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REVIEW ARTICLE

Apoptotic cell death in disease—Current understanding of the
NCCD 2023

© The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2023

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic
strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process
not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders.
Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and
promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various
neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee
on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic
apparatus to organismal homeostasis in the context of disease.

Cell Death & Differentiation (2023) 30:1097–1154; https://doi.org/10.1038/s41418-023-01153-w

FACTS

● Intrinsic and extrinsic apoptosis are forms of regulated cell
death (RCD) promoting the cellular demise along with the
activation of proteases of the caspase family.

● In mammalian organisms, executioner caspases are activated
after cells are already committed to die.

● Apoptosis can be manipulated by genetic or pharmacological
means, and multiple genetically engineered animal models
and pharmacological tools to modulate apoptosis have been
developed.

● Apoptosis is intimately involved in both (post-)embryonic
development and adult tissue homeostasis.

● Apoptosis deregulation promotes oncogenesis and contri-
butes to the etiology of multiple human disorders, including
cardiovascular, hepatic, renal, inflammatory and neurological
conditions.

● To date, venetoclax is the only apoptosis inducer that has
received regulatory approval for use in humans.

OPEN QUESTIONS

● Will inhibitors of apoptotic caspases with elevated target
specificity become available?

● Will agents specifically conceived to modulate apoptosis enter
the clinical practice to treat solid tumors or other human
disorders beyond hematological malignancies?

● Is it conceivable to design combinatorial strategies aimed at
inhibiting apoptosis while interrupting compensatory activa-
tion of other RCD signaling cascades?

● Will it be possible to specifically inhibit apoptotic signaling
without impacting on other processes dependent on

apoptosis regulators such as differentiation, proliferation,
and inflammatory reactions?

INTRODUCTION
The health and homeostasis of multicellular organisms depend on
the tight balance between cell proliferation and cell death. In this
context, a large body of experimental evidence has demonstrated
the existence of a form of regulated cell death (RCD) that is
executed by a genetically programmed process, and hence
amenable to manipulation by genetic or pharmacological means
[1]. Over the past decades, multiple variants of RCD have been
characterized at the genetic, biochemical, functional, and immu-
nological level [2–8]. For instance, programmed cell death (PCD)
has been functionally defined as a modality of RCD activated
under purely physiological conditions (i.e., in the absence of
perturbations of extracellular or intracellular homeostasis) in the
context of embryonic/post-embryonic development or adult
tissue homeostasis [1, 9]. Conversely, pathological RCD is
invariably initiated in the context of failure to adapt to shifts in
extra-cellular or intra-cellular homeostasis, constituting a de facto
organismal program for the elimination of excessively damaged
and/or potentially harmful cells, such as cells infected with
pathogens [1, 10]. From a biochemical perspective, an increasing
number of RCD modalities have been defined by the Nomen-
clature Committee on Cell Death (NCCD) based on the mechan-
istic involvement of specific molecular components [1, 11]. For
instance, apoptotic cell death has been defined as a form of RCD
that is promoted by proteases of the caspase family, namely
caspase 3 (CASP3), CASP6 and CASP7, and initiated by CASP8 and
CASP9 [1, 12, 13]. However, in mammalian organisms, with the
exception of CASP8, apoptotic caspases simply accelerate RCD
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because their activation occurs when cells are already committed
to die [1, 14–16]. This means that contrarily to simpler organisms
(e.g., Caenorhabditis elegans), in which apoptotic caspase elimina-
tion fully rescues cells from death, in mammals, apoptotic cell
death can at most be retarded but not prevented by pharmaco-
logical or genetic strategies inhibiting the activity of these
caspases. Mitochondrial permeability transition (MPT)-driven
necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic
cell death, NETotic cell death, lysosome-dependent cell death, and
autophagy-dependent cell death represent forms of RCD that
involve precise molecular events and hence can also be
manipulated with pharmacological or genetic interventions
[1–6, 17–19]. Other RCD modalities have been recently identified,
such as alkaliptosis [20], cuproptosis [21] and PANoptosis
(involving the simultaneous activation of pyroptosis, apoptosis,
and necroptosis) [22], and their signal transduction modules are
under investigation. The importance of these latter forms of RCD
in health and disease is not yet known.
Along with the identification of key RCD regulators and the

advent of modern tools for genetic manipulation, a great
experimental effort has been devoted to elucidating the role of
RCD in the physiopathology of multi-cellular organisms [23]. Thus,
various studies in animals (mostly rodents) genetically altered to
lack or over-express components of the apoptotic apparatus
(either at the whole-body level or in selected cell/tissue types)
have provided formal proof of the relevance, but not always the
exquisite requirement, of apoptosis for embryonic and fetal
development or adult tissue homeostasis [24–26].
Along similar lines, pharmacological and genetic tools aimed at

altering apoptotic signaling in pre-clinical disease models revealed
the mechanistic contribution of apoptosis to the etiology of
various conditions associated with the loss of post-mitotic or (in
certain settings) non-post-mitotic cells, including a panel of
neurological, cardiovascular, renal, hepatic, and inflammatory
disorders [24]. Extensive studies over the last five decades
highlighted the apoptotic machinery as a major target for the
development of new therapeutic interventions [27], not only for
the induction of cell death in the context of disrupted tissue
homeostasis (e.g., for neoplastic diseases) [28], but also for
the inhibition of cell death in the context of ischemic,
degenerative and inflammatory conditions [29, 30]. However,
while at least one drug designed to induce apoptosis is currently
approved for use in humans, namely the BCL2 apoptosis regulator
(BCL2) inhibitor venetoclax [31–34], which is used alone or in
combinatorial regimens for the treatment of chronic lymphocytic
leukemia (CLL), small lymphocytic lymphoma and acute myeloid
leukemia (AML) [31, 35–38], no other agents specifically conceived
to inhibit the apoptotic apparatus have been licensed for clinical
practice so far. The broad-spectrum caspase inhibitor emricasan
received fast-track designation by the US Food and Drug
Administration (FDA) for the treatment of non-alcoholic steato-
hepatitis in 2016 but demonstrated inconsistent clinical efficacy
[39–41], and – as of now – is not approved for therapy in humans.
The lack of clinically approved, selective apoptosis inhibitors

and the inconclusive performance of emricasan in recent trials
reflect several aspects of (apoptotic and non-apoptotic) RCD that
began to emerge only recently (Fig. 1). First, while detecting cell
death as well as biomarkers of specific RCD variants in vitro is
relatively straightforward [42], precise quantification of cell death
in vivo in adult tissue remains challenging, at least in part
because of rapid disposal of cell corpses by efferocytosis [43–46].
Thus, the actual contribution of cell death to the etiology of
various human disorders is difficult to quantify by observational
approaches [47, 48]. Second, while for a long-time, specific forms
of RCD were considered virtually independent entities, it
recently became clear that the molecular machinery for RCD is
composed of highly interconnected modules characterized by
substantial redundancy, backup pathways and feedback loops

[10, 49, 50]. Thus, molecules that inhibit one specific form of RCD
may ultimately be unable to confer actual cyto- and tissue
protection instead only altering the kinetic and biochemical
manifestations of death by allowing the engagement of a
different RCD sub-routine. For instance, while CASP8 is a major
signal transducer in death receptor (DR)-driven apoptosis (see
below), it intrinsically inhibits necroptosis induced by DRs and
other signaling pathways, such as Toll-like receptor (TLR)
signaling [51–53], suggesting that caspase inhibition in the
context of DR signaling may promote necroptotic cell death
[54–57]. Together with a low target specificity and selectivity
within the caspase family [57], this can explain the inadequate
efficacy of emricasan observed in pre-clinical and clinical studies.
Third, even in the hypothetical scenario of agents capable of
simultaneous inhibition of all (known and unknown) RCD
pathways, loss of cellular homeostasis due to failing adaptation
to stress generally involve degenerative processes that at some
stage cannot be reversed, such as widespread mitochondrial
permeabilization and loss of RNA and protein synthesis [4, 58–60],
i.e., even if all RCD modalities could be blocked effectively, cells
might undergo uncontrolled necrotic death. In this setting, cell
death may occur as a consequence of an irremediable
degeneration of cellular functions that can no longer be rescued
pharmacologically or even genetically [61]. Supporting these
latter notions, accumulating literature indicates that, at least
in mammalian systems, perhaps with the exception of CASP8,
so-called apoptotic caspases mainly control the kinetics of
apoptotic cell death and its immunological manifestations, but
not whether cell death ultimately occurs or not [15, 16]. This
points to the caspase family as a major regulator of organismal

Fig. 1 Principal causes of the therapeutic failure of intrinsic or
extrinsic apoptosis inhibitors. The clinical development and
success of agents inhibiting apoptosis is limited by multiple
contributory causes, including potential non-apoptotic, accessory
or even protective roles of the targeted proteins (exemplified by the
involvement of certain BCL2 family members, caspases and death
receptors in processes as diverse as inflammation, cell differentia-
tion, cell proliferation and cell survival), the high interconnectivity
between RCD pathway (potentially leading to the activation of
compensatory RCD variants in response to the inhibition of a
specific RCD type), the low specificity and selectivity of the inhibitors
developed so far (exemplified by the broad-spectrum caspase
inhibitors) and the difficulty to precisely determine and quantify cell
death in vivo. RCD regulated cell death.
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homeostasis via control of inflammatory responses [62, 63]. The
simultaneous inhibition of multiple caspases, as for instance by
emricasan, may thus also impact inflammation, as was demon-
strated for tumor necrosis factor (TNF)-induced systemic inflam-
matory respiratory syndrome (SIRS) in vivo for the pan caspase-
inhibitor zVAD-fmk [54, 64]. To complicate matters, multiple
components of the core apoptotic machinery, including caspases
and multiple members of the BCL2 family have been reported to
regulate a variety of non-apoptotic functions beyond inflamma-
tion, such as mitochondrial energy production, Ca2+ signaling
and terminal differentiation [65–72]. Structurally, distinguishing
between apoptotic and non-apoptotic functions of caspases and
the BCL2 family remains challenging. Finally, there is a hitherto
unclarified heterogeneity in the regulation of RCD at distinct
anatomical sites (possibly linked to micro-environmental features)
at distinct stages of cellular differentiation, and in the context of
diverse patho-physiological states (e.g., in young vs. adult and
aged individuals).
All these issues should also be kept under consideration in the

context of the present review, in which the NCCD aims at critically
discussing a large amount of pre-clinical data in support of a key
role for the apoptotic machinery in mammalian diseases.
Specifically, the interpretation of results of genetic and pharma-
cological experiments presented herein should place particular
attention on the aforementioned connectivity amongst different
RCD variants as well as on discriminating between essential vs.
accessory aspects of cell death [14]. Another issue to be
considered is the fact that most conclusions are based on use of
knockout/congenic mice which often present other passenger
mutations potentially influencing the observed phenotype [73].
Our objective is not only to provide a critical summary of the
existing literature, but also to offer an updated framework for
interpretation of these findings in view of currently accepted
models of RCD signaling.

INTRINSIC APOPTOSIS IN DISEASE
There are substantive supporting data from genetic studies to
demonstrate that the molecular machinery for intrinsic apoptosis
(described in Box 1 and Fig. 2) is involved in embryonic and fetal
development as well as in adult tissue homeostasis. Numerous
preclinical studies in animal models of disease demonstrate that

intrinsic apoptosis contributes to etiology in various disorders
involving the loss of not only post-mitotic, but also non-post-
mitotic tissues, including neurological, cardiac, renal, hepatic,
autoimmune/inflammatory, oncological, and infectious conditions.
However, as discussed above, the interpretation of these results
should be taken with caution given the high interconnectivity of
RCD pathways and the crosstalk between RCD and inflammatory
response. Moreover, the activation of executioner caspases occurs
after cells are already committed to intrinsic apoptosis [15, 16].
Accordingly, caspase inhibition only delays the execution of cell
death. In this context, the phenotypes observed under apoptotic
caspase-deleted or inhibited conditions may reflect cell-extrinsic
effects of caspase activity such as the release of immunomodu-
latory and cytotoxic signals from dying/dead cells, including
damage-associated molecular patterns (DAMPs) or cytokines (this
concept is extensively discussed in [14]). These phenotypes may
also stem from the lack of processes independent of intrinsic (or
extrinsic) apoptosis, as, for instance, the lack of CASP3-mediated
cleavage of gasdermin E (GSDME) leading to impaired pyroptosis
and associated inflammatory response [74, 75].
Below, we will provide details of the pro-apoptotic BCL2

proteins, the anti-apoptotic BCL2 proteins, the components of the
apoptosome—a platform for the activation of initiator caspases
composed of cytochrome c, somatic (CYCS), apoptotic peptidase
activating factor 1 (APAF1) and pro-CASP9—and effector caspases
in disease. The instances of involvement encompass participation
in the pathogenic mechanisms as well as experimental deletion or
inhibition as a means of exploring potential utility as treatment
targets. The effects of these regulators and effectors of the
intrinsic apoptosis pathway on health are described in Box 2, Box 3
and Box 4.

Neurological disorders
Intrinsic apoptotic factors are implicated in the pathophysiology of
numerous neurological diseases (Fig. 3). In a mouse model of
amyotrophic lateral sclerosis (ALS), deletion of BCL2-associated X
protein (Bax) reduces neuronal cell death coupled to attenuated
motor dysfunction and neuromuscular degeneration [76]. Addi-
tional ablation of BCL2-antagonist/killer 1 (Bak1) further enhances
neuroprotection, resulting in improved overall animal survival [77].
Similar protective effects were observed in mice lacking the BH3-
only proteins BCL2 like 11 (BCL2L11, best known as BIM) and BCL2

Box 1. Principle of intrinsic apoptosis

Intrinsic apoptosis is a type of regulated cell death (RCD) initiated by perturbations of the extracellular or intracellular microenvironment including (but not limited to) DNA
damage, endoplasmic reticulum or oxidative stress, growth factor withdrawal, and microtubular alterations. The critical step is mitochondrial outer membrane
permeabilization (MOMP) [4, 59, 1054, 1055]. MOMP is modulated by the activity of multiple pro-apoptotic and anti-apoptotic members of the BCL2, apoptosis regulator
(BCL2) protein family [1056–1060]. In response to apoptotic stimuli, MOMP leads to the sequential activation of the initiator caspase 9 (CASP9) and then executioner caspases
CASP3 and CASP7 [12, 13, 1061–1063]. Two functionally distinct classes of pro-apoptotic BCL2 proteins have been identified. The first class encompasses the apoptotic
activators BCL2 associated X, apoptosis regulator (BAX), BCL2 antagonist/killer 1 (BAK1), and BCL2 family apoptosis regulator (BOK) [1064]. Once activated by apoptotic stimuli,
BAX, BAK1 and BOK induce MOMP by generating pores across the outer mitochondrial membrane (OMM) [1065–1069]. These pro-apoptotic factors promote the release into
the cytosol of several apoptogenic factors, including cytochrome c, somatic (CYCS) and diablo IAP-binding mitochondrial protein (DIABLO; also known as second
mitochondrial activator of caspases, SMAC) [1070]. CYCS exerts apoptogenic activity by associating with apoptotic peptidase activating factor 1 (APAF1) and pro-CASP9 to
generate a complex known as the apoptosome, leading to sequential activation of CASP9 and executioner caspases CASP3 and CASP7 [1071]. DIABLO/SMAC contributes to
CASP3 and CASP7 activation by associating with and inhibiting X-linked inhibitor of apoptosis (XIAP) and other members of the inhibitor of apoptosis (IAP) protein family
that restrain caspase activation [1072].
The second class of pro-apoptotic BCL2 proteins (known as BH3-only proteins [1073]) include BCL2 associated agonist of cell death (BAD), BCL2 binding component 3 (BBC3;

best known as p53-upregulated modulator of apoptosis, PUMA), BCL2 interacting killer (BIK), BCL2 like 11 (BCL2L11; best known as BIM), Bcl2 modifying factor (BMF), BH3
interacting domain death agonist (BID), BCL2 interacting protein harakiri (HRK, also known as DP5), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1; best
known as NOXA [1074, 1075]). Of these, caspase-cleaved BID (tBID), BIM, PUMA, and NOXA have been reported to also be able to promote BAX and BAK1 activation through a
direct interaction with these proteins at mitochondria [1076–1082]. All BH3-only proteins, including BAD, BIK, BMF and HRK activate BAX and BAK1 indirectly by associating with
anti-apoptotic BCL2 family members, thereby blocking the inhibitory binding of the latter to BAX and BAK1 [1056, 1060, 1080–1084]. Some BH3-only proteins, particularly BIM,
PUMA and tBID, can potently bind and inhibit all anti-apoptotic BCL-2 proteins whereas others bind only some (e.g., NOXA only binds MCL1 and A1) [1080, 1082, 1085, 1086]. It
is noteworthy that BAX and BAK1 can induce apoptosis in the absence of all BH3-only proteins when the anti-apoptotic BCL2 proteins are genetically removed or inhibited by
BH3 mimetic drugs [1082, 1083]. However, BAX and BAK1 activation in the absence of BH3-only proteins occurs at slower kinetics compared to that in the presence of BH3-only
proteins [1082]. These findings support the existence of both BH3-dependent and BH3-independent BAX and BAK1 activation mechanisms (in the latter scenario, BH3-only
proteins function as catalysts for BAX and BAK activation) [1082, 1087]. In this context, BAX and BAK are also reported to be activated by tumor protein p53 (TP53; best known
as p53) in a fashion independent of BH3-only proteins [1088, 1089]. The anti-apoptotic members of the BCL2 family encompass BCL2, apoptosis regulator (BCL2), BCL2 like 1
(BCL2L1; best known as BCL-XL), MCL1, BCL2 family apoptosis regulator (MCL1), BCL2 like 2 (BCL2L2; best known as BCL-W), and BCL2 related protein A1 (BCL2A1; best known as
A1) [1056–1059]. The anti-apoptotic activity of these BCL2 proteins mainly involves MOMP inhibition, although, a non-canonical, cellular redox-dependent mechanism of
cytoprotection has also been reported in cancer cells, at least for BCL2 [1090–1093]
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binding component 3 (BBC3, best known as PUMA), as well as in
transgenic mice overexpressing BCL2, X-linked inhibitor of apop-
tosis (XIAP) [78–82]. Moreover, intra-cerebroventricular administra-
tion of the broad-spectrum inhibitor Z-VAD-FMK protects mice from
ALS [83], although whether such protection arises from the
inhibition of intrinsic apoptosis remains to be formally established.
Bax deletion also attenuates neuromuscular dysfunctions in a
mouse model of congenital muscular dystrophy (another neuro-
degenerative disease affecting motoneurons) [84], while BCL2
overexpression limits neuromuscular disease progression in some
(but not all) mouse models of progressive motor neuronopathy and
muscular dystrophy [85–87]. Finally, genetic or pharmacological
inhibition of poly (ADP-ribose) polymerase family, member 1
(PARP1) and PARP2 halts axonal degeneration and improves related
motor phenotypes in C. elegans models of ALS [88].

