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i. Chapter Title  

DNA modification patterns filtering and analysis using 

DNAModAnnot 

ii. Summary/Abstract  

Mapping DNA modifications at the base resolution is now possible at the genome level 

thanks to advances in sequencing technologies. Long-read sequencing data can be used to 

identify modified base patterns. However, the downstream analysis of Pacific Biosciences 

(PacBio) or Oxford Nanopore Technologies (ONT) data requires the integration of genomic 

annotation and comprehensive filtering to prevent the accumulation of artifact signals. We 

present in this chapter, a linear workflow to fully analyze modified base patterns using the 

DNA Modification Annotation (DNAModAnnot) package. This workflow includes a 

thorough filtering based on sequencing quality and false discovery rate estimation and 

provides tools for a global analysis of DNA modifications. Here, we provide an example of 

applying this workflow to PacBio data and guide the user by explaining expected outputs via 

a fully integrated R-markdown script. This protocol is presented with tips showing how to 



adapt the provided code for annotating epigenomes of any organism according to the user 

needs. 

iii. Key Words  

Epigenomics, Epigenome Annotation, DNA modifications, DNA Methylation, PacBio 

Sequencing, Nanopore technology, DNAModAnnot. 

1. Introduction  

Recent advances in sequencing technologies have greatly contributed to the epigenomics 

field. SMRT sequencing from Pacific Biosciences (PacBio) and nanopore sequencing from 

Oxford Nanopore Technologies (ONT) allow the mapping of different DNA modifications at 

the base resolution in the whole genome [1]. These long-read sequencing technologies can 

even detect modifications in regions with high amount of repeats that were previously 

inaccessible with Illumina sequencing [1]. 

For nanopore sequencing software such as Nanopolish or DeepSignal, use differences in 

electric current intensity to detect modified bases as they pass through the pores [2]. However, 

for many of these software, the genome annotation (from the GC density to the presence of 

repeated regions) is essential as it can impact the efficiency of DNA modification detection in 

ONT data thus leading to higher false positive rates in some genomic regions [2].  

For SMRT sequencing, the SMRT-Link software (SMRT-Portal for older versions) uses 

slowing-down events of the DNA polymerase during sequencing to detect modified bases 

[1][3]. Several modifications, such as 6-methyladenine (6mA) or 5-methylcytosine (5mC), 

can be detected as long as the coverage requirement is fulfilled [4]. PacBio also suggests to 

define a threshold based on the score parameter (also called « Modification QV) by 

comparing the score of all bases sequenced [3]. However, this method requires a strong signal 



that can be easily distinguished from the noise in order to choose an adapted threshold based 

on the score. Also, SMRT sequencing was found to overestimate the modification levels, 

especially when the amount of modified bases is very low in the genome [5]. Thus, ill-

adapted filtering in such cases can cause high amounts of artifacts. 

To overcome this lack of stringency, we have previously released DNAModAnnot (DNA 

Modification Annotation) [6], a R package allowing comprehensive filtering and analysis of 

modified patterns for PacBio or ONT data using adapted visualization tools. 

This package is divided into 6 modules, as illustrated in Fig. 1, that can be combined to fully 

analyze pre-processed PacBio or ONT data. DNAModAnnot provides tools to load pre-

processed data (« Data Loading ») and analyze the modification distribution at the genome 

level (« Global DNA Mod ») or using the genome annotation provided (« DNA Mod 

annotation »). Furthermore « Sequencing quality » assessment and False Discovery Rate 

estimation (« FDR estimation ») can be directly used to perform a thorough filtering of 

PacBio or ONT data (« Filter ») (Fig. 1). This modular toolbox uses object classes from the 

GenomicRanges [7] and BioStrings [8] packages allowing a user-friendly coupling with 

functions from other main Bioconductor packages. 

In this chapter, we provide a roadmap for a systematic analysis of DNA modifications and an 

example of using DNAModAnnot on PacBio data. This workflow includes the loading of pre-

processed files, the filtering steps based on sequencing quality and False Discovery Rate 

estimations, and the DNA modification pattern analysis with genomic annotations or analysis 

at the genome-wide level. It provides a summary of the functions provided by 

DNAModAnnot and a linear processing that can be easily extended with additional R 

packages for more advanced analyses. 

 



2. Materials 

2.1. Data sources 

In this protocol, we use data from PacBio RSII data [13] (and additional sequencing data 

listed in Table 1 [13] [14]) to analyze 6mA patterns in Tetrahymena thermophila. The 

patterns of this DNA modification have already been described in this organism [13]. Using 

this linear workflow, the user will learn to use DNAModAnnot by retrieving and analyzing 

these patterns.   

For SMRT sequencing data, DNAModAnnot need the modifications.gff (data from modified 

bases only) and modifications.csv (data from all sequenced bases) files. These pre-processed 

data can be sourced from https://github.com/AlexisHardy/DNAModAnnot_AdditionalData, 

also listed in Table 1. Pre-processed files were produced using the SMRT-link-tools 

v7.0.1.66975-0 and 6-methyladenine (6mA) was detected via the ipdSummary tool [9]. 

Command-lines to re-generate the modifications.csv and modifications.gff files from the raw 

SMRT sequencing data (listed in Table 1) are detailed in the Notes section (see Note 1). 

DNAModAnnot [6] can also load Nanopore (ONT) data pre-processed with the DeepSignal 

software [10] but we will only focus on PacBio data in this protocol (see Note 2). 

This package also needs the genome assembly (fasta) and its annotation (e.g. gff) in order to 

analyze the DNA modification patterns (listed in Table 1). 

All the files required to perform the analysis are listed in Table 1. This table also contains 

additional sequencing data which can be analyzed together with DNA modification patterns.  

2.2. Software and installation 



The required packages are detailed in the description file of the DNAModAnnot [6] package 

and can be installed via the install command of the BiocManager [11] package : 

BiocManager::install(c('Biostrings', 'BSgenome', 'Gviz', 

'seqLogo')) 

DNAModAnnot [6] can be installed via GitHub using the devtools [12] package : 

devtools::install_github("AlexisHardy/DNAModAnnot") 

3. Methods  

For SMRT sequencing data, methylation detection via SMRT Link [9] returns 2 files: the 

modifications.gff (containing data from modified bases only) and modifications.csv 

(containing data from all sequenced bases) files (see Note 2 for ONT data) (see Note 3).  

