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Abstract11

The modeling of single neurons has proven to be an indispensable tool in decipher-12

ing the mechanisms underlying neural dynamics and signal processing. In that sense,13

two types of single-neuron models are extensively used: the conductance-based mod-14

els (CBMs) and the so-called ‘phenomenological’ models, which are often opposed in15

their objectives and their use. Indeed, the first type aims to describe the biophysical16

properties of the neuron cell membrane that underlie the evolution of its potential,17

while the second one describes the macroscopic behavior of the neuron without taking18

into account all its underlying physiological processes. Therefore, CBMs are often19

used to study ‘low-level’ functions of neural systems, while phenomenological models20

are limited to the description of ‘high-level’ functions. In this paper, we develop a21

numerical procedure to endow a dimensionless and simple phenomenological non-22

spiking model with the capability to describe the effect of conductance variations on23

non-spiking neuronal dynamics with high accuracy. The procedure allows to deter-24

mine a relationship between the dimensionless parameters of the phenomenological25
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model and the maximal conductances of CBMs. In this way, the simple model com-26

bines the biological plausibility of CBMs with the high computational efficiency of27

phenomenological models, and thus may serve as a building block for studying both28

‘high-level’ and ‘low-level’ functions of non-spiking neural networks. We also demon-29

strate this capability in an abstract neural network inspired by the retina and C.30

elegans networks, two important non-spiking nervous tissues.31

32

Keywords: Simple neuron model; non-spiking neurons; conductance variations;33

bifurcation; Caenorhabditis elegans; retina.34

1 Introduction35

To better understand how neuronal circuits control behavior and brain functions, neuron36

modeling is a widely-used tool. Two types of models characterizing the dynamics of sin-37

gle neurons can be used. The first one is the conductance-based model (CBM), which38

inherits the Hodgkin-Huxley formalism (Hodgkin and Huxley, 1952) and aims to describe39

the biophysical properties of the neuron cell membrane that underlie the evolution of its40

potential. In this model, every individual parameter and state variable has an established41

electrophysiological meaning. Therefore, CBMs are broadly used to understand ‘low-level’42

functions of neural systems (Eliasmith and Trujillo, 2014; O’Leary et al., 2015), such as43

monitoring the effects of specific conductance variations on neuronal dynamics (Giovan-44

nini et al., 2017; Poirazi and Papoutsi, 2020; Naudin et al., 2022c), or modeling gain- or45

loss-of-function mutations in genes encoding ion channels (Lemaire et al., 2021).46

The second type of model is often qualified by the term ‘phenomenological’, although47

some authors contradict it (Brette, 2015). This type of model was developed in part to48

overcome the drawbacks of CBMs, which are twofold: (i) they have a very high computa-49

tional cost due to their complexity so that only a handful of neurons can be simulated in50

real time (Izhikevich, 2004), and (ii) the insights obtained from a mathematical analysis51

are quite limited as these are high-dimensional systems (Ermentrout and Terman, 2010).52

A phenomenological model therefore aims to be lightweight, simple, and to describe the53

macroscopic behavior of the neuron without taking into account all its underlying physi-54

ological processes. Some classical examples are the FitzHugh–Nagumo model (FitzHugh,55

1961), Izhikevich model (Izhikevich, 2003), or many integrate-and-fire models (Latham56

et al., 2000; Smith et al., 2000; Górski et al., 2021). The counterpart of phenomenological57

models is that their parameters are dimensionless, thus limited to the study of ‘high-level’58

functions of neural systems.59
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A simple phenomenological model of non-spiking neurons was recently developed in60

Naudin et al. (2022b). This type of neuron is found in a wide variety of nervous tissues61

(Davis and Stretton, 1989b; Goodman et al., 1998; Field and Chichilnisky, 2007), encodes62

neuronal information in an analog manner through graded responses (Lockery et al., 2009),63

and plays a crucial role in the functioning of many nervous systems (Roberts and Bush,64

1981; Burrows et al., 1988; Laurent and Burrows, 1989; Davis and Stretton, 1989a; Bidaye65

et al., 2018). Further, three phenotypes of non-spiking neurons can be distinguished (Fig-66

ure S2), each with its own computational properties (Naudin et al., 2022c): (i) near-linear,67

defined by smooth depolarizations or hyperpolarizations from the resting potential (pheno-68

type 1), (ii) bistable, characterized by nonlinear transitions between the resting potential69

and a depolarized potential, with one resting potential (phenotype 2), and (iii) bistable70

with two resting potentials (phenotype 3). Naudin et al. (2022c) described a general pat-71

tern of the phenotypic evolution of non-spiking neurons as a function of changes in calcium72

and potassium conductances. As an example, Figure 1 illustrates the phenotypic transi-73

tions of non-spiking neurons as calcium conductance (gCa) decreases through a well-posed74

retinal cone non-spiking CBM (Kourennyi et al., 2004). To sum up, the wild-type CBM75

endowed with a phenotype 3 switches to a phenotype 2 and then 1 as gCa decreases.76