Multiple components of the molecular machinery for intrinsic
apoptosis, including BAX, PUMA, BH3 interacting domain death
agonist (BID), Harakiri, BCL2 interacting protein (contains only BH3
domain) (HRK), were shown to drive neuronal death in Alzheimer’s
disease (AD) and Parkinson’s disease (PD) models [89–101]. Thus,
overexpression of BCL2 decreases the appearance of early
pathological markers of AD, such as amyloid precursor protein
(APP) and microtubule-associated protein tau (MAPT, best known
as tau) cleavage, which depend on caspases [102–104], resulting
in attenuated neurological defects [105, 106]. Some findings
indicate a role of apoptotic caspases in the pathogenesis of AD.
However, as discussed above, during intrinsic apoptosis, caspases
simply accelerate the course of cell death, and, so, such effects
may be linked to the release of cytotoxic and pro-inflammatory
factors from dying cells. In more detail, pharmacological inhibition

Fig. 2 Molecular machinery of the intrinsic apoptosis. Intrinsic apoptosis can be activated by a range of extracellular or intracellular stimuli,
including, but not limited to, DNA damage, endoplasmic reticulum (ER) or oxidative stress, growth factor withdrawal or microtubular
alterations. The critical step of the intrinsic apoptosis is the activation of the pro-apoptotic effectors of the BCL2 family, BAX, BAK and possibly
BOK, which drives the outer membrane permeabilization (MOMP) and commits cells to death. MOMP results in the release from the
mitochondrial intermembrane space into the cytosol of proapoptotic proteins, including CYCS and SMAC. CYCS assembles with APAF1, dATP
and pro-CASP9 into the apoptosome, leading to the activation of CASP9, which in turn promotes the activation of the executioner caspases
CASP3 and CASP7. The activation of the executioner caspases is facilitated by SMAC, which sequesters and/or degrades members of IAP
family that inhibit apoptosis.
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Box 2. Impact of pro-apoptotic BCL2 proteins on health

Deletion of BCL2-associated X protein (Bax), BCL2-antagonist/killer 1 (Bak1) or BCL2-related ovarian killer (Bok) does not significantly affect mouse development [1094–1096],
with the exception of a mild lymphocyte and neuron accumulation in Bax−/− mice which also exhibit male infertility due to seminiferous tubule malformation [166, 1094]. Of
note, a recent study has demonstrated that such defects in germ cells occur in the fetal period [1097], supporting the requirement for intrinsic apoptosis in testicular
development [1098, 1099]. Subsequent studies confirmed the role of BAX in neurogenesis, in particular the development of hippocampal and cerebellar neurons, cortical
interneurons and astrocytes [1100–1105]. Accordingly, Bax−/− mice exhibit impaired neurological functions manifesting with increased anxiety, depression-like traits,
compromised social and sexual behavior, and impaired spatial representation and olfactory system function [1106–1108]. These mice also show accelerated medulloblastoma
formation [389], which is in line with the oncosuppressive activity of apoptotic (and non-apoptotic) regulated cell death (RCD) [1109].
Ablation of Bok does not compromise the relatively normal development of BAK1- or BAX-deficient mice, although Bax−/−Bok−/− mice exhibit an increased number of

mature oocytes [1110]. In contrast, co-deletion of Bax and Bak1 causes perinatal death in the vast majority (more than 90%) of mice, mainly due to multiple developmental
abnormalities and feeding difficulties [26, 1095]. Importantly, the developmental defects of Bax−/−Bak1−/− mice are exacerbated by additional deletion of Bok, underscoring not
only some functional redundancy between BAX, BAK1 and BOK, but also a crucial role of pro-apoptotic BCL2 family members in the development of the central nervous system
(CNS) and hematopoietic compartment [26]. However, since some Bax−/−Bak1−/− and Bax−/−Bak1−/−Bok−/− mice can reach adulthood [26, 1095], additional systems must be
at play to compensate for defects in apoptosis in other organs. In is worth noting that the developmental defects of Bax−/−Bak1−/− mice can be further aggravated by deletion
of autophagy related 5 (Atg5) [1111], which is involved in autophagy as well as in non-canonical vesicular pathways like LC3-associated phagocytosis [1112, 1113]. However,
whether autophagy-dependent cell death compensates for the apoptotic defects of Bax−/−Bak1−/− mice remains to be formally determined [1114, 1115].
Further corroborating the relevance of intrinsic apoptosis for proper development, the few surviving Bax−/−Bak1−/− mice and Bax−/−Bak1−/−Bok−/−mice display phenotypes

related to defective programmed cell death (PCD), including webbed feet (due to the incomplete removal of interdigital webs), imperforate vagina and midline fusion defects
including facial cleft [26, 1095]. CNS issues exhibited by these animals include a striking expansion of the tissue regions that harbor the neural stem cell pool [26, 1095] as well
as impaired function of the motor [1116] and visual [1117, 1118] systems. Although the number of apoptotic cells were reduced to the limit of detection in embryos lacking
BAX, BAK1 and BOK [26], anomalies in the urinary tract were conspicuously absent in these animals [26]. This sparked a study examining if BID, in addition to linking the death
receptor (DR) pathway and the intrinsic apoptotic pathway (Box 5), could act in a way similar to BAX and BAK1. Indeed, while loss of BID alone did not lead to anomalies during
embryonic and fetal development, additional deletion of Bid in Bax−/−Bak1−/−Bok−/−mice mice revealed a redundant requirement for BID in urogenital tract development
[1119]. In its previously recognized role, BID in the form of tBID activates BAX and BAK1, which would not have caused additional anomalies in the absence of BAX and BAK1.
Therefore, these results indicate that BID can act in parallel with BAX, BAK1 and BOK. Congruently, full-length BID [1119] or tBID [1120] can mediate mitochondrial
permeabilization and cause cytochrome c, somatic (CYCS) release. In this context it is worth considering that BID has been reported to be structurally similar to the multi-BH
domain BCL2 family proteins, such as BAX and BCL-XL [1060, 1121–1123].
Tissue-specific ablation of Bax and Bak1, confirmed the crucial role of these proteins in the hematopoietic system, and specifically in the homeostasis and functionality of B

cells [1124], T cells [1125], megakaryocytes [1126] and platelets [1127]. Mice reconstituted with fetal liver cells from Bax−/−Bak1−/− mice display massive lymphadenopathy and
defective T cell proliferation, and the severity of these defects is even more pronounced when Bak1−/−Bax−/−Bok−/− fetal liver cells are used for reconstitution, an experimental
setting that also reveals signs of autoimmunity [1128–1130]. Similarly, mice reconstituted with a Bak1−/−Bax−/− hematopoietic compartment develop a fatal systemic lupus
erythematosus (SLE)-like autoimmune disease [411]. Moreover, the inducible co-deletion of Bax and Bak1 in lymphocytes of adult mice results in the development of severe
autoimmune glomerulonephritis [1124]. Finally, conditional knockout mouse models reveal a crucial contribution of BAX and BAK1 to endothelial cell homeostasis [164, 1131],
but little impact on cardiac and intestinal functions, as shown by the absence of hyperplasia [223, 453]. These results demonstrate that the multi-BH domain pro-apoptotic BCL2
proteins play critical roles for the normal development of multiple tissues, but that, surprisingly, a few mice can reach weaning or even adulthood when all of these effectors of
apoptosis are removed [26].
Amongst BH3-only proteins, BCL2 like 11 (BCL2L11, best known as BIM) appears the most critical for embryonic development and tissue homeostasis, as shown by the fact

that approximately 30% of BIM-deficient mice die during embryogenesis [410]. Surviving BIM-deficient mice display severe defects in the hematopoietic system including
lymphoid hyperplasia and marked splenomegaly, and on a mixed C57BL/6 x 129SV background many of these mice spontaneously develop systemic autoimmunity often
resulting in fatal kidney disease [410], a condition that can be accelerated by depletion of immunosuppressive CD4+CD25+FOXP3+ regulatory T (TREG) cells [1132]. Cells from
BIM-deficient mice are profoundly resistant to growth factor deprivation, glucocorticoids, deregulated calcium flux and ER stress [410, 1133]. Accordingly, BIM-deficient mice
also display dysregulated T cell development and homeostasis [1134–1138] and hence exhibit defective cellular [480, 1139, 1140] and humoral [1141–1143] immune responses.
Bcl2l11 deletion (loss of BIM) has also been shown to extend the survival of granulocytes [1144] and to perturb the development of mammary glands [1145, 1146], gastric
epithelium [1147] and the retina [1148]. Moreover, aged BIM-deficient mice show reduced adiposity [1149]. Of note, systemic deletion of Bax or Bak1 exacerbates the
hematopoietic dysregulation of BIM-deficient mice [1150]. Conditional knockout systems confirmed a key role for BIM in the hematopoietic system homeostasis [1151–1154],
and revealed a role for BIM in the survival and differentiation of hippocampal neurons [1155]. Finally, myeloid cell-specific deletion of Bcl2l11 induces a SLE-like disease that
resembles the pathology developing in mice that lack BIM in all cells [1156].
Mice lacking BH3 interacting domain death agonist (BID), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, best known as NOXA) or BCL2 binding component 3

(BBC3, best known as PUMA) display normal embryonic development [278, 479, 1157, 1158]. In these studies on BID-deficient mice, substantial reduction in FAS ligand (FASL)-
induced apoptosis was seen in hepatocytes [278, 761], pancreatic cells [278, 1159, 1160] and possibly neurons [181, 1161]. Moreover, Bid−/− mice display a dysregulated
myeloid compartment resulting in an increased likelihood of leukemogenesis [1161], as well as cardiac dysfunction [1162]. Conditional gene deletion studies confirmed the
relevance of BID in the homeostasis and functionality of hepatocytes and T cells [301, 760, 1163].
PUMA contributes to normal ovarian development, as shown by the evidence that two-thirds of the germ cells produced during embryonic development undergo PUMA-

mediated cell death shortly after formation [1164]. Moreover, cells from PUMA-deficient mice are profoundly resistant to p53-induced apoptosis triggered by genotoxic drugs,
and lymphoid cells are also resistant to glucocorticoids, phorbol ester and growth factor deprivation [479, 1158, 1165–1167]. Cells from NOXA-deficient mice also showed
resistance to DNA damage-inducing drugs, although to a lesser extent compared to cells lacking PUMA [479, 1168]. Moreover, Pmaip1−/− mice (lacking NOXA) show limited
stress-induced erythropoiesis [1169]. Germline deletion of the gene encoding PUMA or NOXA also affects humoral immune responses [1170, 1171] and increases the
abundance of multiple cell types in the retina [146].
Co-deletion of two or more genes coding for BH3-only proteins confirmed the pronounced relevance of BIM for development and underscored some degree of functional

redundancy in the system. On the one hand, mice lacking both PUMA and NOXA develop normally but their cells are profoundly resistant to genotoxic agents, as much as cells
lacking p53 [1172]. Concomitant loss of PUMA but not the additional loss of NOXA, BAD, BID or BIK increases the severity of hematopoietic defects imposed by the lack of BIM
[282, 1173–1175]. On the other hand, Bcl2l11−/−Bbc3−/−Bid−/−and Bcl2l11−/−Bbc3−/−Bid−/−Pmaip1−/− mice displayed perinatal embryonic lethality and increased incidence of
developmental defects, including webbed feet, imperforate vagina, and supernumerary neurons similar in extent to those seen in Bax−/−Bak1−/− mice [1082, 1176]. Of note,
triple deficiency of BID, BIM, and PUMA completely abrogates BAX/BAK1-dependent apoptosis in cerebellar granule neurons and T lymphocytes [1176], providing in vivo
evidence supporting direct activation of BAX and BAK1 by the BH3-only proteins.
Mice lacking BCL2-associated agonist of cell death (Bad), BCL2 interacting killer (Bik), BCL2 modifying factor (Bmf) and harakiri, BCL2 interacting protein (contains only BH3

domain) (Hrk) are viable and develop normally [168, 1177–1179]. That said, BAD-deficient mice display a prolonged platelet lifespan [1180], while Bmf−/− mice are characterized
by mild lymphadenopathy, vaginal atresia [1178, 1181] as well as minor defects in mammary gland development and oogenesis [1146, 1182]. Interestingly, female Bmf−/− mice
had significantly more primordial follicles than wild-type control animals associated with an extended fertile life span [1183], while Bmf−/− mice developed an accelerated
gamma irradiation-induced thymic lymphoma [1178]. Combined deletion of some of the above listed BH3-only protein-coding genes does not cause significant embryonic
lethality or developmental abnormalities. Moreover, increased spontaneous tumorigenesis has been documented in Bad−/−Bmf−/− mice [1184]. Conversely, the absence of
some of these BH3-only proteins aggravates the defects caused by the loss of Bcl2l11 (the gene encoding BIM). This applies to: (1) Bad co-deletion with Bcl2l11, which enhances
lymphocyte accumulation [1180], (2) Bik co-deletion with Bcl2l11, which causes male infertility due to defective spermatogenesis [1185], a phenotype resembling that of BAX-
deficient mice, and (3) Bmf co-deletion with Bcl2l11, which considerably increases the incidence of developmental defects, vaginal atresia, lymphadenopathy, autoimmune
glomerulonephritis, and spontaneous development of hematological malignancies [1181, 1186, 1187].

I. Vitale et al.

1101

Cell Death & Differentiation (2023) 30:1097 – 1154



of CASP3 reduces early synaptic failure in mouse models of AD,
ultimately improving cognitive defects [107]. Moreover, expres-
sion of a mutated form of amyloid β (an APP cleavage product) or
administration of broad-spectrum caspase inhibitors attenuates
synaptic defects in models of AD, an effect only partially
recapitulated by CASP3-specific inhibitors [108]. Along similar
lines, deletion of Casp2 was reported to provide protection from
synaptic loss and cognitive decline in a mouse model of AD [109].
Such protection may be linked to the generation of a specific
tau cleavage product (Δtau314) by CASP2, which is reported to
impair cognitive and synaptic function by promoting the
missorting of tau to dendritic spines [110, 111]. Accordingly,
CASP2 inhibitors blocked tau truncation and restored excitatory
neurotransmission in mouse models of tauopathies, including AD
[112, 113]. A role for CASP4 in AD pathogenesis has also
been reported [114, 115]. Moreover, studies using the senes-
cence-accelerated OXY5 rat model of AD demonstrated that the
treatment with mitochondria-targeted antioxidant SkQ1 improved
mitochondrial fitness and slowed down the signs of Alzheimer’s
disease-like pathology in older rats [116]. Lack of BIM (due to
deletion of Bcl2l11) also confers protection to dopaminergic
neurons in experimental PD imposed by inhibition of mitochon-
drial complex I, an effect that depends on BAX activation [117]. In
addition, genetic deletion or down-regulation of Casp3, as well
CASP3 inhibition by transgenic, neuron-restricted expression of
XIAP, protects mice against pharmacologically induced PD,
attenuating both dopaminergic neuron alterations and behavioral
deficits [118–121]. Whether protection arises from the lack of cell-

intrinsic or cell-extrinsic processes dependent on apoptotic
caspases has not been investigated. Finally, pharmacological
inhibition of CASP3 confers neuroprotection in a rat model of
Huntington’s disease (HD) [122–124]. That said, the precise
mechanisms whereby components of the molecular apparatus
for intrinsic apoptosis influence neurodegeneration need to be
further explored. Two studies in clear contradiction to each other
reported that, at sublethal doses, pharmacological inhibition of
myeloid cell leukemia sequence 1 (MCL1) improved disease
outcome in a mouse model of AD with a mechanism independent
of apoptosis induction and involving the stimulation of mitophagy
[125], but that Mcl1 haploinsufficiency accelerated the degenera-
tion and dysfunctionality of motor neurons in mice [126]. Also,
there is evidence that necroptosis or ferroptosis rather than
apoptosis can be the major contributor in neuronal cell
destruction during AD [127, 128]. Finally, although Bax deletion
prevents the demise of cerebellar granule neurons in a transgenic
model of inherited prion disease [129], the direct contribution of
BAX to neurotoxicity during prion disorders remains a matter of
controversy [130].
BCL2 family proteins have also been reported to contribute to

axonal degeneration and neuronal cell death in animal models of
brain trauma, degeneration, or neurotoxicity [131–133]. Thus, BAX-
or BID-deficient mice, as well as transgenic mice overexpressing
BCL2, display increased survival of cortical or hippocampal
neurons after experimental traumatic brain injury, as compared
to wild-type mice [134–137]. Moreover, transgenic BCL2 over-
expression protects mouse neurons against the detrimental

Box 3. Impact of anti-apoptotic BCL2 proteins on health

While myeloid cell leukemia sequence 1 (Mcl1) deletion in mice induces embryonic lethality at the blastocyst (embryonic E3) stage prior to implantation [1188, 1189], embryos
lacking BCL2-like 1 (BCL2L1, best known as BCL-XL) die around embryonic day 13.5) with substantial cell depletion in the developing central nervous system (CNS) and
erythroid progenitors [1190]. Concomitant deletion of BCL2-associated X protein (Bax) or caspase 9 (Casp9) considerably limited neuronal cell death genotype caused by the
absence of BCL-XL [1191, 1192]. Concomitant deletion of BCL2 like 11 (Bcl2l11, encoding BIM) rescues erythroid progenitor (but not the neuronal) cells from death in BCL-XL-
deficient mice [1193]. Bcl2−/− mice are born but exhibit severe defects in their kidneys, alterations of the CNS, lymphoid cell depletion as well as premature graying of their
hair and they succumb to polycystic kidney disease at a young age [1194–1200]. These defects can all be rescued by concomitant deletion of the gene encoding BIM, and,
remarkably, in the case of some defects, the loss of even a single allele of Bim is sufficient [1194]. Mice with deletion of B cell leukemia/lymphoma 2 related protein A1a
(Bcl2a1a, one of three isoforms of BCL2A1 in mice) or loss of all isoforms of BCL2A1 (best known as A1) show no developmental defects but display minor defects in the
hematopoietic compartment [1201–1204]. The absence of BCL2 like 2 (BCL2L2; best known as BCL-W) results in male infertility due to defective spermatogenesis
[1205–1207].
As opposed to homozygous deletion, haploinsufficiency for genes encoding MCL1 or BCL-XL did not result in defects in normal development [1188, 1190]. However, Mcl1+/-

mice display significant, albeit minor decreases in certain hematopoietic cell types [1208, 1209], and poor hematopoietic recovery from stress, such as gamma-radiation or
treatment with 5-FU, which can be rescued by deletion of BCL2 binding component 3 (Bbc3; encoding PUMA) [1209]. Moreover, the loss of one Bcl2l1 (encoding BCL-XL)
allele limits male fertility due to defects in germ cell development [1210] and shortens platelet lifespan [1211]. Of note, while combined haploinsufficiency for Mcl1 and Bcl2, for
Mcl1 and Bcl2a1a or for Bcl2l1 (encoding BIM) and Bcl2 does not markedly affect embryonic development in mice [1212–1214], Mcl1+/−Bcl2l1+/− double heterozygote mice
display severe developmental defects and die during embryogenesis or early postnatally [1213]. Remarkably, this defect can be rescued by concomitant deletion of a single
allele of the gene encoding BIM. These observations suggest that embryonic development is safeguarded by a delicate balance between pro- and anti-apoptotic BCL2
proteins.
Conditional knockout studies confirmed the importance of the different pro-survival BCL2 family members in specific tissues at precise developmental stages. These studies

showed that MCL1 is critical for the development and/or maintenance of most (but not all) hematopoietic cell populations including stem and progenitor cells [1215], immature
as well as mature B and T lymphocytes [1216–1220], natural killer (NK) cells [1221], neutrophils [1222, 1223], mast cells and basophils [1224], as well as Ig-secreting plasma cells
[1225, 1226]. Accumulating evidence suggests that the survival of some hematopoietic cell subsets is safeguarded by the combined activity of two or even more anti-apoptotic
BCL2 family members [1227]. Conditional deletion of Bcl2l1 alone (leading to lack of BCL-XL) or in combination with loss of Mcl1 demonstrated functional redundancy between
BCL-XL and MCL1 in developing lymphocytes [1228, 1229] and megakaryocytes [1211, 1230–1232]. Conversely, BCL2 and A1 appear to have overlapping actions in the survival
of B cells and neutrophils [1212, 1233, 1234] but not megakaryocytes and platelets [1235]. Data from chimeric mice confirm the role of these proteins in hematopoiesis
[1144, 1190, 1236, 1237]. BCL2 is reported to contribute to the development and homeostasis of the mouse epidermis [1238]. Along similar lines, MCL1 and BCL- XL play roles in
the development and homeostasis of several tissues including the myocardium [1239, 1240], the CNS [148, 1241–1248], the hepatic parenchyma [298, 845, 1249–1251], vascular
endothelium [1252], thymic epithelium [1253], as well as the intestinal [1254], mammary [1255, 1256], lung [1257] and renal [277] epithelium.
There are substantial differences in the severity of the defects caused by the conditional deletion of different pro-survival BCL2 family genes and between distinct tissues. For

instance, conditional deletion of Mcl1 in mouse hematopoietic stem/progenitor cells [1214], erythroid cells [1258] or TREG cells [1259] is lethal. In the latter case, lethality is
ascribed to multiorgan autoimmunity caused by the depletion of the pool of TREG cells [1259]. Similarly, the megakaryocyte-specific combined deletion of the genes encoding
MCL1 and BCL-XL provokes embryonic or perinatal lethality [1230], which can be rescued by the absence of BCL2-antagonist/killer 1 (BAK1) [1126]. Similar findings have been
obtained upon the ablation of Mcl1 from the CNS or the myocardium, or the specific removal of the gene encoding BCL-XL from the respiratory epithelium, although these
experiments did not include rescue approaches [1240–1242, 1257]. The functional overlap between MCL1 and BCL-XL appears to be particularly relevant in the CNS and liver
[1247, 1249]. Of note, the requirement of MCL1 and BCL-XL for neurogenesis appears to fluctuate between different stages of differentiation. The neurodevelopmental defects
imposed by the deletion of Mcl1 or Bcl2l1 can be rescued in the absence of BAX [1192, 1247]. The detrimental effects of the hepatocyte-specific ablation of Bcl2l1 or Mcl1 can be
rescued by deletion of Bax and Bak1 as well as by that of Bcl2l11 and/or BH3 interacting domain death agonist (Bid) [1260, 1261]. These observations demonstrate that
organogenesis and adult tissue homeostasis depend on the balance between both anti-apoptotic and pro-apoptotic members of the BCL2 family. Further substantiating this
notion, the hepatocyte-specific deletion of Mcl1 promotes spontaneous hepatic carcinogenesis [1262], as does the deletion of Mcl1 in intestinal epithelial cells [1254]. These
latter findings may appear counterintuitive, as pre-malignant cells are expected to be more susceptible to succumb to environmental stress in the absence of MCL1 or BCL-XL.
However, both hepatic and intestinal carcinogenesis involve a robust inflammatory component that is exacerbated by tissue damage and cell death [1263]. Moreover, MCL1-
deficient tissues show an increased cell turnover, which results in elevated level of replicative stress and genetic instability, potentially promoting carcinogenesis [845, 1254].
Also, when many cells die, progenitors get mobilized and must divide extensively. This increases the risk of such cells acquiring mutations that may drive neoplastic
transformation, as firstly shown in a murine model of radiation induced thymic T cell lymphoma development [359, 360].
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effects of transection of the sciatic nerve [138]. Likewise, BAX
deficiency enhances the survival of oligodendrocytes in mice
subjected to spinal cord injury [139]. Both neuroprotection and
functional improvements were observed in rat or mouse models
of traumatic spinal cord injury upon local administration of Z-VAD-
FMK) and other caspase inhibitors [140–142]. However, these
findings need to be validated given the low selectivity of these
inhibitors among caspases. Of note, in rats, post-traumatic
neuroprotection can further be improved by combined inactiva-
tion of PARP1 and CASP3 [143], suggesting a potential involve-
ment for PARP1-dependent parthanatos in the process.
Deletion of Bax (but not the genes encoding BIM, PUMA or BID),

as well as Bax haploinsufficiency, prevents the death or
degeneration of retinal ganglion cells in mice subjected to optic
nerve injury [144–147]. Moreover, the demise of injured retinal
ganglion cells is exacerbated in mice with a conditional loss of
Bcl2l1 (leading to lack of BCL-XL) [148] and decreased in transgenic
mice over-expressing XIAP [149] or BCL-XL [150] in the eye, as well
as in rodents treated with an XIAP-derived cell-permeant peptide
targeting CASP9 [151], or a CASP3-targeting small-interfering RNA
(siRNA) [152, 153]. Moreover, transgenic or adenovirus-driven XIAP
expression protects the retina in various animal models of retinal
disease, degeneration, or ischemia [154–159], while a BCL-XL
inhibitor alleviates pathogenic neo-vascularization during diabetic
retinopathy [160]. Genetic deletion of Casp9 from endothelial cells
protected retinal ganglion cells from ischemic death, supporting

non-cell autonomous functions of CASP9 [151]. Of note,
CASP7 seems to play a crucial role in retinal ganglion cell death,
as demonstrated in a model of optic injury in Casp7−/− mice [161].
However, both pro-survival (BCL2) and pro-apoptotic (BAK1, BAX
and BIM) BCL2 family members contribute to retinal neo-
vascularization in response to experimental ischemic retinopathy
[162–164]. In one of these models, such an effect was linked to an
increased survival of endothelial cells in the absence of BAX and
BAK1 [164]. Persistent endothelial cells promote indeed rapid
tissue re-vascularization, thus preventing the occurrence of a
pathogenic excessive neovascularization. Moreover, the inhibition
of the intrinsic apoptotic pathway by c-Jun N-terminal kinase 1
(Jnk1) deletion or the administration of a broad-spectrum caspase
inhibitor led to reduced choroidal neo-vascularization in the
murine model of wet age-related macular degeneration (AMD)
[165]. These observations may indicate that factors released by
dying cells regulate neo-vascularization in the retina or other eye
tissues.
Deletion of Bax, Hrk or Casp3 as well as transgenic over-

expression of XIAP prevents neuronal loss and/or axon degenera-
tion in mouse models of trophic factor deprivation including nerve
growth factor (NGF) withdrawal [166–168]. Conversely, lack of BIM
or PUMA does not limit hippocampal neuronal injury upon
experimental excitotoxicity [169, 170]. Moreover, while in vivo
delivery of an XIAP fusion protein protects neurons against death
induced by glutamate or kainic acid [171], kainic acid-mediated

