and theoretical studies have unraveled the mechanisms underlying their mechanical behav-

ior and deformation.23 On the other hand, for porous materials – especially with nanoscale

pore dimensions, an understanding of the fundamental microscopic phenomena involved in

mechanical deformation is still lacking. While significant progress has been made in the field

of poromechanics involving fluid adsorption and the associated mechanical deformation,24–28

the intrinsic molecular mechanisms involved in deformation and, generally, mechanical solic-

itation remains to be fully explored. In this context, one of the major challenges associated

with this knowledge gap on nanoporous materials is to better understand acoustic wave prop-

agation in their heterogeneous structure. Considering the intrinsic molecular, i.e. nanoscopic,

length scale inherent to physical phenomena in these nanostructures, many questions remain

unanswered regarding the acoustic properties of this class of materials. A fundamental un-

derstanding of acoustic wave propagation in these nanoporous media is highly interesting

with many potential applications in the field of acoustics (e.g. sound absorbers,29,30 sound

insulators,30,31 compliance enhancers,32–34 shock absorbers35,36) and micro/nano-fluidics.37

To better understand the acoustic wave/matter interaction in nanoporous solids, this

work uses molecular simulation and statistical mechanics tools, combined with a rigorous

upscaling method, to predict and interpret the acoustic response of zeolites — which are

considered here as prototypical nanoporous materials – as well as that of a double porosity
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material whose skeleton is made of them. Two all-silica zeolites, which consist of nanoporous

crystalline silica SiO2 having a pore size of the order of a few Å to 1-2 nm, are considered. In

more detail, we use two simple but representative cubic zeolite materials, i.e. RHO and JST

zeolites – both having a 3-dimensional tetrahedral framework in which each oxygen atom

is shared by two tetrahedra (consisting of silicon atoms connected to four oxygen atoms).

While the cubic structure of RHO and JST zeolites considerably reduces the complexity of the

problem under study, extension to more complex zeolitic systems is straightforward. Despite

possessing a similar cubic structure, the mechanical properties of RHO and JST zeolites are

significantly different. First, the bulk elastic modulus for RHO zeolite is about an order of

magnitude higher than that for JST zeolite. In this respect, as shown in Fig. S1 in the

Supporting Information, the mechanical properties (e.g. bulk modulus) vary broadly among

zeolites even when restricting the data to cubic structures. This result suggests that the exact

arrangement of atoms, i.e. molecular topology, in the crystal is a key parameter. Our choice

to select RHO and JST zeolites is motivated by the fact that these materials possess very

different mechanical properties (by orders of magnitude) which allows probing very different

mechanical and, hence, acoustic behaviors. Second, another motivation for this choice comes

from the fact that JST zeolite exhibits auxetic properties (negative Poisson’s ratio) which is

of high interest among researchers for both theoretical and practical aspects.38–40

On the one hand, both the mechanical and acoustic properties of media having pores

with well distinct characteristic sizes, that are large enough for the continuum assumption

to hold, have been thoroughly studied (see e.g. 41–48 for double porosity media). On the other

hand, to the authors’ knowledge, no attempt has ever been made to study, by combining

molecular dynamics and continuum-based upscaling techniques, the acoustic properties of

double porosity media in which the smallest pores are nanometric. This paper fills this gap.

We employ different routes to assess acoustic propagation in zeolite materials: (1) mi-

croscopic dynamics in which the sound velocity is derived from phonon calculations and

(2) macroscopic mechanical constants to predict the longintudinal and transverse speeds of

4



sound. With the microscopic dynamics route, the dynamic structure factor is determined to

assess, in turn, the speed of sound using a simple damped harmonic oscillator model. With

the macroscopic route, the longitudinal and transverse speeds of sound are determined from

the elasticity matrix. In this case, the mechanical constants are predicted consistently either

from the strain fluctuations at equilibrium49 or from tensile/shear mechanical tests. To do so,

molecular simulation techniques — including molecular dynamics in the isobaric/isothermal

ensemble — are employed to simulate the mechanical and acoustical response of a zeolite.

With the knowledge of mechanical constants obtained from molecular dynamics, we calculate

the longitudinal and transverse speeds of sound in different directions of acoustic wave propa-

gation by applying Kelvin-Christoffel’s equation. In the second part of this paper, the results

of the molecular simulations are used in conjunction with the two-scale method of homog-

enization50 to introduce an upscaled model of wave propagation in empty double porosity

materials formed by adding an extra scale of porosity to a nanoporous skeleton. Such extra

scale of porosity can represent, among others, larger pores, voids in between consolidated

nanoporous grains, and/or possible large defects or microfractures in the nanoporous skele-

ton whose effects can be probed by acoustic waves. Our study provides important insights

into the mechanical and dynamical properties to both prototypical nanoporous materials,

such as the zeolites studied in this work, and those of multiscale media made out of them.

2. Computational Methods

2.1 Molecular models

We utilized the repository of the International Zeolite Association51 to create molecular

models for RHO and JST zeolites (Figure 1). The unit cells for these two cubic materials

(a = b = c) are shown in Fig. 1(a) and (b). The lattice parameters are 14.919 Å for

RHO zeolite and 14.979 Å for JST zeolite. To minimize finite size effects while performing

simulations at a reasonable computational expense, a 3× 3× 3 supercell was generated for
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each zeolite by tripling (unless otherwise mentioned) the unit cell in each space direction

and periodic boundary conditions were applied. The resulting supercell for RHO zeolite is

shown in Fig. 1(c) (the same strategy was used for JST zeolite). Given the typical Si–O

bond length (d ∼ 1.69 Å), Si and O atoms were considered bonded in RHO and JST zeolites

if the distance between them is less than 1.75 Å(with this number, we verified that each Si

atom is bonded to 4 O atoms while each O atom is bonded to two Si atoms as expected in

SiO4 tetrahedra).

a) c)

b)

3 ✖ 3 ✖ 3

Figure 1: Unit cell for (a) RHO and (b) JST zeolites with silicon and oxygen atoms rep-
resented in yellow and red colors. The lattice parameter for RHO and JST zeolites are
a = 14.919 Å and a = 14.970 Å, respectively. (c) 2D representation of the supercell of RHO
zeolite created by tripling the unit cell in x, y and z directions.

2.2 Molecular dynamics

The RHO and JST zeolite supercells were initially relaxed for 1 ns at constant external stress

σ and temperature T . An external stress of σ = 1 atm was imposed in each space direction –

uncoupled in each direction – using a Parrinello-Rahman barostat with a relaxation time of
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0.05 ps. To maintain the zeolite structure at a constant temperature T = 300 K, we employed

a Nosé-Hoover thermostat with a relaxation time of 0.005 ps. As described in what follows,

the equilibrated zeolite structures were then subjected to different simulation protocols:

molecular dynamics (MD) simulations in either the NV T or NσT ensemble depending on

the approach used for calculating the acoustic response of these nanoporous structures.

In more detail, to estimate the speeds of sound via the microscopic dynamics route, we

conducted MD simulations in the NVT ensemble on an elongated system by replicating the

unit cells of RHO and JST zeolites 9 times in x-direction and 3 times in y and z-directions,

respectively. The elongated box sizes of these nanoporous systems allow the evaluation of

acoustic velocities for small wave vectors q as illustrated below. The use of such elongated

boxes is important as the macroscopic speed of sound is only reached for small q vectors.

In addition, using such MD simulations in the NVT ensemble, the phonon dynamics of

the nanoporous materials were calculated by performing simulations for 300 ps and saving

the trajectory of the zeolites every 0.0025 ps. With the macroscopic route, the acoustic

velocity is predicted using the strain fluctuations approach with simulations performed at a

constant external stress of 1 atm until the strain correlations converge. The trajectory was

saved at time intervals of 1 ps for a running time of 8 ns. In an alternative macroscopic

route, different mechanical tests – i.e. tensile and shear tests – were performed to determine

mechanical constants and, in turn, the acoustic velocities for both RHO and JST zeolites.

