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Abstract

One of the common approximations in long-term evolution studies of small bodies is the use of circular orbits
averaging the actual eccentric ones, facilitating the coupling of processes with very different timescales, such as the
orbital changes and the thermal processing. Here we test a number of averaging schemes for elliptic orbits in the
context of the long-term evolution of comets, aiming to identify the one that best reproduces the elliptic orbits’
heating patterns and the surface and subsurface temperature distributions. We use a simplified thermal evolution
model applied on simulated comets both on elliptic and on their equivalent averaged circular orbits, in a range of
orbital parameter space relevant to the inner solar system. We find that time-averaging schemes are more adequate
than spatial-averaging ones. Circular orbits created by means of a time average of the equilibrium temperature
approximate efficiently the subsurface temperature distributions of elliptic orbits in a large area of the orbital
parameter space, rendering them a powerful tool for averaging elliptic orbits.

Unified Astronomy Thesaurus concepts: Comets (280); Comet nuclei (2160); Comet interiors (272);
Computational methods (1965)

1. Introduction

Considering comets’ long lifetimes and complex dynamical
histories, studying the long-term evolution of their nuclei is an
essential step in understanding their current state and activity
(Gkotsinas et al. 2022). One approach to assess long-term
effects is to determine their thermal histories by coupling a
thermal evolution model to orbital trajectories from dynamical
simulations (Raymond et al. 2020; Gkotsinas et al. 2022). This
coupling is challenging both from a physical and a numerical
point of view (Gkotsinas et al. 2022) and demands a certain
number of assumptions, as the processes involved operate on
very different timescales. Thermal evolution processes such as
phase transitions, heat or gas diffusion, depending on the
temperature conditions, usually take place in minutes or hours
or up to a few months in the case of the heat diffusion (Prialnik
et al. 2004). The dynamical evolution of comets, on the other
hand, is a billion-year process that requires N-body simulations
with an output frequency on the order of hundreds to thousands
of years (e.g., Nesvorný et al. 2017; Sarid et al. 2019), far
longer than the short timescales of thermal processes.

One of the assumptions frequently used in these types of
simulations is to simplify the dynamical pathways of comets by
averaging their orbits (Prialnik & Rosenberg 2009; Guilbert-
Lepoutre 2012; Snodgrass et al. 2017; Gkotsinas et al. 2022).
Prialnik & Rosenberg (2009) proposed to replace elliptic orbits
by equivalent circular ones; the radius of which was chosen to
assure the same amount of total energy over the course of an
orbital period. This is reinforced in other fields, as climate
modeling of putative Earth-like planets on eccentric orbits has
generally found that the controlling factor determining whether
a planet may retain liquid water is the total energy received

over a planet’s orbit (Williams & Pollard 2002; Bolmont et al.
2016).
In this work we aim to compare and evaluate different

methods for averaging elliptical orbits in the context of long-
term simulations of comets’ thermal evolution. In Section 2 we
present the tested averaging schemes and we give a brief
presentation of the thermal evolution model. In Section 3 we
present the produced internal temperature distributions from the
different schemes and a comparative study between them and
elliptic orbits. In Section 4 we discuss the adequacy and the
limits of validity of every scheme and highlight the scheme that
worked better in the current context.

2. Methods

2.1. Averaging Eccentric Orbits

A variety of approaches have been proposed in order to
average an elliptic orbit. The most common one is to estimate
an average distance between the object and the focal point. This
can be achieved in two ways: The first is to integrate the orbit
equation over the true anomaly (θ) throughout an orbital period
to obtain a true-anomaly-averaged radius (e.g., Curtis 2014):

¯ ( )= -qr a e1 . 12

The second way is to integrate the orbit equation over the
average angular velocity of the object over the course of an
orbital period. This approach results in a time-averaged radius,
which is always smaller than the true-anomaly-averaged radius
(e.g., Curtis 2014):
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Another widely used method is to integrate over a physical
parameter, such as the flux received by an object over an orbital
period. This is the most physically plausible way to approach
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the problem, as it ensures that the total energy intercepted by an
object over an orbit is not modified. Using Equations (1) and
(2) we can calculate a true-anomaly-averaged and a time-
averaged flux (Méndez & Rivera-Valentín 2017) from which
we can obtain a new set of radii, the second of which is
commonly used on planetary habitability studies (e.g., Bolmont
et al. 2016):
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Recently, Méndez & Rivera-Valentín (2017) proposed a new
effective thermal radius, calculated directly from the time
average of the equilibrium temperature (Teq), guaranteeing the
same average equilibrium temperature over an orbital period:
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where E is the complete elliptic integral of the second order.
All of the proposed expressions are simple functions of the