Box 4. Impact of the apoptosome and apoptotic caspases on health

The whole-body deletion of apoptotic peptidase activating factor 1 (Apaf1) or caspase 9 (Casp9) is associated with fetal lethality around E14.5–E16.5 [1264–1266]. Severe
abnormalities in APAF1-deficient fetuses include webbed feet, craniofacial malformations, incomplete neural tube closure and/or excessive brain growth and exencephaly
resulting in alteration of the central nervous system (CNS) including in the visual, olfactory, and auditory systems [47, 1264, 1266–1269]. Similar defects in the developing brain
result from Casp9 deletion [1189, 1266, 1270], a phenotype that was not exacerbated by Casp2 co-deletion [1271]. The absence of CASP9 did not rescue neuronal defects due
p53 hyperactivation in neural crest cells [323].
Of note, evidence linking mutations in APAF1, CASP9 and CASP3 to neural tube defects in humans has been reported [1272, 1273]. Mice lacking cytochrome c, somatic (CYCS)

die in midgestation [1274], while the deletion of cytochrome c, testis (Cyct), which is specifically expressed in male gonads is associated with normal development but male
infertility [1275]. The neuron-specific ablation of Cycs results in postnatal cell death [1276]. Confirming that the detrimental effects of Cycs deletion result from impaired
apoptosis, mice expressing a mutant CYCS that retains the ability to shuttle electrons as a component of the mitochondrial respiratory chain but is unable to assemble the
apoptosome exhibit perinatal lethality and developmental brain defects similar to APAF1- and CASP9-deficient mice [1277].
Importantly, the genetic background of mouse strains appears to significantly influence the impact of the absence of core components of the apoptotic machinery on

embryonic development. Thus, while genetic deletion of Casp3 in 129S1/SvImJ mice results in embryonic or early postnatal lethality due to the severe defects in brain
development that are only partially rescued by concomitant deletion of the gene encoding BCL-XL, on a C57BL/6 background Casp3−/− mice develop normally and survive into
adulthood [1278–1281]. A similar impact of genetic background on phenotype has also been observed for Apaf1−/− and Casp9−/− mice [1282, 1283]. Although Casp3−/− mice
reach adulthood on a C57BL/6 background, they exhibit defects in complex brain functions including attention and (in males) social behavior [1284, 1285], as well as ear and
vestibular dysfunction including hearing loss [1286–1290], Abnormalities were also seen in the kidney and spleen of aged Casp3−/− mice [1291]. Survival of Casp3−/− mice to
adulthood in C57BL/6 mice was ascribed to the compensatory activation of CASP7 [1292]. The combined ablation of Casp3 and Casp7 causes embryonic lethality on the C57BL/
6 background, although death is caused by severe cardiac rather than brain defects [1293]. Such phenotypic differences may originate from some degree of substrate selectivity
exhibited by CASP3 vs. CASP7 [444, 1294–1297]. Moreover, a recent study performed in Casp7−/− mice indicates that CASP7 acts as a facilitator of the variants of RCD occurring
in the context of pore-driven lysis rather than an apoptotic executioner [1298].
Approximately 5% of APAF1-deficient mice develop normally and survive into adulthood, although males are often sterile due to defective spermatogenesis [1265] a

phenotype that is reminiscent of mice deficient for BAX, BAK1 and BOK (i.e., Bak1−/−Bax−/−Bok−/− mice) [26]. Of note, rare adult Apaf1−/− male mice that retain fertility display
expansion of the lateral brain ventricles coupled with behavioral abnormalities and growth retardation [1283]. Conversely, the rare mice expressing a CYCS variant specifically
deficient in apoptotic functions that survive into adulthood exhibit impaired lymphocyte homeostasis [1277]. Whole-body deletion of diablo, IAP-binding mitochondrial protein
(Diablo, coding for a pro-apoptotic factor also known as SMAC) alone or along with HtrA serine peptidase 2 (Htra2) does not result in developmental defects in mice
[1299, 1300], while the Diablo−/−Casp3−/− genotype accrues the perinatal lethality observed in Casp3−/− mice [1301]. Mice lacking the X-linked inhibitor of apoptosis (XIAP, the
main target of the pro-apoptotic activity of SMAC and HTRA2) are also viable and develop normally, possibly due to functional compensation by other members of the inhibitor
of apoptosis protein (IAP) family [1302, 1303], but they exhibit mild defects in late pregnancy that do not compromise lactation [1302]. Consistent with this SMAC-mimetic
drugs that were designed to induce apoptosis by antagonizing IAPs are quite well tolerated [1304]. Xiap−/− mice also show dysregulated innate immune responses [1305], most
likely linked to the modulatory role of XIAP in inflammation and necroptosis [459, 462, 1306], or to the inability of these animals to resolve infections [1307]. Accordingly, loss-of-
function mutations in XIAP are associated with X-linked lymphoproliferative syndrome type 2 in humans [458–461].
The myocardium-specific deletion of Casp3 and Casp7 impairs heart development in mice resulting in myocyte hypertrophy [1308]. The role of APAF1, CASP9 and CASP3 in

hematopoiesis remains debated. Specific ablation of Apaf1 or Casp9 from the hematopoietic system using lethally irradiated wild-type mice reconstituted with hematopoietic
stem/progenitor cells deficient for these factors does not result in alterations in the lymphoid or myeloid cell compartments [15]. Likewise, no hematopoietic defects emerge
from the whole-body deletion of Casp3 [1293]. Moreover, mice lacking Casp9 in the hematopoietic system display a proper generation and functionality of megakaryocytes and
platelets [1309]. Moreover, the clearance of Casp9−/− thymocytes seems to occur in a caspase-independent fashion [1310]. In the same line, although apoptosis is widely
believed to be crucial for epithelial cell death and shedding in the intestine, during steady state, executioner CASP3 and CASP7 are dispensable for intestinal epithelial cell
turnover at the top of intestinal villi, intestinal tissue dynamics, microbiome, and immune cell composition, suggesting high redundancy in non-challenged conditions [464].
Apparently at odds with these observations, Casp3−/− mice were reported to have abnormally increased numbers of splenic B cells manifesting increased proliferative capacity
[1311], as well as a dysregulated activity in bone marrow stromal stem cells that attenuated osteogenic differentiation [1312]. A similar debate revolves around the requirement
for APAF1 and caspase activity in thymocyte selection and/or T cell responses [15, 1313–1317]. Mouse bone marrow chimeras deficient for APAF1 or CASP9 in their
hematopoietic cells displayed a defect in hematopoietic stem/progenitor cells that is caused by the aberrant type 1 interferon production caused by the fact that hematopoietic
cells undergoing normal programmed cell death do not die in a “neat” non-inflammatory manner [243, 1318]. Taken together, these findings suggest that BAX/BAK1-
dependent death of hematopoietic cells does not require caspases, but that caspases are needed to prevent inflammation caused by cell demolition [1319–1322]. However,
neither the degree of functional redundancy exhibited by CASP3, CASP6 and CASP7, nor the potential for APAF1-independent CASP3 activation has been formally excluded in
these studies, most of which involved single genetic alterations.
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neurodegeneration cannot be rescued by the CASP3 inhibitor
DEVD-CHO [172]. Conversely, BIM appears to be activated during
excitotoxicity [173], and Bcl2l11−/− mice (which lack BIM) display
attenuated neuro-degeneration after experimental seizures
induced by administration of kainic acid into the amygdala, at
least in part because of decreased neuronal cell death in the
hippocampus (but not in the neocortex) [174]. Moreover, data
from knockout mice suggest that experimental seizure-induced
neuronal death involves BCL2-associated agonist of cell death
(BAD), BCL2 interacting killer (BIK), BCL2 modifying factor (BMF), or
PUMA [175–178] and that BCL2-like 2 (BCL2L2; best known as BCL-
W) may provide neuroprotective, seizure-suppressive functions
[179]. Confirming a certain degree of functional redundancy,
phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1,
best known as NOXA) and BID seem dispensable for RCD driven
by excitotoxicity, as shown in kainic acid-treated animals
[180, 181].
Intrinsic apoptosis is also involved in neuronal apoptosis post-

ischemic injury in both developing and adult brains. In a mouse
model of neonatal hypoxia-ischemia, neuroprotection was docu-
mented upon deletion of Bax [182], simultaneous absence of BIM
and BAD [183], or transgenic overexpression of XIAP [184].
Conversely, Xiap−/− mice are sensitized to neonatal hypoxia-
ischemia injury [185]. Apparently at odds with these findings,
Casp3−/− mice display increased vulnerability to such experi-
mental perturbation, possibly due to complementary over-
activation of CASP3-independent pathways [186]. Of note, the
absence of CASP3, BAX, or PUMA (but not the absence of NOXA,
BIM or HRK) also confers neuro-protection to newborn mice
acutely exposed to ethanol [187–189], while loss of BAX is
neuroprotective in newborn mice exposed to isoflurane [190] as

well as ionizing radiation [133, 191]. At the same time, it is
interesting to note that BAX-dependent neuronal RCD also
contributes to reactive microgliosis during the recovery of the
developing brain from acute alcohol exposure [192], pointing to
an etiological role for activation of microglial cells by dead
neurons.
Bax−/− mice displayed pronounced neuroprotection when

subjected to distinct experimental brain injuries, including middle
cerebral artery occlusion [193]. A similar protection against
experimental ischemic insults has been observed in mice deficient
for BMF [194], or BID [195–197]. Conversely, NOXA seems to be
dispensable for neuronal damage induced by experimental
ischemic stroke [194]. Moreover, the absence of BID fails to
protect mice from ischemia-reperfusion, although it limits the
associated inflammatory response [198]. Transgenic over-
expression of BCL2, BCL-XL or XIAP as well as inhibition of
apoptotic caspases or genetic deletion of CASP6 ameliorates
neuronal survival upon global ischemia, focal ischemia or stroke
[199–215]. It should be noted, however, that in these settings
neuroprotection by inhibition or deletion of caspases may be
related to the lack of cell-extrinsic or apoptotic-unrelated roles of
caspases. Morevoer, various examples of caspase-independent
neuronal death after cerebral ischemia have been reported
[216–219]. In this context, it is important to note that apoptosis
is dynamically regulated during lifespan in the brain [24]. Indeed,
while immature brain cells express high levels of many BCL2
proteins [133, 220, 221], most of these proteins are downregulated
in the adult brain, when most post-mitotic neural cells become
resistant to apoptosis [131, 222]. This may help explain the
divergent findings on the mechanisms of neural cell death
reported above.

Fig. 3 Impact of intrinsic apoptosis players on neurological disorders. Intrinsic apoptosis is directly or indirectly involved in the
pathogenesis of multiple neurological disorders, including neurodegenerative diseases, brain damage caused by traumatic injury or
neurotoxicity as well as neuromuscular and retinal disorders.
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Cardiovascular conditions
While a role for RCD in non-reperfused myocardial infarction
remains questionable, apoptosis and other cell death programs
including necroptosis, MPT-driven necrosis, ferroptosis, pyroptosis
and autosis appear to contribute to cardiomyocyte death and
tissue damage during myocardial infarction with reperfusion (also
referred to as myocardial ischemia-reperfusion injury). However,
the relative importance of the specific RCD mode and how it
interconnects mechanistically and functionally with other RCD
pathways to produce an integrated response remains poorly
understood. For example, Bak1−/−mice with a cardiomyocyte-
specific deletion of Bax displayed considerably reduced infarct size
as compared to their wild-type littermates when subjected to
experimental myocardial ischemia-reperfusion, although it
remains unclear whether these effects are attributable to
reductions in apoptosis or MPT-driven necrosis [223–225], a RCD
variant shown to participate in the pathogenesis of ischemic
stroke [226]. Protection against myocardial ischemia-reperfusion
has also been reported in transgenic mice overexpressing BCL2
[227–229] or a BCL-XL-derived peptide [230]. Likewise, deletion of
Bbc3 (leading to lack of PUMA) ameliorates myocardial ischemia-
reperfusion injury [231], ultimately translating into increased
survival [232]. Moreover, neurotrophin-3 was reported to confer
cardioprotection fromischemic and reperfusion injuries by redu-
cing BIM levels [233]. Broad spectrum caspase inhibition [234–236]
and XIAP mimicking peptides [237] were shown to modestly
reduce myocardial infarct size. Finally, simultaneous deletion of
Casp3 and Casp7 had no cardioprotective effect during reperfused
myocardial infarction [238], in line with the notion that the
absence of caspases only delays cell death.
In contrast to the large burst of cell death over several hours

characterizing myocardial infarction, cardiomyocytes are lost gradu-
ally over months to years during heart failure with reduced ejection
fraction [3]. The role of intrinsic apoptosis in these heart conditions
is, however, debated. In a mouse model of cardiomyopathy based
on the deletion of desmin (Des), the cardiomyocyte-specific over-
expression of BCL2 reduces cardiac lesions and hypertrophy coupled
to ameliorated cardiac functionality [239]. However, despite
improved survival, these mice show increased levels of necrosis
due to the activation of alternative cell death pathways [240].
Moreover, Casp3−/− mice display enhanced vulnerability to experi-
mental cardiomyopathy, at least in part reflecting the inefficient
activation of pro-survival AKT serine/threonine kinase 1 (AKT1)
signaling [241]. As an alternative explanation, the absence of CASP3
may foster RCD-driven inflammation associated with increased type
I interferon (IFN) release [242–244]. Indeed, experimental data
linking dysregulated type I IFN release and cardiac conditions have
recently emerged [245].
As for therapeutic interventions, cardioprotective effects have

been achieved by inhibition of CASP3 in rodent models of
myocardial dysfunction induced by endotoxin [246], burn injury
[247] or hypoxia [248], although perhaps such effects can be
attributed to the lack of cell-extrinsic or apoptosis-unrelated
effects of caspase activity. Moreover, inhibition of BAX prevents
cardiotoxicity induced by doxorubicin in zebrafish and mice
without affecting the anti-neoplastic activity of doxorubicin [249].
Similarly, the endothelial cell-specific expression of B cell
leukemia/lymphoma 2 related protein A1a (BCL2A1A) promotes
survival in a model of allogeneic heart transplantation [250].
Finally, the mechanistic links between intrinsic apoptosis and

atherosclerosis remain a matter of debate. Indeed, while Casp3
deletion favors plaque development in mouse models of
atherosclerosis [251], the absence of DNA fragmentation factor
subunit beta (DFFB, best known as CAD)) [252] protects mice
against the disease. Likewise, while conditional deletion of Mcl1 in
myeloid cells is pro-atherogenic [253], genetic or pharmacological
inhibition of BCL-XL reduces atherosclerosis via a mechanism
involving the depletion of platelets [254]. Moreover, the

macrophage or leukocyte-specific deletion of the gene encoding
BIM in mice has modest effects on plaque development, especially
in the early phase of atherosclerosis [255, 256]. As the etiology of
atherosclerosis involves a major inflammatory component, these
apparently discrepant results may reflect (at least in part) the key
role of some components of the apoptotic machinery in the
control of inflammatory responses.

Renal disorders
Germline or kidney-specific deletion of Bax attenuates acute
kidney damage in mice subjected to experimental renal ischemia/
reperfusion [257]. A similar nephron-protection has been observed
in Bid−/− mice [258], as well as in transgenic mice specifically
expressing BCL-XL in the kidney [259]. Moreover, the simultaneous
deletion of Bax and Bak1 in kidney proximal tubules limits tubular
apoptosis and ameliorates kidney inflammation and fibrosis in a
mouse model of renal fibrosis based on unilateral ureteral
obstruction [260, 261]. Apoptotic caspases also appear to
contribute to the etiology of renal conditions, although this may
reflect cell-extrinsic effects of caspase activity. Casp3 deletion
reduces microvascular rarefaction and renal fibrosis in mice
subjected to experimental ischemia-reperfusion injury [262],
resulting in better long-term outcomes [263]. Moreover, the lack
of CASP3 increases the survival of mice with chronic kidney
disease caused by a congenital mutation in cystin 1 (Cys1) [264]. In
this setting, CASP3-deficient mice display increased CASP7 and
decreased BCL2 expression, which is in line with recent clinical
evidence of constitutive BCL2 down-regulation in patients with
polycystic kidney disease [265]. Administration of broad-spectrum
caspase inhibitors limits kidney damage and improves renal
functionality after a variety of experimental insults to kidneys, as
observed in animal models of renal ischemia [266, 267], polycystic
kidney disease [268], glomerulonephritis [269], lupus nephritis
[270] and diabetic renal disease [271]. Nonetheless, the specific
targeting of apoptotic caspases will reveal whether this effect
reflects the inhibition of intrinsic apoptosis. Indeed, these studies
do not rule out the involvement of non-apoptotic RCD pathways
in the etiology of acute and chronic kidney injury [272, 273].
Moreover, some of the nephron-protective effects of broad-
spectrum caspase inhibitors have been linked to decreased post-
RCD inflammation rather than the sole inhibition of apoptosis
[266, 274]. In this context, Z-VAD-FMK aggravates (rather than
ameliorates) renal dysfunction in a mouse model of cisplatin
nephrotoxicity, by a mechanism involving the abrogation of cyto-
protective autophagy [275]. Similarly, Z-VAD-FMK is ineffective in
mouse models of osmotic nephrosis and contrast-induced acute
kidney injury [276], and this may be linked to the ability of Z-VAD-
FMK to inhibit CASP8 (and hence promote necroptosis). Finally,
acute loss of BCL-XL in all tissues of adult mice, except for
hematopoietic cells, caused severe renal tubular degeneration
leading to fatal anemia due to the loss of erythropoietin
production [277].