Typically, in the tensile test, the supercells (3×3×3) were deformed by stretching the system

at a uniform rate along the x-direction. The zeolites were also subjected to a shear test by

keeping the bottom of the zeolite fixed along the x-axis while a constant shearing along the

x-direction at a uniform rate was applied to the top surface. In both mechanical tests, the

strain rate applied was 1.0 × 10−6 s−1. We conducted test simulations on five independent

structural configurations to estimate statistical errors associated with the results obtained

from the mechanical tests and fluctuations approach. All molecular simulations were carried

out using the LAMMPS package52 with a time step of 0.5 fs.

7



2.3 Force field

All intermolecular interactions were described using the force field proposed by Ghysels et

al.53 With this model, the force field considers explicitly Si-O, O-O and Si-Si interactions

that are modelled using Lennard-Jones (LJ) interaction potentials. These Lennard-Jones

potentials employed to model such interactions were truncated at a distance of 13 Å. The

energy contribution from Si-O-Si and O-Si-O angles were described through harmonic func-

tions while torsion was neglected. The partial charges on Si and O atoms in the zeolites were

set to +2.1 e and -1.05 e, respectively. The long-range electrostatic interactions in the super-

cell were calculated using the particle-particle particle-mesh (PPPM) solver to an accuracy

of 10−5. We used a cut-off distance of 13 Å for computing the real space contribution of

the electrostatic interactions.54 The parameters used to model the LJ interactions are given

in Table 1. Using the force field mentioned above, we observed the time evolution of lattice

parameters a, b and c for RHO and JST zeolites, shown in Figure 2. The systems were

allowed to relax in the NσT ensemble wherein the cubic symmetry of the zeolites is found

to remain stable. The lattice parameters, a, b and c, in RHO and JST zeolites are 15.001

and 15.303 Å, respectively. The lattice parameters predicted in the study show excellent

agreement with previous MD and DFT calculations.55

Table 1: Force field parameters used to model atomic interactions in RHO and JST zeolites.
In addition to partial charges on zeolite atoms leading to an electrostatic contribution, the
Si-O, O-O and Si-Si interactions are described using Lennard-Jones interaction potentials.
The Si-O-Si and O-Si-O angles are described through harmonic functions (no torsion is
considered as this contribution is included in an effective fashion in the other contributions).

Interaction (LJ) A (eV.Å12) B (eV.Å6)
Si-Si 0.5601 0.0004
O-O 26877.9664 29.8306
Si-O 172.6992 0.1086

Three-body (harmonic) Kijk (eV.Å
−2) θ0,ijk (

◦)
O-Si-O 1.4944 109.47
Si-O-Si 1.5509 142.71
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(Å

)

a, b, c experimental (Å)
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Figure 2: Time evolution as observed in molecular dynamics for the lattice parameters
(a, b, and c) for RHO and JST zeolites. The right figure compares the crystallographic
parameters a, b, c obtained using NσT molecular dynamics simulations using a Parrinello-
Rahman barostat (y axis) and their experimental counterpart (x axis).51

3. Results

3.1 Acoustic and Mechanical Properties

3.1.1 Statistical physics route

Dynamic structure factor. The dynamic structure factor S(q, ω) is a key quantity which

describes the complete structure and dynamics of a given system. In particular, as explained

hereafter,the dynamic structure factor corresponds to the time and space Fourier transform

of the Van Hove function G(r, t) which describes the probability that two molecules i and

j are separated by a vector r at time t = 0 and a time t, i.e. r = ri(t) − rj(0). In

the context of the present work, S(q, ω) is a very important quantity as it includes all

vibrational modes in the zeolite materials – including the low frequency (small ω) which

corresponds to the propagation of a mechanical pressure wave through the solid (speed of

sound). As discussed in what follows, considering this low frequency mode with wave vectors

q chosen in the longitudinal mode or transverse mode provides a means to estimate the

longitudinal and transverse sound velocities, respectively. These speeds of sound correspond
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to the propagation of a sound wave which induces the following atomic displacement in

the zeolite: δx(t) ∼ cos[ωL(q)t − qx] for a longitudinal wave and δy(t) ∼ cos[ωT(q)t − qx]

for a transverse wave. With this example, in both cases, the sound wave propagates in

the x direction and the induced displacement is along the same direction for a longitudinal

wave and perpendicular to the propagation direction for a transverse wave. Moreover, while

these two propagation modes lead to similar atom displacement equations, they propagate

at different speeds to sound vL = limq→0 ωL/q and vT = limq→0 ωT/q. Finally, as discussed in

the next section, these speeds of sound can also be inferred from the elastic constants that

describe the mechanical behavior of the material. This is due to the fact that an acoustic

wave corresponds to the transmission of a mechanical pressure wave through the atoms so

that this phenomenon and the related speed of sound is mechanical in nature.

Let us now introduce in detail the dynamic structure factor S(q, ω) which is a cornerstone

in molecular dynamics simulations and neutron scattering experiments to study the dynam-

ical properties of solids, liquids and gases. For a solid phase, S(q, ω) provides the phonon

spectrum from molecular displacement and velocity field data. In particular, as shown later

in this section, by looking at the low-frequency range ω, one can extract the speed of sound

by fitting S(q, ω) against a damped harmonic oscillator model.56 Let us consider the density

distribution at a position r and time t for a set of N particles: ρ(r, t) =
∑N

i=1 δ[r − ri(t)].

The corresponding intermediate coherent scattering function F (q, t) – which is defined as

the spatial Fourier transform of the Van Hove correlation function G(r, t) – writes:

F (q, t) =

∫
G(r, t) exp(−iq · r)dr = 1

N
⟨ρq(t)ρ−q(0)⟩ , (1)

where ρq(t) =
∫
ρ(r, t) exp(−iq · r)dr =

∑N
i=1 exp[−iq · ri(t)] are the Fourier components

of the density distribution at time t (the second equality is obtained by inserting the sum

of Dirac functions in the integral defined in the first equality). In turn, the dynamic struc-

ture factor is defined as the time Fourier transform of the intermediate coherent scattering
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function:

S(q, ω) =
1

2π

∫ +∞

−∞
F (q, t)eiωtdt. (2)

As shown in Appendix A, the dynamic structure factor can be related to the Fourier com-

ponents of the particle flux jq(t) =
∑N

i=1 ui(t) exp[−iq · ri(t)] where ui(t) is the velocity of

particle i at time t:

Sa(q, ω) =
1

2πN

( q
ω

)2 ∫ +∞

−∞

〈
jaq(t)j

a
−q(0)

〉
eiωtdt. (3)

Here, q represents the wave vector, q is its norm, and a corresponds either to the longitudinal

L or transverse T mode of the momentum current jaq(t).

In the present work, Eq. (3) was used to estimate S(q, ω) from the Fourier transform

of the momentum current time correlation function. To assess the low frequency/small

wave vector range in each direction of space (which allows deriving the macroscopic acoustic

properties of the system as discussed hereafter), elongated zeolite supercells with a box size

corresponding to 9× 3× 3 unit cells were employed. Fig. 3 shows the longitudinal, SL(q, ω),

and transverse, ST(q, ω), dynamic structure factors for a wave vector q · e1 = 0.046 Å−1

along the 100 symmetry axis (both data for RHO and JST zeolites are shown).

