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Abstract  34 

Low temperature limits the growth and the distribution of the key oceanic primary 35 

producer Prochlorococcus, which does not proliferate above ca. 40 degrees latitude. Yet, 36 

the molecular basis of thermal acclimation in this cyanobacterium remains unexplored. 37 

We analyzed the transcriptional response of the strain Prochlorococcus marinus 38 

MIT9301 in long-term acclimations and in natural Prochlorococcus populations along a 39 

temperature range enabling its growth (17 to 30ºC). MIT9301 upregulated mechanisms 40 

of the global stress response at the temperature minimum (17ºC) but maintained the 41 

expression levels of genes involved in essential metabolic pathways (e.g., ATP synthesis, 42 

carbon fixation) along the whole thermal niche. Notably, their declining growth from the 43 

optimum to the minimum temperature was coincident with a transcriptional suppression 44 

of their photosynthetic apparatus and a dampening of its circadian expression patterns, 45 

indicating a loss in their regulatory capacity under cold conditions. Under warm 46 

conditions, the cellular transcript inventory of MIT9301 was strongly streamlined, which 47 

may also induce regulatory imbalances due to stochasticity in gene expression. The day-48 

time transcriptional suppression of photosynthetic genes at low temperature was also 49 

observed in MIT9301-like populations across the global ocean, implying that this 50 

molecular mechanism may be associated with the restricted distribution of 51 

Prochlorococcus to temperate zones.  52 

 53 

 54 

 55 

 56 

 57 
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Importance 58 

Prochlorococcus is a major marine primary producer with a global impact on atmospheric 59 

CO2 fixation. This cyanobacterium is widely distributed across the temperate ocean, but 60 

virtually absent at latitudes above 40º for yet unknown reasons. Temperature has been 61 

suggested as a major limiting factor, but the exact mechanisms behind Prochlorococcus 62 

thermal growth restriction remain unexplored. This study brings us closer to 63 

understanding how Prochlorococcus functions under temperature challenging conditions, 64 

by focusing on its transcriptional response after long-term acclimation from its optimum 65 

to its thermal thresholds. Our results indicate a detrimental role of oxidative stress on 66 

Prochlorococcus fitness under cold conditions, as the drop in its growth rate was 67 

paralleled by a transcriptional suppression of the photosynthetic machinery during day-68 

time, likely to mitigate the generation of ROS. Notably, warm temperature induced a 69 

marked shrinkage of its cellular transcript inventory, which may induce regulatory 70 

imbalances in the future functioning of this cyanobacterium. 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 

 79 
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Introduction 80 

Prochlorococcus is the most abundant photosynthetic organism on Earth (1), and a major 81 

contributor to the oceanic primary production (2). Despite sustaining vast populations at 82 

the global scale, Prochlorococcus exhibits an enigmatic distribution in the ocean, with a 83 

sharp latitudinal barrier at ca. 45°N and 40°S (3, 4). While the ultimate reasons for such 84 

restricted distribution are still unknown and may involve biotic interactions (5), temper-85 

atures in the range of 12º-15ºC typically limit the growth of Prochlorococcus in culture 86 

(3, 6, 7) and in situ (3), potentially representing critical thresholds for their metabolism. 87 

Due to genome streamlining, Prochlorococcus is assumed to have a lower regulatory ca-88 

pacity than other phytoplankton groups, and a limited metabolic flexibility to adapt to 89 

environmental disturbance, including temperature changes (8–10). However, a mechanis-90 

tic understanding of their temperature sensitivity at the molecular level is still lacking. 91 

In general, addressing the impact of temperature on the functioning of any organism is 92 

complex, as this parameter has overriding effects on virtually every aspect of cell 93 

physiology. Temperature notably impacts the cellular size, the stability and conformation 94 

of macromolecules, and the kinetics of biochemical reactions, altogether leading to 95 

differences in cell growth (11). In the case of photosynthetic organisms such as 96 