Hepatic diseases
Abundant evidence highlights pathogenic roles of apoptosis in
acute liver injuries, as well as in alcohol-related and alcohol-
unrelated chronic liver disorders. Hepatocytes express high levels
of BID, which connects DR signaling to mitochondrial outer
membrane permeabilization (MOMP) upon CASP8-dependent
cleavage [278], and this complicates distinguishing between the
intrinsic and extrinsic pathways. Here, we will focus on studies
performed in animal models of liver injury unrelated to overt
signaling engaged by the Fas cell surface death receptor (FAS; also
known as CD95 or APO-1) or TNF receptor superfamily member 1A
(TNFRSF1A, best known as TNF-R1), which instead will be
discussed in the next section.
Distinct preclinical models of hepatic ischemia-reperfusion

injury demonstrated that deletion of Bcl2l11 (leading to lack of
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BIM) and/or Bid as well as over-expression of BCL2 or administra-
tion of pharmacological broad-spectrum caspase inhibition
mediate robust hepatoprotective effects [279–282]. A similar
improvement of hepatocyte survival and liver functionality was
observed in rodents specifically expressing a mutated variant of
BID in the liver and subjected to warm ischemia/reperfusion injury
[283]. As for other models of liver injury, BIM-deficient mice are
protected against viral hepatitis [284]. Moreover, deletion of the
genes encoding BIM or PUMA, but not BCL2-related ovarian killer
(Bok) limits liver injury in mice exposed to the hepatotoxic agent
acetaminophen [285–287]. Moreover, pre-treatment with Z-VAD-
FMK improves the survival of mice subjected to extensive
hepatectomy [288].
There is contrasting evidence on the role of BID in the etiology

of liver conditions unrelated to overt FAS and TNF-R1 signaling. In
a model of alcohol-related liver disease, the lack of BID confers
some protection against ethanol-induced fibrosis, although mice
display persisting signs of inflammation and steatosis [289].
Moreover, mice with a hepatocyte-specific deletion of Bid present
reduced liver inflammation and fibrosis when subjected to a
choline-deficient diet to cause non-alcoholic steatohepatitis
(NASH) [290]. Also, administration of BID-targeting antisense
oligonucleotides exerted significant hepatoprotective effects
[291]. However, BID deficiency fails to ameliorate liver injury and
fibrosis upon bile duct ligation (as a model of obstructive
cholestasis and chronic liver disease) [292]. Of note, in the same
experimental model, the liver-specific overexpression of MCL1 but
not BCL2 protects animals from hepatic damage [293, 294],
suggesting some specificity for MCL1. To add a layer of complex-
ity, conditional deletion of Xiap in hepatocytes does not result in
liver injury, steatosis, or fibrosis, possibly due to compensatory
effects of other inhibitor of apoptosis protein (IAP) isoforms [295].
That said, Xiap−/− and Casp3−/− mice subjected to diet-induced
hepatic steatosis and/or fibrosis, display exacerbated and atte-
nuated liver damage, respectively [296, 297]. These effects have
been linked to the modulation of the inflammatory response
rather than apoptosis. Finally, genetic co-deletion of Mcl1 and
transformation-related protein 53 (Trp53, best known as p53)
[298], as well as conditional deletion of the genes encoding BCL-XL
or MCL1, promote fibrosis and/or carcinogenesis, two common
final stages of liver disease [299]. In this latter study, the additional
deletion of Bak1 limited hepatotoxicity, which is in line with
evidence indicating that deletion of Bid and/or Bok protects mice
against experimentally induced hepatocarcinogenesis [300–302].
CASP2 was found to be upregulated in a mouse model of NASH

and in NASH patients, and was implicated in driving lipogenesis
and steatohepatitis with a mechanism involving the cleavage of
the site-1-protease (S1) followed by the activation of sterol
regulatory element binding proteins (SREBP) [303]. In this study,
the ablation or pharmacological inhibition of CASP2 prevented
diet-induced steatosis and NASH progression. Of note, CASP2
deficiency was also reported to protect mice from diet-induced
obesity and metabolic syndrome [304]. Supporting the etiological
contribution of caspase activation to liver disease, the adminis-
tration of broad-spectrum caspase inhibitors (e.g., emricasan, VX-
166) reduced liver injury, inflammation and fibrosis in mice fed a
diet rich in fat or deficient in methionine and choline [305, 306].
Along similar lines, emricasan reportedly decreased portal
pressure, fibrogenesis and hepatic inflammation, and preserved
liver function in rodent models of chronic carbon tetrachloride
(CCl4)-mediated cirrhosis or cholestasis driven by bile duct ligation
[307–309]. Preliminary anti-inflammatory effects coupled with
improved liver function have also been observed in patients with
NASH-related cirrhosis treated with emricasan [39, 310]. However,
follow-up, randomized clinical studies failed to observe beneficial
effects of this agent on portal pressure and clinical outcome
[40, 41, 311]. At least in part, these findings may reflect the
complex interconnection between multiple RCD variants involved

in the pathogenesis of NASH. Supporting this possibility, the
administration of CASP3-specific inhibitors that abrogate both
pro-apoptotic and pro-pyroptotic activities of CASP3 protected
mice against acute liver injury caused by bile duct ligation [312].
Additional pharmacological and genetic studies specifically
targeting intrinsic apoptosis (over other RCD pathways controlled
by caspases) are needed to formally ascertain the involvement of
this pathway in the etiology of hepatic disorders.

Hematological malignancies and solid cancers
The role of intrinsic apoptosis in preventing oncogenesis has been
demonstrated in multiple animal models of induced hematologi-
cal and solid tumors. In particular, a wide range of evidence
demonstrates that over-expression of BCL2, BCL-XL or MCL-1
accelerates the onset of leukemia and lymphoma induced by
over-expression of the MYC proto-oncogene, bHLH transcription
factor (MYC) [313–317]. Accordingly, the pharmacological inhibi-
tion of anti-apoptotic BCL2 proteins is effective against MYC-
driven tumors, even when they lack p53 functions [318–321]. In
this context, p53 has been shown to exert multiple roles in RCD
(e.g., [322–324]). In particular, it acts as a direct or indirect
regulator of the expression of several apoptotic genes [325–328]
and connects apoptosis induction and cell cycle arrest [329]. One
main target of p53 is cyclin dependent kinase inhibitor 1A
(CDKN1A, best known as p21). p53-induced expression of p21 leads
to the activation of DREAM and RB/E2F transcriptional repressor
complexes, in turn promoting cell cycle arrest by downregulating
crucial cell cycle regulators such as cyclins and cyclin-dependent
kinases [326, 327, 330]. However, recent finding indicates that the
p53-p21-DREAM or p53-p21-RB/E2F axis can also downregulate
CASP2 and CASP8-associated protein 2/FLASH (CASP8AP2),
generating a feedback loop centered on p53 that limits rather
than promoting the induction of apoptosis [326, 327]. Of note,
when analyzing the impact of endogenous proteins, it was shown
that the absence of BCL-XL but not BCL2 limits the development of
lymphoma in transgenic mice expressing MYC under the IgH
enhancer (Εμ-myc mice) [331, 332], thus supporting the ther-
apeutic use of BCL-XL inhibitors against these hematological
cancers. Along similar lines, MCL1 overexpression [317] or Mcl1
ablation [318, 333, 334] accelerates and suppresses MYC-driven
lymphomagenesis, respectively. Lending further support to the
relevance of MCL1, prevalence and onset of MYC-driven
lymphoma development were reduced by Mcl1 haploinsufficiency
[318, 334], or B cell-specific deletion of Mcl1 [335]. Of note, loss of
one allele of Mcl1 (but not deletion of the gene encoding BCL-XL)
also impairs the development of thymic lymphoma in p53-
deficient mice [336], which possibly explains the limited effect of
the BCL-XL, BCL2 and BCL-W inhibitor ABT-737 in these models of
tumorigenesis [337]. The contribution of pro-survival BCL2
proteins in the development of AML has been demonstrated by
using mice reconstituted with genetically modified bone marrow
cells overexpressing MYC [338] and in human Burkitt lymphomas
and diffuse large B-cell lymphomas [339]. Notably, the acute
genetic removal of Mcl1 prevents the sustained survival and
proliferation of AML driven by diverse oncogenic fusion proteins
[340]. Accordingly, MCL-1 specific BH3 mimetic drugs, such as
S63845, are able to potently kill a diverse range of lymphoid and
myeloid malignant cells in culture and even in tumor transplanted
mice [341]. Finally, ablation of Bcl2l2 (leading to lack of BCL-W)
limits the development of MYC-mediated B cell lymphoma [342].
Numerous studies demonstrated that the development of MYC-

driven lymphoma and leukemia is accelerated in mice lacking the
genes encoding BAX [343], BIM [344, 345], BAD [346], BMF [346] or
PUMA [347–349]. In particular, these studies report that loss of
only a single allele of Bcl2l11 (encoding BIM) accelerates the
development of lymphoma and this effect can be reversed
following full ablation of Bcl2l1 (leading to lack of BCL-XL) [345]. In
this context, the presence of all prosurvival BCL2 proteins is shown
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to limit the impact of BIM in Eμ-Myc transgenic mice [350]. Instead,
the combined ablation of the genes encoding BIM and p53 or
PUMA and p53 accelerates MYC-driven lymphomagenesis [351].
This is in line with the evidence that loss of the genes encoding
BAX or BIM augmented lymphomagenesis in p53-deficient mice
[352, 353]. Of note, PUMA seems to exert a strong tumor-
suppressive role in hematological cancers, as shown by the
evidence that Bbc3 deletion accelerates the development of MYC-
driven B-cell lymphomas and that Eμ-Myc lymphomas developing
in PUMA-proficient mice display downregulated expression of
PUMA [348, 349, 354]. On the contrary, the loss of the gene
encoding NOXA does not accelerate MYC-driven lymphomagen-
esis, and the role of BIK in this murine lymphoma model is
debated [348, 355]. Along similar lines, while CASP2 suppresses
MYC-induced lymphomagenesis in mice [356], the tumor sup-
pressive role of apoptosome components (Box 1) is questioned, as
shown in lethally irradiated mice reconstituted with Eμ-Myc
transgenic APAF1-deficient or CASP9-deficient fetal liver cells
which showed no difference in the incidence of lymphoma
compared to their wild-type counterparts [357]. This is consistent
with the notion that APAF1 and caspase-9 function downstream
of the commitment to cell death (MOMP) and therefore do not act
as tumor suppressors [15].
Concerning other experimental animal models of hematological

malignancies, the absence of PUMA (due to ablation of Bbc3)
abrogated the development of both myelodysplasia, as shown in
transgenic mice expressing a nucleoporin 98 (NUP98)-homeobox
D13 (HOXD13) fusion protein [358], and thymic T cell lymphoma
induced by gamma radiation [359, 360]. The explanation for these
surprising findings is based on the fact that the absence of PUMA
prevents the extensive death of hematopoietic cells caused by
gamma radiation, which causes mobilization and extensive
proliferation of hematopoietic stem and progenitor cells, resulting
in elevated replication stress and genetic instability and lympho-
magenesis. These observations show that inhibition of apoptosis
does not only promote the development of hematological
malignancies, but in certain conditions can do the exact opposite
and prevent lymphoma development. The absence of NOXA,
augments the development of chronic lymphocytic leukemia in T
cell lymphoma breakpoint 1 (TCL1) transgenic mice [361] and
accelerates the development of thymic T lymphoma induced by
gamma radiation [359]. Moreover, conditional deletion of Bcl2l11
in B cells (leading to the absence of BIM) accelerates the
development of mantle cell lymphoma in mice driven by cyclin
D1 (CCND1) overexpression [362]. Overexpression of MCL1 and/or
BCL2 promotes the development of acute myeloid leukemia
driven by lysine (K)-specific methyltransferase 2A (KMT2A, best
known as MLL) fusion proteins [340, 363] and plasmacytoma
driven by ABL proto-oncogene 1, non-receptor tyrosine kinase
(ABL1) [364]. Conversely, the loss of one Mcl1 allele suppresses the
development of T cell lymphoma, as shown in models based on
sequential low-dose irradiation or the expression of a transgene
encoding an IL2 inducible T cell kinase (ITK)-spleen tyrosine kinase
(SYK) fusion protein [365]. Finally, the absence of CASP2
accelerates lymphomagenesis in ataxia telangiectasia mutated
(ATM)-deficient mice [366], but this may be due to the loss of the
function of CASP2 in mitotic cell division [367]. Lending support to
the role of intrinsic apoptosis in hematologic malignancies, the
BCL2 inhibitor venetoclax has entered clinical practice for the
treatment of CLL as single agent or more effectively in
combination with other therapeutic agents [31, 35–37]. Combina-
torial regimens of BCL2 inhibition with epigenetic modulation
have entered center stage in certain settings of AML [38, 368].
However, mechanisms of resistance of CLL and AML to venetoclax
related to defects in p53 and the apoptotic network or
deregulated energy metabolism have been described [369–372].
Venetoclax-based regimens also display effectiveness in patients
with high-risk myelodysplastic syndromes [373], suggesting a

potential application of venetoclax to other hematological cancers
[374, 375].
Significant work demonstrated a tumor suppressor role of the

intrinsic apoptotic pathway in many cancers. For example, BCL2
overexpression accelerates the development of MYC-induced
mammary tumorigenesis [376]. A similar acceleration of tumor
development has been described for the loss of genes encoding
BAX, BIM, CASP2 or PUMA in distinct models of breast cancer
induced by expression or overexpression of C3(1)/SV40 T-antigen,
MYC, or erb-b2 receptor tyrosine kinase 2 (ERBB2, best known as
HER2) [377–380]. At odds with these results, BCL2 overexpression
in the mammary gland suppresses the development of breast
tumors driven by the administration of dimethylbenz(a)anthra-
cene [381]. This latter finding may be explained in a similar way as
was mentioned for the suppression of radiation-induced thymic
T cell lymphoma development by over-expression of BCL-2 or loss
of PUMA (see above). Conditional deletion of the genes encoding
BCL2 or BCL-XL in intestinal epithelial cells delays the develop-
ment of colorectal cancer driven by inflammation [382, 383],
which is in line with the evidence that the absence of PUMA (due
to Bbc3 deletion) exacerbates colorectal tumorigenesis as shown
in a mouse model of intestinal oncogenesis driven by colitis or
APC, WNT signaling pathway regulator (APC) [384]. Interestingly,
doxorubicin-induced intestinal cytotoxicity requires PUMA but not
BIM, whereas the reverse is true for MYC-driven apoptosis in the
gut, indicative of differential roles for different BH3-only proteins
in this tissue [385]. Intriguingly, treatment with BCL-XL, but not
BCL2-targeting BH3 mimetics is sufficient to prevent intestinal
tumorigenesis, suggesting that BCL-XL is the crucial mediator of
protection of early neoplastic cells in this model [386]. In
agreement, earlier work showed a pronounced BCL-XL depen-
dency of cell lines derived from both colorectal and non-small cell
lung cancers [387, 388]. Moreover, a tumor suppressive effect has
been ascribed to BAX and CASP2 in murine models of brain
[389, 390] and lung [391] oncogenesis, respectively. In line with
this evidence, pharmacologic/genetic inhibition of MCL1 delayed
tumor development in a mouse model of mutant KRAS-driven
adenoma/adenocarcinoma [392]. In the same model, tumor
progression was promoted by the ablation of pro-apoptotic Bok
[393]. Of note, there is evidence of a certain tissue-specificity in
the epigenetic regulation of Bcl2 and Mcl1, such as the epigenetic
mechanism centered on the deubiquitinase BRCA1 associated
protein 1 (BAP1) [394], a tumor suppressor that is frequently
mutated in some cancers [395] and has been associated with
tumor aggressiveness and therapy resistance [396, 397]. Finally,
age-related differences in the expression of pro-apoptotic
members of the BCL2 family have been linked to the increased
sensitivity of neonatal/childhood tissues, relative to adult counter-
parts, to chemotherapy and radiotherapy. This was causally linked
to the MYC-dependent expression of genes encoding BAX, BID
and BIM, both in mice and humans [133].
Cancer-specific roles have been attributed to particular BCL2

protein family members. For example, deletion of Bax accelerates
the development of MYC-induced pancreatic tumors [398], which
was not seen with ablation of Bak1 or Casp3 [398, 399], but was
achieved by BCL-XL overexpression [314, 400]. Likewise, BOK
seems to be crucial in hepatocarcinogenesis, as demonstrated in a
mouse model of diethylnitrosamine-induced liver cancer which
was accelerated on a Bok−/− genetic background [300]. Using the
same mouse model, accelerated hepatic carcinogenesis has also
been demonstrated for the deletion of the genes encoding PUMA
or CASP2 [401, 402]. Conversely, overexpression of BCL2 was
shown to limit transforming growth factor alpha (TGFA)-driven
hepatic tumorigenesis [403, 404], perhaps because the death of
some cells in the liver causes massive mobilization and prolifera-
tion of progenitor cells, leading to acquisition of oncogenic lesions
that drive tumorigenesis in a manner similar to radiation-induced
thymic lymphoma development (see above). Finally, the
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transgenic overexpression of BCL-XL (but not BCL2) and the
keratinocyte-specific deletion of Bcl2l1 (leading to lack of BCL-XL)
accelerates or limits, respectively, carcinogen- and/or ultraviolet B
(UVB)-induced skin tumorigenesis [405–408]. It will be important
to investigate and better understand why in specific settings
inhibition of apoptotic cell death promotes tumorigenesis
whereas it inhibits tumorigenesis in others.

Autoimmune and inflammatory diseases
There is substantial evidence linking intrinsic apoptosis to the
development and progression of autoimmune diseases. However,
the interpretation of these findings should take into consideration
the crosstalk between the apoptotic and inflammatory pathways
and the fact that apoptotic caspases accelerate cell death as they
regulate its immunological manifestations.
The first evidence that defects in the intrinsic apoptosis

pathway can cause the development of autoimmune disease
was reported when over-expression of BCL-2 in B lymphocytes
[409] or loss of BIM in all tissues [410] was shown to cause a fatal
systemic lupus erythematosus (SLE)-like disease. Consistent with a
critical role for the intrinsic apoptotic pathway in preventing
autoimmune disease, the combined loss of the genes encoding
BAX and BAK1 in hematopoietic cells, achieved by transplantation
of lethally irradiated wild-type mice with hematopoietic stem/
progenitor cells from the livers of E14.5 Bax−/−Bak1−/− embryos
also causes a fatal SLE-like disease [411]. In mouse models of
rheumatoid arthritis, ablation of the genes encoding BIM, BID or
BAD, but not the loss of Bax and Bak1, accelerated the emergence
and increased the duration and severity of this disorder [412–414].
Consistent with these findings, administration of a BIM mimetic
suppressed inflammatory arthritis in mice [415]. Mice deficient for
BAX as well as transgenic mice expressing XIAP display increased
severity of autoimmune encephalomyelitis induced by immuniza-
tion with myelin oligodendrocyte glycoprotein (MOG) [416, 417].
Similar results have been obtained in mouse models of
autoimmune encephalomyelitis genetically engineered for
the hematopoietic cell-specific deletion of Bcl2l11 (leading to
BIM deficiency), or the neuron-specific overexpression of BCL2
[418, 419]. Consistent with the notion that inhibition of apoptosis
can promote the development of auto-immune disease, inhibition
of BCL2, BCL-XL and BCL-W using the BH3 mimetic ABT-263
substantially reduced pathology in several mouse models of
autoimmune disease, including scleroderma [420]. In apparent
contrast with these results, studies using models of type 1
(autoimmune) or type 2 (non-autoimmune) diabetes revealed that
deletion of Bax alone or combined loss of Bax and Bak1 [421, 422],
deletion of the gene encoding BIM, alone or together with the
gene encoding PUMA [418, 423–425] as well as the loss of BMF
[426], protect pancreatic β cells from autoimmune destruction.
Moreover, the absence of BIM prevents the emergence of type 1
diabetes in non-obese diabetic (NOD) mice [418, 423], while
ablation of Trp53 in pancreatic β cells failed to halt cell death in
multiple experimental models of diabetes [427].
Based on the studies described above, inhibiting or deleting

pro-apoptotic proteins or genes can have conflicting effects on
autoimmune disease progression. This may depend on the cell
type in which the major effect on apoptosis occurs, e.g., the
immune cells or their targets. Inhibiting cell death in the target
cells would indeed provide protection and may improve disease
outcome, whereas inhibiting cell death in the immune cell may
lead to an accumulation of immune cells and aggravation of the
autoimmune disease. The distinction could be explored by
studying tissue-specific deletion of apoptosis regulator genes.
In this context, there is evidence that inflammatory and

autoimmune disorders may derive from increased survival of
specific immune cell population. For instance, elevated levels of
cytokines such as colony stimulating factor 2 (CSF2, best known
as GM-CSF), interleukin 3 (IL3) and IL5 in immune disorders have

been associated with prolonged survival of neutrophils, eosino-
phils or basophils with a mechanism involving the upregulation of
anti-apoptotic proteins MCL1, BCL-XL and baculoviral IAP repeat
containing 2 (BIRC2, best known as cIAP2) [428–435]. Apoptosis
also plays a relevant role in some hemopathies with inflammatory
features, including beta thalassemia [436], Diamond-Blackfand
anemia [437], and in the Cohen syndrome neutropenia [438]. BIM,
BID and BAD have all been shown to influence survival in mouse
models of septic shock, as their targeting confer protective effects
from tissue damage of multiple organs [439–441], as well as in
patients with severe sepsis [442]. On the contrary, the role
of apoptotic caspases in septic shock is contentious
[54, 73, 443, 444]. The precise impact of apoptosis in widespread
inflammation during sepsis requires further investigation.
Concerning other inflammatory diseases, while broad-spectrum

caspase inhibition reportedly protected rats against severe acute
pancreatitis [445], activation of intrinsic apoptosis appears to
attenuate the severity of this disease by limiting inflammation, as
shown in vivo in a pancreatitis mouse model lacking XIAP [446].
These data reinforce the notion that inhibiting (apoptotic) cell death
may exacerbate unwarranted inflammatory reactions that contri-
bute to the pathology of various autoimmune and inflammatory
disorders. In line with this notion, chronic colitis driven by dextran
sulfate sodium in mice manifests with increased (rather than
decreased) severity in BID- or BIM-deficient hosts as compared to
their wild-type littermates, at least in part owing to immune
dysregulation [447, 448]. Similarly, inhibition of BCL2 and/or BCL-XL
reduces inflammation and ameliorates experimental colitis
[449, 450], an effect that was abrogated by concomitant deletion
of the gene encoding BIM [450]. PUMA-deficient mice display
reduced levels of apoptosis amongst intestinal epithelial cells but
not reduced inflammation in an experimental model of colitis [451].
Corroborating the specific relevance of PUMA for intestinal home-
ostasis, mice deficient for PUMA but not Bax−/−Bak1−/− mice were
protected against the gastrointestinal side effects of radiotherapy,
at least in part due to increased survival of intestinal stem/
progenitor cells [452, 453]. Moreover, the absence of PUMA
conferred protection to intestinal epithelial cells in mouse models
of hypertensive gastropathy [454], ulcerative colitis (UC) [455] and
intestinal ischemia/reperfusion [456]. In the latter model, transgenic
BCL2 expression limited intestinal epithelial cell death [457]. On the
other hand, defects in XIAP cause X-linked lymphoproliferative
syndrome type 2, with one-third of these patients suffering from
severe and therapy-refractory inflammatory bowel disease
[458–461]. Absence of XIAP also results in enhanced TNF production
and TNF-R1/TNF-R2 targeting of TLR5-expressing Paneth cells and
dendritic cells (DCs), leading to ileitis and dysbiosis [462]. In this
context, it is interesting to note that CASP3- or CASP7-deficient mice
display an altered gut microbiome [463], which may play a hitherto
unexplored role in multiple autoimmune and inflammatory
disorders beyond intestinal conditions. However, it has recently
been found that under steady state conditions the absence of
CASP3 and CASP7 in the intestinal epithelial cells apparently
neither affects the microbiome nor causes spontaneous inflamma-
tion, suggesting that apoptosis may be dispensable for intestinal
epithelium turnover and homeostasis at baseline [464].