Sound velocities. The low-frequency peaks for the longitudinal mode in the dynamic

structure factor were found at 0.0040 and 0.0024 rad/fs for the RHO and JST zeolites,

respectively. On the other hand, the transverse mode peaks at low frequencies were found

at 0.0024 and 0.0019 rad/fs, respectively. The wave vector dependence of the low-frequency

peak observed in the dynamic structure factors was determined to estimate the speed of

sound. In more detail, we consider the macroscopic limit (q → 0) of the acoustic mode

illustrated in Fig. 3 by fitting the Brillouin peak to a simple damped harmonic oscillator.57

Sa(q, ω) ∼
Γa(q)ω

2
a(q)

[ω2
a(q)− ω2]2 + ω2Γ2

a(q)
. (4)

The low-frequency peaks obtained from the dynamic structure calculations are fitted with
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Figure 3: Longitudinal SL(q, ω) and transverse ST(q, ω) dynamic structure factors as a
function of wave vector q · e1 = 0.046 Å−1 in the (100) direction. The angular frequency ωa

(rad/fs) and corresponding speed of sound va is obtained by fitting the observed peak to a
damped harmonic oscillator model as explained in the text. The low frequency peaks for the
longitudinal mode are found at 0.0040 and 0.0024 rad/fs and for transverse mode at 0.0024
and 0.0019 rad/fs for RHO and JST zeolites, respectively.

parameters ωa (used for the estimation of sound velocities, va = ωa/q) and Γa (broadening).

Fig. 4 shows the wave-vector dependence of the longitudinal vL and transverse vT sound

velocities along the (100) direction. The sound velocity increases with a decrease in q = |q|

and reaches a constant as the wave vector approaches the macroscopic limit (q → 0) of the

speeds of sound. We also determined the acoustic velocities in the (110) and (111) directions,

leading to the results shown in Table 3. In all directions of wave propagation considered in

our study, the longitudinal and transverse modes of acoustic velocities are higher in RHO

zeolites compared to the JST zeolite systems. In the limit q → 0, as will be discussed

below in the section dealing with the mechanical section, we know that vL ∼
√
C11/ρ

while vT ∼
√

C44/ρ where C11 and C44 are the elastic components of the stiffness tensor.

Therefore, the large difference in vL and small difference in vT between the two zeolites is

due to intrinsic differences in the elastic parameters (since the two solids have similar mass

densities). Differences in the elastic constants but also in the related bulk, Young, and shear

moduli are due to different topologies in the silica framework. As for the differences observed

between the two zeolites in the q dependence of the longitudinal and transverse modes, one
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should consider the complex phonon structure in such materials which possess many atoms

per unit cell. In this case, the solution at a non-zero wavevector reflects the rich vibrational

spectrum of the material which depends on the exact molecular arrangement of the atoms

in the unit cell. As a result, while the two zeolite samples share common features such as

a cubic structure, an all-silica chemical composition, and similar densities, the topology in

these samples can lead to different vibrational properties.

0
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0
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Figure 4: Longitudinal vL and transverse vT velocity for RHO and JST zeolites as a func-
tion of the wave vector in the (100) direction (note that for this specific direction, the two
transverse modes are identical). The horizontal dashed line represents the macroscopic limit
of the speeds of sound as obtained from the macroscopic route discussed in the mechanical
route section (derived from mechanical constants obtained using either the direct or fluctu-
ation approaches).

3.1.2 Mechanical route

Acoustic wave propagation can be assessed by probing the mechanical behavior of a given

material. From a general viewpoint, in the limit of small mechanical deformations (elastic

regime), the mechanical behavior of a material can be characterized by introducing the stress

σ and strain ϵ. In a solid medium, the strain at a given position cannot be described by

a single vector only since the same element of volume can be compressed, stretched and

sheared. Similarly, the stress at a given position cannot be discussed by a single force as the

same stress can correspond to pushing, pulling, and shearing at once. Therefore, both the
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stress σ and strain σ at a given point need to be defined as second-rank tensors which can be

written as 3 × 3 matrices whose elements are σij and ϵij with i, j, k, and l are x, y, or z. Upon

small, i.e. elastic, deformations, the stress and strain are assumed to be proportional which

can be seen as a generalized Hooke’s law: σij = Cijklϵkl where Cijkl is the stiffness tensor. As

discussed below, the stiffness matrix is essential as it describes the mechanical response to

compression, dilation, and shearing. In particular, combination of the Cijkl allows estimating

the bulk modulus K (resistance to bulk compression), the shear modulus G (resistance to

shearing), the Young modulus E (resistance to a linear compression), and Poisson ratio ν

(ratio of the deformation in a given direction when straining in another direction). Moreover,

in the context of the present study, the coefficients Cijkl allows estimating the longitudinal

vL and transverse vT speeds of sound in a given material.

The coefficients of the fourth-rank elasticity tensor C are fundamental parameters that

describe the mechanical properties of materials. In turn, these parameters can be used to

study the acoustic properties of a solid structure as illustrated here. For cubic materials,

like RHO and JST zeolites considered in our study, only 3 elastic constants, C11, C12 and

C44, are required to describe their mechanical behavior. Using Voigt compact notation, the

elasticity matrix corresponding to a material having cubic symmetry is represented as:

C =



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C44 0 0

symm. C44 0

C44


(5)

In the present study, we followed two different approaches to measure the mechanical con-

stants involved in the above matrix: a strain-fluctuation approach and a more direct me-

chanical test. Then, the acoustic properties of the two materials under study were inferred
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using these macroscopic mechanical constants.

Strain fluctuation approach. A method for determining temperature-dependent elastic

constants of a material using MD simulations is from the fluctuations in the strain in the

system at thermal equilibrium without applying any external force. This strain fluctuation

approach, which was derived by Parrinello and Rahman,49 is based on the spontaneous

fluctuations observed in the system’s dimensions. As shown in Appendix B, the fundamental

equation used in the strain fluctuation method is given by:

< ϵijϵkl > − < ϵij >< ϵkl >=
kBT

Ω0

Sijkl, (6)

where kB is Boltzmann constant, Ω0 is the volume of the system and Sijkl is the elastic

compliance tensor (the inverse of the elastic stiffness tensor), and ⟨ ⟩ denotes the ensemble

average in a constant particle number, stress, and temperature (NσT ) ensemble. Using

Eq. (6) is convenient as the strain tensor can be written in terms of the fluctuations in

the h matrix, which corresponds to the instantaneous dimensions of the simulation box

with respect to the reference system h0 (the latter is obtained as the equilibrium value by

averaging over a sufficiently large set of molecular configurations). The elastic constants are

thus derived from the instantaneous length and angles of the edges of the simulation box.

In more detail, the instantaneous strain tensor ϵ and the h matrix are related by Eq. (7):58

< ϵij >=
1

2

[
((h−1

0 )ThThh−1
o )ij − δij

]
. (7)

The transpose of the given h matrix is indicated by the superscript T. In practice, we

performed MD simulations to calculate the instantaneous values of the length and angles of

the simulation box by allowing the volume and shape of the supercell to change over time.

To predict elastic constants using the strain-fluctuation approach, the zeolite supercells

were monitored for 8 ns to assess the strain-correlation function < ϵijϵkl >. In the long time

limit, the running averages of the strain-correlations reach steady values for the estimation
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of elastic constants. Fig. 5 shows the time evolution of < ϵijϵkl > (with i, j, k, l = x, y or z)

for the two zeolite structures RHO and JST. The strain-correlations < ϵ11ϵ11 >, < ϵ11ϵ22 >

and < ϵ23ϵ23 > are used to determine the three independent elastic constants C11, C12

and C44 for RHO and JST zeolite structures using Eq. (6). The elasticity matrix Cijkl are

obtained by taking the inverse of the compliance matrix Cijkl = (Sijkl)
−1 calculated using

Eq. (6). The values of C11, C12 and C44 are 98.68, 68.15 and 38.74 GPa for RHO zeolite and

the corresponding values for JST zeolite are 36.32, -7.82 and 23.76 GPa, respectively. The

positive strain-correlation < ϵ11ϵ22 > for JST zeolite is indicative of the auxetic properties

which is confirmed by the negative value of C12. The elasticity matrix of RHO and JST

zeolites are found to obey the necessary and sufficient elastic stability conditions (C11 - C12

> 0; C11 + 2C12 > 0; C44 > 0) for the cubic system.59

Using the elastic parameters Cij, we determined a single, representative Young’s modulus

E, shear modulus G, bulk modulus K, Poisson’s ratio ν and Zener ratio A for RHO and

JST zeolites as follows:60

K =
C11 + 2C12

3
; G = C44; E =

C2
11 + C11C12 − 2C2

12

C11 + C12

;

ν =
C12

C11 + C12

; A =
2C44

C11 − C12

.