Prochlorococcus, growth is closely linked to their photosynthetic capacity, which is also 97 

impacted by temperature (12–14). Under temperature conditions below the optimum, the 98 

slow-down in carbon fixation rates constrains the replenishment of final acceptors of the 99 

photosynthetic electron flow, producing an imbalance between photochemistry and 100 

metabolism. Under these conditions, the excess of light energy absorbed can generate 101 

cell-damaging reactive oxygen species (ROS), which need to be counterbalanced by 102 

photoprotective mechanisms (15). Under heat-stress conditions (35-50ºC) ROS are also 103 
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typically produced likely not as a result of an excess of energy absorbed, but of heat-104 

induced structural and functional changes in the photosystems and thylakoid membranes 105 

(16). The decline in photosynthetic activity in phototrophs under moderate warm stress 106 

has been associated with different processes, including the inhibition of de novo synthesis 107 

of the photosystem II D1 protein by ROS (17), the inactivation of the oxygen-evolving 108 

complex (18) and declines in electron transport (19). 109 

At the expression level, a variety of compensatory mechanisms have been found to be 110 

activated in several phytoplankton groups (i.e., Synechococcus and eukaryotic phyto-111 

plankton) to preserve cell functioning under thermal stress conditions (12–14, 20–23). 112 

The cold-stress response network involves the upregulation of fatty acid desaturases to 113 

offset decreases in membrane fluidity at low temperature, and RNA helicases and cellular 114 

chaperones to facilitate proper folding of nucleic acids and proteins (21, 22, 24, 25). Low 115 

temperature can also impact the expression of central components of the transcriptional 116 

and translational machinery in eukaryotic phytoplankton, which are upregulated to com-117 

pensate for their reduced efficiency (21, 26), and even impact global regulatory networks 118 

such as circadian rhythms in cyanobacteria (27). At elevated temperatures, a nearly uni-119 

versal response induces the expression of heat-shock proteins, which degrade or restruc-120 

ture denatured proteins and nucleic acids (28).  121 

Some of the temperature compensatory mechanisms involve only short-term transcrip-122 

tional responses until cell functioning is restored (25). In other cases, the baseline expres-123 

sion of key enzymes is upregulated under long-term cold acclimations (26). Beyond 124 

short-term temperature manipulation experiments, where cells are suddenly exposed to a 125 

“thermal shock”, understanding mechanisms of long-term acclimation is particularly rel-126 

evant as they more accurately reflect responses to gradually changing thermal conditions. 127 

Here, we performed a series of experiments on Prochlorococcus marinus MIT9301, 128 
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where cells were progressively exposed from a temperature close to their optimum to 129 

their upper and lower thresholds of growth. This strain, which is a representative of the 130 

Prochlorococcus dominant clade in situ (HLII, (29, 30)), was selected because it shares 131 

the highest sequence similarity with environmental sequences (31) and enabled the iden-132 

tification of closely related transcripts in natural Prochlorococcus populations. We first 133 

used a quantitative RNA-Seq approach (32, 33) to decipher the transcriptional response 134 

of MIT9301 to temperature acclimations. Then, we addressed the environmental rele-135 

vance of one of the most conspicuous transcriptional responses observed in MIT9301, 136 

involving highly expressed photosynthetic genes, in oceanic metatranscriptomes col-137 

lected along a comparable thermal gradient. Our objective was to analyse how sustained 138 

growth at sub-optimal temperature reprograms the transcriptome of Prochlorococcus and 139 

significantly advance in our understanding of which mechanisms underlie their growth 140 

restriction under cold and warm conditions.  141 

 142 

Results 143 

Thermal acclimation experiments with Prochlorococcus marinus MIT9301: growth 144 

rates and mRNA content. 145 

MIT9301 cultures were synchronized to a diel 12:12 light/dark cycle and long-term 146 

acclimated to six temperatures along their thermal range (Figure 1, Figure S1). MIT9301 147 

could not survive single-generation transfers below 17ºC or above 30ºC degrees and, thus, 148 

these were considered thermal thresholds for this strain (Tmin and Tmax, hereinafter). The 149 

growth rate of MIT9301 increased from 0.17 day-1 at Tmin to ca. 0.61 day-1 at 25ºC 150 

(hereinafter referred to as optimum growth temperature, Topt) and, thereafter, entered a 151 

warm-stress zone up to 30ºC, where no further increases in growth rate were observed 152 
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(Figure 1A). The average size of MIT9301 cells also changed along the thermal gradient, 153 

with maximum and minimum values at the Tmin and Tmax, respectively (Figure 1A).  154 