The aim of this paper is the development of a numerical procedure to determine a77

relationship between the dimensionless parameters of the phenomenological non-spiking78

model (Naudin et al., 2022b) and the calcium conductance of a non-spiking cell, in order79

to reproduce its phenotypic transitions as gCa decreases (Figure 1). In other words, the80

dimensionless parameters of the simple model are expressed as a function of gCa. In81

this way, our resulting simple model, called ‘conductance-based phenomenological non-82

spiking model’, combines the biological plausibility of CBMs with the high computational83

efficiency of phenomenological models, and thus may serve as a building block for studying84

both ‘high-level’ and ‘low-level’ functions of non-spiking neural networks. To illustrate85

our method, the procedure is applied to a model of an intrinsically non-spiking cell type,86

the retinal cone. Finally, as a proof of concept, we simulate an abstract neural network87

inspired by the networks of the retina and C. elegans, two non-spiking nervous tissues, in88

which we show that the simple model predicts the same changes in the network output as89

the CBM for different values of gCa.90

The remainder of the paper is organized as follows. Section 2 describes the evolution91

of the computational characteristics of the retinal cone CBM as gCa decreases, that is92

representative of an ubiquitous and general pattern in non-spiking neurons (Naudin et al.,93

2022c). Section 3 proposes a numerical procedure to build a phenomenological model94
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that reproduces the computational characteristic evolution of the retinal cone CBM as gCa95

reduces, as described in Section 2. Then, we analyse in Section 4 the dynamics of the96

resulting model and show that it is well-suited to characterize the phenotypic evolution of97

the neuron as gCa decreases. As a proof of concept, we show in Section 5 that the simple98

model predicts the same effects of conductance variations as the CBM on the ouput of99

an abstract neural network inspired by both the retina and C. elegans networks. Finally,100

Section 6 discusses the implications on the modeling of the retina and C. elegans networks.101

gCa

Figure 1: Phenotypic transitions of the voltage dynamics as gCa decreases

(Naudin et al., 2022c). A well-posed retinal cone model, with a wild-type phenotype 3,

was used as an illustration. A neuron with such a phenotype displays two resting potential

values (VR1 and VR2). Decreasing gCa changes the voltage dynamics of the neuron which

becomes bistable with only one resting potential (phenotype 2). Finally, the even greater

decrease of gCa leads to the loss of the bistability of the neuron which becomes near-linear

(phenotype 1).

2 Preliminaries: evolution of the non-spiking neuron102

computational characteristics as gCa decreases103

A previous work (Naudin et al., 2022c) determined an ubiquitous and general pattern of104

non-spiking neuron dynamics as gCa decreases, illustrated through a well-posed retinal105

cone CBM (described in Supplementary materials) in Figure 1. It consists in a transition106

from phenotype 3 to 2 and then to 1 as gCa decreases. This section aims at describing107

the computational implications of this phenotypic evolution on the dynamics of the CBM108

under study.109

The evolution of the computational characteristics of a non-spiking CBM can be inferred110

from the evolution of its steady-state current (SSC). Indeed, the SSC is the underlying data111
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that confers all the qualitative neuro-computational characteristics to non-spiking neurons112

(Naudin et al., 2022a). Thus, we show in Figure 2.A the evolution of the SSC of the CBM113

under study as gCa decreases. The wild-type (WT) SSC (gCa = 4.92 nS) exhibits a region114

with negative slope that becomes less and less steep and then disappears as gCa decreases.115

This evolution is due to a counterbalanced flow of ICa and IK that underlies the negative116

slope in the SSC of the neuron (Naudin et al., 2022c). This specific voltage-dependence of117

membrane current is a common mechanism across the animal phyla, including C. elegans118

neurons (Goodman et al., 1998; Mellem et al., 2008; Nicoletti et al., 2019), vertebrate119

retina cells (Kourennyi et al., 2004; Aoyama et al., 2000; Usui et al., 1996), vertebrate hair120

cells (Art and Goodman, 1996; Fettiplace, 1987) and thalamocortical neurons (Hughes121

et al., 1999; Williams et al., 1997). Therefore, the evolution of the SSC under the effect of122

decreasing gCa shown in Figure 2.A is representative of a general pattern. This evolution123

implies a qualitative change in the computational characteristics of non-spiking neurons124

that we discuss now.125

The wild-type SSC (gCa = 4.92 nS) is N-shaped with two stable zeros (phenotype 3).126

This provides the neuron with two resting potentials, which gives it a short-term memory127

capacity: the response of the cell depends on its recent history of activity by storing128

information about its last input (Figure 2.B). For detailed explanations from a dynamical129

system viewpoint about the mechanism underlying this phenomenon, we refer to Figure S3130

and Naudin et al. (2022c). Then, the negative slope of the SSC becomes less and less steep131

as gCa decreases (Figure 2.A), until its local minima becomes positive (e.g., gCa = 4.22132

nS). Therefore, the neuron is still bistable but with only one resting potential (phenotype133

2). This implies that the neuron has lost its short-term memory capacity, so the cell’s134

response no longer reflects the history of its inputs and of its activity (Figure 2.C). Finally,135

an even more decreased value of gCa (e.g., gCa = 2.02 nS) gives a monotonic SSC: the136

neuron becomes near-linear. To sum up, the wild-type neuron with phenotype 3 switches137

to a phenotype 2, and then from 2 to 1 as gCa decreases. In other words, the neuron138

first loses its short-term memory capacity (transition from phenotype 3 to 2), then loses139

its bistable behavior to a near-linear one (transition from phenotype 2 to 1). One last140

important evolution of the computational characteristics of the neuron as gCa reduces is141

the decrease of the voltage amplitude (Figure 2.D).142

The aim of the following section is to propose a procedure that endows a recent and143

novel non-spiking phenomenological model with the capability to reproduce the evolution144

of these computational characteristics of the retinal cone CBM as gCa varies.145
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Figure 2: Evolution of the computational characteristics of the retinal cone CBM

as gCa decreases. (A) SSC curve for three different values of gCa (4.92 (WT), 4.12, 2.02).