(8)

The material properties for RHO and JST zeolites calculated from the elastic constants

obtained by the strain-fluctuation approach are shown in Table 2. A low bulk modulus for

JST zeolite suggests the material to be largely compressible under pressure when compared

to the RHO zeolite. Siddorn et al.55 reported the 3 independent elastic constants of JST

zeolite calculated using different force fields. All force fields used in the study55 predicted

auxetic properties for the JST zeolite. The force field proposed by Ghysels et al.53 used

in the present study also predicts a negative Poisson’s ratio. The Zener ratio A, a measure
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of the anisotropy of elastic behavior in cubic crystals, is found to be 1.08 for JST zeolite

indicating the quasi-isotropic behavior of the material, whereas RHO zeolite with A = 2.54

shows a stronger anisotropy.

Table 2 also shows the values obtained for many parameters such as mechanical moduli,

lattice parameter, and Zener and Poisson ratios as obtained using previous DFT calcula-

tions.55,61 While the difference between the values obtained in this work and those obtained

from DFT calculations is non-negligible, such departure should be considered in detail con-

sidering the following points. First, upon considering similar zeolites with cubic structures,

large differences are observed in their bulk modulus with values ranging from ∼ 3 to ∼ 130

GPa. To illustrate this aspect, Fig. S1 in the Supporting Information shows that the bulk

modulus and density in cubic zeolites are not strongly correlated despite large variations in

both quantities. As already mentioned, this points to the role of the molecular arrangement,

i.e. molecular topology, of the Si and O atoms in the unit cell of these crystalline structures.

This result is supported by the work by Poloni and Kim61 who observed correlations upon

plotting the dielectric constant of zeolites against their density but no strong correlations

against their bulk modulus (in fact, as expected, the bulk modulus tends to increase with

density but the correlation is not marked as significant scattering of the data is observed).

As a result, the difference between the bulk moduli obtained using classical and quantum

calculations – without being negligible – can be judged as acceptable considering that the

predicted values fall within the appropriate regions of low and high bulk moduli. Second,

as shown by Siddorn et al.,55 it is interesting to note that different classical force fields lead

to elastic constants that vary around the experimental or DFT calculated values. Typically,

Fig. 6 in Ref.55 shows that (1) C11 varies from 15.4 GPa to 36.5 GPa (compared to 29.41

using DFT), (2) C12 varies from -13.1 GPa to -5.7 GPa (compared to -8.4 using DFT), and

(3) C44 varies from 13.1 GPa to 21.4 GPa (compared to 18.2 using DFT). As a result, while

the absolute difference between the bulk modulus predicted using classical and quantum

calculations is of the order of 2-3 GPa, the empirical force field used in the present work
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is assumed to provide a reasonable picture when considering zeolite materials with very

different mechanical properties (RHO versus JST).

Table 2: Mechanical parameters of RHO and JST zeolites as obtained from strain-fluctuation
approach using MD simulations. All units are in GPa except for the Poisson’s and Zener’s
ratios which are dimensionless and the lattice parameter in Å units. The structural and
mechanical properties calculated from DFT (ab initio) calculations55,61 are shown in paren-
theses.

Material a E G K ν A

RHO 15.00 (15.15) 43.01 38.74 78.33 (75.6) 0.408 2.54

JST 15.30 (15.38) 32.17 (22.7) 23.77 (18.2) 6.89 (4.2) -0.274 (-0.39) 1.08 (1.04)
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Figure 5: Time evolution of strain correlation < ϵijϵkl > (with i, j, k, l = x, y or z) for RHO
and JST zeolites. As discussed in the text, the elastic constants C11, C12 and C44 can be
inferred from the strain correlation ϵ11ϵ11, ϵ11ϵ22, ϵ23ϵ23.

Mechanical test. Using MD simulations, RHO and JST zeolites were subjected to tensile

and shear deformations by applying a constant strain rate of 1.0 × 10−6 s−1. In MD, the

macroscopic stress developed while inducing tensile or shear strain to a solid material is

calculated by taking into account the energy contribution from particle motion as well as

virial stress. The components of the macroscopic stress tensor σij in volume V can therefore

be evaluated using:
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σij =
1

V

(
−
∑
a∈V

m(a)v
(a)
i v

(a)
j −Wij

)
, (9)

where v
(a)
i and v

(a)
j are the ith and jth component velocities of particle a having mass m.

The virial contribution Wij due to intramolecular and intermolecular interactions can be

expressed as:

Wij = −1

2

∑
a∈V

∑
b∈V

((r
(a)
i − r

(b)
i )F

(ab)
j ) , (10)

where F
(ab)
j is the total force exerted by particle b on a along the j-th vector component (the

particles a and b are separated by a distance r
(a)
i − r

(b)
i along the i-th vector component).

The tensile test, shown in Fig. 6 a), is carried out by deforming the RHO and JST zeolites

along the x-direction with the tensile strain defined by ϵx = ∆L/L0. To apply shear, the top

surface of the zeolites is displaced along the x-direction while keeping the bottom surface

fixed in position, as shown in Fig. 6 b). The total shear deformation applied to the zeolite

structure can be evaluated in terms of the engineering shear strain γxy = ∆L/L0.

In Fig. 7, the components of the stress tensor produced – calculated using Eq. (9) – as

a result of the deformation induced in zeolites are plotted as a function of the developing

strain. The 3 independent elastic constants for RHO and JST zeolite structures are derived

by fitting the linear elastic regime of the stress-strain (σ vs ϵ) curve. A linear fit to the

σ vs ϵ curve is confirmed by considering approximately 10% of the strain applied for the

mechanical failure of the material. From the tensile test, the ratio of the stress components

σx and σy to the tensile strain applied along the x-direction (ϵx) yields material constants

C11 and C12; the corresponding values are 106.81 and 71.96 GPa for RHO zeolite and 36.46

19



x

Y

L0

γxyL0= ΔL

Y

x

b)a)

εxL0 = ΔL

L0

Figure 6: Schematic of the uniaxial tensile (a) and shear (b) tests performed on zeolite super
cells using MD simulations. The undeformed configuration of the zeolite is represented by
continuous lines while the deformed configuration after tensile and shear tests is shown by
dashed lines. L0 is the length of the undeformed system. a) For the tensile test, the 3D
zeolite structure is deformed along x-direction. The tensile strain ϵx is defined as the ratio
of total change in length due to tensile deformation ∆L to the initial length of the super cell
L0. b) To apply shear, the top of the zeolite (yz plane) is deformed along x-direction while
keeping the bottom fixed in position. The shear strain γxy is defined as the ratio between the
amount of deformation and the length perpendicular to the surface in which the deformation
is applied.

and -8.43 GPa for JST zeolite. The elastic constant C44 – which is equivalent to the shear

modulus G of the material – is calculated from the stress τxy developed upon shearing the

supercell in the x-direction while keeping the lower surface of zeolite fixed in position. The

value of C44 for RHO zeolite obtained from the shear test using MD is 38.86 GPa and 23.36

GPa for JST zeolite. To verify the validity of our results, considering the cubic symmetry

of the material under study, it is checked that tensile tests in y and z-directions and shear

tests on xy and zx planes yield the same values. From the tensile tests we found C11 = C22

= C33 and C12 = C13 = C23 and the elastic constants C55 and C66 calculated from the shear

tests to be the same as C44 with an error of less than 2%.
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The two following matrices correspond to the elasticity matrix in Voigt notation for the

RHO and JST zeolites, respectively. The values in parentheses indicate the elastic constants

obtained from the strain-fluctuation approach. All the stiffness values reported here are

evaluated in GPa.