After the acclimation period, RNA samples were collected at different temperature 155 

conditions 3 hours after subjective sunrise and sunset (day- and night-time, respectively, 156 

hereinafter). Large variations in the number of mRNA transcripts per cell were found in 157 

replicate cultures acclimated to 17 and 20ºC during day-time, while values were highly 158 

constrained in temperatures close to the optimum (22 and 25ºC, Figure 1B). A pattern of 159 

decrease of mRNA transcripts with increasing temperature was found, with the average 160 

number of mRNA transcripts per cell being positively correlated with cellular size in 161 

night-time samples (Spearman Rho = 0.89, p < 0.001, Supplementary Figure S2). 162 

Quantitative global transcriptomic analysis of MIT9301 in experimental long-term 163 

acclimations  164 

Top-expressed genes in MIT9301 were associated with photosynthetic components (e.g., 165 

psbA, psbC), the RuBisCO enzyme (rbcL) or an ammonium transporter (amt), which 166 

reached average values above two mRNA transcripts per cell (Table S3). However, the 167 

average abundance of most mRNA transcripts was at least one order of magnitude below 168 

that value, which indicates that only a fraction of the population was actively expressing 169 

them at any given time. Estimates of mRNA transcript abundance were normalized by 170 

cell biovolume (i.e., transcripts per µm3 or [mRNA], Table S4), to discard potential 171 

indirect effects of cell size on transcript abundance in further analyses.  172 

A substantial fraction of MIT9301 genes were differentially expressed along the 173 

temperature gradient (i.e., exhibited significant variations in cellular [mRNA] estimates 174 

at different temperatures). In total, 61% of protein-coding MIT9301 genes were 175 

differentially expressed at night-time, while this number was reduced to 30% during day-176 
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time (Kruskal-Wallis test, p < 0.05), in association with an increase in the variability of 177 

gene expression levels; while [mRNA] values of individual genes in different biological 178 

replicates were highly constrained at the Topt, a large variation was found during day-time 179 

at both thresholds of growth, and particularly at the Tmin (Figures 2 and 3, Table S4). This 180 

suggests a reduced ability of MIT9301 cells to maintain a tight transcriptional control 181 

under challenging temperature conditions when cells are exposed to light. Notably, the 182 

expression of some sigma factors and key regulatory proteins from different families also 183 

showed this pattern (Figures 3A and 3B). 184 

We identified five clusters of genes according to their patterns of day and night-time 185 

expression at different temperatures (Figure 2, Table S5). More than 90% of MIT9301 186 

protein-coding genes were assigned to one of these clusters with a probability score > 187 

0.5), which indicates that these clusters were highly representative of the main thermal 188 

gene expression responses in this strain. Clusters A and E were represented by genes 189 

involved in core cellular and metabolic processes typically expressed in Prochlorococcus 190 

during day- and night-time, respectively (34). Clusters C and D were associated with 191 

mechanisms of cold-stress response, as they were characterized by a strong upregulation 192 

at the Tmin either during day-time or both day- and nigh-time, respectively. Finally, the 193 

expression of genes in Cluster B showed a decreasing trend from the Topt towards the Tmin 194 

during day-time (Figure 2), paralleling the pattern observed in growth rates along the 195 

thermal niche (Figure 1A). Therefore, we hypothesize that the expression of Cluster B 196 

genes is associated with metabolic processes limiting the growth of Prochlorococcus 197 

when exposed to cold conditions.  198 

Cluster A included genes related with C fixation and assimilation such as the RuBisCO 199 

(rbcLS), CO2 transporters (csoS2), carboxysome shell proteins (ccmK), the Calvin cycle 200 

(e.g., gap2, tktA, glpX, pgk, cbbA) and glycogen synthesis (glgABC), consistently 201 
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expressed during day-time along the thermal gradient (Figure 2, Tables S4-S5). This 202 

cluster also included ATP synthesis genes (atpADE) and a few components of the PS II 203 