semimajor axis (a) and the eccentricity (e). In practice, this means
that for an elliptic orbit with specified orbital parameters (i.e., an
(a, e) couple), the orbit-averaging technique produces a circular
orbit around the focal point with an “equivalent” radius. The

differences in the averaging expressions imply different distances
from the Sun. In fact for any given (a, e) couple the calculated
radii are ordered as ¯ ¯ ¯ ¯< < < <q qr r r r rF tF T t. This means that
true-anomaly-averaged flux expression ( q̄r F) will always place an
object closer to the Sun than the time-averaged radius (r̄t). As a
consequence for the same (a, e) couple we produce different
temperature profiles (panels (b) to (e) in Figure 1), raising the
question “which one is better approximating the temperature
distribution of the elliptic orbit?” (panel (a) in Figure 1). To
answer we test these orbit-averaging schemes in the context of
comets’ thermal evolution. In order to test the validity limits of
each scheme in a range of orbital parameter space relevant for the
inner solar system (i.e., ∼3–30 au) we use a total of 110 (a, e)
couples. We sample the semimajor axis range logarithmically
(10x, with x ranging between 0.5 and 1.5 with a step of 0.1) with
more orbits close to the Sun, where the heating is stronger and the
eccentricity is linear between 0 and 0.9 at increments of 0.1.

2.2. Thermal Evolution Model

We use a 1D version of the 3D thermal evolution model
described in Guilbert-Lepoutre et al. (2011) to solve the heat
diffusion equation in a spherical airless object:

( ) ( )r k
¶
¶

+ -
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¾
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T
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where ρbulk is the object’s bulk density (kg m−3), c is the
material’s heat capacity (J kg−1 K−1), T is the temperature (K),

Figure 1. Subsurface temperature distributions for a layer of 10 m over a period of 1000 yr for (a) an elliptical orbit with a = 10 au and e = 0.5, (b) true-anomaly-
averaged radius ( q̄r ), (c) true-anomaly-averaged flux ( q̄r F), (d) effective thermal radius (rT), (e) time-averaged flux (r̄tF), and (f) time-averaged radius (r̄t) equivalent
circular orbits.
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κ is the material’s effective thermal conductivity (WK−1 m−1),
and  is the heat sources and sinks.

The surface boundary condition for Equation (7) is
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where the received solar energy is given as a function of
Bond’s albedo (), the solar constant (Le) in W m−2, and the
heliocentric distance (dH) in au; the nucleus’ thermal emission
as a function of the emissivity (ε), the Stefan–Boltzmann
constant (σ), and the temperature (T) in K; and the heat flux
toward the interior given as a function of the surface’s thermal
conductivity (κ) in WK−1 m−1. We assume that the incident
solar energy is uniformly distributed over the surface of the
sphere, providing a spherical average of the energy received by
the nucleus.

As the goal of this work is to compare elliptic to circular
orbits, we chose a simplified setup for our model. Each comet
is composed of dust without any ice, such that no phase
transitions take place, removing any energy sources or sinks
from Equation (7) ( = 0). Without them the most important
parameter in the model is the effective thermal conductivity
(κ), as it controls the heat diffusion toward the interior. In the
current configuration it is set at 5× 10−3 W m−1 K−1, in good
agreement with laboratory measurements for porous dust
aggregates (Krause et al. 2011). The rest of the model’s
parameters are widely used averages in the published literature
(Huebner et al. 2006).

It is the value of the heliocentric distance (dH) that changes
between the different case studies, controlling the amount of
energy received at the surface of our objects. In an elliptic orbit
it changes following the constant increment of the eccentric
anomaly as the object moves between the apsides. In the test
cases it is constant, set on the distance calculated by
Equations (1)–(6).

We run a total of 660 simulations: 110 reference simulations
for all the (a, e) couples with objects on elliptic orbits, serving
as basis for the comparisons with the 550 simulations for
objects on equivalent circular orbits created from
Equations (1)–(6) for the same (a, e) couples. The simulations

run for ∼1 Myr, an arbitrary period selected to allow heat
diffusion inside our objects. This allows us to study the
temperature differences between elliptic and circular orbits, not
only at the surface but in the interior as well, and look for any
accumulative or propagation effects that might be introduced
during long-term simulations.