CRHO =



106.81
(98.68)

71.96
(68.15)

71.96
(68.15)

0 0 0

106.81
(98.68)

71.96
(68.15)

0 0 0

106.81
(98.68)

0 0 0

38.86
(38.74)

0 0

symm. 38.86
(38.74)

0

38.86
(38.74)



CJST =



36.46
(36.32)

−8.43
(−7.82)

−8.43
(−7.82)

0 0 0

36.46
(36.32)

−8.43
(−7.82)

0 0 0

36.46
(36.32)

0 0 0

23.36
(23.76)

0 0

symm. 23.36
(23.76)

0

23.36
(23.76)


Sound velocities. Using the elasticity tensor C, the longitudinal and transverse modes

of sound propagation in zeolites are predicted from the solution of the Kelvin-Christoffel’s

equation:

[Γik − ρv2δik]pk = 0, (11)

where the Christoffel’s tensor Γik = Cijklnjnl is related to the stiffness tensor and the unit
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Figure 7: Stress-strain curves σij/ϵij for RHO and JST zeolites determined from the me-
chanical tests using MD simulations. A uniaxial tensile test is performed to derive elastic
constants C11 and C12 while C44 is calculated by conducting a shear test on the zeolite struc-
ture. A linear fit to the stress-strain curve, which corresponds to the red and black lines for
RHO and JST zeolites, yield the respective elastic constant. The elastic constants C11, C12

and C44 for RHO and JST zeolites obtained from the mechanical tests are shown in GPa
units.

slowness vector n (i.e. the direction of wave propagation). pk represents the polarization

vector, v the sound velocity and ρ the mass density of the material. As indicated by Eq. (11),

the determination of wave motion is an eigenvalue problem. Due to the elasticity tensor

symmetry, Γik − ρv2δik is also symmetrical so that the resulting three eigenvalues on solving

Eq (11) are real. We estimated the longitudinal (vL) and transverse (vT1 and vT2) speeds

of sound along axes (100), (110) and (111) for RHO and JST zeolite structures by solving

Eq. 11. For example, the acoustic velocity in the (100) direction is vL =
√

C11/ρ along the

longitudinal direction and vT1, vT2 =
√

C44/ρ along the transverse directions. The density

ρ for RHO and JST zeolites are 1417 and 1334 kg/m3, respectively.

The speeds of sound averaged over 5 simulations with different initial configurations to-

gether with the standard error are shown in Table 3. As can be seen, the acoustic velocities

obtained using the strain fluctuation method and mechanical tests in different propagation

directions are in good agreement with the sound velocities predicted using the dynamic struc-

ture factor. The higher sound velocities for the RHO zeolite (in all propagation directions)

arise from its higher stiffness when compared to the elastic constants for the JST structure.
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The longitudinal or transverse modes of acoustic velocities in RHO zeolite are different along

the three different axes of symmetry (Table 3). This is consistent with the results of elastic

constants obtained from the mechanical route where RHO zeolite is found to be not perfectly

isotropic. For a completely isotropic material, the Zener ratio must be equal to one.62 For

RHO zeolite, this criterion is not satisfied as A = 2.54; the weak anisotropy in RHO zeolite

thus leads to the orientation-dependent acoustic velocity. On the other hand, the acoustic

velocities in JST zeolite along (100), (110) and (111) directions are almost identical which

is consistent with the fact that the Zener ratio approximately equals to 1 (A = 1.08).

Table 3: Longitudinal [vL] and transverse [vT1 and vT2] speeds of sound in RHO and JST
zeolites for different wave propagation directions. The speeds of sound are in m/s. The
standard error on the averaged values of longitudinal and transverse speeds of sound for
RHO and JST zeolites are also shown in the table. The velocity data predicted from the
dynamic structure factor method are obtained by utilizing elongated zeolite systems.

RHO 100 110 111

Speed of sound (m/s)S(q, ω) Direct FluctuationS(q, ω) Direct FluctuationS(q, ω) Direct Fluctuation

vL 8640 8682 (±9) 8345 (±27) 9228 9513 (±8) 9285 (±21) 9246 9775 (±7) 9577 (±19)
vT1 5225 5236 (±1) 5228 (±3) 3436 3506 (±1) 3282 (±15) 4105 4164 (±1) 4036 (±8)
vT2 5225 5236 (±1) 5228 (±3) 4710 5236 (±1) 5228 (±3) 4105 4164 (±1) 4036 (±8)

JST 100 110 111

Speed of sound (m/s)S(q, ω) Direct FluctuationS(q, ω) Direct FluctuationS(q, ω) Direct Fluctuation

vL 5232 5226 (±3) 5216 (±24) 5378 5291 (±3) 5337 (±25) 5468 5312 (±3) 5376 (±26)
vT1 4164 4182 (±2) 4219 (±14) 3903 4100 (±1) 4066 (±12) 3846 4128 (±1) 4118 (±11)
vT2 4033 4182 (±2) 4219 (±14) 3643 4182 (±2) 4219 (±14) 3833 4128 (±1) 4118 (±11)
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3.2 Upscaling approach

This section makes use of the results of the molecular simulations and an upscaling method

to investigate the effective mechanical and acoustic properties of empty double porosity ma-

terials formed by adding an extra scale of porosity to a nanoporous zeolite-made skeleton.

Such extra scale of porosity can be a result of the materials’ manufacturing process or pur-

posely introduced, and can represent larger pores, voids in between consolidated nanoporous

grains, and/or possible large defects or microfractures in the nanoporous skeleton, among

others. The effects of these local heterogeneities, which will be referred simply as pores, can

be probed by acoustic waves, as it will be shown below.

To derive the macroscopic equation that determines the macroscopic displacement of the

double porosity material, an upscaling method called the two-scale asymptotic method of

homogenization50 is used. This method will be referred to, for short, as homogenization.

Homogenization is a mathematical method that enables the derivation of macroscopic

models starting from the mathematical description of physical phenomena occurring at a

local scale determined by a characteristic size or period of the material ℓ. The method relies

on the concept of separation of scales (i.e. ℓ/λ ≪ 1 in acoustics) and provide a description of

a heterogeneous medium as an equivalent continuum with effective parameters that account

for the influence of the local physics on the medium’s macroscopic properties. Thus, homog-

enization allows linking the large-scale observable behavior with local mechanisms governed

by a set of equations formulated at the local scale. Key advantages of homogenization are

that it rigorously provides macroscopic models, gives a recipe for the calculation of the effec-

tive parameters, sheds light on the physical origin of the macroscopic behavior, and indicates

the validity domain of the upscaled model.

The used upscaled method consists in the following steps: i) Formulation of the physics

at the local scale and introduction of two dimensionless variables: one that accounts for

local variations, another that describes macroscopic variations; ii) Physical analysis of the

local governing equations to determine the relative order of magnitude of the terms in the
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equations as well as whether the unknown variables fluctuate locally or macroscopically;

iii) Nondimensionalization and rescaling of the local equations, iv) Insertion into the local

equations of the unknown variables written in the form of asymptotic expansions of powers

the small parameter ϵ = ℓ/λ ≪ 1; v) Identification of boundary value problems by collecting

terms with equal powers of ε and derivation of the macroscopic equations. It is noted that

the effective parameters are calculated from the solution of the identified boundary value

problems, as shown in the Appendix C where classical results50 on the upscaling of the wave

equation in porous solids are presented.

The studied periodic double porosity materials comprise a drained nanoporous skele-

ton Ωs and empty pores Ωf , as schematically shown in Figure 8. It is recalled that the

period or local characteristic size of the material is ℓ and the macroscopic characteristic size

L is related to the sound wavelength λ via L = λ/2π. The skeleton has a volume fraction

φ = Ωs/Ω and its common boundary with Ωf is Γ. The outward-pointing vector normal

to Γ is n. We shall note that the separation of scales is ensured, provided that ℓ is much

larger than the nanoscopic characteristic size [e.g. ℓ = O(1 µm)] and, at the same time,

much smaller than the macroscopic characteristic size L, i.e. ℓ ≪ L. Moreover, i) only

long-wavelength acoustic wave propagation through the solid part of the multiscale material

is accounted for, and ii) the nanoporous skeleton is effectively isotropic due to the assumed

random orientation of the zeolite crystals it is made of and/or its isotropic or quasi-isotropic

behavior.