(psbA, psbC and psbD). Cluster E included genes related to catabolic consumption (cyoB, 204 

ndhD), DNA replication (dnaA, nrdJ, gyrB), cell division (ftsZYQ) and the pentose 205 

phosphate pathway (tal, gnd, zwf), all of them upregulated at night-time. Altogether, these 206 

essential pathways likely represent a transcriptional core, which Prochlorococcus 207 

marinus MIT9301 maintains at all temperature conditions. 208 

Clusters C and D genes included different elements of the global stress response (e.g., 209 

cellular chaperones such as groES/groES, dnaK, clpBCP (35, 36)), mechanisms of DNA 210 

repair (recA, ruvB (37, 38)), and the synthesis of antioxidant compounds such as carote-211 

noids (pds, crtBH) and rubredoxin (rub) (Table S5). Notably, the expression of the chap-212 

erones groEL/groES, grpE and htpG were strongly upregulated at the Tmin only during 213 

day-time, suggesting a prioritization of their expression during the light-exposed period 214 

(Figure 3C). Other metabolic processes upregulated at the Tmin were the mobilization of 215 

energy storage (i.e., glycogen degradation, glgP), and the synthesis of proteins, as re-216 

flected by the increase in the [mRNA] of amino-acid synthesis genes (glyA, serA, leuA), 217 

translation initiation factors (infABC) and N acquisition genes (Figures 2 and 3, Table 218 

S4).  219 

The strong upregulation of N acquisition mechanisms at the Tmin under light conditions 220 

was observed not only for genes predominately expressed during day-time at the Topt (i.e., 221 

the global nitrogen regulatory protein ntcA, glnA, and urea transporters), but also for 222 

genes typically expressed at night-time in Prochlorococcus, such as the ammonium trans-223 

porter (amt) and urease genes (ureABC.) This likely reflects the large cellular demand of 224 

N for protein synthesis during day-time under cold stress conditions. In the case of phos-225 

phate uptake, the high affinity ABC transporter pstABC genes were upregulated under 226 
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cold conditions at night, following the pattern of cluster E genes, possibly related to the 227 

cellular demand of P for DNA replication. By contrast, both copies of the periplasmic 228 

phosphate binding protein (pstS) showed maximum expression values around the Topt 229 

during day-time following the pattern of most photosynthetic genes (cluster B), which 230 

highlights the complexity in the thermal response of nutrient acquisition genes (Figure 231 

3D).  232 

Finally, the expression of all components of the PS I complex (psaABDEFKL) and some 233 

of the PS II (including psbBJH and the oxygen evolving complex protein psbO) showed 234 

a gradual decrease in expression from a temperature close to the optimum to the Tmin, 235 

(Figure 2) in correlation with MIT9301 growth rates (Figure 1). This expression pattern 236 

was different from other PSII components (psbACD, see above), which were not 237 

differentially expressed during day-time along the thermal niche (Kruskall-Wallis, p > 238 

0.05, Figure 2). Similarly, many components of the photosynthetic electron transport 239 

genes were assigned to either Cluster B (petACGNM) or Cluster A (petBEDH), implying 240 

a non-uniform transcriptional thermal response of all components of the photosynthetic 241 

apparatus (Figure 4). Yet, a general pattern of upregulation of photosynthetic genes 242 

during night-time under cold conditions, inducing changes in their day-night log2fold 243 

expression ratio was observed (Figure 2), suggesting a loss in the capacity of the cells to 244 

regulate their circadian expression.  245 

Transcriptional response of photosynthetic genes in naturally occurring 246 

Prochlorococcus populations  247 

With the aim of testing whether the transcriptional suppression of photosynthetic genes 248 

at cold temperature observed in MIT931 was also found in natural Prochlorococcus 249 

populations in situ, we identified reads closely related to MIT9301 in the Tara Oceans 250 

metatranscriptome dataset (39) including samples distributed across different ocean 251 
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basins along a comparable thermal gradient (Table S6). The number of MIT9301-like 252 

reads ranged from 6379 to 9.62 million in the different environmental samples (Table 253 

S7). The DESeq2 normalized abundance of transcript counts from some of the most 254 

actively expressed genes of the PSII (psbA, psbD) did not show any significant trend 255 

along the in situ thermal gradient from 17 to 30ºC (Spearman correlation, p > 0.05), 256 

mirroring the response observed under culture conditions (Figure 5, Supplementary 257 