(B) Short-term memory capacity of the WT phenotype of the CBM (phenotype 3). (Left)

A depolarizing current step (5 pA) of 2000 ms duration into the neuron is applied. On

cessation of the current step, the voltage stabilizes at its lower resting potential (about

−31 mV). (Right) A high transient pulse (20 pA) of 100 ms duration is first injected into

the neuron. Its membrane potential then relaxes to its highest resting potential value (ap-

proximately −8 mV), and finally stabilizes at about −6 mV in response to the same current

injection protocol as before (current injection step at 5 pA under 2000 ms). (C) Response

of the neuron with a reduced value of gCa (gCa = 4.22 nS). Whatever the stimulation proto-

col used, the neuron stabilizes at a steady-state value of about −29 mV: the response of the

neuron no longer reflects the history of its inputs. (D) Decrease of the voltage amplitude

as gCa decreases, for a series of current injections starting from −15 pA and increasing to

35 pA by 5 pA increments.

3 Design procedure of the conductance-based phe-146

nomenological non-spiking model147

This section aims at proposing a methodology to build a simple and lightweight model that148

reproduces the qualitative evolution of non-spiking neuron dynamics as gCa decreases, as149

described in the previous section. The simple model, described in Materials and methods,150

has the advantage of having a very low computational cost so that one can simulate large-151

scale neuronal networks in real time (Naudin et al., 2022b), which is more difficult with152

CBMs due to their complexity (Izhikevich, 2004). Moreover, the simplicity of this model153

allows a theoretical mathematical analysis to gain insight into neuronal dynamics (Naudin,154
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2022). Thus, this section proposes a methodology to build such a simple model that reliably155

predicts the effects of calcium conductance variations on the neuron dynamics. In this way,156

the model would combine a high computational efficiency and simplicity of mathematical157

analysis, with the biological plausibility of CBMs.158

The methodology is based on the fitting of the evolution of the SSC as gCa decreases159

since it determines the neuro-computational features of a non-spiking neuron, as explained160

above. The fitting of the SSCs by the cubic function161

f(V ) = aV 3 + bV 2 + cV + d (1)

of the simple model is based on the Lagrange interpolation theorem. This theorem gives162

unique combinations of parameters (a, b, c, d) for which the third-degree polynomial f163

passes through any four given points. Therefore, the aim is to consider four specific points164

of the SSC to be interpolated by f . Figure 3 shows the two general steps of the procedure,165

that we apply to the CBM under study in the case of gCa. The detail of the procedure is166

given below.167

• Step 1a. Reproducing the wild-type SSC of the neuron by the cubic function f (1):168

Procedure: To fit the wild-type SSC of the neuron (gCa = 4.92 nS in our case), we169

need to consider four points to be interpolated by the cubic function f . Based on170

the previous section, the four points of the SSC that play a paramount role in the171

dynamics of the neuron of phenotype 3 are the following:172

– Resting potentials : The two stable zeros of the SSC curve, i.e. the resting173

potentials (red points in Figure 4.A).174

– Local minima and maxima of the SSC: The local minima and maxima of the SSC175

curve (blue points in Figure 4.A) because they determine the current injection176

thresholds at which the voltage jumps to a new plateau.177

Therefore, the parameters (a, b, c, d) of the function f are determined through La-178

grange interpolation so that f passes through these four points.179

Output: One vector of parameters (a, b, c, d) for which the cubic function f(V ) =180

aV 3 + bV 2 + cV + d interpolates the four fundamental points of the SCC of the CBM181

(VR1, VR2 and the local minima and maxima of the SSC curve)182

• Step 1b. Generating four points of the SSC to be interpolated for a series of gCa183

associated with phenotypes 3 and 2 by 0.1 nS decrements:184

Procedure: The SSC for phenotypes 3 and 2 is N-shaped (Figure 2.A). Then, the185
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Finding four functions                  and

that fit             and      respectively.

Phenomenological non-spiking model (Naudin et al., 2022b)

Procedure: Lagrange interpolation of 4 pts 
of each SSC to estimate from f. 

Output: 

Conductance-based phenomenological non-spiking model 

Procedure: Polynomial regression to obtain
 that fit its associated points vector. 