As derived in the Appendix C, the effective elasticity tensor a of the double porosity

material is given by

aijkh = φCijkh + Cijlm⟨elm(ξkh)⟩, (12)

where C is the effective elasticity tensor of the skeleton (computed in previous sections),

⟨·⟩ = Ω−1
∫
Ωs

·dΩ is the spatial mean operator, ey(·) = elm(·) is the local strain tensor, and

ξkhi represents the i-th component of the microscopic skeleton displacement in response to a

macroscopic strain excitation E = 1
2
(ek ⊗ eh+ eh⊗ ek). Note that ξ

kh
i is calculated from the
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Figure 8: Periodic geometry of a double porosity material comprising a drained nanoporous
skeleton and empty pores. (a) Macroscopic sample. (b) Nanoporous skeleton part Ωs of the
representative elementary volume (REV). (c) Empty pores Ωf in the REV. (d) JST zeolite
unit cell.

solution of the boundary value problem (42)–(43).

As an example, we consider in this work an array of overlapping spheres arranged in a

simple cubic lattice63,64 (see Figure 8). The spheres are made of the quasi-isotropic JST

or RHO zeolites studied in previous sections. Owed to the cubic symmetry of the double

porosity material microstructure, the effective elasticity tensor can be written as64,65

aijkh = λpδijδkh + µ1p[δikδjh + δihδjk] + 2µ2pδijkh − 2µ1pδijkh, (13)

where δijkh = 1 for i = j = k = h or δijkh = 0 otherwise; and the effective parameters are

the first Lamé parameter λp and two shear moduli, namely µ1p and µ2p, which characterize

the shear resistance of the material in the planes (ei, ek) and (ei + ej, ek), respectively. By
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matching Eqs. (12) and (13), the following link between the local strain components, elastic

parameters and volume fraction of the skeleton, and effective elastic parameters of the double

porosity material is found64,65

λp

λ
= φ+ f + 2g(1 +

G

λ
) (14)

µ2p

µ
= φ+ f − g (15)

µ1p

µ
= φ+ h, (16)

where f = ⟨e11(ξ11)⟩, g = ⟨e22(ξ11)⟩ = ⟨e33(ξ11)⟩, h = ⟨e12(ξ12)⟩, and ξ11 and ξ12 are

solutions of Eqs. (42)–(43) for solicitations E11 = 1 and E12 = 1, respectively. It is noted

that, in deriving these equations, the constitutive material of the solid skeleton has been

assumed isotropic. This appears as a reasonable simplifying assumption not only because of

the assumed random orientation of the JST or RHO crystals in the grains but also due to

the Zener ratio of 1.08 for JST or 2.54 for RHO (see the respective discussion in preceding

sections) which indicates their quasi-isotropic and weakly anisotropic nature, respectively.

Moreover, it is recalled that the Lamé parameters of the skeleton, i.e. λ and µ, are related

to Young’s modulus E, Poisson’s ratio ν, and bulk modulus K in a classical manner: λ =

Eν/(1 + ν)(1 − 2ν), G = E/2(1 + ν), and K = λ + 2µ/3. On the other hand, a unique

effective Young’s modulus and Poisson’s ratio can be defined,64 relative to the principal axes

of the microstructure, as Ep = 3µ2p(λp + 2µ2p/3)/(λp + µ2p) and νp = λp/2(µ2p + λp), while

the bulk modulus reads as Kp = λp + 2µ2p/3 (see also Eq. (8)).

Figure 9 shows the normalized effective parameters [i.e. λp/λ, µ1p/G and µ2p/G; and

Ep/E, νp/ν and Kp/K] of the array of aggregated spheres made of JST or RHO zeolite as a

function of the volume fraction. For the JST-based double porosity material, the normalized

shear moduli increase as the volume fraction does. This is also the case for the normalized

Young’s and bulk moduli, as can be seen in Figure 9. Therefore, these parameters behave

in a conventional way (cf. Fig. 9 and the results in50,63,64).
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Figure 9: Normalized effective parameters, first Lamé parameter, shear moduli Poisson’s
ratio, Young’s and bulk moduli, of an aggregate of JST-made or RHO-made spheres arranged
in a simple cubic lattice as a function of the volume fraction φ of the nanoporous skeleton.

On the other hand, the normalized first Lamé parameter shows a negative value for small

volume fractions π/6 < φ < 0.575. Since λ < 0 for the constitutive material, λp is positive

in such a range, while it shares the sign of λ as the volume fraction increases. We note

that while a negative first Lamé parameter is not usual, it is thermodynamically possible.

Indeed, such a behavior can be explained, from a viewpoint of continuum elasticity, by a

smaller material’s resistance to volumetric changes (characterized by the bulk modulus) in

comparison with resistance to shape changes (determined by the shear moduli). This feature

is also connected with the exhibited JST’s auxeticity, i.e. a negative Poisson’s ratio, which

appears to be common in chiral lattices (see e.g.66,67) and in over two thirds of the materials

with cubic symmetry studied in.68 In the present case, the Poisson’s ratio of the porous solid
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is positive for the volume fraction range π/6 < φ < 0.575. This means that the auxetic

behavior of the JST substrate is preserved only for larger volume fractions (i.e. for highly

consolidated materials instead of arrays of barely overlapping spheres). In addition, the

Poisson’s ratio for π/6 < φ < 0.575 is close to zero, which indicates that the material does

not change in thickness when stretched or compressed. This result highlights the possibility

of tuning the mechanical behavior by introducing an extra-scale porosity in the nanoporous

solids.

Regarding the behavior of the RHO-based double porosity material, its normalized first

Lamé parameter and shear moduli are increasing functions of the volume fraction. The

mechanical parameters also show this trend. In particular, it is observed that the normalised

bulk modulus takes smaller values than the normalised Poisson’s ratio, while the opposite

trend is observed for the JST-based material. This is attributed to the auxeticity of the

latter. Moreover, the behavior of the mechanical parameters of the RHO-based double

porosity material appears similar to that of poroelastic solids with comparable substrate

material elastic properties (cf. Figure 9 in this paper and figures 13.4-6 in50).

Finally, Figure 10 shows the φ-dependent longitudinal and transversal acoustic velocities

in the double porosity material normalized by the respective velocities (i.e. vL and vT) of

the nanoporous substrate material calculated using equations 17 and 18, respectively.

vdpL
vL

=
1√
φ

√
λp + 2µp2

λ+ 2µ
(17)

vdpT
vT

=
1√
φ

√
µp1

µ
. (18)

The longitudinal and transverse speeds of sound in the porous material increases with

an increase in the volume fraction of the nanoporous material. Moreover, it is observed

that the normalized longitudinal velocity in the JST-based material is higher than that of

the RHO-based material, while the opposite trend is observed for the transversal velocity.
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Figure 10: Normalized longitudinal (left) and transverse (right) speeds of sound of an ag-
gregate of JST- or RHO-made spheres arranged in a simple cubic lattice as a function of the
volume fraction φ of the nanoporous skeleton.

Taking into account these remarks, it is clear that the possibility of tailoring the acoustic

wave propagation in the double porosity medium by adjusting the volume fraction of the

nanoporous material is not exclusive to the JST-based double-porosity medium but rather

a general possibility enabled by adding an extra scale of porosity to a nanoporous skeleton.

The results, thus, demonstrate great flexibility to modulate the acoustic wave propagation in

the porous material which provides unprecedented functionality for designing novel acoustic

devices with versatile applications.