Infectious diseases
Activation of RCD constitutes a protective mechanism against
many microbial infections by eliminating infected cells and
potentiating pathogen-targeting immune responses. Accordingly,
both viruses and bacteria have developed multiple strategies to
overcome or disable host intrinsic apoptosis, thus improving
survival of both host cells and the infectious organisms [465, 466].
Mice with loss of one BCL-XL-coding allele displayed reduced
pathology and had improved survival rates when challenged with
Japanese encephalitis virus (JEV), as compared with wild-type
mice. This was attributed to compromised viral propagation within
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JEV-infected cells succumbing to intrinsic apoptosis [467]. There is
also evidence of a contribution of BAX and BAK1 to the response
to murine cytomegalovirus (MCMV) infection. In particular, the
MCMV genome encodes inhibitors of BAK1 (m41.1 protein) and
BAX (m38.5 protein) that promote viral replication by inhibiting
the induction of intrinsic apoptosis in infected cells [468, 469].
Supporting the requirement of the inhibition of intrinsic apoptosis
for optimal in vivo MCMV dissemination, the titers of m41.1-
deficient viruses were higher in salivary glands and other organs
in Bak1−/− mice as compared to wild-type animals [468]. Intrinsic
apoptosis also protects against bacterial infections, as demon-
strated by the lethal course of disease in Bbc3−/− mice (which lack
PUMA) after Streptococcus pneumoniae infection [470]. Such an
effect has been attributed to insufficient immune-mediated
bacterial clearance because of an increased neutrophil lifespan
in the absence of PUMA-mediated apoptosis.
However, in other contexts, excessive activation of the intrinsic

apoptosis pathway has been reported to drive, rather than
prevent, microbial disease pathogenesis and lethality. For
example, loss of Xiap increased the susceptibility of mice to
Shigella infection, manifesting with coalescing necrotic areas and a
high bacterial burden in the liver, an effect that was associated
with an inefficient immune-mediated resolution of the bacterial
infection [471]. Of note, at least part of this effect may be due to
the requirement for XIAP to activate NOD signaling, rather than its
ability to inhibit caspases [459, 471, 472]. Moreover, mice lacking
the genes encoding BIM and NOXA (i.e., Bcl2l11−/−Pmaip1−/−

mice) display pronounced resistance to challenge with high doses
of Listeria monocytogenes, as shown by a decreased bacterial
burden and reduced apoptosis induction in the spleen [473]. The
overexpression of BCL2 in the hematopoietic compartment
increase the survival of mice infected with Ebola virus [474],
while deletion of Bok promote resistance of lung epithelial cells to
apoptosis induced by SARS-CoV-2 virus membrane (M) protein
[475]. Intriguingly, this latter study showed that the SARS-CoV-2 M
protein activate BOK to trigger apoptosis in the absence of BAX
and BAK1 [475]. In another example, conditional deletion of Casp3
in the murine intestinal epithelium conferred protection from
pathogenic Salmonella enterica, and this was attributed to a
reduction in cell death-induced nutrients that are critical for
sustaining bacterial growth [476]. Finally, Casp3−/− mice subjected
to intracranial inoculation of reovirus type 3 (strain Dearing)
displayed limited injuries in the central nervous system (CNS) and
extended survival compared to wild-type mice [477]. As discussed
above, the interpretation of the infection phenotypes observed in
CASP3-, CASP7- and/or CASP9-deficient mice requires particular
caution because of the crucial roles of these caspases in
modulating immune and inflammatory responses [242–244]. That
said, there is evidence for a role of specific regulators of apoptosis
in the host response to infection with human herpes simplex virus
1 (HSV-1). On the one hand, a significant accumulation in total
leukocyte and CD8+ T cells was observed in mice deficient for BIM
and PUMA upon infection with HSV-1 [478], which is in line with a
role of these BH3-only proteins in controlling the survival of
lymphoid and myeloid cells [410, 479, 480]. On the other hand,
mice deficient for NOXA, BAD or BID were reported to mount a
normal CD8+ T cell immune response to HSV-1 infection [478].
Some of these contradictory results may arise from the divergent
effects of inhibition or promotion of apoptosis on immune cells
versus other cell types affected by the infectious disease, a
distinction that cannot be addressed using mice in which
apoptotic regulators have been deleted in the germline. In this
context, it is noteworthy to note that the myeloid cell-specific
deletion of the gene encoding BCL-XL or its inhibition using BH3
mimetic drugs massively reduced bacterial burden in the lung and
extended the survival of mice infected with Legionella [481]. This
indicates that BH3 mimetic drugs might be effective for the
treatment of intracellular bacterial infections.

Other diseases
Pro-apoptotic BCL2 proteins and caspases have also been
implicated in disorders affecting other tissues/organs, such as
skeletal muscle and lungs. For instance, the conditional ablation of
Bax and Bak1 protected mouse skeletal muscles against pressure-
induced injury [482]. Similar results have been obtained in rats
receiving Z-VAD-FMK after being subjected to muscular compres-
sion or blunt injury [483, 484]. Moreover, deletion of Casp3 or
CASP3 inhibition with Ac-DEVD-CHO limited muscular damage
and atrophy in experimental models of plaster-mediated immo-
bilization [485, 486]. In mouse models of catabolic disorders,
muscle wasting due to protein degradation was decreased by
lentiviral expression of XIAP [487, 488], although whether this
effect reflects the inhibition of intrinsic apoptosis needs further
confirmation. Finally, Casp3−/− mice were protected against
denervation-induced muscular atrophy [489], while expression of
a dominant-negative variant of CASP9 improved the neuromus-
cular activity in a transgenic mouse model of slow-channel
syndrome [490].
In a mouse model of oxidant-induced lung injury, the tissue-

specific ablation of Bax and Bak1 but not that of the genes
encoding BID, BIM, NOXA or PUMA protected lung epithelial cells
from degeneration [491]. Among the anti-apoptotic BCL2 proteins,
BCL2 related protein A1 (BCL2A1, best known as A1) seems to
exert a crucial role in this setting, as Bcl2a1 deletion aggravated
lung injury in mice subjected to hyperoxia [492], while lung-
specific overexpression of BCL2 did not confer protection to mice
exposed to excessive oxygen supply [493]. That said, no critical
cytoprotective effect of A1 was seen in acute lung inflammation
and peritonitis [494]. Intrinsic apoptosis has also been reported to
be involved in pulmonary fibrosis [495]. Bid−/− mice display
decreased levels of pulmonary fibrosis after intra-tracheal
bleomycin administration than their wild-type counterparts
[496]. In apparent contradiction, in the same model of fibrotic
pulmonary damage, a similar degree of protection was reported in
mice lacking Bcl2 [497] or in animals treated with inhibitors of
BCL2 [497] or caspases [498, 499]. Along similar lines, ablation of
Bid limited acute lung injury in mice induced by exposure to
lipopolysaccharide (LPS) [500]. Moreover, CASP3 depletion using
short-hairpin RNAs (shRNAs) protected the lungs of mice
subjected to pulmonary ischemia/reperfusion [501], a protection
further strengthened when necroptosis was concomitantly also
suppressed [502]. BCL2 overexpression or caspase inhibition
protected rodents subjected to lung transplantation [503, 504].
This is in line with the notion that delivery of the caspase inhibitor
Z-VAD-FMK to rodents ameliorated lung injury developing as a
consequence of severe acute pancreatitis or LPS administration
[505, 506] but not as a result of pneumovirus infection [507]. In the
latter case, lung damage was exacerbated by Z-VAD-FMK, perhaps
due to increased inflammation downstream of necroptotic RCD
[507].
The studies summarized above illustrate that components of

the intrinsic apoptosis pathway can be part of the pathogenic
mechanism of disease, and, in certain cases, this may offer the
opportunity for therapeutic intervention. It is important to note
that in many pathogenic processes intrinsic apoptotic cell death is
the endpoint, and simply inhibiting it will not be curative. If the
cells continue being exposed to the initiating insult, they will likely
undergo less regulated forms of cell death. However, inhibiting
the intrinsic apoptotic cell death may buy time to control the
factors that are damaging the cells in first place. Ischemia and
hypoxia, in cases where the ensuing cell death has a substantial
intrinsic apoptotic component, are examples. If cells in the
ischemic region were kept alive until adequate circulation was
restored, therapeutic benefits might be achieved. Other examples
include metabolic disorders, which may be amenable to correc-
tion, and traumatic injury, where healing might be supported by
inhibiting apoptosis. It would be worth concentrating on
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inhibiting intrinsic apoptotic cell death in conditions where the
initiating tissue insults can be (at least partially) reversed. In
contrast, failure to undergo intrinsic apoptosis is the initial
pathogenic step or a contributing factor in certain malignancies.
Here, the induction of apoptosis, for example by using BH3
mimetic drugs [33, 34], directly targets pathogenesis.

EXTRINSIC APOPTOSIS IN DISEASE
The molecular apparatus for extrinsic apoptosis is described in
Box 5 and illustrated in Fig. 4. Unlike the intrinsic apoptotic
pathway, DR-induced apoptosis is not required for embryonic or
fetal development but plays a critical role in adult tissue
homeostasis, as detailed in Box 6 and Box 7. Of note, various
components of the extrinsic pathway of apoptosis are involved in
the etiology of multiple human disorders, although (1) with a
considerable degree of context-dependency, and (2) with an
effect not necessarily linked to the activation of apoptosis but
often due to the role of DR signaling in necroptosis and
inflammation, as outlined below.

Neurological diseases
Although numerous studies investigated FAS and TNF-R1 signal-
ing in the pathogenesis of multiple neurological diseases, the
precise role of extrinsic apoptosis remains unclear (Fig. 5). Loss-of-
function mutations of Fas ligand (TNF superfamily, member 6)
(Fasl) as well as Fas silencing prevented moto-neuron loss in
mouse models of ALS driven by defect in superoxide dismutase 1,
soluble (SOD1) [508, 509]. Conversely, the lack of TNF did not
affect motor neuron loss and mouse survival in this model [510],
while signaling via TNF receptor superfamily member 1B
(TNFRSF1B, best known as TNF-R2) appeared to mediate
neuroprotective effects [511]. As an additional layer of complexity,
TNF mediates neuroprotective functions in wobbler mice -

another mouse model of ALS that carries a point mutation in
VPS54 GARP complex subunit (Vps54), at least in part by
promoting the upregulation of ADAM metallopeptidase domain
8 (ADAM8) [512]. CASP8 has not yet been implicated in the
pathogenesis of ALS, and non-apoptotic forms of FAS-driven RCD
may play a predominant role in this context. For example, FAS
stimulation reportedly triggered the demise of motoneurons in
mouse models of ALS by aggravating endoplasmic reticulum
stress [513]. Similarly, cleavage of BID by CASP1 (and not CASP8)
appears to contribute to neurodegeneration in transgenic mice
expressing a mutant form of human SOD1 [514]. However, the
precise contributions of endoplasmic reticulum stress and CASP1
in ALS and other motoneuron disorders remain to be elucidated.
The ability of TNF-R1 signaling to influence neurodegenerative

conditions involves not only the induction of extrinsic apoptosis
but also the activation of an inflammatory response. In distinct
murine models of AD, deletion of Tnf, modification of its
untranslated region (UTR) as well as pharmacological TNF
inhibition reduced plaque formation, resulting in attenuated
neurological deficits [515–522]. Mechanistic studies in mice and
monkeys revealed that TNF-R1 activation stimulates the protein
activator of interferon-induced protein kinase EIF2AK2 (PRKRA)
network [523], which is linked to PD in humans [524]. Moreover,
TNF-R1 signaling has been shown to favor microglial reactivity
during neurodegeneration, culminating in neuronal loss [525].
Amelioration of disease was seen in mouse models of AD upon
genetic or pharmacological inhibition of TNF-R1 [526, 527]. AD-
associated neuroinflammation seems to depend on TNF-induced
necroptosis rather than extrinsic apoptosis [528, 529]. Unexpect-
edly, AD pathogenesis was shown to be enhanced in mice bearing
a co-deletion of Tnfrsf1a and Tnfrsf1b [530], a phenotype that
appears to impinge on a complex network of mutual interactions
between TNF-R1 and TNF-R2 signaling [531]. Such a network may
also contribute to PD pathogenesis. Genetic ablation of Tnf or

Box 5. Principles of extrinsic apoptosis

Extrinsic apoptosis is a regulated cell death (RCD) variant frequently triggered by death receptor (DRs) upon binding of a cognate ligand [1323–1325]. The principal DRs that
will be discussed in the review are the Fas cell surface death receptor (FAS; also known as CD95 or APO-1), the TNF receptor superfamily member 1A (TNFRSF1A; best known as
TNF-R1), the TNF receptor superfamily member 10a (TNFRSF10A; best known as TRAIL-R1 or DR4) and the TNF receptor superfamily member 10b (TNFRSF10B; best known as
TRAIL-R2 or DR5). FAS is activated by the binding of FAS ligand (FASLG; also known as CD95L or APO-1L; FASL in mice), which is primarily expressed by effector immune cells
[1325]. TNF-R1 is activated by tumor necrosis factor (TNF), a functionally pleiotropic cytokine expressed in cells in the spleen, thymus and certain other adult tissues [1323]. Of
note, while the soluble form of TNF preferentially binds to TNF-R1, the membrane-anchored form mainly interacts with the TNF receptor superfamily member 1B (TNFRSF1B,
best known as TNF-R2), which does not have death domain and therefore is not a DR [1326]. Finally, TRAIL-R1 and TRAIL-R2 are specifically activated by the binding of TNF
superfamily member 10 (TNFSF10; best known as TRAIL), which is expressed by a variety of cell subtypes of the innate as well as adaptive system, including monocytes,
macrophages and effector T cells, as either a soluble or membrane-bound version [1327]. Of note, mice express only one TRAIL receptor (TRAIL-R2, referred in this article as
mTRAIL-R) which is equally homologous to human TRAIL-R1 and TRAIL-R2.
Upon ligand binding and trimerization and in certain instances formation of higher order complexes, the engagement of DRs promotes the assembly of multi-protein

complexes, such as the death-inducing signaling complex (DISC) and complex II, resulting in the activation of caspase 8 (CASP8) and apoptosis [1328–1331]. The DISC, which is
assembled on the cytoplasmic tail of ligated FAS, TNF-R1, TRAIL-R1 or TRAIL-R2, is comprised of the molecular adaptor Fas-associated death domain protein (FADD), Fas
(TNFRSF6)-associated via death domain (FADD), CASP8, and distinct isoforms of CASP8 and FADD like apoptosis regulator (CFLAR; best known as c-FLIP), including alternative
splicing variants, the long form c-FLIPL and the short form c-FLIPS, and (in human) c-FLIPR [1332–1337]. Of note, c-FLIPs are catalytically inactive CASP8-like molecules acting as a
modulator of CASP8 activation. Unlike FAS- and TRAIL-R-associated DISCs, complex II is a cytosolic complex assembled secondarily upon TNF-R1 ligation, in conditions of
reduced pro-survival signaling and protein synthesis as for instance upon administration of inhibitor of apoptosis proteins (IAP) blockers and cycloheximide [1338]. Complex II
consists of FADD and CASP8 in association with either TNF-R1-associated death domain protein (TRADD) (complex IIa) or receptor interacting serine/threonine kinase 1 (RIPK1)
(complex IIb), which is involved in the modulation of apoptosis and necroptosis [1339]. Upon the recruitment to the DISC (complex I), CASP8 is activated by a process involving
CASP8 oligomerization and autoproteolysis. CASP8 then acts as the executor of extrinsic apoptosis by favoring the proteolytic activation of the effector caspases CASP3 and
CASP7 [1340]. This direct pathway is sufficient for the FASLG-driven killing of thymocytes and mature lymphocytes (so-called type I cells), but the efficient killing of hepatocytes,
pancreatic β cells, and most cancer cells (so-called type II cells) requires pathway amplification through the CASP8-dependent proteolytic activation of the BH3-only protein BH3
interacting domain death agonist (BID), leading to engagement of the intrinsic apoptotic pathway [278, 1341–1346]. Of note, the absence of X-linked inhibitor of apoptosis
(XIAP) converts type II cells into type I cells [1160], indicating that a limited amount of caspase activity is needed for cell killing.
Once activated, CASP8 also cleaves RIPK1 leading to the inhibition of necroptosis and the maintenance of inflammatory homeostasis [1347]. As a further layer of

complication, the engagement of DRs by their respective ligands does not necessarily culminate in the activation of the extrinsic apoptosis signaling pathway. Indeed, the
engagement of FAS, TRAIL-Rs and TNF-R1 can also result in the activation of pro-survival pathways, which is often - but not always - dependent on NF-κB signaling [1327, 1348],
or, alternatively, in the initiation of inflammatory responses, cell differentiation/activation (as is the case of lymphocytes), and the regulation of other RCD variants, particularly
necroptosis and pyroptosis [1349]. The induction of inflammatory chemokines and cytokines downstream of the activation of FAS and TRAIL-Rs is mediated by FADD and
CASP8 by a mechanism that can be independent of apoptosis induction [872, 1350].
Extrinsic apoptosis can be activated by another class of cell surface receptors known as dependence receptor. In this case, cell death is ignited by a decrease in the availability

of a specific ligand on which these receptors depend [1351, 1352]. Dependence receptors include (but are not limited to) the DCC netrin 1 receptor (DCC) and distinct types of
unc-5 netrin receptors (UNC5A, UNC5B, UNC5C, and UNC5D), all of which are bound by netrin 1 (NTN1), and the neurotrophic receptor tyrosine kinase 3 (NTRK3) and patched 1
(PTCH1), which are ligated by neurotrophin and sonic hedgehog (SHH), respectively. The activation of dependence receptors stimulates hitherto poorly characterized signaling
cascades often dependent on caspase activation, leading to the induction of cell death [838, 1353]. Of note, the relevance of dependence receptor-induced apoptosis for
normal physiology and disease remains to be formally established.

I. Vitale et al.

1110

Cell Death & Differentiation (2023) 30:1097 – 1154



Tnfrsf1a plus Tnfrsf1b (leading to the lack of both TNF receptors),
as well as pharmacological inhibition of TNF, were reported to
protect dopaminergic neurons in murine models of PD following
the administration of 1-metil 4-phenyl 1,2,3,6-tetraidro-piridina
(MPTP) or 6-hydroxydopamine [532–535]. Notably, in the afore-
mentioned experimental settings, TNF is thought to induce
neuronal death in vivo by promoting microglia reactivity [536]
with a complex interaction between TNF-R1 and TNF-R2 signaling
[537]. Clinical evidence from AD patients subjected to perispinal
administration of the TNF blockers infliximab or etanercept
suggests that the inhibition of TNF can ameliorate AD
[538, 539]. In contrast, a dominant-negative variant of TNF failed
to protect mice against neuronal degeneration in a model of HD

[540], suggesting that this approach may not be viable in patients
with HD.
TRAIL/TRAIL-R signaling has also been implicated in the onset

and progression of AD [541, 542]. Specifically, in a mouse model of
AD, neutralization of TNF superfamily member 10 (TNFSF10, best
known as TRAIL) with a monoclonal antibody resulted in
decreased neuroinflammation and a reduction in cognitive
defects [541]. However, these findings were not extensively
validated. Similarly, the impact of FASL-FAS signaling on
neurodegenerative conditions is debated. Indeed, lpr/lpr mice,
which lack FAS [543] and to a lesser extent gld/gld mice, which
lack FASL [543], are particularly susceptible to neuronal degenera-
tion driven by MPTP [544]. However, contrasting results have been

Fig. 4 Molecular machinery of the extrinsic apoptosis pathway. Extrinsic apoptosis is initiated by the binding of FASL to FAS or TRAIL to
TRAIL-R1 or TRAIL-R2, which promotes the assembly, on the cytoplasmic tail of these death receptors, of a platform known as the DISC.
Extrinsic apoptosis is also triggered by the binding of TNF to TNF-R1, which promotes the assembly of the Complex II. The DISC comprises
FADD, c-FLIPs and pro-CASP8. Complex II is a platform consisting of FADD and pro-CASP8 in association with either TRADD (complex IIa) or
RIPK1 (complex IIb). The assembly of these complexes promotes the activation of CASP8, which mediates CASP3 and CASP7 activation either
directly, by catalyzing the proteolytic activation of CASP3 and CASP7 (in type I cells) or indirectly, via the proteolytic activation of the BH3-only
protein BID and outer membrane permeabilization (MOMP) (in type II cells). At least in some cells, extrinsic apoptosis can also be induced by
dependence receptors like DCC, NTRK3, PTCH1, or UNC5A-D, which are activated by decreased concentration of the related ligand, as
illustrated in the figure. However, the role of this pathway in normal physiology and disease is not yet established.
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obtained in another study involving FAS-deficient mice treated
with MPTP [545, 546]. In this context, FAS-associated factor 1 (Faf1,
a FAS binding protein that can initiate or enhance apoptosis) was
found to be increased in midbrain in murine models of PD [547].
Moreover, a reduction in Faf1 expression limited MPTP-induced
dopaminergic cell loss [548]. Such an apparent discrepancy in
results may originate from the pleiotropic role of FAS in apoptosis
and inflammation and other pro-survival/regenerative signals.
CASP8 activation has been detected in the brain of both AD