For both sequencing data type, the data must first be loaded into R. Sequencing quality can be 

assessed to filter out contigs with low coverage which could bias the global statistics of 

modified bases distribution. DNA modifications distribution can also be analyzed at the 

genome level. For PacBio data, False Discovery Rate can be estimated to select an 

appropriate filter based on available detection parameters (score or ipdRatio). By providing 

the genomic annotation, it is  also possible to identify the patterns of DNA modifications 

associated to specific annotation features. 

Here, we provide an example of analysis of 6mA patterns using Tetrahymena thermophila 

PacBio RSII data [13] (and additional sequencing data listed in Table 1 [13] [14]): from the 

input files importation to the generation of graphs and reports. The results are presented in 

Fig. 2, Fig 3, and Table 2. A Rmarkdown document is also provided with all commands and 

details of this protocol (see Note 4). 



3.1. Loading mandatory files 

3.1.1. Import Genome sequence information 

Go to the webpages listed in Table 1 and collect the bed/csv/gff/fasta/txt files. For PacBio 

data, you can either download SMRT link [9] processed files called modifications.gff and 

modifications.csv or download the bax.h5 files via the SRA Run Selector in the GSM2534782 

repository and use SMRT Link [9] to generate the modifications.gff and modifications.csv 

files (see Note 1).  

1. Import the genome sequence as a DNAstringSet object using the 

readDNAStringSet function from the Biostrings package [8] then filter it using 

the contig_file.txt file to keep only the sampled contigs (see Note 3). 

organism_genome <- 
Biostrings::readDNAStringSet("./genome.fasta") 
names(organism_genome) <- gsub(x = names(organism_genome),  
                               pattern = " .*",  
                               replacement = "") 
#We only retrieve the 50 contigs and then we filter the 
organism_genome object 
contigsToKeep <- read.table("./contig_list.txt")[,1] 
organism_genome <- organism_genome[ 
    names(organism_genome) %in% contigsToKeep] 

a. Use the GetAssemblyReport function with the genome DNAstringSet 

object to compute a sequencing report about the genome assembly provided 

(similar to reports from the QUAST software [15]) in a data.frame object. 

report_assembly <- GetAssemblyReport( 
  dnastringsetGenome = organism_genome, 
  cOrgAssemblyName = "T.thermophila_June2014 (sampled)" 
) 

b. Use the GetContigCumulLength function to retrieve a data.frame with 

the contigs size and cumulated size. This data.frame can be used with the 

DrawContigCumulLength function to plot cumulated length by contig. 

contig_cumul_length <- GetContigCumulLength(organism_genome) 



DrawContigCumulLength( 
  nContigCumsumLength = contig_cumul_length$cumsum_Mbp_length, 
  cOrgAssemblyName = "T.thermophila_June2014 (sampled)", 
  lGridInBackground = TRUE 
) 

2. Use the	GetGenomeGRanges function with the genome DNAstringSet object to 

retrieve a GRanges object representing the contigs (which will be required for some 

functions from this package).  

organism_genome_range <- GetGenomeGRanges(organism_genome) 

3.1.2. Import Modifications input files 

1. Use the ImportPacBioCSV function to import the modifications.csv file as an 

Unstitched GPos object (ModCSV GPos) (see Note 3) (see Note 5).   

ModCSV_gpos <- ImportPacBioCSV( 
  cPacBioCSVPath = "./modifications.csv", 
  cSelectColumnsToExtract = c( 
    "refName", "tpl", "strand", 
    "base", "score", 
    "ipdRatio", "coverage" 
  ), 
  lKeepExtraColumnsInGPos = TRUE, 
  lSortGPos = TRUE, 
  cContigToBeAnalyzed = names(organism_genome) 
) 

2. Use the ImportPacBioGFF function to import the modifications.gff file as a 

GRanges object (ModGFF GRanges). Only one modification can be imported from 

this file which should be defined with the cNameModToExtract argument (see 

Note 3). 

ModGFF_granges <- ImportPacBioGFF( 
  cPacBioGFFPath = "./modifications.gff", 
  cNameModToExtract = "m6A", 
  cModNameInOutput = "6mA", 
  cContigToBeAnalyzed = names(organism_genome) 
) 

3.2. Sequencing quality assessment and filtering 



1. To retrieve the percentage of sequenced bases per contig and per strand, use the	

GetSeqPctByContig function with the ModCSV GPos object. This function will 

return a list with the percentage per contig and per strand according to the genome 

assembly sequence provided. 

contig_pct_seq <- GetSeqPctByContig(ModCSV_gpos, 
  grangesGenome = organism_genome_range 
) 

a. To plot this percentage using a per contig and per strand barplot, use the 

DrawBarplotBothStrands function and provide the 2 sub-lists 

(generated on the previous step) corresponding to the forward and the reverse 

strands (see Note 6). 

DrawBarplotBothStrands( 
  nParamByContigForward = contig_pct_seq$f_strand$seqPct, 
  nParamByContigReverse = contig_pct_seq$r_strand$seqPct, 
  cContigNames = contig_pct_seq$f_strand$refName, 
  cGraphName = "Percentage of sequencing per contig" 
) 

b. To remove data from contigs that are not sequenced enough (e.g. less than 

95% of sequenced bases), use the	FiltPacBio function with the sequencing 

percentage list returned by the	GetSeqPctByContig	function (see Note 7). 

2. To look at the global distribution of a numeric parameter, use the 

DrawDistriHistBox function to plot a histogram along a boxplot showing the 

global range of this parameter. 

DrawDistriHistBox(ModCSV_gpos$coverage, 
  cGraphName = "Coverage distribution of all bases sequenced", 
  cParamName = "Coverage", 
  lTrimOutliers = FALSE 
) 

3. To compute the mean of the coverage (or any available numeric parameter) per contig 

and per strand, use the	GetMeanParamByContig function with the ModCSV 



GPos and ModGFF GRanges objects depending on which parameter you want to filter 

on. For coverage, we recommend using the ModCSV GPos object.	

contig_mean <- GetMeanParamByContig( 
  grangesData = ModCSV_gpos, 
  dnastringsetGenome = organism_genome, 
  cParamName = "coverage" 
) 

a. Use the	DrawBarplotBothStrands function to plot the mean of the 

chosen parameter per contig and per strand into a barplot (see Note 6).	