As a final remark, it is stressed that the upscaling procedure yielded a macroscopic

model for anisotropic media but has been exemplified for media with cubic symmetry. The

upscaled model and adopted approach can be directly applied to double porosity media whose

microstructure exhibits other types of symmetry, including materials such as MOFs.35,36,69

However, to fully identify the respective effective elasticity tensor a it is required to both

apply successively six macroscopic loadings, i.e. three loadings in pure extensions (i.e. E11,

E22, E33) and three loadings in pure shear (i.e. E12, E23, E31), in the boundary-value problem

given by Eqs. (42)–(43) and use Eq. (12). Depending on the symmetry of the materials’

microstructure fewer loadings may be required, as it is the case for the cubic media studied

in this work.
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4. Conclusion

We investigated acoustic wave propagation in nanoporous materials using molecular dynam-

ics simulations for prototypical samples of this class of solids. By considering two all-silica

zeolites (RHO and JST), we analyze the material acoustics at the nanoscale using a multi-

scale approach. First, we evaluate the sound velocities from (i) the phonon spectrum of

the materials as assessed using the dynamic structure factor and (ii) the macroscopic elastic

constants assessed using either a strain-fluctuation approach or simple mechanical tests. The

low-frequency peaks obtained in the dynamic structure factor calculations were fitted against

a damped harmonic oscillator to predict the sound velocity of the longitudinal and trans-

verse acoustic waves along the (100), (110) and (111) directions. With the strain-fluctuation

method, the instantaneous dimensions of the zeolite systems were saved for estimating the

mechanical constants by allowing the length and angles of the supercell to change over time.

In an alternate approach, the zeolite structures were subjected to different mechanical tests,

i.e. tensile and shear tests. From the tensile test, the mechanical constants C11 and C12 were

determined by deforming the zeolite along the axial direction. The elastic constant C44 was

determined by applying a shear deformation to the upper surface of the zeolite while keeping

the lower surface fixed to its position. Using the mechanical constants obtained from the

mechanical routes, we calculated the direction-dependent longitudinal and transverse speeds

of sound by solving Kelvin-Christoffel’s equation.

The acoustic velocities predicted by the different approaches showed good agreement

in all directions of wave propagation considered in the study. The propagation speed of

the acoustic wave in RHO zeolite is found higher due to the higher elastic stiffness when

compared to the JST structure. The sound velocities predicted for the RHO zeolite show

considerable variation among different wave propagation directions for both the longitudinal

and transverse modes. The departure from the isotropic acoustic behavior for RHO zeolite

is indicated by a Zener ratio higher than 1. On the other hand, a quasi-isotropic behavior of

the JST zeolite revealed by a Zener ratio approximately equal to unity gives rise to almost
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similar speeds of sound in different wave propagation directions. The mechanical parameters

and the degree of anisotropy of the elastic behavior, therefore, strongly influence the acoustic

properties in the nanoporous material. In a second step, using the microscopic data obtained

by means of molecular simulation, we proposed a bottom-up modelling strategy to predict

the acoustic properties of an empty double-porosity solid. By considering an assembly of

slightly overlapping spheres made of a nanoporous skeleton, we propose a simple model to

mimic the acoustic properties of materials exhibiting large defects or microfractures. Using

this nano-to-macro approach, we illustrate how the acoustic properties of materials can be

modulated using hierarchical porous structures and devices. The present work paves the

way for future developments with promising perspectives. First, while we chose prototypical

materials corresponding to zeolites with cubic structures, the multiscale approach – consist-

ing of molecular simulations and continuum-level calculations – can be extended to other

Bravais crystalline lattices. With more complex crystalline structures, the calculation of me-

chanical parameters is more involved as it involves a much larger number of elastic constants

but their estimation does not add complexity. Similarly, considering aluminosilicate zeolites

would remain doable despite the need to add a proper description of the interactions with

extra-framework cations.

Appendix

A. Dynamic structure factor

In this appendix, we derive the general formula for the dynamic structure factor S(q, ω)

which can be obtained from the positions or, equivalently, the velocities of the particles in

the system.70 The density distribution ρ(r, t) at position r and time t of a system made up

of N particles is given by a sum of Dirac delta functions centered on each particle position
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ri(t):

ρ(r, t) =
N∑
i=1

δ[r− ri(t)]. (19)

We now introduce the generalized Van Hove correlation function G(r, t) which corresponds

to the probability distribution that particle i is in the vicinity of r at time t while particle j

is in the vicinity of r = 0 at time t=0.

G(r, t) =

〈
1

N

N∑
i=1

N∑
j=1

δ(r− [rj(t)− ri(0)])

〉
(20)

=

〈
1

N

∫
dr′

N∑
i=1

N∑
j=1

δ[r′ − r+ rj(t)]δ[r
′ + ri(0)]

〉
.

As discussed in the main text, the intermediate coherent scattering function F (q, t) is

defined as the spatial Fourier transform of the Van Hove correlation function:

F (q, t) =

∫
G(r, t) exp(−iq · r)dr = 1

N
⟨ρq(t)ρ−q(0)⟩ , (21)

where ρq(t) =
∫
ρ(r, t) exp(−iq · r)dr =∑N

i=1 exp[−iq · ri(t)]. F (q, t) is a very fundamental

quantity as it is directly the time Fourier transform of the dynamic structure factor which

is probed using neutron scattering for instance:

S(q, ω) =
1

2π

∫ +∞

−∞
F (q, t)eiωtdt. (22)

In what follows, we show that the dynamic structure factor can be related to the Fourier

components of the particle flux jq(t) =
∑N

i=1 ui(t) exp[−iq · ri(t)] (where ui(t) is the velocity

of molecule i at time t). The condition of particle number conservation in each space direction

a can be written in Fourier space: −iq · jq(t) = ρ̇q(t) where the ‘dot’ symbol denotes time

derivative. By considering the component a (x, y or z) of the dot product in this relation
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[i.e. ρ̇aq = −iqajaq], we can define the following time correlation function:

Ca(q, t) =
1

N

〈
ρ̇aq(t)ρ̇

a
−q(0)

〉
=

q2

N

〈
jaq(t)j

a
−q(0)

〉
. (23)

where q = |q| is the norm of the wave vector q. By noting that Ca(q, t) = −d2Fa(q, t)/dt
2

we can write that:

Ca(q, ω) = ω2Fa(q, ω) = ω2Sa(q, ω), (24)

where the second equality is obtained by considering that Sa(q, ω) = Fa(q, ω) by definition.

Finally, using the definition of Ca(q, ω) = 1/2π
∫ +∞
−∞ Ca(q, t) exp(iωt)dt

= 1/2π
∫ +∞
−∞ q2/N

〈
jaq(t)j

a
−q(0)

〉
exp(iωt)dt, Eq. (24) leads to:

Sa(q, ω) =
1

2πN

( q
ω

)2 ∫ +∞

−∞

〈
jaq(t)j

a
−q(0)

〉
eiωtdt, (25)

where we recall that a = x, y or z.

B. Mechanical fluctuations

For a system in the isobaric-isostress ensemble (constant NσT ), the free enthalpy is the

thermodynamic potential that is minimum at equilibrium: G = U −Ω0

∑
ij σijϵij−TS where

the double sum runs over the three directions of space x, y, and z for both i and j. In this

equation, U , S ϵij, and Ω0 are the internal energy, entropy, strain component ij, and volume

of the system, respectively. From a statistical mechanics point of view, considering the

underlying distribution of microstates in this ensemble, ρNσT ∼ e−βG where β = 1/kBT , any

fluctuation ∆U , ∆S, ∆ϵij with respect to the equilibrium solution occurs with a probability

P ∼ exp(−β∆G):

P (∆U,∆S,∆ϵij) ∼ exp[−β(∆U − T∆S − Ω0

∑
ij

σij∆ϵij)]. (26)
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From now on, we use Einstein’s convention so that summation over repeated indices is

implicitly assumed. By writing a second-order Taylor expansion of ∆U , we obtain:

∆U ∼ ∂U

∂S
∆S +

∂U

∂ϵij
∆ϵij +

1

2

∂2U

∂S2
∆S2 +

1

2

∂2U

∂ϵ2ij
∆ϵ2ij +

∂2U

∂ϵij∂S
∆ϵij∆S, (27)

where all partial derivatives are taken while keeping constant all other variables. Replacing

∆U from Eq. (27) into Eq. (26) yields:

P ∼ exp

[
−β

2

(
∂2U

∂S2
∆S2 +

∂2U

∂ϵ2ij
∆ϵ2ij + 2

∂2U

∂ϵij∂S
∆ϵij∆S

)]
, (28)

where we used that ∂U/∂S = T and ∂U/∂ϵij = Ω0σij.