Output: 

Step 1

Generating and fitting a series of SSCs 
for N different values of         by the cubic 
function f (#)

Step 2

Figure 3: Overview of the model design procedure. (Top) The phenomenological

non-spiking model (Naudin et al., 2022b) comprises 4 dimensionless parameters a, b, c

and d. (Middle) The two-stage procedure aims to find a relationship between these

parameters and maximal conductances gion of neurons or CBMs. (Bottom) After applying

the procedure, the conductance-based phenomenological non-spiking model is obtained and

depends only on the gion parameter.

four points for interpolation by the function f are the local minima and maxima of186

the SSC curve, and the two points of the lower and upper bounds (−100 pA and 100187

pA respectively in this paper):188

– Local minima and maxima of the SSC: For each SSC of the CBM generated189

with a new value of gCa associated with phenotypes 3 and 2, we compute its190
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Figure 4: (A) The four points of the wild-type SSC to be interpolated by the cubic

function of the simple model. Blue squares denote the local minima and maxima of the

SSC, representing the current injection thresholds at which the neuron jumps to a new

voltage plateau. Red points denote the two stable zeros of the SSC, representing the two

resting potentials of the neuron. (B) The V -coordinate of the upper bound (100 pA) of

the SSC of the CBM decreases more and more as gCa decreases, which implies a decrease

of the voltage amplitude of the neuron as gCa decreases. The cubic function f of the simple

model will then reproduce this pattern in its upper bound.

local minima and maxima, as in Step 1. For the CBM under study, we consider191

gCa ∈ {4.82,4.72, . . . ,3.62}.192

– Upper bound of the SSC: As can be seen in Figure 4.B, the V -coordinate of193

the upper bound of the SSC of the CBM decreases more and more as gCa194

decreases. This implies the decrease in voltage magnitude as gCa decreases, a195

paramount computational feature of the CBM shown in the previous section.196

To endow the simple model with this characteristic, we generate points in the197

upper bound that decrease in the V -coordinate in a recusive way from the cubic198

curve obtained in Step 1.199

– Lower bound of the SSC: As can be seen in Figure 4, the V -coordinate of the200

lower bound of the SSC of the CBM remains relatively constant. The cubic201

function f will seek to preserve such a characteristic.202

Output: A series of vector points a⃗ ∶= (a4.92, a4.82, . . . , a3.62), b⃗ ∶= (b4.92, b4.82, . . . , b3.62),203

c⃗ ∶= (c4.92, c4.82, . . . , c3.62), and d⃗ ∶= (d4.92, d4.82, . . . , d3.62).204

• Step 2. Fitting independently the points of a⃗, b⃗, c⃗, and d⃗ obtained in Step 2:205

Procedure: Finding four functions u1, u2, u3 and u4 that verify a = u1(gCa),206

b = u2(gCa), c = u3(gCa) and d = u4(gCa). In this way, we establish a direct rela-207

tionship between the parameters a, b, c, and d of the simple model and the calcium208
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conductance gCa of the CBM. To that end, the functions u1, u2, u3 and u4 are con-209

sidered as polynomials so that polynomial regressions are performed to fit the points210

of a⃗, b⃗, c⃗ and d⃗, respectively. We stress the importance to choose polynomials that211

are not too complex, i.e. with degrees that are not too high. Indeed, the SSCs for212

the phenotype 1 are generated from these functions, i.e. for novel values of gCa not213

considered during the building of u1, u2, u3 and u4 through the polynomial regres-214

sion processes. Therefore, the polynomials should not be too complex to avoid an215

overfitting of data points which would lead to an inability of the model to generate216

adequate SSCs for phenotypes 1. In our case, two-degree polynomials u1, u2, u3 and217

u4 will be sufficient to obtain good results (see next section).218

Input: Vector points a⃗ = (a4.92, a4.82, . . . , a3.62), b⃗ = (b4.92, b4.82, . . . , b3.62),219

c⃗ = (c4.92, c4.82, . . . , c3.62), and d⃗ = (d4.92, d4.82, . . . , d3.62).220

Output: Four functions u1, u2, u3, and u4 that verify a = u1(gCa), b = u2(gCa),221

c = u3(gCa) and d = u4(gCa), such as we obtain the new model:222

τ
dV

dt
= −hgCa

(V ) + I (2)

with223

hgCa
(V ) ∶= u1(gCa)V

3 + u2(gCa)V
2 + u3(gCa)V + u4(gCa). (3)

so that the simple model (2) depends only on the calcium conductance parameter.224

In the next section, we show and discuss the results obtained from the procedure pro-225

posed in this section applied to the CBM under study.226

4 Analysis of the model dynamics227

A procedure to build a simple model that reproduces the qualitative evolution of non-228

spiking neuron dynamics as gCa evolves has been proposed in the previous section. Since229

the qualitative evolution of non-spiking neuron dynamics as gCa evolves is reflected by230

the evolution of the SSC, the procedure consists in reproducing this evolution of the SSC231

by the function hgCa
of the model (2). The result of this procedure is shown in Figure232

5 in which we compare the evolution of the SSC of the CBM with the function h (Eq.233

(3)) for different values of gCa, starting from 4.92 nS and decreasing to 0.02 nS by 0.2 nS234

decrements. The interpolation functions ui, i = 1, . . . ,4, of the function h are shown in235
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Figure S4. In particular, we can observe in Figure 5 that the qualitative evolution of the236

SSC as gCa decreases is reproduced with a high fidelity by the cubic function. The purpose237

of this section is to discuss the implications on the resulting voltage dynamics.238
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Figure 5: Comparison between the SSC of the CBM and the function h defined in (3) for

a series of calcium conductance values gCa starting from 4.92 nS (WT) and decreasing to

0.02 nS by 0.2 nS decrements.