DrawBarplotBothStrands( 
  nParamByContigForward = contig_mean$f_strand$mean_coverage, 
  nParamByContigReverse = contig_mean$r_strand$mean_coverage, 
  cContigNames = contig_mean$f_strand$refName, 
  cGraphName = "Mean Coverage per contig" 
) 

b. Use the	FiltPacBio function with the mean parameter list returned by the	

GetMeanParamByContig function (see Note 7). 

3.3. Analysis of global distribution and motif of DNA modification data   

1. Use the	GetModReportPacBio	function to obtain a data.frame describing the 

global distribution of the DNA modification (e.g. Modification counts, ratio, motifs 

associated, mean of parameters provided) (see Note 2). You will need to provide both 

the ModCSV GPos and ModGFF GRanges objects. 	

report_modifications <- GetModReportPacBio( 
  grangesGenome = organism_genome_range, 
  grangesPacBioGFF = ModGFF_granges, 
  gposPacBioCSV = ModCSV_gpos, 
  cOrgAssemblyName = "T.thermophila_June2014 (sampled)", 
  dnastringsetGenome = organism_genome, 
  cBaseLetterForMod = "A", 
  cModNameInOutput = "6mA" 
) 

2. To compute the ratio of modified bases per contig and per strand, use the	

GetModRatioByContig function with the ModGFF GRanges. You will also need 

to provide all the bases that can be targeted (modified or not) by extracting them from 



the ModCSV GPos object (SubsetModCSV GPos). For example, for 6mA you will 

need to keep only the « A » positions using the following command: 

ModCSV_gpos[ModCSV_gpos$base == "A"].	

contig_mod_ratio <- GetModRatioByContig (ModGFF_granges, 
  ModCSV_gpos[ModCSV_gpos$base == "A"], 
  dnastringsetGenome = organism_genome, 
  cBaseLetterForMod = "A" 
) 

a. Use the	DrawBarplotBothStrands function to plot the ratio of modified 

bases into a barplot per contig and per strand (see Note 6).	

contig_mod_ratio$f_strand$Mod_ratio[ 
is.na(contig_mod_ratio$f_strand$Mod_ratio)] <- 0 
contig_mod_ratio$r_strand$Mod_ratio[ 
is.na(contig_mod_ratio$r_strand$Mod_ratio)] <- 0 
 
DrawBarplotBothStrands( 
  nParamByContigForward = contig_mod_ratio$f_strand$Mod_ratio, 
  nParamByContigReverse = contig_mod_ratio$r_strand$Mod_ratio, 
  cContigNames = contig_mod_ratio$f_strand$refName, 
  cGraphName = "Modif/Base ratio per contig (Sequenced sites 
only)" 
) 

b. Use the	FiltPacBio function with the list of modification ratios returned by 

the	GetModRatioByContig function if you want to remove contigs with a 

low modification ratio (see Note 7).  

3. To reveal a potential motif or sequence enrichment around the modified bases, you 

can use the	DrawModLogo function (Fig. 2A). 

a. You must first retrieve all the trimmed sequences around each modified base 

using the GetGRangesWindowSeqandParam function with the ModGFF 

GRanges object. This will export a new GRanges object with a new column 

named « sequence » where the trimmed sequences will be stored (see Note 8).  

ModGFF_granges_seq <- 
GetGRangesWindowSeqandParam(ModGFF_granges, 
  organism_genome_range, 



  dnastringsetGenome = organism_genome, 
  nUpstreamBpToAdd = 5, 
  nDownstreamBpToAdd = 5 
) 

b. Then, retrieve the trimmed sequences in the « sequence » column and convert 

them as a DNAStringSet object. 

Seq_ForLogo <- as(ModGFF_granges_seq$sequence, "DNAStringSet") 

c. Use this DNAStringSet object with the DrawModLogo function to plot a logo 

(Fig. 2A). The genomic background can be provided with the 

nGenomicBgACGT option to correct the logo with the proportion of A, C, G 

and T respectively in the genome. You can also annotate a few positions on 

this logo using the nPositionsToAnnotate and cAnnotationText 

options to indicate respectively the positions to annotate and the text to be 

written (see Note 9).	

backgroundACGT = c( 
  (100-report_assembly["gc_pct",])/2, 
  report_assembly["gc_pct",]/2, 
  report_assembly["gc_pct",]/2, 
  (100-report_assembly["gc_pct",])/2 
)/100 
 
DrawModLogo( 
  dnastringsetSeqAroundMod = Seq_ForLogo, 
  nGenomicBgACGT = backgroundACGT, cYunit = "ic_hide_bg", 
  nPositionsToAnnotate = c(6), cAnnotationText = c("6mA"), 
nTagTextFontSize = 12 
) 

4. Use the ExtractListModPosByModMotif function to retrieve a list containing 

the following elements:   

a. the names of the motifs over-represented with the DNA modification 

b. the same motifs with the position of the modification inside these motifs   

c. a table containing the percentage of modifications in each motif tested   



d. and a listing of ModGFF GRanges: one GRanges object for each motif over-

represented with the modification (ModGFF GRangesList).   

listMotif_ModGFF_grangeslist <- ExtractListModPosByModMotif( 
  grangesModPos = ModGFF_granges, 
  grangesGenome = organism_genome_range, 
  dnastringsetGenome = organism_genome, 
  nUpstreamBpToAdd = 0, nDownstreamBpToAdd = 1, 
  nModMotifMinProp = 0.05, 
  cBaseLetterForMod = "A", 
  cModNameInOutput = "6mA" 
) 

The minimum proportion required to define motifs as "over-represented" with the 

modification can be modified using the nModMotifMinProp option (see Note 8). 