At this stage, we also invoke the following expansion in S and ϵij for ∆T and Ω∆σij:

∆T = ∆

(
∂U

∂S

)
∼ ∂2U

∂S2
∆S +

∂2U

∂S∂ϵij
∆ϵij, (29)

Ω0∆σij = ∆

(
∂U

∂ϵij

)
∼ ∂2U

∂ϵ2ij
∆ϵij +

∂2U

∂S∂ϵij
∆S. (30)

The last two expressions allow us to rewrite Eq. (28) as:

P ∼ exp

[
−β

2
(∆T∆S + Ω0∆σij∆ϵij)

]
. (31)

In order to express P as a function of simple measurable quantities, we can express the

fluctuation in entropy S as:

∆S =
∂S

∂T
∆T +

∂S

∂ϵij
∆ϵij (32)

=
Cϵ

T
∆T +

∂S

∂ϵij
∆ϵij =

Cϵ

T
∆T − Ω0

∂σij

∂T
∆ϵij,

where Cϵ = T∂S/∂T |ϵij is the heat capacity at constant ϵij. In the second equality, we

simply use that dF = −SdT + Ω0σijdϵij and then invokes Maxwell relations ∂2F/∂T∂ϵij =
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∂2F/∂ϵij∂T to show that −∂S/∂ϵij|T = Ω0∂σij/∂T |ϵij . Similarly, we can express the change

in the stress component σij as:

∆σij =
∂σij

∂T
∆T +

∂σij

∂ϵkl
∆ϵkl. (33)

Inserting the expressions above for ∆S and ∆σij into Eq. 31, we get:

P ∼ exp

[
−β

2

(
Cϵ

T
∆T 2 + Ω0

∂σij

∂ϵkl
∆ϵij∆ϵkl

)]
. (34)

Using the last expression, we can now derive a simple analytical expression for ∆ϵij∆ϵkl. For a

Gaussian distribution P (x) = (2πx2
0)

−1/2 exp(−x2/2x2
0), we know that ⟨x2⟩ =

∫∞
∞ x2P (x)dx =

x2
0. By applying this definition to Eq. (34) in which we use x2 = ∆ϵij∆ϵkl and x2

0 =

kBT/Ω0 × ∂ϵkl/∂σij , we get:

∆ϵij∆ϵkl =
kBT

Ω0

∂ϵkl
∂σij

=
kBT

Ω0

Sijkl, (35)

where the second equality is obtained by invoking the definition of the compliance tensor

Sijkl = ∂ϵkl/∂σij.

C. Homogenization procedure

Classical results (see, e.g.50) on the upscaling of elastic wave propagation in empty porous

solids are recalled in this appendix. We use the two-scale asymptotic method of homogeniza-

tion for periodic media and closely follow the developments in.50 The porous solid is periodic,

with period ℓ, and has a representative elementary volume Ω (see Figure 8) comprising a

nanoporous skeleton Ωs and empty pores Ωf , meaning that only acoustic wave propagation

through the skeleton is accounted for. The skeleton has a volume fraction φ = Ωs/Ω and its

common boundary with Ωf is Γ. The separation of scales is ensured provided that ℓ is much

larger than the nanoscopic characteristic size and, at the same time, much smaller than the
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macroscopic characteristic size L. The latter allows defining a small parameter ε = ℓ/L ≪ 1

which will be used in the upscaling procedure.

The equations governing the linear dynamics of the porous solid in harmonic regime are

the equation of conservation of momentum (36), elastic constitutive law (37) and bound-

ary condition Eq. (38) stating zero normal stress on Γ, together with periodic boundary

conditions on opposite faces of the REV.

div(σ) = −ρω2u in Ωs, (36)

σ = C : ϵ(u) and ϵ(u) =
1

2
(∇u+ (∇u)T ), (37)

σ · n = 0 on Γ, (38)

where u is the skeleton displacement, σ is the skeleton’s stress tensor, C is the elasticity

tensor, ϵ(u) is the strain tensor, and n is the outward-pointing vector normal to Γ.

Considering the macroscopic characteristic length L as a reference length, two spatial

variables are introduced, namely x∗ = X/L and y∗ = ε−1x∗, where X is the usual spatial

variable. Here x∗ and y∗ are dimensionless spatial variables that account for macroscopic and

local fluctuations, respectively. Then, introducing the dimensionless quantities C∗ = C/Cc,

u∗ = u/uc, ρ∗ = ρ/ρc, and ω∗ = ω/ωc (with quantities with subscript c being respective

characteristic values) into Eqs. (36)–(38) lead to the dimensionless local equations (36)–(38)

but with the variables indexed by ∗ and the dimensionless number P = |ρcω2
cL

2|/|Cc| = O(1)

multiplying the inertial term in the equation of conversation of momentum. Further noting

that the introduction of the two spatial variables lead to the spatial derivative to take the

form ∇ → ∇x + ε−1∇y, where the subscript ∗ is dropped to simplify the notation from now

on, and looking for the unknown variables in the form of asymptotic expansions of powers

of ε, e.g. u =
∑∞

i=0 ε
iu(i), one successively obtains boundary-value problems after inserting

the said series into the dimensionless local equations and collecting terms with equal powers

of ε.
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The lowest order provides a boundary-value problem for u(0), which reads as

divy(C : ϵy(u
(0))) = 0 in Ωs, (39)

(C : ϵy(u
(0))) · n = 0 on Γ. (40)

As shown in,50 the solution of this homogeneous linear problem is

u(0) = u(0)(x) = U. (41)

Hence the leading-order displacement is a macroscopic variable, i.e. it is constant at the

local scale.

Further identification allows obtaining the boundary value problem for u(1), which is

given by (with E = ϵx(U))

divy(C : (E+ ϵy(u
(1)))) = 0 in Ωs, (42)

C : (E+ ϵy(u
(1))) · n = 0 on Γ. (43)

The solution of this linear problem forced by the macroscopic strain E is given by50

u(1) = ξ(y) : E+ ū(1)(x) i.e. u
(1)
i = ξkhi Ekh + ū

(1)
i , (44)

where ξ(y) is a zero-spatial-mean third-rank tensor and ū(1)(x) is an arbitrary constant. We

note that ξkhi represents the i-th component of the microscopic displacement in response to

a macroscopic strain excitation E = 1
2
(ek ⊗ eh + eh ⊗ ek).

The collection of terms at ε leads to the following equations

divy(σ
(1)) + divx(σ

(0)) = −ω2ρU in Ωs, (45)
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σ(1) · n = 0 on Γ, (46)

which after integration, application of the divergence theorem, and use of the periodicity

become the following macroscopic equation of conservation of momentum

divxΣ = −ω2ϱU (47)

where ϱ = φρ is the effective density, Σ = ⟨σ(0)⟩ = a : E (with ⟨·⟩ = Ω−1
∫
Ωs

·dΩ) is the

effective stress tensor, and the effective elasticity tensor a is defined in Eq. (12).

In summary, the macroscopic description is given by Eq. (47). The associated effective

parameters are ϱ and a which depends on the elasticity tensor of the skeleton, the volume

fraction of the skeleton, and the spatially averaged microscopic strain resulting from a macro-

scopic strain excitation. To obtain the latter, the solution of the boundary value problem

Eq. (42)–(43) for a given E is required.
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