3. Results

Figure 1 presents the internal temperature distribution
produced by the different orbit-averaging schemes for a comet
on an orbit with a= 10 au and e= 0.5. For clarity only the first
1000 yr of the 1Myr simulation are presented, but this is
sufficient to notice the averaging effects. Clearly, none of the
averaged orbits reproduce the heating cycle of the elliptic orbit
with the subsequent passages from the perihelion to the
aphelion, i.e., the seasons. Instead, as the distance from the Sun
is constant, the heat diffusion is steady and uniform throughout
an orbital period.
Figure 2 presents temperature profiles in the interior of our

simulated comets using different orbit-averaging methods,
taken near the end of our simulations (∼1 Myr). The fact that
the profiles are near-vertical stems from the assumption of a
fixed, circular orbit with constant illumination. A profile from
the reference elliptic orbit with the same orbital elements (i.e., a
and e) is shown at perihelion and aphelion, and at two points
halfway in between at times coinciding with a quarter of its
orbital period, both on its way inward (from aphelion to
perihelion) and outward (from perihelion to aphelion). The
three panels examine different orbits: (a) a highly eccentric and
relatively short orbit with a= 7.94 au and e= 0.7; (b) a longer,
less eccentric orbit with a= 10 au and e= 0.5; and (c) a long
orbit (a= 25.11 au) with low eccentricity of 0.2.
The temperature profiles from Figure 2 help us to confirm

some of the previous observations:

1. The true-anomaly-averaged flux ( q̄r F) better approximates
the effect of the perihelion passage (even for the less
eccentric orbit, where the temperature difference at the
surface is ∼6 K), but fails completely on the other
positions both on the surface and the subsurface.

Figure 2. Temperature profiles for a subsurface layer of 10 m, ∼1 Myr after the start of the simulations, for three a, e couples: (a) a = 7.94 au and e = 0.7, (b)
a = 10.0 au and e = 0.5, and (c) a = 25.11 and e = 0.2. The solid black lines give the temperature profiles of elliptic orbits at perihelion, aphelion, and halfway
through—time-wise—both inward and outward. The temperatures profiles for the equivalent orbits are true-anomaly-averaged radius ( q̄r ) (blue loosely dashed–dotted
line), true-anomaly-averaged flux ( q̄r F) (yellow dashed–dotted line), time-averaged radius (r̄t) (green dashed line), time-averaged flux (r̄tF) (red dotted line), and
effective thermal radius (rT) (purple loosely dashed line).
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Divergences range from ∼6 K in the least eccentric to
∼80 K in the most eccentric orbit examined.

2. The true-anomaly-averaged radius ( q̄r ) works slightly
better, with calculated surface temperatures between
those of the two apsides and subsurface profiles closer
to the reference ones, and with temperature differences
ranging from ∼20 K in the most eccentric, to almost
complete convergence in the least eccentric orbits.

3. Overall, the time-averaged expressions (Equations (2),
(4), and (6)) work better in all cases. Despite their failure
to reproduce the high surface temperatures encountered at
perihelion, especially for the most eccentric orbit, these

schemes better reproduce the cooling effect of the
aphelion passage, leading to internal temperature dis-
tributions that converge to those of the reference orbit in
all the examples of Figure 2.

4. The effective thermal radius (rT) stands out as the scheme
producing an internal temperature distribution converging
almost perfectly to the reference distribution, close to the
surface: below 6 m in the first two cases and 10 m in
the last.

Given that the true-anomaly-averaged (or spatial) expres-
sions failed in matching the reference simulations, we focus
hereafter on the time-averaged formulas. We expand our study

Figure 3. Temperature differences between the elliptic orbits at perihelion and the time-averaged radius (r̄t) (top row), the time-averaged flux (r̄tF) (middle row), and
the effective thermal radius (rT) equivalent orbits (bottom row) for three depths: surface (left column), 1 m (middle column), and 10 m (right column) for all the a, e
couples.
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by examining the temperature differences from the reference
elliptic orbits at the surface, 1 and 10 m below the surface at
perihelion, at aphelion and halfway in between time-wise.