5. Extract all the bases that can be targeted (modified or not) from the ModCSV GPos 

object and convert it as a GRanges object (SubsetModCSV GRanges). For example, 

for 6mA, you will need to keep only the « A » positions using the following 

command:  

SubsetModCSV_granges <- as(ModCSV_gpos[ModCSV_gpos$base == 
"A"], "GRanges") 

Then, retrieve all the trimmed sequences around each targeted base using the 

GetGRangesWindowSeqandParam function with the SubsetModCSV GRanges 

object (see Note 8). 

SubsetModCSV_granges_seq <- GetGRangesWindowSeqandParam( 
  grangesData = SubsetModCSV_granges, 
  grangesGenome = organism_genome_range, 
  dnastringsetGenome = organism_genome, 
  nUpstreamBpToAdd = 0, 
  nDownstreamBpToAdd = 1 
) 

3.4. False Discovery Rate estimations and filtering (PacBio only) 

DNAModAnnot [6] provides tools to estimate False Discovery Rate (FDR) based on a 

threshold for parameters associated to modification detection [16] (see Note 10). These FDR 



estimations can guide the choice of the filters to be used on the score or ipdRatio parameters. 

FDR estimation is only available for PacBio data. 

1. Use the SubsetModCSV GRanges object from the previous part with the 

GetFdrEstListByThresh function to estimate the False Discovery Rate by 

threshold on a parameter to be filtered (defined with the cNameParamToTest 

option; usually the score or the ipdRatio for PacBio data). 

score_fdr_by_motif_list <- GetFdrEstListByThresh( 
  grangesDataWithSeq = SubsetModCSV_granges_seq, 
  grangesDataWithSeqControl = NULL, 
  cNameParamToTest = "score", 
  nRoundDigits = 1, 
  cModMotifsAsForeground = 
listMotif_ModGFF_grangeslist$motifs_to_analyse 
) 

The GetFdrEstListByThresh function will return a list (by motif over-

represented) of data.frames. Each data.frame contains the FDR estimated by threshold 

(for the provided parameter) and the adjusted FDR (≈ the cumulative minimum FDR).   

2 methods to estimate the FDR are provided with this function [16]: 

a. If you have a control sample (i.e. a non-methylated sample, for example 

Whole-Genome Amplified/PCR Amplified) you can provide it via the 

grangesDataWithSeqControl option. 

In this case, FDR will be estimated using the data provided via the 

grangesDataWithSeqControl option as the background signal (see 

Note 10). 

The data provided via the grangesDataWithSeqControl option must 

have the same format as the SubsetModCSV GRanges object with the 

sequence of the modified sample. This means that, after methylation detection, 

the control sample (initially as a modifications.csv file) must be imported using 



the ImportPacBioCSV function as a control ModCSV GPos. Steps and 

filters applied to the sample ModCSV should also be applied to the control 

data to ensure a correct FDR estimation. 

b. If you do not have a control sample, you must then leave the 

grangesDataWithSeqControl option empty. 

In this case, you can estimate the FDR by comparing motifs associated to 

modifications against other motifs to be used as the background signal (see 

Note 10).  

Here, motifs associated to the DNA modification (over-represented motifs) 

must be provided via the cModMotifsAsForeground argument as a 

character vector. FDR will be estimated for each over-represented motif 

separately. The user can choose to look at one motif in particular. It is also 

possible to test all « over-represented » motifs by retrieving the 

“motifs_to_analyse” vector from the output list of the 

ExtractListModPosByModMotif function. 

This function returns a list with one data.frame if a control sample is provided. If not a 

list with one data.frame per motif tested will be returned. Each data.frame contains 

the FDR estimation per threshold on the parameter tested. 

2. To retrieve the threshold associated to a user-defined FDR, use the 

GetFdrBasedThreshLimit function with the FDR estimation list from the 

previous step (see Note 11).  

score_fdr_by_motif_limit <- 
GetFdrBasedThreshLimit(score_fdr_by_motif_list, 
  nFdrPropForFilt = 0.05, 
  lUseBestThrIfNoFdrThr = TRUE 
) 



3. Use the DrawFdrEstList function with the FDR estimation list to plot FDR 

estimation distribution per threshold and per motif, along with a user-defined FDR 

limit/value to be represented on the graph. 

DrawFdrEstList( 
  listFdrEstByThr = score_fdr_by_motif_list, 
  cNameParamToTest = "score", 
  nFdrPropForFilt = 0.05 
) 

4. Use the FiltPacBio function with the output of the 

GetFdrBasedThreshLimit function to filter the ModGFF object according to 

the defined FDR-associated threshold (by motif or not). In this case, the ModGFF 

GRangesList (returned by the ExtractListModPosByModMotif function) must 

be used for filtering (especially if no control sample was provided during FDR 

estimation) (see Note 7). Only two parameters are recognized for FDR estimation and 

filtering here the ipdRatio and the score. 

ModGFF_grangeslist <- FiltPacBio( 
  grangesPacBioGFF = 
listMotif_ModGFF_grangeslist$GRangesbyMotif, 
  listFdrEstByThrIpdRatio = NULL, 
  listFdrEstByThrScore = score_fdr_by_motif_limit 
)$gff 

3.5. Analysis of DNA modification patterns with genomic annotations and other 

sequencing data 

In this section, genomic annotations must be provided to analyze the modified base 

distribution. Modified base counts or proportions can be computed for any category of 

genomic features or quantitative parameters and can be compared to other sequencing data, 

such as MNase-seq data.  



In this part, we define Mod as the modified bases and Base as all target bases (modified or 

not) that use the same motifs as Mod. For example, for Mod defined as “6mAT” (“6mA” in 

AT motif), Base would be “AT” (“A” in AT motif). 

In this part, 3 objects will be required for most tools (along with the genome sequence 

imported as a DNAStringSet object): 

1. A ModGFF GRanges associated to a motif: 

a. (PacBio only) Extract the GRanges for the motif to analyze from the 

GRangesList provided by the FiltPacBio function used on ModGFF 

GRanges after False Discovery Rate estimation. 

ModGFF_granges <- ModGFF_grangeslist[["AT"]] 

b. Or extract the GRanges for the motif to analyze from the GRangesList within 

the list provided by the ExtractListModPosByModMotif function used 

on ModGFF GRanges.  