Figure S3). By contrast, other PSII components (psbJ) were positively correlated with 258 

temperature both in the experimental and in situ datasets (Spearman R = 0.6, p < 0.01), 259 

indicating a downregulation at cold temperature (Figure 5). Similarly, the downregulation 260 

of PS I genes at cold temperature was clearly observed both in the experimental and in 261 

situ dataset (Figure 5), reinforcing the environmental relevance of this response. 262 

Temperature had the strongest correlation to photosynthetic transcript counts in 263 

comparison with all other tested environmental variables (Supplementary Figure S4), 264 

excluding the possibility that these correlations were driven by co-varying environmental 265 

parameters. 266 

Discussion  267 

There is a remarkable gap of fundamental knowledge on the molecular mechanisms of 268 

thermal acclimation in Prochlorococcus, as previous studies have concentrated on their 269 

cyanobacterial sister clade Synechococcus and eukaryotic phytoplankton (12–14, 20–22, 270 

40, 41). Acquiring this knowledge would be crucial towards answering a long-standing 271 

question: what limits the ability of Prochlorococcus to expand to high-latitude environ-272 

ments? The decrease in the light-harvesting capacity of phytoplankton under cold condi-273 

tions has been typically attributed to changes in the conformation of membrane lipids and 274 

proteins of their photosynthetic apparatus (14, 42). Our quantitative gene expression 275 
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analysis shows that, in the case of Prochlorococcus, the inability to maintain their photo-276 

synthetic capacity under cold conditions is already critically compromised at the tran-277 

scriptional level, as we found a clear suppression of the expression of most photosynthetic 278 

genes towards cold conditions. The same pattern was found for MIT9301-like reads in in 279 

situ metatranscriptomes across the global ocean, suggesting that this molecular mecha-280 

nism may be relevant to explain the restricted distribution of Prochlorococcus to temper-281 

ate zones. Notably, this response differs from previous studies targeting diatom cultures 282 

(26), or phytoplankton communities in situ (21, 39) , indicating fundamental differences 283 

in the ability of Prochlorococcus to respond to cold temperature, which may be related 284 

to their exceptional high sensitivity to oxidative stress (38, 43). 285 

Photosystems are naturally sensitive to light damage, which is exacerbated under low 286 

temperature (22). The cellular decision of shutting down their sunlight energy conversion 287 

system at cold conditions likely arises from the inability of Prochlorococcus to cope with 288 

uncontrolled redox chemistry when there is an imbalance between the production of ex-289 

cited electrons by light and their metabolic consumption. The downregulation of photo-290 

systems would represent an emergency mechanism to slow-down the electron flow and 291 

prevent the production of cell-damaging ROS. Notably, the response was not equal for 292 

all photosystem components, as previously observed in cultured Prochlorococcus strains 293 

undergoing other types of stress, such as iron starvation (44), phage infection (45), or 294 

high-light exposure (46). On the one hand, the high expression of psbA transcripts at all 295 

temperature conditions is likely related to the need to maintain an exceptionally high turn-296 

over rate of this protein (47), being differentially regulated than other PS components (34, 297 

48, 49). On the other hand, the selective downregulation of PSI probably arises from the 298 

strong need to protect PSI from oxidative stress, as this photosystem typically lacks effi-299 

cient repair machinery, and therefore its damage may be practically irreversible (50). 300 
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Interestingly, MIT9301 also upregulated the plastoquinol terminal oxidase (PTOX) at the 301 

Tmin (Figure 2), which is thought to function as a safety valve in cyanobacteria to avoid 302 

electron flow towards PSI (51).  303 

In addition to the transcriptional suppression of photosynthetic genes, we found that under 304 

light conditions, cold temperature induced a loss in the regulatory capacity of MIT9301 305 

cells. This was reflected in the loss of the circadian day/night gene expression ratio and 306 

the increased variability in the concentration of cellular mRNA transcripts among 307 

biological replicates. In a previous study, it has been suggested that higher levels of 308 

stochasticity in Prochlorococcus’ gene expression during the transition from 309 

photosynthesis to the use of internal energy is related to the accumulation of ROS (52). 310 