In Figure 3 we present the temperature differences (ΔT)
between the three time-averaged formulas (r̄t, r̄tF , and rT) and
the elliptic orbits at perihelion. All schemes underestimate the
surface temperatures during the perihelion passage. The time-
averaged radius (r̄t) deviates the most from the reference orbits
(maximum ΔT of ∼358 K or in terms of relative difference by
73%), especially for very eccentric (e> 0.5) and short orbits
(a< 10 au). It is followed by the effective thermal radius (rT)
with a maximum divergence of ∼343 K (relative difference of
70%). The time-averaged flux (r̄tF) presents a maximum ΔT of
∼298 K (or relative difference of 61%). These relative

differences at the surface rise with the eccentricity, becoming
important (∼20%) above e= 0.3, and really significant for high
eccentricities (50% for e= 0.7 and ∼70% for e= 0.9) for the
time-averaged and the effective thermal radius, highlighting
their failure to represent the perihelion passage. The time-
averaged flux (r̄tF) has slightly smaller relative deviations
especially above e> 0.4 where it is constantly lower than the
other time-averaged schemes by ∼4%–9%.
All three schemes are more robust in the objects’ interiors

(middle and right panels of Figure 3). At 1 m below the surface
the time-averaged radius (r̄t) differences converge quickly for
all orbits (maximum ΔT of ∼26 K) except for distant (a> 10
au) and highly eccentric (e> 0.5) orbits for which the
maximum ΔT is ∼49 K. The same stands for the effective

Figure 4. Temperature differences between the elliptic orbits at aphelion and the time-averaged radius (r̄t ; top row), the time-averaged flux (r̄tF ; middle row), and the
effective thermal radius (rT) equivalent orbits (bottom row) for three depths: surface (left column), 1 m (middle column), and 10 m (right column) for all the a, e
couples.
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thermal radius (rT) only with better convergence for short
(a< 10 au) and low-eccentric orbits (e< 0.5). For distant
(a> 10 au) and highly eccentric (e> 0.5) orbits the problem
remains but is slightly less pronounced (with a maximum ΔT
of ∼44 K). Long-period orbits with prolonged excursions into
hot areas around perihelion allow the heatwave to advance
deeper in the interior and extend the temperature differences
well below the surface. In these cases underestimating the
perihelion temperature remains problematic, unlike the cases of
short orbits (a< 10 au) where the heating, although more
intense, takes place in a shorter period of time that is not
sufficient for its diffusion in the interior (panel (a) versus panel
(b) in Figure 2, for example). These differences almost
completely disappear 10 m below the surface in the case of
the effective thermal radius (rT; DTmax =−1 K for e= 0.9;
lower right panel in Figure 3) and the time-averaged radius (r̄t;
with the exception of very short, a< 10 au, and highly
eccentric orbits, e> 0.7). On the contrary, the time-averaged
flux (r̄tF) differences at the interior (middle panels in Figure 3)
fail to achieve convergence in high eccentricities (e� 0.5),
whether it is a short or a long orbit. In addition these deviations
persist at larger depths (middle right panel of Figure 3), as there
is still no convergence for highly eccentric orbits (e� 0.5) and
the differences on low-eccentricity orbits are higher than those
of the effective thermal radius and the time-averaged radius.

At the aphelion the temperatures are overestimated by the
averaging schemes (Figure 4). The time-averaged radius (r̄t)
works better than the other methods in the surface and the close
subsurface area (DTmax = 20 K versus DTmax =−78 K for r̄tF

andDTmax = 33 K for rT at the surface andDTmax = 9 K versus
DTmax = 50 K and DTmax = 10 K, respectively, 1 m below the
surface). However, at 10 m below the surface the convergence
for the effective thermal radius is almost complete
(DTmax =−1 K in only three short and eccentric orbits) unlike
for the time-averaged radius and the time-averaged flux where
there is still no convergence. For completeness, similar

representations for the temperature differences halfway through
inward and outward presented in Figure 2 are given in
Figures 6 and 7. As expected the temperature differences are
less important comparing to those of the two apsides, but we
can still observe the efficiency of the time-averaged and
especially of the effective thermal radius over the time-
averaged flux method.

4. Discussion

Overall the time-averaged schemes work better than the true-
anomaly or spatial-averaged ones. This is because the true-
anomaly formulas are restricted to the calculation of an average
distance from the focal point. Although this seems to be a
sufficient assumption, it ignores crucial information: the
different time spent by an object at different distances from
the focal point. In fact an object in an elliptic orbit will move
much faster close to perihelion than close to aphelion, implying
—in our case—more time in colder regions. This information is
integrated in temporal expressions rendering them more
appropriate in the approximation of elliptic orbits. With that
in mind, the surface temperatures obtained from the time-
averaged schemes, closer to the aphelion temperatures of an
elliptic orbit, are more appropriate than an average of the
perihelion–aphelion temperatures calculated by the spatial-
averaged schemes.
When it comes to the time-averaged orbits, we demonstrated