ModGFF_granges <- 
listMotif_ModGFF_grangeslist$ModGFF_grangeslist[["AT"]] 

c. Or use the GetGRangesWindowSeqandParam function with the ModGFF 

GRanges then subset on the column « sequence » using the motif to analyze 

(see Note 8). 

ModGFF_granges <- 
ModGFF_granges_seq[ModGFF_granges_seq$sequence == "AT",] 

2. A ModCSV GRanges associated to a motif. 

Retrieve the ModCSV GRanges object with the sequence (returned by the 

GetGRangesWindowSeqandParam function) then subset on the column 

« sequence » using the motif to analyze.  

ModCSV_granges <- 
ModCSV_granges_seq[ModCSV_granges_seq$sequence == "AT",] 



3. A GRanges object filled with the genome annotation to be compared to. 

a. For annotation files using gff format, use the readGFFAsGRanges function 

from the rtracklayer package [17] to import the annotation into a GRanges 

object. 

annotations_path <- "./T_thermophila_June2014.gff3" 
annot_range <- rtracklayer::readGFFAsGRanges(annotations_path) 

b. Then, use the PredictMissingAnnotation function to add 

« intergenic » features to the new GRanges object. For some functions, the 

feature "intergenic" will be required for comparison between genes and 

intergenic regions. If your annotation file also provides mRNA positions and 

exon (or intron) positions, the PredictMissingAnnotation function can 

add the missing annotation (introns or exons) to the new GRanges object. 

annot_range <- PredictMissingAnnotation( 
  grangesAnnotations = annot_range, 
  grangesGenome = organism_genome_range, 
  cFeaturesColName = "type", 
  cGeneCategories = c("gene"), 
  lAddIntronRangesUsingExon = TRUE 
) 

3.5.1. Computing counts by genomic feature 

1. Use the GetModBaseCountsByFeature function (with the annotation GRanges 

and the ModGFF/ModCSV GRanges associated with a motif) to count Base and Mod 

for each feature provided in the annotation GRanges (annotation GRanges with 

ModBase counts). 

annot_range_MBcounts <- GetModBaseCountsByFeature( 
  grangesAnnotations = annot_range, 
  grangesModPos = ModGFF_granges, 
  gposModTargetBasePos = SubsetModCSV_granges, 
  lIgnoreStrand = FALSE 
) 



2. Use the DrawModBasePropByFeature function (with the annotation GRanges 

and the ModGFF/ModCSV GRanges associated with a motif) to compare the 

proportion of Base and Mod between different annotation categories (Fig. 2B). 

Features to be compared must be listed as a character vector in the 

cFeaturesToCompare option. 

DrawModBasePropByFeature( 
  grangesAnnotationsWithCounts = annot_range_MBcounts, 
  cFeaturesToCompare = c("gene", "intergenic"), 
  lUseCountsPerkbp = TRUE, 
  cBaseMotif = "AT", 
  cModMotif = "6mAT" 
) 

3.5.2. Quantitative parameter by feature and by Mod counts categories 

It is also possible to compare a quantitative parameter with Base and Mod counts in genomic 

features. 

1. Retrieve the annotation GRanges with ModBase counts returned by the 

GetModBaseCountsByFeature function. 

2. Import or compute the parameter that you want to compare to the Mod or Base counts. 

For example, we imported RNA-seq file containing read counts per gene in this 

protocol using the read.table function. 

expression_file_path <- "./GSM692081_Growth.map.txt" 
expression_dataframe <- read.table( 
  file = expression_file_path, 
  header = TRUE, sep = "\t" 
) 

3. The quantitative parameter to be compared with the Mod or Base must be loaded as a 

new column within the annotation GRanges with ModBase counts. For example, we 

filtered the annotation GRanges with ModBase counts to keep only the genes then we 

used the merge function with the mcols() of the annotation GRanges with 



ModBase counts to replace its mcols(). In this example, we also normalize the 

counts of mapped RNA-seq reads using the size of the genes. 

genes_range_MBcounts_param <- 
annot_range_MBcounts[annot_range_MBcounts$type == "gene"] 
genes_range_MBcounts_param <- genes_range_MBcounts_param[ 
  genes_range_MBcounts_param$Name %in% 
expression_dataframe$Gene_ID 
] 
GenomicRanges::mcols(genes_range_MBcounts_param) <- merge( 
  x = GenomicRanges::mcols(genes_range_MBcounts_param), 
  by.x = "Name", 
  y = expression_dataframe, 
  by.y = "Gene_ID" 
) 
genes_range_MBcounts_param$Number_of_mapped_reads_perkbp <- 
  1000*genes_range_MBcounts_param$Number_of_mapped_reads / 
  GenomicRanges::width(genes_range_MBcounts_param) 

4. Use the DrawParamPerModBaseCategories function to plot the distribution of 

the quantitative parameter provided by category of Mod and Base counts (Fig. 2D).   

DrawParamPerModBaseCategories( 
  grangesAnnotationsWithCounts = genes_range_MBcounts_param, 
  cParamColname = "Number_of_mapped_reads", 
  cParamFullName = "Gene expression at G-m (mid-log 
exponential growth)", 
  cParamYLabel = "RNA-seq read counts (G-m)", 
  cSelectFeature = "gene", 
  lUseCountsPerkbp = FALSE, 
  cBaseMotif = "AT", 
  cModMotif = "6mAT", 
  lBoxPropToCount = FALSE, lUseSameYAxis = TRUE 
) 

3.5.3. Computing counts within genomic features 

1. Use the GetModBaseCountsWithinFeature function (with the annotation 

GRanges and the ModGFF/ModCSV GRanges associated with a motif) to count Mod 

and Base within segments of each genomic feature provided. Each feature provided is 

cut into a specific number of windows (defined by the nWindowsNb argument) and 

counts are returned for each window of each feature. Here, we filtered the annotation 



GRanges to keep only the genes before using the 

GetModBaseCountsWithinFeature function. 

genes_range <- annot_range[annot_range$type == "gene", ] 
genes_range <- GetModBaseCountsWithinFeature( 
  grangesAnnotations = genes_range, 
  grangesModPos = ModGFF_granges, 
  gposModTargetBasePos = SubsetModCSV_granges, 
  lIgnoreStrand = FALSE, 
  nWindowsNb = 20 
) 

2. Then use the DrawModBaseCountsWithinFeature function to represent the 

distribution within provided features through a barplot (Fig. 2C). 