Our transcriptomic results are consistent with the idea of oxidative stress impacting the 311 

regulatory capacity of Prochlorococcus. Notably, at the Tmin we observed a high 312 

variability in the expression of regulatory proteins that modulate the cellular response to 313 

daily light fluctuations in cyanobacteria, including sigma factors (rpoD) (53, 54), the 314 

NblS-RpaB two-component system (55) and the SasA-RpaA clock output system(56, 57). 315 

Assuming that mRNA transcript levels reflect the protein levels of these regulators, our 316 

results would imply a critical impairment of their co-regulated networks. Other 317 

mechanisms of transcriptional regulation in Prochlorococcus (i.e., RNA-based regulatory 318 

strategies (58)), were likely also compromised at low temperature, as evidenced by the 319 

upregulation of the ribonuclease rne gene at the Tmin (Table S4).  320 

Marked changes in the day/night gene expression ratio of some of Prochlorococcus key 321 

functional genes along the thermal niche imply a deregulation of one of their fundamental 322 

features, i.e., the coordination of transcriptional oscillations with the daily light/dark cy-323 

cle. This feature is key to optimize cellular processes through anticipating and synchro-324 

nizing transcription of photosynthetic genes with daylight hours (34, 59, 60). At Topt, the 325 
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day/night expression preferenda of most key functional genes of MIT9301 matched those 326 

previously observed in the model strain MED4 (34), reinforcing the idea that maintaining 327 

this transcriptional choreography is a highly conserved and critical trait. The deregulation 328 

observed at cold temperature led to the paradoxical situation where, after subjective sun-329 

rise, chilled Prochlorococcus MIT9301 cells contained several-fold less PSI transcripts 330 

than after subjective sunset, which supports the idea of a malfunctioning regulatory net-331 

work. With only two samplings over the daily cycle, we cannot ensure whether the ob-332 

served changes were due to random misregulations or variations in the phasing or ampli-333 

tude of their diel gene expression patterns. Yet, considering that we were sampling the 334 

two daily periods when most Prochlorococcus genes show maxima in expression (34), 335 

the inversion of their day/night preferenda is remarkable and likely has an important im-336 

pact on its fitness.  337 

By contrast to the pattern observed in day-time samples, genes related to Prochlorococcus 338 

cell division cycle, typically expressed during night-time, showed rather constrained 339 

[mRNA] values between replicates. We observed an increase in [mRNA] of those genes 340 

towards cold conditions, which may be related to the predominant cell cycle phase of the 341 

cells. As the timing of cell division is delayed in Prochlorococcus marinus MIT9301 342 

when acclimated to cold temperature (61), our results likely reflect a situation where a 343 

higher proportion of cells were still undergoing the S phase at 17ºC and 20ºC at the time 344 

of sampling (i.e., 3 hours after subjective dusk), as compared to other acclimation tem-345 

peratures.  346 

At the warm temperature threshold, the upregulation of a variety of cellular chaperones 347 

(e.g., groEL/groES, htpG, grpE) reflected that cells were undergoing substantial stress. 348 

However, no drastic changes were generally observed in the expression of most protein-349 

coding genes at the Tmax. Accordingly, a previous study on the short-term response of 350 
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MED4 to warm stress found that the synthesis of new polypeptides was not induced (62). 351 

We had previously shown that Prochlorococcus MIT9301 cells decrease in size after 352 

long-term warm acclimation, in accordance with the temperature-size rule (61). Interest-353 

ingly, here, our quantitative transcriptomic approach showed a conspicuous streamlining 354 

in the transcript inventory in the cells in parallel with the progressive reduction in cell 355 

size. While at non-restricting growth temperature the average estimate of mRNA tran-356 

script abundance per cell was within the range reported for environmental marine bacteria 357 

(i.e., ca. 85-255 transcripts per cell (32)), under warm conditions this average dropped 358 

down to 30 mRNA transcripts of protein-coding genes per cell at night-time. Cellular 359 

reactions involving small numbers of molecules are intrinsically noisy, being dominated 360 

by fluctuations in concentration and stochasticity (63, 64). Thus, the decline in the tran-361 

script inventory under warm conditions invites the hypothesis that there is a critical 362 

threshold in the number of mRNA copies beyond which cells lose regulatory capacity, 363 

contributing to the growth arrest.  364 

In summary, previous studies on phytoplankton have identified the cellular membrane 365 

and translational apparatus as central elements associated with the thermal adaptation at 366 

the transcriptional level (21, 26). Some of these mechanisms were also observed in 367 