The first important implication is the occurrence of transitions between different phe-239

notypes for the same gCa values in the CBM as in the simple model. Indeed, the transition240

between phenotype 3 and 2 occurs at gCa = 4.50 nS, both in the CBM and in the simple241

model. In other words, the CBM and the simple model lose their short-term memory ca-242

pacity at the same gCa value. Similarly, the transition between phenotype 2 and 1 occurs243

at gCa = 3.59 nS in the CBM, and at gCa = 3.50 nS in the simple model. Therefore, the loss244

of bistability in favor of a near-linear type behavior occurs at about the same gCa values245

in the CBM as in the simple model.246

The second implication stems from the perfect fitting of the function hgCa
with the247

intermediate values of its associated SSC for any value of gCa (see Figure 6.A that exem-248

plifies this for gCa = 4.82 nS). For phenotypes 2 and 3, this implies that the voltage jumps249

between the down- and up-states of the neuron occur for the same values in the CBM as in250

the simple model for any value of gCa (Figure 6.B). That is, the saddle-node bifurcations in251

the CBM and in the simple model appear for the same values of injection current. Figure252

S5 shows a representative example (for gCa = 4.82 nS) of the voltage jump to its up-state253

in the CBM and in the simple model. In the same way, the CBM and the simple model254

relax to the same resting values for any value of gCa (Figure S6).255

Furthermore, both in the CBM and in the simple model, we observe a loss of the overall256

voltage amplitude as gCa decreases (Figure 6.D), which is a paramount characteristic of the257

behavior of non-spiking neurons under the effect of calcium conductance decrease. This258
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observation is partly due to the increase in voltage jump threshold values, as well as the259

decrease in resting potential values (Figure S6), both resulting from the decrease of gCa.260

Finally, a relative deterioration of the fitting of the SSC for higher and lower values can261

be observed in Figure 6.A. Nonetheless, it should be noted that substantial noise in the262

recording of SSCs of non-spiking C. elegans neurons can be observed for extreme values, as263

in the bistable AFD neuron (Figure S7), which is similar to what we obtain (Figure 6.A).264

Taken together, the aforementioned observations confirm that the main qualitative265

features of the raw neuron dynamics are accurately preserved by the simple model. From266

then on, it can be safely concluded that the simple model is adequate for the description267

of the neuron behavior as gCa evolves. In the following section, we consider an abstract268

neural network inspired by the retina and C. elegans non-spiking nervous tissues in which269

we show, as well, that the simple model predicts the same neuronal changes as the CBM270

at the network scale.271

5 Implementation of a non-spiking neuronal network272

In this section, we implement a non-spiking neuronal network inspired by the retina and273

C. elegans networks which are two non-spiking nervous tissues. The neuronal network274

is composed of three layers (Figure 7.A): (i) a first layer composed of 4 near-linear non-275

spiking neurons that receive sensory stimuli, (ii) a second layer composed of one bistable276

non-spiking neuron that could represent mammal bipolar retinal cells (Usui et al., 1996)277

or the AIA C. elegans neuron (Dobosiewicz et al., 2019) for instance, and (iii) a third layer278

composed of one spiking neuron. This neuron can represent muscles in C. elegans which279

are known to elicit trains of action potentials (Liu et al., 2011), or the retinal ganglion cells280

– the output neurons of the retina whose axons project to higher processing centers in the281

brain (Fohlmeister et al., 1990). We use a leaky integrate-and-fire model for the spiking282

neuron (Gerstner et al., 2014). The near-linear neurons of the first layer are modeled283

using a near-linear CBM as in Naudin et al. (2022b). Finally, the neuron which composes284

the second layer is modeled using the CBM or the simple model under study where the285

parameters have been adjusted according to our procedure (see Section 3).286

We consider that all neurons in the first layer receive an identical stimulus input,287

namely a high transient depolarizing current (20 pA) of 500 ms duration followed by a288

small depolarizing current step (2 pA) for 1000 ms (Figure 7.A). The resulting electrical289

signals generated in these sensory neurons are then transmitted to the bistable neuron in290

the second layer, which itself connects the spiking neuron in the third layer (Figure 7.A).291
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Figure 6: (A) Example of SSC (gCa = 4.82 nS) of the CBM (in blue) against the function

h4.82 of the simple model (in red) defined in (3). (B) Upper and lower threshold of injection

currents between the down- and up-states in the CBM and in the simple model. (C)

Comparison of the voltage amplitude decrease in CBM and in the simple model. For each

calcium conductance value, we simulate the models through a series of injection currents

starting from −15 pA to 35 pA by 5 pA increments.