DrawModBaseCountsWithinFeature( 
  grangesAnnotationsWithCountsByWindow = genes_range, 
  cFeatureName = "gene", 
  cBaseMotif = "AT", 
  cModMotif = "6mAT" 
) 

3.5.4. Computing distance from genomic features 

1. Use the GetDistFromFeaturePos function with the annotation GRanges and the 

ModGFF GRanges to retrieve, for each feature provided, the distance, in bp, between 

this feature and a Mod (using a window of specific size around each feature) (see Note 

12).    

Mod_distance_feature_countslist <- GetDistFromFeaturePos( 
  grangesAnnotations = annot_range, 
  cSelectFeature = "gene", 
  grangesData = ModGFF_granges, 
  lGetGRangesInsteadOfListCounts = FALSE, 
  lGetPropInsteadOfCounts = TRUE, 
  cWhichStrandVsFeaturePos = "both", 
  nWindowSizeAroundFeaturePos = 600, 
  lAddCorrectedDistFrom5pTo3p = TRUE, 
  cFeaturePosNames = c("TSS", "TTS") 
) 

2. Repeat the previous step with the annotation GRanges and the ModCSV GRanges 

instead to retrieve, for each feature provided, the distance, in bp, between this feature 

and a Base (see Note 12).  



Base_distance_feature_countslist <- GetDistFromFeaturePos( 
  grangesAnnotations = annot_range, 
  cSelectFeature = "gene", 
  grangesData = SubsetModCSV_granges, 
  lGetGRangesInsteadOfListCounts = FALSE, 
  lGetPropInsteadOfCounts = TRUE, 
  cWhichStrandVsFeaturePos = "both", 
nWindowSizeAroundFeaturePos = 600, 
  lAddCorrectedDistFrom5pTo3p = TRUE, 
  cFeaturePosNames = c("TSS", "TTS") 
) 

3. Use the DrawModBasePropDistFromFeature function with the output from 

the 2 previous steps to plot the proportion of Mod or Base around genomic features 

provided (Fig. 3). 

DrawModBasePropDistFromFeature( 
  listModCountsDistDataframe = 
Mod_distance_feature_countslist, 
  listBaseCountsDistDataframe = 
Base_distance_feature_countslist, 
  cFeaturePosNames = c("TSS", "TTS"), 
  cBaseMotif = "AT", 
  cModMotif = "6mAT" 
) 

a. It is also possible to add at least 1 additional axis on the plot to compare 

modification signal with another parameter by using the 

AddToModBasePropDistFromFeaturePlot function (Fig. 3).  

However, distances can only be computed with GPos objects or GRanges with 

a size of 1bp per window. For GRanges using windows with a size > 1bp, use 

the GetGposCenterFromGRanges function to retrieve the central position 

of each window (see Note 13).  

bedfile_path <- "./GSM2534785_SB210_MNase.120_260.unique.bed" 
bedfile_object <- rtracklayer::import.bed(bedfile_path) 
bedfile_object <- GetGposCenterFromGRanges(bedfile_object) 

b. Use the GetDistFromFeaturePos function with the annotation GRanges 

and the output from the previous step then the 

AddToModBasePropDistFromFeaturePlot function to plot this 



parameter against Mod and Base proportions (Fig. 3) (see Note 13). A new 

axis will thus be added on the previous plot from the 

DrawModBasePropDistFromFeature function unless the plot is no 

longer available (see Note 14).  

bedfile_distance_feature_countslist <- GetDistFromFeaturePos( 
  grangesAnnotations = annot_range, 
  cSelectFeature = "gene", 
  grangesData = bedfile_object, 
  lGetGRangesInsteadOfListCounts = FALSE, 
  lGetPropInsteadOfCounts = FALSE, 
  cWhichStrandVsFeaturePos = "both", 
nWindowSizeAroundFeaturePos = 600, 
  lAddCorrectedDistFrom5pTo3p = TRUE, 
  cFeaturePosNames = c("TSS", "TTS") 
) 
AddToModBasePropDistFromFeaturePlot( 
  dPosCountsDistFeatureStart = 
bedfile_distance_feature_countslist[[1]], 
  dPosCountsDistFeatureEnd = 
bedfile_distance_feature_countslist[[2]], 
  cSubtitleContent = "Along with MNase-seq read center 
distance", 
  cParamYLabel = "MNase-seq read center count", 
  cParamColor = "cyan3", 
  lAddAxisOnLeftSide = TRUE, cParamLty = 1, cParamLwd = 2 
) 

3.5.5. Local visualization with Gviz 

DNAModAnnot [6] provides several functions which can be used alongside the Gviz [18] 

package for local visualization (see Gviz [18] documentation for main functions). 

1. The ExportFilesForGViz function allows the user to export files which can be 

used for streaming (except for the gff3 format) with the plotTracks function from 

Gviz package [18]. Here, using the bam format, it is possible to use Gviz [18] 

streaming options also for genomic annotation. 

2. To display the genomic annotations using streaming (using the adapted bam file), use 

the ImportBamExtendedAnnotationTrack function as the import function 



(via the stream and importFunction options while making the annotation 

track). In this case, to allow the names of the genomic features to be displayed, the 

"mapping" sub-list of the generated annotation track must be manually completed with 

the new "id" and "group" values defined in the previous step (see Note 4). 