[549] and HD [550] patients as well as in dopaminergic neurons of
MPTP-treated mice and PD patients, a setting in which BID
cleavage has also been documented [119]. This is in line with the
ability of the broad-spectrum caspase inhibitor Q-VD-OPH to
inhibit BID cleavage and mediate neuroprotection in MPTP-
treated mice and rats [551]. Of note, CASP8 was also reported to
promote microglia reactivity potentially leading to neuronal loss
[552–554]. In this context, genetic loss or pharmacological
inhibition of CASP8 attenuated neurotoxicity by reducing micro-
glial reactivity, thus extending survival of neurons, at least in part
by stimulating the necroptotic death of activated microglial cells
[552–554]. Consistent with this notion, Casp8 deletion in myeloid
cells protected mice from MPTP-mediated neurotoxicity [555],
suggesting that CASP8 inhibitors may be harnessed for the
treatment of neurodegenerative conditions. Corroborating this
idea, a pharmacological inhibitor of TNF-R1-associated death
domain protein (TRADD) protected mice from disease in a model
of AD-like proteinopathy driven by mutant tau [556]. However,
pharmacological inhibition of CASP8 only partially prevented
neuronal alterations in other models of AD [108], and even
exacerbated dopaminergic neuronal necrosis in mice developing
PD upon MPTP administration [557]. Moreover, rare CASP8 loss-of-
function variants have been associated with AD in a large cohort
of patients [558]. Thus, the precise contribution of CASP8 signaling
to neurodegenerative disorders and whether this relates to its

function in driving extrinsic apoptosis, inhibiting necroptosis or
promoting inflammatory cytokine production remains to be
formally defined. Concerning dependence receptors, Netrin 1
(NTN1) upregulation was shown to confer neuroprotection in
murine models of PD, suggesting a potential role of dependence
receptors in neurodegenerative disease [559].
DR signaling has also been shown to contribute to neuronal

death and inflammation in preclinical models of CNS trauma. In a
compression model of spinal cord injury, mice with loss of FAS
(i.e., lpr/lpr mice) as well as mice treated with FASL blockers
displayed reduced post-traumatic neuronal degeneration and
inflammation coupled to considerable functional improvement
[560–562]. This beneficial effect also involved reduced engage-
ment of the intrinsic apoptosis pathway [563]. Myeloid cell-specific
deletion of Fasl promoted neuronal regeneration and functional
recovery in mice subjected to spinal cord injury [564]. A similar
functional improvement after spinal injury was observed in mice
with conditional deletion of Tnf in macrophages and neutrophils,
but not in microglia [565]. Moreover, neuroprotection and limited
neuroinflammation have been documented in lpr/ lpr mice
subjected to traumatic brain injury [566], as well as in mice
subjected to experimental spondylotic myelopathy and exposed
to FASL-neutralizing antibodies [567]. Studies on mice with loss of
Fas and Tnfrsf1a revealed at least some redundancy between FAS
and TNF-R1 signaling in the context of experimental brain trauma
[568–572]. Furthermore, TNF inhibition reduced damage in mice
or rats experiencing spinal cord injury [573–575], and also reduced
the appearance of signs of autonomic dysreflexia, a cardiovascular
disease associated with high-level spinal cord injury [573, 576].
Interestingly, some of these studies point to a neuroprotective
function for TNF-R2 [568, 570, 572], which is in line with at least
some results from models of ALS [511, 531]. Moreover, several
studies question a purely detrimental effect of TNF signaling in
these experimental settings [577–580]. In particular, TNF was

Box 6. Impact of death receptors on health

A large body of data demonstrates that death receptor (DR) signaling is crucial for the maintenance of adult tissue homeostasis but nor for embryonic development, as
demonstrated by the normal appearance of mice lacking caspase 8 and mixed lineage kinase domain like (Casp8−/−Mlkl−/− mice) or CASP8 and receptor-interacting serine-
threonine kinase 3 (Casp8−/−Ripk3−/− mice), before they develop lymphadenopathy and splenomegaly [52, 876, 1354–1357]. Mouse strains with spontaneous mutations in Fas
(TNF receptor superfamily member 6) (Fas) - the so-called lpr/lpr mice – or Fas ligand (TNF superfamily, member 6) (Fasl) - the so-called gld/gld mice - are viable but develop
progressive lymphoproliferative and systemic lupus erythematosus (SLE)-like disorders [543, 875, 1358–1360]. The severity of these pathologies is greatly influenced by
genetic background: fairly mild on a C57BL/6 background but very severe on MRL and NOD backgrounds. That said, mice with heterozygous Fas or Fasl mutations are normal
[1360]. These lymphoproliferative and autoimmune disorders are not accompanied by impaired thymocyte development [1361]. Transgenic overexpression of BCL2 apoptosis
regulator (BCL2) [1342] or MCL1, BCL2 family apoptosis regulator (MCL1) [1362] in the lymphocyte compartment of lpr/lpr mice or the absence of BCL2 like 11 (BCL2L11; best
known as BIM) [1363] massively exacerbate lymphadenopathy. This is consistent with the notion that intrinsic apoptosis and DR-induced apoptosis are distinct in lymphoid
cells and act additively. FAS or FASL deficiency also perturbs the homeostasis or function of other mouse tissues, including (but not limited to) the liver [1361], kidney [1364],
retina [1365], pancreas [1366] and intestinal epithelium [1367], but these effects may all be a consequence of the deregulation of the lymphoid system, for example causing
excess production of certain cytokines and chemokines.
Conditional deletion of Fas and Fasl in specific immune cell subsets as well as transgenic expression of FAS in lymphocytes confirms the crucial role of FASL-FAS signaling in

the homeostasis of lymphocytes and dendritic cells (DCs) [1020, 1368–1371]. In this context, experiments in lpr/lpr mice deleted of BH3-only protein BCL2 like 11 (Bcl2l11,
encoding BIM) demonstrate some degree of cooperation between FAS and BIM in preserving the functionality of the immune system [1363]. However, abrogating FAS-FASL
signaling ultimately has heterogeneous organismal consequences. The lymphoproliferative disorder caused by Fas or Fasl deletion confers protection from autoimmune
diabetes [922]. This may be explained by the fact that the distortion of the T cell repertoire caused by the lymphadenopathy in the lpr/lpr and gld/gld mice prevents the
development of diabetogenic T cells. Finally, FAS appears to exert tumor suppressive effects in lymphoid cells. Indeed, both gld/gld mice as well as lpr/lpr mice lacking the T cell
compartment have increased incidence of B cell lymphoma [816, 1372, 1373]. Loss of FAS also predisposes humans to B cell lymphoma (see below).
As for other DRs, mice lacking TNF receptor superfamily member 10b (TNFRSF10B, best known as TRAIL-R2 or mTRAIL-R) or its ligand TNF superfamily member 10 (TNFSF10,

beast known as TRAIL) are viable, fertile, and do not spontaneously develop autoimmune diseases [883, 1374–1376]. Moreover, these mice exhibit normal immune system
development and function [1377–1380]. Along similar lines, the whole-body deletion of tumor necrosis factor (Tnf) does not affect mouse development and fertility
[1381, 1382]. However, Tnf−/− mice often show early hearing loss and, despite presenting with an overtly functional immune system, exhibit abnormally increased susceptibility
to spontaneous bacterial infection, which has been ascribed to multiple defects including defective lymphoid organ architecture as well as deficient granuloma and germinal
center formation [1381–1385]. Impaired responses to pathogens have been documented in Tnf+/− mice [1381] as well as in mice lacking TNF receptor superfamily member 1A
(TNFRSF1A, best known as TNF-R1) [1383–1387]. Conversely, mice overexpressing TNF in cardiomyocytes suffer from lethal dilated cardiomyopathy, demonstrating that
balanced TNF signaling is essential for the homeostasis of the cardiac tissue [1388–1390]. Of note, while the lack of TRAIL enhances the severity of lymphoproliferative and
autoimmune disorders in gld/gldmice [1391], the lack of TNF attenuates the lymphoproliferative phenotype, extending the survival of gld/gldmice [1392]. The latter is probably
due to the reduction in TNF-mediated inflammation attenuating lymphadenopathy caused by the absence of FASL. These findings confirm the pleiotropy and redundancy of
DR signaling, encompassing not only apoptotic and non-apoptotic regulated cell death (RCD)-related effects, but also various pro-survival and pro-inflammatory modules.
Multiple clinical observations support the role of FAS signaling in human hematopoiesis [1393, 1394]. Most patients with autoimmune lymphoproliferative syndrome (ALPS)

—a primary immunodeficiency manifesting with lymphadenopathy, splenomegaly as well as abnorrmal numbers, development and function of lymphocytes —carry loss-of-
function mutations in FAS or FASLG [874, 1395–1400]. ALPS patients also display an increased incidence of non-Hodgkin and Hodgkin lymphoma [1401]. While no mutations in
the genes encoding TRAIL, TRAIL-R1 and TRAIL-R2 have so far been linked to human autoimmune diseases, autosomal dominant mutations in TNFRSF1A (leading to lack of TNF-
R1) have been identified in patients affected by TNF receptor-associated periodic syndrome (TRAPS), characterized by severe abdominal pain, arthralgias, and myalgias
[1402–1404].
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reported to support, at least in part, regeneration and long-term
functional recovery in mice exposed to traumatic brain injury
[578–580]. Conversely, TRAIL neutralization stands out as a
promising strategy to promote neuronal regeneration and
functional recovery based on mice with spinal cord injuries
[581, 582]. In this context, injured neurons seem to undergo Fas-
associated via death domain (FADD)- and CASP8-dependent RCD
[583]. Accordingly, Casp8 deletion or transgenic expression of a

FADD inhibitor (the glycoprotein P45) protected mice after spinal
cord injury [584, 585]. Similarly, transgenic expression of a
dominant negative mutant of FADD (FADD-DN) limited moto-
neuron loss in mice undergoing axotomy [586].
Components of the molecular apparatus for the extrinsic

pathway are associated with disorders of the visual system, again
in the context of both exacerbated cell death and inflammation.
Thus, in mouse and rat models of optic nerve injury, deletion of

Box 7. Impact of extrinsic apoptosis complexes and caspases on health

Several signal transducers in the death receptor (DRs) pathway are essential for embryonic development in mice. Thus, deletion of Fas (TNFRSF6)-associated via death domain
(Fadd), caspase 8 (Casp8) or CASP8 and FADD-like apoptosis regulator (Cflar, encoding c-FLIP) is embryonic lethal at mid-gestation as a consequence of severe vascular as well
as cardiac defects associated with spontaneous intra-abdominal hemorrhage [1405–1410]. Of note, CASP8-deficient mice also exhibit neural tube defects [1409]. A similar
embryonic lethality has also been documented in mice expressing a mutant form of FADD deficient in its death domain [1406]. The absence of other components of DR-
associated signaling complexes, such as TNFRSF1A associated via death domain (TRADD) and receptor-interacting serine/threonine kinase 1 (RIPK1), causes different
abnormalities. Thus, while Tradd−/− mice develop normally and do not display major hematopoietic defects [1411–1413], Ripk1−/− mice die early after birth due to severe
multiorgan inflammation [1414, 1415]. These findings are attributed to the pleiotropic contribution of RIPK1 and TRADD to a variety of processes beyond apoptosis, most
notably necroptotic regulated cell death (RCD) and inflammation. This is exemplified by the observation that the embryonic lethality caused by the absence of CASP8 or FADD
can be rescued by the concomitant loss of mixed lineage kinase domain like (MLKL) or receptor-interacting serine-threonine kinase 3 (RIPK3) (see below). Mice lacking
baculoviral IAP repeat-containing 3 (BIRC3; best known as cIAP1) and X-linked inhibitor of apoptosis (XIAP), or cIAP1 and BIRC2 (best known as cIAP2), but not mice lacking
cIAP2 and XIAP, display embryonic lethality [1416]. These findings indicate specific functional redundancies among the inhibitor of apoptosis protein family. cIAP1/cIAP2-
deficient mice display mid-gestation lethality, which can be rescued to birth by the deletion of TNF receptor superfamily member 1A (Tnfrsf1a, encoding TNF-R1) but not that
of TNF receptor superfamily member 1B (Tnfrsf1b, best known as TNF-R2) [1416]. Loss of one allele of Ripk1 or loss of Ripk3 prolonged embryonic survival of these mice [1416].
It is noteworthy, that, as discussed above, genetic background effects might contribute to the phenotype, as mice with concomitant knockout of the genes encoding cIAP1
and cIAP2 using mutant alleles generated in C57BL/6 embryonic stem cells die in midgestation [1416], whereas Birc3−/− and Xiap−/− double mutants generated using 129Sv
embryonic stem cells are viable [1417].
It was demonstrated that embryonic lethality in Casp8−/− and Fadd−/− mice is due to excessive necroptosis, reflecting the ability of CASP8 to limit necroptosis downstream of

DR activation [51–53, 1354]. Accordingly, deletion of genes encoding key components of the necroptotic machinery such as RIPK3 or MLKL prevents all developmental defects
and embryonic lethality in FADD- or CASP8-deficient embryos [51, 52, 876, 1354–1357, 1418]. Of note, Casp8−/−Ripk3−/− and Casp8−/−Mlkl−/− mice develop progressive
lymphoproliferative disorders that resemble those caused by the absence of FAS or FASL [51, 52, 876]. Moreover, embryonic lethality around E10.5 in mice lacking c-FLIP and
the perinatal lethality of Ripk1−/− mice depend on aberrant activation of both DR-induced apoptosis and DR-induced necroptosis. Indeed, the lethality of these animals can be
rescued by concomitant deletion of Fadd and Ripk3, Casp8 and Ripk3, or Fadd and Mlkl [52, 876, 1354–1357]. Of note, mice with a mutation in RIPK1 that prevents its CASP8-
mediated cleavage die around E10.5 of embryonic development, and this can be prevented by the combined absence of RIPK3 and CASP8 [1347, 1419, 1420]. In a heterozygous
state, mutations in the gene encoding RIPK1 cause severe auto-inflammation. As an additional layer of complexity, although the deletion of Tradd rescues Ripk1−/−Ripk3−/−

embryos from perinatal lethality, triple knockout mice die postnatally [1421, 1422]. Moreover, TRADD deficiency does not prevent the embryonic lethality caused by the loss of
FADD [1422]. Additional studies confirm the importance of the inter-connectivity between multiple RCD pathways. Mice with a mutation that prevents auto-proteolytic
activation of CASP8 develop normally [1423], but akin to complete loss of CASP8, mutations in the CASP8 catalytic site result in embryonic lethality around E10.5 due to aberrant
necroptosis, phenotype that can be delayed (but not prevented) by Mlkl deletion [1419, 1424]. While the genetic ablation of Mlkl or Mlkl plus Fadd prevent E10.5 embryonic
lethality in these mice, the compound mutant mice die soon after birth, likely due to aberrant inflammation and pyroptosis [1425, 1426]. These observations point to the central
role for CASP8 in the regulation of multiple RCD variants and inflammatory processes [10].
The tissue-specific deletion of Fadd or Casp8 in mouse endothelial cells results in an embryonic lethal phenotype that resembles that of germline Fadd or Casp8 deletion

[596, 1427]. Conversely, the absence of FADD in cardiomyocytes or cardiac progenitor cells appears to have no impact on embryonic development [1427]. Again, abrogation of
necroptosis rescued the lethal phenotype of endothelial cell specific Fadd or Casp8 deletion [1427], lending additional support to inhibitory role of FADD and CASP8 in
necroptotic RCD. FADD, CASP and c-FLIP have also been implicated in hematopoietic homeostasis. However, the abrogation of FADD in specific immune cell subsets in mice via
distinct experimental approaches, such as conditional gene deletion, injection of Fadd−/− embryonic stem cells into Rag1−/− blastocysts or transgenic expression of a
dominant-negative variant of FADD, does not drive lymphoproliferative disorders. Instead, FADD appears to be critical for the proliferation and/or development of T
lymphocytes [955, 1428–1437] and B cells [1438], most likely by preventing necroptosis through activation of CASP8. Similar conclusions were derived from the analysis of mice
with lymphocyte-specific ablation of Casp8 or Cflar [1439–1444]. A role for CASP8 in T cell proliferation has also emerged from the realization of the anti-proliferative effects of
caspase inhibitors [1445]. The T cell-specific deletion of Casp8 attenuates autoimmunity and improves the survival of mice lacking the BH3-only protein BCL2 like 11 (BCL2L11,
best known as BIM) by limiting T cell proliferation and survival [1446]. Apparently at odds with these findings, the conditional deletion of Casp8 in T cells has also been
associated with an age-dependent, lymphoproliferative immune disorder resembling the condition of patients with CASP8 mutations [1447]. Whether mouse genetic
background or other contextual variables (e.g., the mouse microbiota) underlie such apparent discrepancies remains to be elucidated.
The conditional loss of the functions of FADD or CASP8 also revealed a role for these proteins in early hematopoiesis, which may relate to their ability to promote the

proliferation and differentiation of hematopoietic stem and progenitor cells by preventing necroptosis [596, 1448, 1449]. Conditional deletion of Fadd in myeloid cells resulted
in increased myeloid and B cell populations coupled to activation of inflammatory responses [1450]. Along similar lines, the macrophage-restricted deletion of Casp8 induced a
mild systemic inflammatory disease potentially linked to altered macrophage polarization [1451, 1452], while the DC-specific deletion of the genes encoding c-FLIP or CASP8
elicited splenomegaly, inflammatory responses and autoimmune disorders [1453–1455]. These effects all seem to be unrelated to the pro-apoptotic functions of FADD and
CASP8 but reflect their ability to prevent necroptosis [51, 52, 1434, 1450, 1451, 1456–1458]. Corroborating these findings, loss-of-function mutations in FADD [1459–1462],
CASP8 or CASP10 [1463–1465] and TRADD [1466] have been associated with ALPS-like syndromes and hematological diseases in humans. Of note, patients with ALPS bearing
mutations in FADD or CASP8 but not ALPS patients with mutations in FAS or FASLG also exhibit immunodeficiency coupled with lymphocytic infiltrations in multiple organs,
granulomas and/or inflammatory bowel disease [1459, 1463, 1467–1469].
Tissue-specific deletion of Fadd, Casp8 and Cflar has also revealed a role for these proteins in the homeostasis of the liver, skin and intestine, although severity of the

phenotype varies quite considerably, ranging from mild inflammatory responses to embryonic or early postnatal lethality, again likely due to unleashed necroptosis. Conditional
deletion of Cflar (resulting in lack of c-FLIP) in intestinal epithelial cells, hepatocytes or keratinocytes resulted in embryonic or perinatal lethality due to aberrant activation of cell
death [1470–1473]. The inducible deletion of Cflar from the intestinal epithelium of adult mice caused severe inflammation that was often fatal [1473]. These findings are in line
with the crucial role of c-FLIP as an inhibitor of necroptosis [1354, 1474]. Along similar lines, Fadd deletion in epidermal keratinocytes or intestinal epithelial cells causes severe
chronic inflammation due to the induction of aberrant necroptosis [1475–1481]. Accordingly, the removal of FADD (or CASP8) in intestinal epithelial cells resulted in chronic
inflammatory colitis and ileitis, which was prevented by concomitant deletion of Ripk3 or Mklk [1424, 1426, 1476, 1478, 1481, 1482]. In one of these studies, acute deletion of
Casp8 in the gut of adult mice resulted in enterocyte death, leading to disruption of tissue homeostasis, sepsis and death [1481]. In this context, CASP8-deficient enterocytes
displayed decreased in vivo survival and migration potential [1483]. Specific deletion of Casp8 in endothelial cells results in small intestinal hemorrhage and bowel
inflammation, suggesting a key role of CASP8 in vascular homeostasis in the small intestine [1484]. Loss of CASP8 catalytic activity specifically in intestinal epithelial cells
induced intestinal inflammation similar to absence of CASP8 in the intestinal epithelium [1424]. This intestinal phenotype was aggravated by Mlkl deletion, resulting in
premature death dependent on the induction of inflammatory responses and pyroptosis [1424]. As an added layer of complexity, deletion of tumor necrosis factor (Tnf) or
Tnfrsf1a (encoding TNF-R1) attenuated colitis, but not ileitis, in mice with an intestinal epithelial cell-specific deletion of Fadd or Casp8 [1473, 1476]. A recent study indicated that
this effect may also involve the aberrant activation of pyroptosis. Indeed, the CASP8-dependent activation of gasdermin D (GSDMD) appears to promote ileitis in mice with
FADD-deficient intestinal epithelial cells [1485]. These results are in line with the crucial involvement of CASP8 and FADD in the activation of inflammation [63, 1486] and
indicate that the FADD-CASP8 axis regulates tissue homeostasis by balancing apoptosis, necroptosis, pyroptosis and inflammation.
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Tnfrsf1a (encoding TNF-R1) or inhibition of CASP8 with Z-IETD-FMK
inhibited the degeneration of retinal ganglion cells [587, 588].
Moreover, the absence of TNF-R1 (but not the absence of TNF-R2)
attenuated neurodegeneration in a mouse model of retinal
ischemia, despite neuronal survival not being improved [589].
Along similar lines, deletion of Tnf [590] as well as inhibition of FAS
[591] or TNF [592, 593] protected mice against retinal ganglion cell
death in a model of glaucoma. Similar neuroprotective effects
were documented for the conditional deletion of Casp8 in
astrocytes or intra-ocular Z-IETD-FMK administration [594]. In this
context, the conditional inducible ablation of Casp8 from
endothelial cells reduced postnatal retinal angiogenesis and
pathological neovascularization in a mouse model of oxygen-
induced retinopathy [595] (note that ablation of Casp8 in
endothelial cells is embryonically lethal [596]; see Box 7). More-
over, CASP8 inhibition could prevent experimental neovascular-
ization of the cornea [597]. Finally, TRAIL neutralization protected
the retinal tissue from damage associated with AD in a mouse
model [598].
Experimental models of ischemic stroke and hemorrhage

revealed a role of DR signaling in the pathophysiology of brain
damage. In models of focal ischemia induced by middle cerebral
artery occlusion, lpr/lpr as well as gld/gld mice (deficient for FAS or
FASL, respectively) displayed decreased infarct size and neuroin-
flammation [599–601]. Robust neuroprotection was also observed
in lpr/lpr mice subjected to neonatal hypoxia-ischemia [602], as
well as in lpr/lpr and gld/gld mice subjected to hyperoxia [603].
Accordingly, inhibition of FAS or FASL exerted neuroprotective
effects in an experimental murine model of stroke [604, 605].
Likewise, TRAIL neutralization limited brain injury in rats and mice
subjected to middle cerebral artery occlusion [601, 606] or
transient ischemia-reperfusion [607]. Moreover, despite some
contention in this respect [608–611], abrogation of TNF/TNF-
R1 signaling by genetic or pharmacological means prevented
brain injury in rodent models of intracerebral hemorrhage [612]
and focal cerebral ischemia [613–621]. Further corroborating a
pathogenic role of DR signaling, transgene-driven expression of
dominant-negative CASP8 mutant and of FADD-like apoptosis

regulator (CFLAR; best known as c-FLIP) attenuated brain damage
after middle cerebral artery occlusion [622, 623]. This is in line with
the ability of CASP8 to drive BID activation upon focal cerebral
ischemia [196], as well as with the neuroprotective effects
afforded by pharmacological CASP8 inhibitors seen in mice
experiencing subarachnoid hemorrhage [624] or mice and rats
subjected to focal cerebral ischemia [625, 626]. Importantly, FADD
and CASP8 expression and/or activation have also been associated
with ischemic stroke in humans [627, 628].
Perhaps surprisingly, TNF appears to protect mice against

experimental seizures, not only through the engagement of TNF-
R2 but also through TNF-R1 signaling [611, 629–634] and
consequent modulation of NF-κB [635, 636]. Conversely, lpr/lpr
mice [637], mice with neuron-specific deletion of the gene
encoding TNF-R1 [638] as well as mice and rats treated with Z-
IETD-FMK [585, 639, 640] display reduced sensitivity to experi-
mental seizures, pointing to a detrimental role for apoptotic DR
signaling in this condition. The precise mechanisms through
which TNF-R1 signaling promotes anti-apoptotic and anti-
inflammatory effects in the context of excitotoxic insults remain
unclear.