The synapses between each layer are considered excitatory and graded, as in C. elegans292

(Lindsay et al., 2011) and in the retina (Dowling, 1987) (see Supplementary materials for293

the description of the equations). The aim is then to compare the impact of gCa reduction294

in the two models on the resulting dynamics of the spiking neuron, the output of the295

network.296

To this end, Figure 7.B compares the dynamics of the spiking neuron output for gCa ∈297

{4.92,4.22,2.02} in its presynaptic neuron (i.e. the non-spiking CBM or the conductance-298

based phenomenological non-spiking model). Whether the network is composed of the299

CBM or the simple model, the spiking activity of the network output neuron is qualitatively300

and quantitatively similar for the three different values of gCa. In particular, the short-301

term memory capacity of both models for gCa = 4.92 nS results in a sustained activity302

of the spiking neuron even after the stimulus ceases (Figure 7.B1). For gCa = 4.22 nS,303
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both models have lost their short-term memory capacity (Figure 7.B2), while no activity304

is observed when gCa = 2.02 nS (Figure 7.B3). Taken together, these observations suggest305

that the simple model reliably predicts the conductance changes at the network scale.306

Conductance-based model Simple model

Conductance-based model Simple model

Conductance-based model Simple model

sensory neuron layer

interneuron layer

spiking neuron layer

Sensory stimulus
20 pA

0 pA
2 pA

A

B2 B3

B1

Figure 7: (A) Schematic of the neural network made up of three layers: four near-linear

sensory neurons, one bistable interneuron, and one spiking output neuron. (B) Comparison

of the neural network output (spiking activity) when coupled to the simple model or the

CBM for three different values of gCa, each being associated with a distinct phenotype.

6 Discussion307

Summary. CBMs and ‘phenomenological’ models are often used to deal with distinct308

issues. CBMs are well suited to study ‘low-level’ functions of nervous systems, depending309

on physiological microscopic parameters such as ion conductances. Indeed, a CBM is310

a biophysical representation of a neuron in which every individual parameter and state311

variable has an established electrophysiological meaning. Nevertheless, the simulation of312

this type of model is very time-consuming, so the size of neural networks composed of CBMs313
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that can be studied is inherently limited. In contrast, “phenomenological” models are very314

lightweight and simple so that one can simulate large-scale networks in real time. But their315

drawback is the lack of biophysical realism since it describes the macroscopic behavior of316

neurons regardless the underlying microscopic physiological processes. As a consequence,317

‘phenomenological’ models exhibit dimensionless parameters and are therefore limited to318

the study of ‘higher-level’ functions of neural systems. This paper aimed to propose a319

model for non-spiking neuron dynamics that combines the strengths of the two types of320

models: the biological plausibility of CBMs with the high computational efficiency of321

phenomenological models. To do this, a numerical procedure was proposed to establish322

a relationship between the dimensionless parameters of a non-spiking phenomenological323

model (Naudin et al., 2022b) and the ion conductances of CBMs or neurons. We applied324

it to a model of an intrinsically non-spiking cell type, the retinal cone, associated with325

a decrease in gCa. We showed that the resulting ‘conductance-based phenomenological326

non-spiking model’ was able to accurately depict the phenotypic transitions of non-spiking327

neurons as gCa evolves, previously described with CBMs (Naudin et al., 2022c). These328

cellular properties translated at the network level where the dynamics of our simple model329

fits the one of the CBM as gCa varies, resulting in similar network outputs. Therefore, the330

resulting model combined the biological plausibility of CBMs with the high computational331

efficiency of phenomenological models, and thus may serve as a building block for studying332

both ‘high-level’ and ‘low-level’ functions of non-spiking neural networks.333

Potential applications to the study of the effect of physiological and patho-334

logical changes on non-spiking neural network dynamics. Given the importance335

of ion channels and ion flow for many physiological and pathological functions, both in336

spiking and in non-spiking neurons, it could be valuable to have a direct relationship with337

ion conductances when using phenomenological models. This would allow to study various338

systems and nervous tissues, considering the physiological range of functioning, as well as339

the pathological variations of their associated ion conductance. Our conductance-based340

phenomenological non-spiking model was designed in this context, with a particular fo-341

cus on the calcium conductance variations due to its crucial role in the electrical signal342

generation in non-spiking neurons.343

Indeed, non-spiking neurons, such as C. elegans neurons or retinal cells, exhibit a344

variety of ion channels on their cell membrane, including many voltage-gated calcium and345

calcium-gated potassium channels (Bargmann, 1998; Taylor et al., 2021; Van Hook et al.,346

2019). The flow of ions in and out of the cells through these channels provides non-spiking347

neurons with several crucial physiological properties, including their electrical activity.348
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In particular, voltage-gated calcium channels are essential in C. elegans which lacks the349

voltage-gated Na+ channels (Bargmann, 1998) that are usually involved in action potential350

generation in vertebrates. Likewise, in many retinal cell classes including the cone, rod,351

bipolar, horizontal and some amacrine cells, voltage-gated Na+ channels are absent or352

barely expressed, giving great importance to calcium channels in retinal electrical signal353

generation (Van Hook et al., 2019). Therefore, it may be particularly relevant to have the354

ability to assess the impact of calcium gradient variations on neuron behavior as well as355

on network dynamics.356

Furthermore, several mechanisms may alter the “normal” function of ion channels.357