4. Notes  

1. To generate the modifications.csv and modifications.gff files using SMRT-Link-tools 

v7.0.1.66975-0: 

a. download the fasta genome and index the genome: 

samtools faidx “genome.fasta” 

b. For each SMRT cell to analyze, download the bax.h5 files (file names must 

finish with the “h5”) then retrieve the bam file:  

bax2bam “SMRT_file_basename”.{1,2,3}.bax.h5 -o 
“SMRT_file_basename” 

Then, align the reads from the bam file to the fasta genome:  

pbalign -vvv --nproc “Number of available processors” --
algorithm blasr --forQuiver --byread –metrics 
DeletionQV,IPD,InsertionQV,PulseWidth,QualityValue,MergeQV,Sub
stitutionQV,DeletionTag --tmpDir /tmp 
“SMRT_file_basename”.subreads.bam “genome.fasta” 
“SMRT_file_basename”_aligned.bam 

c. Merge all SMRTcells:  

samtools merge SMRT_merged.bam *_aligned.bam 

d. Index the merged file:  

pbindex SMRT_merged.bam  

e. Then launch the DNA modification detection tool:  

ipdSummary --verbose --methylFraction --minCoverage 25 --
mapQvThreshold 30 --identify m6A --numWorkers “Number of 
available processors” --outfile tmp_dir/ SMRT_merged_6mA --
reference “genome.fasta” SMRT_merged.bam  



This command returns the modifications.csv and modifications.gff files. With 

this command, they would be called SMRT_merged_6mA.csv and 

SMRT_merged_6mA.gff respectively. This command can easily take days if 

run locally and/or with a low number of available CPUs. If you want to 

analyze some contigs, use the --refContigs option with the name of the contigs 

that you want to analyze. It is also possible to use a loop to launch methylation 

detection by group of contigs. 

2. To analyze DNA modification patterns, ONT data must be processed with the 

DeepSignal software [10]. Follow the steps on the DeepSignal GitHub repository for 

the ONT data processing: https://github.com/bioinfomaticsCSU/deepsignal [19]. 

After the full pre-processing of nanopore data via DeepSignal, you must retrieve the 

modification-frequency file generated via the call_modification_frequency.py script.  

Use the ImportDeepSignalModFrequency function to load the modification-

frequency file as an Unstitched GPos object (ModCSV GPos). 

Then, use the FiltDeepSignal function with the ModCSV GPos object to 

retrieve a ModGFF GPos by simply filtering target sites which have a fraction (“frac”) 

above 0.  

ModGFF_gpos <- FiltDeepSignal( 
    gposDeepSignalModBase = ModCSV_gpos,  
    cParamNameForFilter = "frac",  
    nFiltParamLoBoundaries = 0,  
    nFiltParamUpBoundaries = 1,  
    cFiltParamBoundariesToInclude = "upperOnly" 
)$Mod) 

a. The FiltDeepSignal function returns a list with the filtered ModCSV as 

the first element of the list, and the filtered ModGFF as the second element of 

the list. 



b. Some options of this function require ModCSV or the ModGFF GPos objects 

or the sequence of the genome (dnastringsetGenome option). 

c. You can filter out contigs based on different conditions using a combination of 

the following arguments (ModCSV GPos object is required for most of these 

options): cContigToBeRemoved, nContigMinSize, 

listPctSeqByContig, nContigMinPctOfSeq, 

listMeanCovByContig, nContigMinCoverage, 

cParamNameForFilter, listMeanParamByContig, 

nContigFiltParamLoBound, nContigFiltParamUpBound. 

d. You can filter out modifications from the ModGFF object based on different 

conditions using a combination of the following arguments: 

cParamNameForFilter, nFiltParamLoBoundaries, 

nFiltParamUpBoundaries, cFiltParamBoundariesToInclude, 

nModMinCoverage. 

The ModCSV GPos and the ModGFF GPos objects from ONT-DeepSignal data can 

then be used in place of the ModCSV GPos and the ModGFF GRanges/GPos objects 

from PacBio data except for the False Discovery Rate estimation functions. For some 

functions, the ModCSV and ModGFF GPos objects will first need to be converted as 

GRanges objects. Also, when using ONT data, the functions 

GetModReportPacBio and FiltPacBio must be replaced by the functions 

GetModReportDeepSignal and FiltDeepSignal respectively. 

3. For this example, only data from 50 random contigs will be analyzed: the listing of 

selected contigs is available in the contig_list.txt file listed in Table 1.  



4.  A Rmarkdown document is given in the supplementary data and on the GitHub of the 

DNAModAnnot [6] with all the commands used: 

https://github.com/AlexisHardy/DNAModAnnot_AdditionalData. 

5. If the SortGPos argument is TRUE, the importation will take a longer time but the 

size of the GPos object will be highly reduced. 

6. By default, the lIsOrderedLargestToSmallest	argument is TRUE and order 

the contigs from the largest to the smallest on the x-axis. 

7. The FiltPacBio function is a wrapper function for filtering PacBio data contained 

in ModGFF and ModCSV objects. For ONT data, check the FiltDeepSignal 

function (see Note 2). 

a. This function returns a list with the filtered ModCSV as the first element of the 

list, and the filtered ModGFF as the second element of the list. If the user 

provides a ModGFF GRangesList instead of GRanges, the second element of 

the list will also be returned as a GRangesList. 

Mod_filtered_data <- FiltPacBio( 
  gposPacBioCSV = ModCSV_gpos, 
  grangesPacBioGFF = ModGFF_granges, 
  cContigToBeRemoved = NULL, 
  dnastringsetGenome = organism_genome, 
  nContigMinSize = 1000, 
  listPctSeqByContig = contig_percentage_sequencing, 
  nContigMinPctOfSeq = 95, 
  listMeanCovByContig = contig_mean_coverage, 
  nContigMinCoverage = 10 
) 
ModCSV_gpos <- Mod_filtered_data$csv 
ModGFF_granges <- Mod_filtered_data$gff 

b. Providing the ModGFF is mandatory. Some options of this function also 

require ModCSV GPos object or the sequence of the genome 

(dnastringsetGenome option). 



c. It is possible to filter out contigs based on different conditions using a 

combination of the following arguments (ModCSV GPos object is required for 

most of these options): cContigToBeRemoved, nContigMinSize, 

listPctSeqByContig, nContigMinPctOfSeq, 

listMeanCovByContig, nContigMinCoverage, 

cParamNameForFilter, listMeanParamByContig, 

nContigFiltParamLoBound, nContigFiltParamUpBound. 

d. It is also possible to filter out modifications from the ModGFF object based on 

different conditions using a combination of the following arguments: 

cParamNameForFilter, nFiltParamLoBoundaries, 

nFiltParamUpBoundaries, cFiltParamBoundariesToInclude, 

nModMinCoverage, nModMinIpdRatio, nModMinScore.  

e. Finally, it is possible to filter out modifications from the ModGFF 

GRangesList object based on False Discovery Rate estimations by providing 

the output list of the GetFdrBasedThreshLimit function to the 

listFdrEstByThrIpdRatio or listFdrEstByThrScore arguments 

depending on which parameter has been used for the estimation of the False 

Discovery Rate: ipdRatio or score respectively.  