Cardiovascular disorders
Data from preclinical models of ischemic and non-ischemic
conditions indicate the involvement of FASL, TRAIL and TNF in
the onset and progression of myocardial infarction with reperfu-
sion and other heart diseases. In particular, both lpr/lpr mice
(lacking FAS), as well as hearts isolated from these animals,
displayed reduced cardiomyocyte death and infarct area upon
experimental ischemia-reperfusion [641, 642]. Nonetheless, no
protection against ischemia-reperfusion was found in hearts from
Fas−/− or Fasl−/− mice [643]. However, supporting the therapeutic
potential of the inhibition of DR signaling for the management of
myocardial infarction, FASL-neutralizing antibodies conferred
cardioprotection, limited inflammation, and improved cardiac
function in mice experiencing cardiac ischemia-reperfusion
[644–646]. Likewise, TRAIL blockade protected monkeys, pigs,
and rats against experimental infarction by increasing

Fig. 5 Impact of extrinsic apoptosis players on neurological disorders. Death receptor-induced apoptosis is directly or indirectly involved in
the pathogenesis of multiple neurological disorders, including neurodegenerative diseases, in brain damage due to traumatic injury or
neurotoxicity as well as in neuromuscular and retinal disorders.
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cardiomyocyte survival and reducing inflammation [647]. This is in
line with the predictive value of TRAIL levels as a biomarker for
heart failure in patients [648, 649]. Of note, TRAIL has also been
reported to exert apoptosis-independent roles in cardiomyocyte
growth and heart hypertrophy [650], as well as in angiogenesis
and neovascularization upon experimental hindlimb ischemia
[651]. Similar to neurological conditions, while TNF-R2 signaling
appears to exert cardioprotective effects, the engagement of TNF-
R1 drives cardiac hypertrophy, inflammation and cardiomyocyte
loss [652–659]. The opposite outcome of TNF-R1 vs TNF-R2
signaling has been invoked to explain the clinical failure of TNF
blocking agents in patients with chronic heart failure [660],
despite encouraging preliminary findings [661, 662], as well as
the cardiotoxic effects associated with the use of TNF blockers in
patients with rheumatoid arthritis [663]. Confirming the involve-
ment of extrinsic apoptosis in cardiac diseases, cardiomyocyte-
specific deletion of Fadd in mice improved cardiomyocyte survival
and heart function after ischemia/reperfusion [664]. Accordingly,
haploinsufficiency of the gene encoding c-FLIP increased infarct
area and aggravated cardiac dysfunction in mice experiencing
myocardial infarction, while the cardiomyocyte-specific over-
expression of c-FLIP attenuated pathology [665, 666]. Cardiopro-
tection has also been observed in a mouse model of ischemia/
reperfusion upon shRNA-mediated CASP8 depletion [667] or
treatment with the CASP8 inhibitor Q-LETD-OPh [668]. Moreover,
transplantation of Casp8−/− cells did not increase neovasculariza-
tion in wild-type mice subjected to hindlimb ischemia [669], in line
with a crucial role of CASP8 in the maintenance of endothelia in
healthy conditions [596] (see Box 7). That said, combined
pharmacological inhibition of apoptosis and necroptosis exerted
greater cardioprotection than monotherapy in myocardial
ischemia-reperfusion injury [670], suggesting the involvement of
multiple RCD pathways in cardiovascular disorders.
FASL neutralization has been reported to improve cardiomyo-

cyte survival and cardiac function in a model of cirrhotic
cardiomyopathy [671]. Conversely, a cardioprotective effect of
TRAIL and TNF was observed in mice developing cardiomyopathy
upon the deletion of apolipoprotein E (ApoE) [672] or Des [673],
respectively. Both FASL deficiency and administration of CASP8
inhibitors decrease tissue inflammation and aneurysm formation
in mice subjected to CaCl2-induced abdominal aortic aneurysms
[674]. A potential role of extrinsic apoptosis in gradual cardio-
myocyte attrition during heart failure with reduced fraction has
also been reported in a transgenic mouse model of inducible
CASP8 overexpression [675]. Concerning TNF receptors, deletion
of Tnfrsf1b resulted in increased cardiomyocyte death and
hypertrophy induced by isoproterenol [676]. In contrast, deletion
of Tnfrsf1a (but not Tnfrsf1b) was shown to be cardioprotective in
murine models of vascular thrombosis [677], and heart failure
based on angiotensin II administration [678]. Similar cardioprotec-
tion in this model has been reported after silencing of Tnfrsf1a
[679]. In line with these findings, Cflar+/- mice (which lack one
copy of the gene encoding c-FLIP) displayed increased sensitivity
to cardiac injury upon angiotensin II administration [680].
FASL and TNF have also been reported to promote cardiac

maladaptation and hypertrophy in models of pressure overload
[681–685]. Consistent with this notion, TNF inhibition [686] or
transgenic c-FLIP overexpression [687] limited experimental heart
hypertrophy driven by hypertension. Moreover, treatment with
etanercept reduced cardiac fibrosis in a diet-induced mouse model
of obesity [688]. Conversely, both FAS and TNF receptor super-
family member 10b (TNFRSF10B, best known as TRAIL-R2 or
mTRAIL-R) were reported to protect mice against atherosclerosis, at
least in part by modulating TNF superfamily member 11 (TNFSF11,
best known as RANKL) signaling [689–693], while the impact of
TNF on experimental atherosclerosis remains a matter of debate
[694–697]. Finally, pharmacological inhibition of TNF prevented
cardiotoxicity induced by doxorubicin in mice [698–700]

Renal conditions
FASL, TNF and TRAIL have all been implicated in the development
of acute kidney injury by driving the activation of both extrinsic
apoptosis and inflammation. Loss-of-function mutations in Fasl,
inhibition or depletion of FASL [701–703] as well as Fas [704] or
Tnf [705] silencing, TNF neutralization [706, 707], or TRAIL
blockade [708] exerted nephron-protective effects in mouse
models of renal ischemia/reperfusion. Generation of chimeric
mice reconstituted with spleen cells from gld/gld mice (lacking
FASL) revealed a particular impact of FASL signaling in the
hematopoietic compartment on ischemic acute kidney injury
[702]. However, some functional overlap between DRs has also
been reported. Indeed, while one study suggested that FASL
neutralization was more effective than Tnfrsf1a deletion (leading
to lack of TNF-R1) in preventing renal inflammation and cell death
after acute kidney injury [701], another study reported that the
neutralization of TNF but not FASL prevented tubular apoptosis
and renal atrophy upon ischemia/reperfusion injury [706].
TRAIL blockade reportedly protects mice against renal damage

after full-thickness scald burn, burn of all layers of the skin
including epidermis and dermis [709], while TNF inhibition limited
nephrotoxicity in mice treated with cisplatin [710], and acute
tubulointerstitial nephritis in cancer patients administered with
immune checkpoint inhibitors [711]. TNF neutralization also
reduces tubulointerstitial fibrosis and renal injury in a mouse
model of unilateral urethral obstruction [712, 713]. Contesting
these findings, Tnf−/− mice showed increased fibrosis at later
stages of ureteral obstruction [714]. This apparent discrepancy
may reflect the distinct contribution of TNF-R1 and TNF-R2
signaling to different stages of renal fibrosis driven by urethral
obstruction [715]. Conversely, experiments with lpr/lpr mice
subjected to unilateral urethral ligation demonstrated a limited
impact of FAS signaling to pathology [716]. The involvement of
CASP8 in acute kidney injury is debated. While Casp8 and Casp3
deletion protected kidneys against damage induced by renal
ischemia, increasing the survival of these mice [704, 717], such a
nephroprotective effect was not observed after treatment with the
broad-spectrum caspase inhibitor Z-VAD-FMK [718], potentially
due to caspase inhibition promoting necroptosis after DR
stimulation. In line with this notion, chemical inhibitors of
receptor-interacting serine/threonine kinase 1 (RIPK1) as well as
deletion of Ripk3 exerted robust nephroprotection in mouse
models of ischemia/reperfusion [718, 719]. However, combined
deletion of Casp8 and Ripk3 did not extend the beneficial effects
of the genetic loss of Ripk3 and was associated with a more
pronounced demise of tubular epithelial cells by intrinsic
apoptosis [720].
DR activation has also been associated with chronic kidney

disorders, but evidence involving CASP8-mediated apoptotic
death is lacking. The conditional deletion of Tnf from macro-
phages [721], as well as the administration of TNF inhibitors
[721–724], were reported to mediate beneficial effects in murine
models of diabetic nephropathy. Conversely, the impact of TRAIL
on this renal condition remains unclear [725–727], like that of TNF
on polycystic kidney disease [728, 729]. As for glomerular
inflammation, gld/gld mice (lacking FASL), as well as wild-type
mice treated with TNF blockers, displayed reduced tissue damage
during crescentic glomerulonephritis [730–733]. Indeed, balanced
TNF-R1 and TNF-R2 signaling appeared to be critical for mice to
resist experimentally induced glomerulonephritis [734–739]. This
may explain apparently discrepant findings obtained with TNF-
targeting measures.

Hepatic disorders
TNF-deficient mice, as well as rodents treated with TNF inhibitors,
present with attenuated liver injury and apoptosis upon experi-
mental ischemia/reperfusion, resulting in improved survival
[740–742]. Of note, this beneficial effect cannot always be
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recapitulated in lpr/lpr and gld/gld mice, lacking FAS or FASL,
respectively [742]. Similarly, FAS inhibition, FASL neutralization, as
well as administration of low-dose TNF (as a pre-conditioning
maneuver) have been shown to protect the liver against ischemia/
reperfusion injury by reducing hepatic cell apoptosis and/or
inflammation [743–745]. Protection of the liver from ischemia/
reperfusion has also been observed in mice deficient for TRAIL
[746], as well as upon the conditional knockdown of CASP8 or
CASP3, the combined deletion of Casp8 and Ripk3, and the
transgenic expression of a BID mutant that cannot be cleaved by
CASP8 [283, 747, 748].
Lpr/lpr mice [749], Tnfsf10−/− mice (which lack TRAIL) [286], as

well as animals exposed to TRAIL blockers [750], were protected
against acetaminophen-induced liver damage, in line with the
notion that FAS signaling and TRAIL receptor exacerbate
acetaminophen hepatotoxicity [751]. Along similar lines, the
hepatocyte-specific deletion of the gene encoding c-FLIP
enhances liver injury and fibrosis induced by treatment with
CCl4 or thioacetamide [752]. Moreover, a large body of evidence
demonstrates that the abrogation of extrinsic apoptosis protects
mice against fulminant hepatitis and hemorrhage in the liver
induced by FASL and TNF. This has been achieved with strategies
including (but not limited to) FADD blockade [753, 754], Casp8
[596, 755, 756] or Fadd [757] ablation, and Casp8 silencing [758].
Accordingly, hepatocyte-specific deletion of Cflar augments liver
damage in mouse model of acute hepatic injury [759]. Consistent
with the notion that engagement of the intrinsic apoptotic
pathway is critical for DR induced cell killing in the liver, Bid−/−

mice resist fatal hepatitis induced by FAS or TNF
[278, 282, 760, 761], a protection that is enhanced by the con-
comitant loss of BIM or CASP8 [282]. Conditional deletion of the
genes encoding BAX, BAK1 or PUMA, as well as overexpression of
BCL2, can also protect hepatocytes from FAS-induced killing
[762–765]. The impact of loss of BAD on TNF-induced hepatitis is
controversial [766, 767]. Mice deficient for CASP3 or treated with
CASP3 or CASP8 inhibitors have also been shown to be less
sensitive to FAS-induced hepatocyte apoptosis [768, 769]. Of note,
some degree of functional compensation between caspases and
alternative mechanisms of caspase activation have emerged from
studies in hepatocytes responding to FAS agonists [770]. Finally,
FAS and TNF-R1 signaling, as well as FADD activation, are involved
in liver regeneration following partial hepatectomy [771–775]. In
this context, the liver-specific deletion of Casp8 resulted in
dysregulated hepatocyte proliferation upon partial hepatectomy
coupled to the initiation of an inflammatory response [776]. It has
been suggested that CASP8 modulates liver regeneration by
balancing NF-κB activation and necroptosis rather than by
inducing apoptosis [777].
Gld/gld mice (lacking FASL) chronically fed with ethanol display

reduced liver injury, steatosis and inflammation as compared to
wild-type mice, but exhibit signs of incipient fibrosis [778]. Some
degree of protection against alcohol-induced liver damage has
also been documented in mice deficient for the apoptosis-
inducing TRAIL receptor mTRAIL-R [779] or TNF-R1 (but not TNF-
R2) [780], as well as in mice receiving a TRAIL-neutralizing
antibody [781]. Accordingly, the hepatocyte-specific ablation of
Casp8 limited hepatic steatosis in murine models of ethanol
administration, although it failed to prevent apoptotic RCD [782].
Conversely, apoptosis driven in hepatocytes by chronic ethanol
exposure could be abolished by systemic inhibition of CASP3 with
Ac-DEVD-FMK [783].
The liver-restricted overexpression of FAS induces hepatic

steatosis and insulin resistance in mice subjected to a high-fat
diet (HFD) [784]. In the same experimental setting, hepatoprotec-
tion was observed with the hepatocyte-specific ablation of Fas or
germline deletion of Bid [784]. Moreover, Tnf deletion [785, 786],
whole-body deletion of Tnfrsf1a (encoding TNF-R1) alone or in
combination with the gene encoding TNF-R2 [787, 788] as well as

inhibition of TNF [789–791] or TNF-R1 [792] significantly reduced
hepatic steatosis, fibrosis, damage, and metabolic alterations in
several diet-induced or genetic models of non-alcoholic fatty liver
disease (NAFLD). In apparent contrast with these findings, the
hepatocyte-specific deletion of Tnfrsf1a failed to protect mice from
diet-driven NASH [793]. Moreover, Tnfrsf1a deletion accelerated
the progression of steatosis to steatohepatitis in mice on a HFD
[794]. Taken together, these findings underscore the pleiotropic
and context-dependent effects of TNF/TNF-R signaling in NAFLD.
The impact of TRAIL on NAFLD is also debated. Indeed, contrasting
evidence from experiments with mice deficient for TRAIL or
treated with recombinant TRAIL suggests either a detrimental or a
beneficial role to TRAIL in NAFLD induced by HFD [795–797].
The absence of mTRAIL-R promoted hepatic inflammation and

fibrosis in a genetic mouse model of cholestasis [798]. Similarly,
lpr/lpr mice lacking FAS [799–801] as well as TNF-deficient
[802, 803] and TRAIL-deficient [804, 805] mice displayed reduced
hepatocyte apoptosis and fibrogenesis after experimental choles-
tasis induced by bile duct ligation. In line with these results,
expression of a phosphorylated FADD mimicking mutant attenu-
ated HFD-induced hepatomegaly and steatosis [806]. Experiments
based on the hepatocyte-specific deletion of Cflar (encoding c-
FLIP) or transgenic overexpression of c-FLIP revealed a role for this
modulator of CASP8 activation as a suppressor of hepatic steatosis
and inflammation induced by HFD [807]. Moreover, the
hepatocyte-specific deletion of Cflar in mice resulted in enhanced
cholestatic liver injury and inflammatory responses upon bile duct
ligation [808]. Similarly, the hepatocyte-specific deletion of Casp8
protected mice against liver injury in models of cholestatic
hepatitis caused by the administration of 3,5-diethoxycarbonyl-
1,4-dihydrocollidine [809], as well as in models of steatosis caused
by the feeding of a methionine- and choline-deficient diet [810]. A
comparable hepatoprotection against obstructive cholestasis has
been documented in mice with hepatocyte-specific Casp8
deletion [811]. Furthermore, liver parenchymal cell-specific abla-
tion of the gene encoding FADD prevented RIPK1-dependent but
not TNF-R1-, FAS-, and TRAIL-R-dependent hepatocyte apoptosis,
chronic liver inflammation and hepato-carcinogenesis in mice
with liver-specific deficiency in inhibitor of kappaB kinase gamma
(IKBKG, best known as NEMO or IKKgamma) [812, 813]. Finally,
decreased BID cleavage has been associated with attenuated liver
injury in mouse models of chronic cholestasis [814].

Hematologic malignancies and solid cancers
Human patients with autoimmune lymphoproliferative syndrome
(ALPS) caused by defects in FAS are known to show abnormally
increased predisposition to lymphoma development [815].
Accordingly, FAS-deficient lpr/lpr mice develop a plasmacytoma-
like disease in advanced age [816]. TRAIL also seems to exert a
tumor suppressive function in lymphomagenesis. The ablation of
the gene encoding mTRAIL-R accelerated the development of
lymphoma in Eμ-Myc transgenic mice [817]. Moreover, deficiency
in TRAIL (but not in mTRAIL-R) promoted the development of
lymphoma and other tumors in mice with haploinsufficiency for
Trp53 [818, 819]. Interestingly, mice engineered to express
exclusively either membrane-bound or secreted FASL showed an
increased incidence of spontaneous tumor formation when
expressing only soluble FASL, which is unable to induce FAS-
mediated apoptosis but may exert pro-inflammatory effects [820].
The role of FAS and TRAIL-R in the development of colorectal

cancer is controversial. For instance, the loss of FAS was reported
to enhance Apc mutation-induced but not inflammation-induced
intestinal tumorigenesis [821–823]. Along similar lines, while the
ablation of Tnfrsf10b (leading to lack of mTRAIL-R) in mice did not
impact tumorigenesis induced by Apc mutations [819], the
administration of TRAIL suppressed tumorigenesis in a mouse
model of colitis-associated colon cancer [824]. Despite some
contention in this respect [825–828], TNF seems to contribute to
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the development of colorectal cancer, although whether such
effects depend on the apoptotic function of TNF needs to be
formally established. The administration of TNF blockers [829–833]
or ablation of Tnf [834] or Tnfrsf1a [834, 835] limits colorectal
oncogenesis, as shown in animal models of colorectal cancer
induced by colitis, chemicals, or mutations in Apc. Finally, loss of
the dependence receptor DCC netrin 1 receptor (Dcc) accelerates
cancer progression in a mouse model of Apc mutation-driven
colorectal oncogenesis [836]. A tumor suppressor role in colorectal
cancer has also been described for the dependence neurotrophic
tyrosine kinase, receptor, type 3 (NTRK3, best known as TRKC)
[837]. Of note, the association between gain of dependence
receptors ligands (e.g., NTN1) with tumor progression [838], may
make their targeting a promising anti-cancer approach [839].
With regard to other tumor types, both TNF-R1 and FAS display

a pro-oncogenic role in hepatic and ovarian oncogenesis.
Specifically, conditional deletion of Fas in hepatocytes delays
carcinogen-driven hepatocarcinogenesis, while Fas ablation sup-
presses the development of ovarian tumors in phosphatase and
tensin homolog (PTEN)-deficient mice bearing mutant Kirsten rat
sarcoma viral oncogene (Kras) [840]. Likewise, TNF neutralization
limits the onset of hepatic cancer driven by experimentally
induced cholestatic hepatitis [841]. Consistent with these findings,
Casp8−/− mice are protected against the development of
inflammation-driven liver cancer [755]. Hyperactivation of CASP8
in the context of RIPK1 and TNF receptor-associated factor 2
(TRAF2) deficiency has indeed been implicated in the develop-
ment of hepatocellular carcinoma [842], although such effects
may be independent of apoptosis induction [843, 844]. In contrast,
recent studies show a tumor-suppressive function of CASP8 in the
liver and certain other tissues [845–848]. In particular, there is
evidence of a role of CAPS8 in early tumorigenesis (but not tumor
progression) exerted by modulating the DNA damage response
[845] or the level of chromosomal instability (CIN) [846].
Consistent with a pro-tumorigenic effect of TNF, the ablation of

Tnf or Tnfrsf1a or the blockade of TNF in mice conferred protection
against carcinogen-induced skin oncogenesis [849–854]. In con-
trast, the impact of genetic and pharmacological inhibition of TNF
in UVB-induced skin cancer is debated [855, 856]. Of note, the
comparison between TNF-R1- vs. TNF-R2-deficient mice revealed a
primary role of TNF-R1 in chemically induced skin oncogenesis
[851]. Furthermore, TNF-R1 deficiency suppresses the develop-
ment of skin cancer induced by NF-κB inhibition [857]. A similar
role for TNF-R1 in supporting tumorigenesis was described in
murine models of N-methyl-N-nitrosourea(NMU)/testosterone-
induced prostate cancer [858] and methylcholanthrene (MCA)-
induced fibrosarcoma [859]. As opposed to TNF-R1, TNF-R2 shows
tumor-suppressive functions in mouse models of tumorigenesis,
such as the development of fibrosarcoma triggered by MCA [859],
and mammary oncogenesis induced by transgenic expression of
wingless-type MMTV integration site family, member 1 (Wnt1)
[860]. Moreover, the absence of TNF impairs tumor growth in
HER2-driven mammary tumorigenesis in mice [861], and TNF
neutralization suppresses chemically induced oral [862] and
pulmonary [863] tumorigenesis. Conversely, TNF overexpression
in the airway epithelium enhanced mutant Kras-driven lung
oncogenesis [864].
Pre-clinical evidence points to some tumor type-specificity for

the role of TRAIL and its receptor(s) in tumorigenesis. Transgenic
expression of TRAIL in the skin delays chemically induced
carcinogenesis [865]. This effect can be recapitulated in mice
lacking TRADD [866] but, curiously, not in mTRAIL-R-deficient mice
[867], with the latter actually showing enhanced lymph node
involvement. In support of an anti-tumor function for the TRAIL/
TRAIL-R system, TRAIL-deficient mice as well as mice treated with
TRAIL blockers displayed increased susceptibility to MCA-induced
fibrosarcoma [868, 869]. In a recent study, administration of
recombinant TRAIL coupled to inhibition of cyclin-dependent

kinase 9 (CDK9) was effective in a wide range of cancers [870]. Yet
in contrast to this and in support of a tumor-supportive role of
endogenous TRAIL, deficiency in mTRAIL-R limits tumor growth
and improves survival in mouse models of mutant Kras-driven
lung and pancreatic tumorigenesis [871]. Moreover, malignant
cell-specific ablation of genes encoding mTRAIL-R or FADD
reduced lung cancer growth and tumor-promoting inflammation
[872], while systemic ablation of Tnfsf10 (leading to lack of TRAIL)
had no impact on HER2-driven mammary oncogenesis [818].
Interestingly, KRAS mutations have been shown to promote the
switch of FAS and TRAIL receptors from a predominantly death-
inducing into a metastasis promoting function [873]. Since TRAIL
as well as FASL can trigger either apoptosis, necroptosis,
inflammation or pro-invasive signaling, cancer-specific prefer-
ences for one or the other of these outputs are likely accounts for
the apparently discrepant effects observed in various cancer
models.