In particular, many studies show that mutations within genes encoding calcium channels358

are often associated with various neurological and psychiatric diseases (Andrade et al.,359

2019). Yet, these ion channels are ubiquitous in the retina cells, whose electrical activity is360

disturbed as suggested by electrophysiological recordings (electroretinograms) conducted361

in patients suffering from Parkinson’s, Alzheimer’s and Huntington’s diseases, epilepsy,362

depression and schizophrenia (Silverstein et al., 2020). In this case, it would also be of363

particular interest to gain insight into the levels of ion conductance that might lead to364

pathological behavior.365

Taken together, these information confirm that the use of the simple phenomenological366

model, rather than CBMs, to address these issues is justified both by its minimal computa-367

tional cost and by its biological plausibility. This original combination allows for the study368

of precise physiological and pathological changes in a context of large-scale simulations of369

the retina or C. elegans networks.370
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Supplementary materials382

Here we present the phenomenological model capable of reproducing the qualitative be-383

haviors of non-spiking neurons, developed in Naudin et al. (2022b). In addition, we recall384

the role played by the steady-state current (SSC) in the dynamics of non-spiking neurons,385

since the numerical method developed in this paper fundamentally rely on it.386

The phenomenological model387

The phenomenological model, developed in Naudin et al. (2022b), is built on the basis388

of the bifurcation structure of conductance-based models of non-spiking neurons. For the389

convenience of reading the paper, we present it in this section.390

Conductance-based models (CBMs). In CBMs, the dynamics of the membrane po-391

tential V is described by a general equation of the form392

C
dV

dt
= −∑

ion

Iion + I (4)

where C is the membrane capacitance, ∑ion Iion is the total current flowing accross the cell

membrane, and I is an applied current. The currents Iion take the form

Iion = gionm
a
ionh

b
ion(V −Eion)

where m (resp. h) denotes the probability for an activation (resp. inactivation) gate to be393

in the open state; a and b are the number of activation and inactivation gates, respectively;394

gion is the maximal conductance associated with ion; and Eion is the reversal potential.395

Bifurcation dynamics of non-spiking CBMs. In non-spiking CBMs, the SSC curve396

I∞ determines the number of equilibra of the system and their values, as well as the397

bifurcations of the resting state along with the values to which they occur. It takes the398

general form399

I∞(V ) =∑
ion

Iion∞(V ) where Iion∞(V ) = gionma
ion∞(V )h

b
ion∞(V )(V −Eion) (5)

with400
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x∞(V ) =
1

1 + exp(
V x
1/2 − V

kx
)

, x ∈ {m,h}.

where V x
1/2 and kx are constant parameters.401

Any stationary point of gating variables x ∈ {m,h} must satisfy x∗ = x∞(V∗). Replacing402

this into the first equation on V , fixed points V∗ of such models satisfy the equation403

I∞(V∗) = I. (6)

In other words, equilibria V∗ correspond to the intersection between the SSC I∞ and404

a horizontal line I = c where c is a constant. There are two standard steady-state405

curves I∞, monotonic and cubic (Figure S1), each involving fundamentally different neuro-406

computational properties for non-spiking neurons:407

• As shown in Figure S1.A, CBMs with a monotonic SSC only have one equilibrium408

for any value of I. Non-spiking neurons with such a SSC display a near-linear behav-409

ior characterized by smooth depolarizations or hyperpolarizations from the resting410

potential, such as the RIM neuron (Figure S2).411

• As shown in Figure S1.B, a N-shaped curve leads to a saddle-node bifurcation. When412

I = c1, there are 3 equilibria, noted V c1
1∗ , V

c1
2∗ and V c1

3∗ . Increasing I results in coa-413

lescence of two equilibria (the stable V c1
1∗ with the unstable V c1

2∗ ). The value I = c2,414

at which the equilibria coalesce, is called the bifurcation value. For this value of I,415

there exist 2 equilibria. For I > c2, the system has only one equilibrium (e.g. I = c3).416

In summary, when the parameter I increases, a stable and an unstable equilibrium417

approach, coalesce, and then annihilate each other. Non-spiking neurons with a N-418

shaped SSC display a bistable behavior characterized by a voltage jump between419

the resting potential and a depolarized potential of higher voltage, such as the AFD420

neuron (Figure S2).421

Therefore, it can be stated that the SSC determines the bifurcation structure of non-422

spiking neurons and the equilibrium values of their graded responses to particular stimuli.423

The simple model. Let V represent the membrane potential of a neuron. The simple424

model takes the general form425

τ
dV

dt
= −f(V ) + I (7)
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Figure S1: Two typical shapes of the SSC V → I∞(V ), in red. Intersections of I∞ and

horizontal line I = c (with c constant) correspond to equilibria of the system. We denote

stable equilibria as filled circles  , unstable equilibria as open circles # and saddle-node

equilibria as G#. (A) Monotonic SSC. V c1∗ and V c2∗ correspond to equilibria for a current

injection I = c1 and I = c2 respectively. (B) N-shaped SSC. The number of equilibria of

the system depends on the value of I. For the sake of readibility, we highlight equilibria

only for I = c1, noted V c1
1∗ , V

c1
2∗ and V c1

3∗ .