8. Use the nUpstreamBpToAdd and nDownstreamBpToAdd arguments to choose 

the size of the sequence motif (that includes the target base) to look at or to filter. 

9. The Y-axis can be changed to plot information content or probabilities using the 

cYunit option. You can also remove the depletion signal by deactivating the 

lPlotNegYAxis option. Sequences that do not have full width and sequences that 

have some N or some gaps "-" are automatically removed before drawing the 

sequence plot. If a base is enriched 100% at one position, this base alone will be 



represented, and other bases will not be represented into the « depletion » part unless 

if the ‘prob’ value is used for the y-axis: here the complementary base would then be 

represented. 

10. Formulas can be found in the documentation of the GetFdrEstListByThresh 

function and are based on formulas recently published [16]. 

11. The chosen FDR is defined by the nFdrPropForFilt argument (default to 5%). 

The threshold will be defined as the closest value below this level of FDR for each 

motif (or only for some motifs if the lUseBestThrIfNoFdrThr argument is 

used).   

12. If the genomic annotation feature provided is larger than 1bp, its two extremities will 

be used instead for computing the distance. If the 

lGetGRangesInsteadOfListCounts argument is deactivated, the 

GetDistFromFeaturePos function will return instead a list of data.frames giving 

the counts (or proportion) of Mod (or Base) by distance toward the feature. 

13. For example, we imported MNase-seq data from a bed file using the import.bed 

function from the rtracklayer package [17] then we used the 

GetGposCenterFromGRanges function before using its output with the 

GetDistFromFeaturePos function with the output of the import.bed 

function. Then we used the AddToModBasePropDistFromFeaturePlot 

function to plot this parameter against Mod and Base proportions. 

14. Up until two additional parameters can be added on this plot, use the 

lAddAxisOnLeftSide argument to choose on which side to put the axis of the 

new parameter to add. 
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Tables 
 
Table 1  
List of input files used in this protocol  
 
Description Format Link Required? 
T. thermophila (June2014) genome 
assembly sequence 

fasta http://ciliate.org/index.p
hp/home/downloads 

Mandatory 

T. thermophila (June2014) genome 
annotation 

gff3 http://ciliate.org/index.p
hp/home/downloads 

Mandatory 

T. thermophila pre-processed 
SMRT-seq data (via SMRT-link 
tools v7.0.1.66975-0) using 
T_thermophila_June2014 genome 
assembly.  
SMRT-seq data was retrieved from 
GSM2534782 [13] 
contig_list.txt contains the listing of 
contigs selected in this example. 

gff, csv 
and txt 

https://github.com/Alex
isHardy/DNAModAnno
t_AdditionalData 

Mandatory 

T. thermophila SMRT-seq data (to 
be retrieved via SRA Run Selector) 
[13]  

bax.h5 https://www.ncbi.nlm.n
ih.gov/geo/query/acc.cg
i?acc=GSM2534782 

Not 
required if 
pre-
processed 
files are 
available 

T. thermophila MNase-seq [13] bed https://www.ncbi.nlm.n
ih.gov/geo/query/acc.cg
i?acc=GSM2534785 

Optional 

T. thermophila H2A.Z ChIP-seq [13] bed https://www.ncbi.nlm.n
ih.gov/geo/query/acc.cg
i?acc=GSM2534783 

Optional 

T. thermophila RNA-seq [14] txt https://www.ncbi.nlm.n
ih.gov/geo/query/acc.cg
i?acc=GSM692081 

Optional 

 
 
 
  



Table 2  
Global 6mA distribution report using a subset of T. thermophila SMRT-seq data and 
T.thermophila_June2014 genome assembly (small version)  
 
Parameters T.thermophila_June2014 

6mA count 19,354 

Adenine count (sequenced) 15,488,227 

Ratio 6mA/A 0.00125 

Ratio 6mA/A corrected 0.00096 

6mA mean fraction 0.76926 

6mA mean coverage 31.38 

6mA mean ipdRatio 43.26 

6mA mean identificationQv 24.26 

6mAA % 0.67% 

6mAC % 0.19% 

6mAG % 0.72% 

6mAT % 98.42% 

 
 
 
 
  



 

Figures 
 
Fig. 1  
Overall workflow of the DNAModAnnot package used to filter and analyze DNA 
modification patterns  

 
 
 
 
  



Fig. 2  
Example of graphs generated via DNAModAnnot using a subset of T. thermophila 
SMRT-seq data. (A) Logo generated via the DrawModLogo function displaying an AT 
motif associated with 6mA. 5bp were selected upstream and downstream 6mA positions. 
“Negative” information content corresponds to information content for depletion signal. 
(B) Barplot generated using the DrawModBasePropByFeature function using gene and 
intergenic categories for comparison showing 6mAT enrichment in genes. (C) Barplot 
generated using the DrawModBaseCountsWithinFeature function showing the 
enrichment of 6mAT downstream TSS. (D) Boxplot generated using the 
DrawParamPerModBaseCategories function: a slight association between 6mAT count 
(per kbp) and normalized RNA-seq read count can be observed. G-m (mid-log 
exponential growth) sample was used here. Intervals are computed from quantiles to 
optimize the repartition of windows between the categories. 

 
 
 
 
  



Fig. 3  
Example of graph generated using the DrawModBasePropDistFromFeature  
function with a subset of T. thermophila SMRT-seq data then the 
AddToModBasePropDistFromFeaturePlot function with T. thermophila MNase-seq 
data. Here, enrichment of 6mAT can be observed between peaks of MNase-seq reads 
downstream TSS. 

 
 
 
 