(Figures 3 and 4) that the time-averaged (r̄t) and the effective
thermal radius (rT) better approximate the temperature
distributions of elliptic orbits with the exception of the surface
temperatures at perihelion. These two distances are increasing
functions of the eccentricity, whereas the time-averaged flux
(r̄tF) is a decreasing one (Méndez & Rivera-Valentín 2017).
This implies that for a given (a, e) couple, the time-averaged
flux will place an object closer to the perihelion, leading to a
systematic overestimation of the surface temperature. On the
other hand, the time-averaged and the effective thermal radius

Figure 5. A typical Jupiter-family comet trajectory taken from Gkotsinas et al. (2022) plotted over the temperature differences between elliptic orbits and an average
of the effective thermal radius (rT) inward and outward for all the a, e couples. Each circle represents a point in our orbital parameter space sampling. The color code
gives the scale of the temperature difference.
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(very close by definition; see Equations (2) and (6)) place the
object closer to the aphelion accounting better for the lower
temperatures reigning during the biggest part of an orbit
(especially for highly eccentric ones), managing better to
represent the internal temperature distribution. Interestingly,
there is no clear distinction on the efficiency between these two
formulas, as the time-averaged radius, as expected by its
definition, works better at aphelion and halfway through both
inward and outward at the surface and 1 m below, but fails to
convergence as quickly as the effective thermal radius that
manages to converge in all cases at maximum 10 m below the
surface.

We tested the equivalent semimajor axis proposed by
Prialnik & Rosenberg (2009), deriving also from a time-
averaging integral (ac= a(1− e2)). As this average distance
provides the same energy per orbit as the real eccentric one, it
is reliable only when orbital periods are very close. Otherwise
significant deviations are observed (for very eccentric orbits for
instance), with a systematic overestimation of the internal
temperatures. Its validity thus remains limited to low-
eccentricity orbits (e< 0.3) or limited timescales, as done in
Guilbert-Lepoutre (2012), Snodgrass et al. (2017), and
Gkotsinas et al. (2022).

When the actual orbital trajectory of a typical comet is
accounted for, it is clear that orbit averaging remains a viable
technique for the long-term cometary thermal evolution.
Figure 5 shows the orbital changes of a simulated Jupiter-
family comet during its trajectory toward the inner solar system
(taken from Gkotsinas et al. 2022 with dynamical trajectories
from Nesvorný et al. 2017), over an average of the inward and
outward surface temperature differences for the effective
thermal radius (rT). With the exception of short and highly
eccentric orbits (a< 10 au and e> 0.5), which are very rare,
the averaging is very efficient in all the other areas of the orbital

parameter space. Even in the area of long and highly eccentric
orbits (a> 10 au and e> 0.5), the temperature divergences do
not overcome the ∼10 K. This suggests that using the effective
thermal radius to average elliptic orbits is a very effective tool
with a large area of validity in the orbital parameter space and
not important discrepancies outside of this area (as even for the
short and highly eccentric orbits the divergence is not bigger
than 20 K).
We therefore recommend the use of the effective thermal

radius scheme, ( ( ))» + + +r a e e e1
1

8
T

2 21

512
4 6 , in long-

term thermal evolution studies, as it can efficiently approximate
the internal temperature distribution of an airless dusty body
with low thermal inertia, such as a comet or an asteroid,
evolving in eccentric orbits.

This study is part of a project that has received funding from
the European Research Council (ERC) under the European
Unionʼs Horizon 2020 research and innovation program (grant
agreement No. 802699). We gratefully acknowledge support
from the PSMN (Pôle Scientifique de Modélisation Numér-
ique) of the ENS de Lyon for computing resources. The authors
would like to thank Benoit Carry for his useful comments on
previous work, which provided the background for the current
paper.
Facilities: PSMN, ENS de Lyon.

Appendix
Supplementary Figures

In Figures 6 and 7 we present, for completeness“the
temperatures differences, as presented in Figures 3 and 4 of
the main text”for the halfway points inward and outward,
respectively.
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Figure 6. Temperature differences between the elliptic orbits halfway through inward (time-wise) and the time-averaged radius (r̄t; top row), the time-averaged flux
(r̄tF ; middle row), and the effective thermal radius (rT) equivalent orbits (bottom row) for three depths: surface (left column), 1 m (middle column), and 10 m (right
column) for all the a, e couples.
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Figure 7. Temperature differences between the elliptic orbits halfway through outward (time-wise) and the time-averaged radius (r̄t; top row), the time-averaged flux
(r̄tF ; middle row), and the effective thermal radius (rT) equivalent orbits (bottom row) for three depths: surface (left column), 1 m (middle column), and 10 m (right
column) for all the a, e couples.
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