with f a cubic function which reads as426

f(V ) = aV 3 + bV 2 + cV + d. (8)

The function f plays the same role in the dynamics of the model (7) as the SSC I∞ in

CBMs (4). Indeed, fixed points V∗ of model (7) satisfy

f(V∗) = I

so that the shape of f determines the neuro-computational features of the non-spiking427

model: a monotonic shape involves a near-linear behavior of the model, while a N-shape428

implies a bistable one with the occurrence of two saddle-node bifurcations. Therefore, the429

model proposes a simple cubic expression (8) thats plays the same role as the complex SSC430

expression (5) of CBMs. Parameters a, b, c and d are dimensionless and are estimated in431

order to fit the experimental SSC. Parameter τ describes the constant time for which V432

reaches its equilibrium value V∗. This parameter can be either hand-tuned or estimated433

from experimental voltage.434
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Conductance-based model of the retinal cone435

The conductance-based model of the canonical bistable cell is based on the retinal cone436

cell built in Kourennyi et al. (2004). It has four ion currents: a calcium current (ICa), a437

hyperpolarization-activated current (Ih), a delayed rectifying potassium current (IKv), and438

a leak current (IL). The parameters are expressed in the following units: mV (voltage),439

pA (current), nS (conductance), and ms (time). The membrane capacitance (C) is set440

to 16 nF. We denote by gion the maximal conductance (namely the conductance of the441

channel when all the gates are open), and Eion the reversal potential, that is, the potential442

at which the ion current reverses its direction. Leak current is classically described as443

IL = gL(V −EL) and the remaining currents are described in Table S1.444

Ion current (Iion) αion(V ) and βion(V ) rates gion and Eion

ICa = gCamCahCa(V −ECa) αCa(V ) = 3.1 e(V +16.6)/11.4 gCa = 4.92

dmCa

dt
= αCa(1 −mCa) − βCamCa βCa(V ) = 3.1 e(−V −16.6)/11.4 ECa = 40

Ih = gh(1 − (1 + 3mh)(1 −mh)
3)(V −Eh) αmh

(V ) =
18

(1 + e(V +88)/12)
gh = 3.5

dmh

dt
= αmh

(1 −mh) − βmh
mh βmh

(V ) =
18

(1 + e−(V +18)/19)
Eh = −32.5

IKv = gKvm3
KvhKv(V −EK) αmKv

(V ) =
5(V − 100)

(1 − e−(V −100)/42)
gKv = 2

dmKv

dt
= αmKv

(1 −mKv) − βmKv
mKv βmKv

(V ) = 9 e(20−V )/40 EKv = −80

dhKv

dt
= αhKv

(1 − hKv) − βhKv
hKv αhKv

(V ) = 0.15 e−V /22

βhKv
(V ) =

0.4125

(1 + e(10−V )/7)

Table S1: Summary of ion currents composing the generic bistable model.

Network models445

The graded synaptic model used in this paper is described in Wicks et al. (1996), which is

given by

Isyn = gsyns(Vi −Esyn)

where gsyn is the maximal synaptic conductance, and Esyn is the reversal potential for the

synaptic current, set to 0 mV for excitatory synapses. The dynamics of the variable s is
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given by
ds

dt
=
s∞(Vj) − s

τs

where

s∞(Vj) =
1

1 + exp(
V s
1/2 − Vj

Vslope

)

We set the parameter values as follows: gsyn = 0.2 nS, V s
1/2 = −10 mV, Vslope = 10 mV,446

and τs = 10 ms.447
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Supplementary figures448

Figure S2: Experimental voltage examples from C. elegans of each phenotype for a series of

current injections starting from −15pA and increasing to 35pA by 5pA increments for the

RIM and AFD neurons, and starting from −2pA and increasing to 10pA by 3pA increments

for the RMD neuron. Phenotype 1 refers to near-linear neurons, phenotype 2 to bistable

neurons with one resting potential, and phenotype 3 to bistable neurons with two resting

potentials. The experimental data of the RIM and AFD neurons have been reproduced

from Naudin et al. (2022a), and from Mellem et al. (2008) for the RMD neuron with the

consent of the authors.
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Figure S3: Diagram explaining the short-term memory capacity of a neuron with a pheno-

type 3. IT1 (resp. IT2) denotes the injection current thresholds at which the neuron jumps

to its upper (resp. lower) voltage plateau. (1) A brief transient stimulus (20 > IT2 pA)

is applied and the voltage converges to V I20∗ . (2) The stimulus ceases so that the voltage

relaxes to V rest2∗ which is the new voltage initial condition. (3) A new depolarizing current

step (5pA) is applied and the voltage goes to V I5
2∗ and not V I5

1∗ since V rest2∗ now belongs to

the basin of attraction of V I5
2∗ . This figure has been reproduced from Naudin et al. (2022c)

with the consent of the authors.
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Figure S5: Comparison of voltage dynamics between CBM and the conductance-based

phenomenological non-spiking model for gCa = 4.82nS for a series of injection currents

starting from −15pA and increasing to 35pA by 5pA increments.
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Figure S7: SSC of the AFD neuron obtained from averaged voltage-clamp recordings

(n = 3) (Liu et al., 2018).
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