Autoimmune and inflammatory diseases
The interpretation of results on the impact of extrinsic apoptosis in
the etiology of autoimmune and inflammatory disease should
consider the fact that DR engagement can also result in the
initiation of an inflammatory response not related to RCD (see
Box 6 and Box 7), meaning that DR deregulation may lead to
inflammatory diseases independently of the induction of extrinsic
apoptosis. The notion that defects in DR signaling can cause
autoimmune disease is supported by the observation that lpr/lpr
as well as gld/gld mutant mice, deficient for FAS or FASL,
respectively, as well as humans with defects in FAS develop an
SLE-like autoimmune disease accompanied by lymphadenopathy,
splenomegaly and hepatomegaly [874, 875]. A critical role for loss
of CASP8-mediated apoptosis in this disease was demonstrated by
the observation that a similar condition is seen in mice lacking
Casp8 and also Ripk3 or Mlkl (to prevent necroptosis) [51, 52, 876].
However, the roles of DRs in autoimmune disease are complex.
TRAIL/TRAIL-R signaling was reported to protect mice and rats
against autoimmune encephalomyelitis [877–882], autoimmune
arthritis [883–887] and type I diabetes [690, 883, 888–891].
Perhaps surprisingly, the presence of FAS and TNF-R1 is associated
with the development of certain autoimmune conditions. Indeed,
both lpr/lpr lacking FAS and gld/gld mice lacking FASL, as well as
TNF-R1-deficient mice, appear to be protected against experi-
mental encephalomyelitis [892–895]. Similar results were obtained
in mice with Tnf deletion in monocytes and macrophages, but not
in mice lacking TNF in microglial cells [896]. Protection against
experimentally induced autoimmune conditions were also found
in mice subjected to neutralization of TNF or TNF-R1 inhibition
[897–904]. FAS-independent mechanisms also appear to support
the pathogenesis of experimental autoimmune encephalomyelitis
[892, 905], with some studies pointing to a protective role for FAS-
induced RCD amongst lymphocytes in this disease model [906].
Moreover, FAS engagement was reported to differentially
contribute to the initiation vs. the recovery from autoimmune
encephalomyelitis [907, 908]. In particular, FASL expression in
astrocytes appears to promote recovery from experimental
autoimmune encephalomyelitis, as shown by persisting demyeli-
nation and paralysis of mice with an astrocyte restricted deletion
of Fasl [907]. Finally, at least in some studies, Tnf deletion or TNF
neutralization failed to attenuate the severity of autoimmune
encephalomyelitis once the disease was established [909, 910].
Mice with defects in FASL or TNF signaling are protected against

arthritis induced by immunization with xenogeneic type II
collagen in complete Freund’s adjuvant [911–914]. Similar
protection was observed in mice transplanted with mesenchymal
stem cells engineered to express TNF inhibitors [915]. In keeping
with this evidence, the myeloid cell specific deletion of Fas or the
administration of antibodies that target both TNF and chemokine
(C-X-C motif) ligand 10 (CXCL10) resulted in accelerated disease
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resolution in a model of rheumatoid arthritis induced by K/BxN
serum transfer [916, 917]. Genetic loss of Fas or pharmacological
inhibition of FAS conferred protection against autoimmune
diabetes in specific animal models, including NOD mice
[918–923]. However, whether the impact of FAS on the
pathogenesis of autoimmune diabetes depends on its role in
the death of pancreatic β-cell [918] or its role in inflammation (e.g.,
in the context of insulitis) remains a matter of debate [921]. Other
studies found no role for FAS in diabetes [924–926]. TNF
neutralization is effective only in a limited sub-group of patients
with inflammatory bowel disease [927, 928]. This is in line with the
finding that deletion of the gene encoding TNF-R1 exacerbated
colitis in IL10-deficient mice [929]. A similar protection was
ascribed to TRAIL/TRAIL-R signaling in a dextran sodium sulfate-
induced model of colitis [930, 931]. Finally, it has been suggested
that FASL and TNF signaling contribute to the pathogenesis of
acute pancreatitis [932, 933]. A similar detrimental role has been
proposed for TNF in autoimmune neuritis [934–936], although
there is also some contention [937], as well as in spondylarthritis
[938] and psoriasis [939]. Conversely, mTRAIL-R appears to
mediate beneficial effects in autoimmune thyroiditis [940–944]
At least in part, these findings reflect the pleiotropic effects of
whole-body inhibition of DRs signaling, which concomitantly
impacts both the target (i.e., parenchymal) and the perpetrator
(i.e., immune cells) of damage.
Some experimental evidence links CASP8 activation to auto-

immune and inflammatory disorders. In a recent study using a
chemically-induced model of intestinal inflammation, the selective
absence of CASP8 in intestinal epithelial cells decreased their
survival, also resulting in gut barrier dysfunction and chronic
inflammation [945]. Of note, in this setting, inflammation can
occur via a mechanism independent of the induction of
necroptosis (which is inhibited by CASP8) and involving
the activation of RIPK1 and RNA sensor RIG-I (RIGI; best known
as RIG-I) [946, 947]. Along similar lines, chronic proliferative
dermatitis in mice deficient for components of the linear ubiquitin
chain assembly complex (LUBAC) has been associated with an
increased keratinocyte apoptosis mediated by the engagement of
TNF-R1 and the activation of the RIPK1- and/or FADD-CASP8
cascade [948–952]. Importantly, in this mouse model of an
inflammatory disease the relevant contributions of cell death
versus inflammatory signalling from TNF-R1 were genetically
dissected demonstrating that excess apoptosis/necroptosis drove
different elements of the inflammatory response depending on
the affected tissue. In a mouse model of autoimmune encepha-
lomyelitis, the oligodendrocyte-specific deletion of Fadd reduced
demyelination and this was accompanied by limited immune cell
infiltration in the spinal cord [953]. Likewise, experimental
autoimmune encephalomyelitis could be prevented by transgenic
expression of FADD-DN (dominant negative form of FADD) in
T cells [954], but it must be noted that this reflects the death
of activated T cells [955]. Therefore, this protective effect is due to
the removal of T cells that would cause tissue destruction.
Activation of CASP8 was identified in the microglia of patients
with multiple sclerosis [956]. Moreover, transgenic expression of
FADD-DN or Casp8 ablation in pancreatic β cells protects mice
from autoimmune diabetes [957]. Finally, BID appears to be
dispensable for the development of diabetes in NOD mice [958].
There are also contrasting observations on the impact of DR-

induced apoptosis on the development and resolution of auto-
immune rheumatoid arthritis. The absence of c-FLIP (due to Cflar
deletion) increased disease severity but limited disease resolution in
mice experiencing arthritis upon intraperitoneal injection of serum
from K/BxN mice [959]. In the same model, deletion of Casp8 in all
myeloid cells enhanced disease resolution, while deletion of Casp8
selectively in DCs accelerated disease onset [960]. Further experi-
ments are required to unveil the reasons for such cell type

specificity in the role of CASP8 in this and (perhaps) other
autoimmune disorders.

Infectious diseases
Extrinsic apoptosis is reported to act as an anti-infective
mechanism. FAS-deficient lpr/lpr, FASL-deficient gld/gld and
Bid−/− mice exhibit delayed clearance of Citrobacter rodentium
and increased intestinal pathology [961]. Confirming the impor-
tance of DR-induced apoptosis, this pathogen was shown to
inhibit extrinsic apoptosis of infected enterocytes by expressing
specific virulence proteins, such as the N-acetylglucosamine
transferase NleB1, which prevents FADD-mediated recruitment
and activation of CASP8 [962]. Along similar lines, Fas−/− mice
have shorter lifespan than wild-type mice after challenge with
L. monocytogenes, succumbing to neurolisteriosis. This was
proposed to be promoted by an impaired loss of monocytes
due to upregulated expression of c-FLIP by the bacterial protein
InlB [963]. In support of this result, conditional deletion of Cflar in
myeloid cells improved L. monocytogenes clearance and host
survival [964]. FAS signaling also conferred protection from
infection with (i) human herpes simplex virus 2 (HSV-2), as
demonstrated by a decrease in the loss of monocyte and immune
cell recruitment at the infection site in Fas−/− and Fasl−/− mice
[965], and (ii) C. rodentium or lymphocytic choriomeningitis virus,
as demonstrated by an increased neutrophil fraction in mice with
conditional deletion of Fas in the myeloid compartment [966].
Supporting an anti-infection role of CASP8, mice lacking RIPK1

kinase activity fail to control systemic Yersinia infection, rapidly
dying because of excess apoptosis driven by a kinase-
independent function of RIPK1 [967, 968]. In line with this
finding, Ripk3−/−Casp8−/− (but not Ripk3−/−) mice die from
Toxoplasma gondii infection due to acute toxoplasmosis [969].
Moreover, the hepatocyte-specific deficiency for CASP8 facil-
itates mouse liver infection by L. monocytogenes, resulting in
inflammation and development of necrotic lesions [776]. These
results also suggest an interconnection of multiple RCD path-
ways in controlling infection. Indeed, the deletion of Z-DNA
binding protein 1 (Zbp1), an essential cytoplasmic sensor of
Influenza A virus (IAV) Z-RNA required for the activation of MLKL-
dependent necroptosis, RIPK1/FADD-dependent apoptosis and
NLR family, pyrin domain containing 3 (NLRP3) inflammasome-
dependent pyroptosis, as well as co-deletion of the genes
encoding MLKL and FADD, causes a defect in the control of IAV
infection and lethal respiratory failure. These findings support an
essential role of apoptosis, necroptosis and pyroptosis in IAV
clearance [970–974]. Similarly, combined activation of apoptosis
and other RCD pathways contribute to the response of mice to
Burkholderia thailandensis infection [975]. Finally, pharmacologi-
cal or tissue specific genetic deletion of baculoviral IAP repeat-
containing 3 (Birc3, encoding cIAP1) and baculoviral IAP repeat-
containing 2 (Birc2, encoding cIAP2) results in better control of
hepatitis B virus and liver stage malaria parasites due to
increased TNF induced death of infected cells [976–978].
Experimental evidence also suggests a detrimental role of

extrinsic apoptosis during some infections. Mice deficient for
both TNF-R1 and TNF-R2 display decreased sensitivity to LPS,
suggesting a critical role for TNF in tissue injury during gram-
negative bacterial infection [979]. Along similar lines, TNF-R1-
deficient mice are more resistant than wild-type mice to the
cytopathic effects of TNF during Sindbis virus infection, as
evidenced by delayed paralysis and reduced mortality [980].
Moreover, ablation of Ripk1 protected mice from acute liver
injury after infection with L. monocytogenes [981], while knock-
out of Fas or Fasl reduced the effect of toxin A-induced enteritis
in mice infected with Clostridium difficile, which has been
attributed to a reduction in enterocyte loss [982]. Additionally,
the infectious spleen and kidney necrosis virus (ISKNV) induced
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tissue damage in zebrafish by activation of DR-induced
apoptosis by a viral protein encoding a TRADD interactor
[983]. Of note, in this study, the absence of CASP8 protected
zebrafish from ISKNV infection. Finally, Ripk3−/−Casp8−/− mice
exhibit high levels of protection from LPS-induced septic shock
[984] or a lethal cytokine shock and tissue damage driven by
TNF and interferon gamma (IFNG), mirroring that of SARS-CoV-2
[985]. This suggests that the several types of RCD can mediate
infection-associated pathogenesis, as demonstrated for infection
with Salmonella [50].

Other diseases
TNF is reported to impair myogenesis in a mouse model of skeletal
muscle regeneration after hindlimb immobilization (hindlimb
suspension) [986]. Moreover, silencing of TRAIL improved muscle
regeneration in mice with acute skeletal muscle injury due to local
injection of BaCl2 [987]. An inhibitory role in myogenesis has also
been ascribed to FADD, at least in response to freezing-induced
muscle injury [988]. In apparent contrast with this result,
combined deletion of the genes encoding TNF-R1 and TNF-R2
limited skeletal muscle regeneration after cardiotoxin-induced
injury [989, 990], suggesting the relevance of a balance between
TNF-R1 and TNF-R2 signaling in this model. TRAIL neutralization
increased muscular strength in a mouse model of Duchenne
muscular dystrophy [991], while other studies associated TRAIL
and FASL signaling to myositis [992, 993].
Activation of DRs has also been implicated in the pathogenesis

of acute lung injury. Fas silencing as well as TNF neutralization
protected mice from lung injury induced by ischemia-reperfusion
[994, 995]. Similarly, deletion of Tnfrsf1a (encoding TNF-R1) or
pharmacological inhibition of TNF-R1 or CASP8 attenuated
pulmonary edema formation and improved alveolar epithelial
function in a murine model of acute lung injury induced by acid
inhalation [996, 997]. A similar protective effect was provided by
pharmacological inhibition or genetic deletion of FASL or TNF in a
LPS-induced mouse model of acute lung injury [998–1004].
However, in one study FAS signaling was shown to contribute
to the resolution of acute lung injury by depleting macrophages
[1005]. Using distinct mouse models of acute lung damage
following sepsis, it has been shown that abrogation of FAS and
TNF-R1 signaling decreases pulmonary apoptosis and ameliorates
pathology, with a survival benefit in some settings [1006–1012].
Hyperoxia-induced lung injury and bleomycin-induced pulmonary
fibrosis, a model for cancer therapy-induced lung injury, are also
impacted by DR signaling. Thus, FAS and TNF deficiency
exacerbated hyperoxia-induced lung injury and/or inflammation
in newborn mice [1013, 1014]. In contrast, TNF inhibition
conferred protection against hyperoxia-induced lung damage in
a murine model [1015–1017]. Moreover, the absence of TNF-R1
(but not TNF-R2) improved survival in mice subjected to excessive
oxygen supply, and this was not linked to decreasing inflamma-
tion [1018]. In support of these results, specific ablation of Fas in
murine fibroblasts or T cells exacerbates pulmonary fibrosis
induced by bleomycin [1019, 1020]. However, the level of
bleomycin-induced pulmonary fibrosis is reduced in FAS-
deficient lpr/lpr or FASL-deficient gld/gld mice [1021], but remains
unchanged in mice treated with FAS-neutralizing agents [1022].
Likewise, contrasting findings support or refute a role for TNF
[1023–1025] and TRAIL [1026, 1027] in the onset and resolution of
pulmonary fibrosis after administration of bleomycin. TNF
neutralization has been reported to attenuate and enhance
interstitial pulmonary fibrosis induced by nitrogen mustard
[1028] or rituximab [1029]. Finally, FASL, TNF and/or TRAIL have
been implicated in infectious or non-infectious lung disorders,
including (but not limited to) infection with respiratory syncytial
virus (RSV) [1030–1036], adenovirus type 1 respiratory disease
[1037, 1038], allergic reaction and asthma [1039–1050] and
idiopathic pneumonia syndrome [1051], as well as to chronic

lung diseases (e.g., chronic obstructive pulmonary disease)
[864, 1052, 1053].
The studies discussed above illustrate that DR-induced apop-

tosis is at the heart of many disorders either promoting recovery
or exacerbating disease. The active involvement in disease
severity and progression makes this pathway a potentially
tractable target for therapeutic interventions in a wide range of
diseases, typically those with an inflammatory component.
However, this effect may be linked to the role of DR signaling in
other RCD pathways and in inflammation. Moreover, there is little
consensus on the roles of FASL, TNF and/or TRAIL in these
pathologies, highlighting a high complexity of the system that
calls for further investigation.

CONCLUDING REMARKS
Abundant preclinical evidence demonstrates that the intrinsic and
the extrinsic pathways of apoptosis not only contribute to adult
tissue homeostasis and, in the case of the intrinsic pathway, to
embryonic development – the implication of CASP8 in develop-
ment is mainly linked to its role as necroptosis inhibitor (see Box 6
and Box 7) - but also contribute to the pathogenesis of multiple
diseases, including various cardiovascular, hepatic, neurological
and renal disorders as well as multiple infectious, autoimmune,
inflammatory and oncological conditions. However, despite great
potential as targets for therapeutic interventions and a consider-
able research effort dedicated to developing effective approaches,
the success of intrinsic or extrinsic apoptosis-targeting agents in
clinical settings is so far limited to BH3 mimetic drugs, SMAC
mimetics, caspase inhibitors as well as activators or inhibitors of DR
signaling, with only one compound, the BCL2 inhibitor venetoclax
being approved for the treatment of patients with CLL or AML.
Rather than mitigating the enthusiasm about the clinical

potential of modulators of apoptosis, this challenge suggests the
need for a substantial change in the experimental design and re-
interpretation of results, at different levels (Fig. 1). One major issue
is that studies evaluating the impact of apoptotic cell death on
disease have not always addressed the connections between the
core components of the intrinsic and extrinsic apoptotic
machinery or their potential interaction and functional overlap
with other RCD pathways. Also, the potential activation of
alternative RCD modalities as a mechanism to compensate for
the inhibition of apoptotic RCD has not always been explored as
an approach to achieve superior outcomes. The importance of
independent replication of findings that suggest success from
targeting a pathway in the treatment of a disease cannot be
emphasized enough. Only then can the costly process of clinical
translation be approached with confidence and with an increased
chance of success. For example, the findings that overexpression
of BCL2 or its pro-survival relatives can promote tumorigenesis
and can render malignant cells resistant to diverse anti-cancer
therapeutics had been reproduced hundreds of times before the
initiation of BH3 mimetic development. This is not yet the case for
many of the other studies discussed herein, as best demonstrated
by the fact that certain experiments have provided diametrically
opposing results in different laboratories. These questions must be
resolved before considering novel drug development pro-
grams around apoptotic RCD.
Moreover, some regulators of apoptosis and signaling cascades

have been reported to exert a variety of functions beyond cell
death control, including (but not limited to) inflammation (e.g.,
multiple caspases and IAPs), cell differentiation (e.g., pro-and anti-
apoptotic BCL2 proteins), cell proliferation and survival (e.g., DR
engagement). The relevance of these functions is often dependent
on cell/tissue type (as it is related to variable expression levels and
activation status of other regulators of RCD) and the intensity and
duration of the initiating stimulus (as they can direct to a distinct
biological outcome, as exemplified by DR ligation). Of note, some
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of these cell death unrelated functions of bona fide cell death
regulators are highly controversial and much more work must be
done to verify or discard them. On the one hand, this pleiotropy
may result in a variable (even including an antagonistic protective
vs. promoting) impact of apoptosis on distinct human diseases,
which may also explain the considerable degree of context-
dependency observed during its experimental modulation. On the
other hand, the pathogenic effect of core components of the
apoptotic machinery is often mediated by apoptosis-unrelated
functions including inflammation, which may point to unexplored
targets for the development of new therapeutic approaches.
In our opinion, investigating the molecular cascade of apoptotic

cell death in the context of the functional interconnection
between apoptotic and non-apoptotic RCD pathways, for instance
by interrupting some of the molecular connections between
different RCD signaling cascades, may instigate new advances,
ultimately leading to the development of novel, clinically-viable
apoptosis modulators for use in multiple disease settings.
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