MIT9301, such as the upregulation of the translational machinery, likely to compensate 368 

the general slow-down in protein synthesis rates under cold conditions (24). Yet, we 369 

found that in the case of Prochlorococcus, oxidative stress emerged as a major factor 370 

impacting its physiology when approaching cold temperature, as this source of stress re-371 

lates to both the need to protect the photosynthetic machinery and the ability of Pro-372 

chlorococcus to “reset” their daily cycles in the morning hours (65). Cold temperature 373 

has been previously shown to nullify the circadian rhythm in different organisms, includ-374 

ing plants and different phytoplankton species, moving the circadian oscillation to a 375 
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damped oscillation (see references in (27)). As Prochlorococcus contains only a mini-376 

malist circadian system, their cell cycle is likely more easily perturbated than that from 377 

organisms containing a complete kaiABC gene set.  378 

The disruption of the transcriptional choreography in Prochlorococcus may be a differ-379 

entiating factor as compared to Synechococcus and eukaryotic phytoplankton, which do 380 

not require maintaining such a finely tuned daily expression rhythm to maintain their 381 

metabolism. The higher tolerance of Synechococcus to oxidative stress(38) may also im-382 

ply a more resilient photochemistry when exposed to cold conditions, enabling them to 383 

colonize higher latitudes. Additionally, we postulate that increased levels of stochasticity 384 

in gene expression at temperature challenging conditions may contribute to a decrease in 385 

Prochlorococcus fitness. These remains as an interesting hypotheses to test in future stud-386 

ies, with implications for the functioning of this global primary producer and, thus, the 387 

marine carbon biogeochemistry in future oceanic conditions.  388 

 389 

Materials and Methods 390 

Growth of cultures and temperature acclimation 391 

We grew non-axenic cultures of Prochlorococcus marinus MIT9301 obtained from the 392 

Roscoff Culture Collection (RCC) in PCR-S11 culture medium (66) based on Red Sea 393 

Salt (Houston, TX, USA). Cultures were grown under a 12:12 hour photoperiod and 394 

irradiance of 120 µmol quanta m-2s-1 in polycarbonate flasks with vented caps. During 395 

the acclimation, we maintained the cultures in exponential growth by performing serial 396 

transfers before cell density reached 30% of the maximum yield. The acclimation started 397 

from 22ºC (i.e., temperature of maintenance in RCC) and temperature was progressively 398 

changed towards the upper and lower thermal thresholds. At each acclimation step, 399 
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temperature was changed by a maximum of 2ºC and down to 0.2ºC when approaching 400 

the temperature thresholds, to avoid lethal thermal stress (Figure S1). We considered that 401 

the culture had been fully acclimated to a temperature treatment when growth rate stayed 402 

stable in at least two consecutive growth curves after at least 8 generations. Flow 403 

cytometry was used for sustained monitoring of the culture growth during the acclimation 404 

process. Samples were fixed with glutaraldehyde (final concentration of 0.025%) for 10 405 

minutes at room temperature and dark conditions, and frozen at -80°C until analysis in a 406 

FACSCalibur flow cytometer (Becton Dickinson). Estimates of cell size were obtained 407 

based on the natural logarithmic-transformed side scatter (SSC) using the calibration 408 

provided in (67) and assuming a spherical cellular shape.  409 

RNA samples collection and extraction 410 

Once the cultures reached full acclimation to the temperatures selected (17, 20, 22, 25 411 

and 30°C), we re-inoculated biological replicate batch cultures into fresh medium (160 412 

mL) and collected samples for RNA-Seq analysis during exponential growth (with cell 413 

density values ranging between 6 to 17 107 cells mL-1, Table S1). For each temperature 414 

and biological replicate (ranging from 3 to 7, depending on the experimental treatment, 415 

Table S1), samples for RNA extraction were collected 3 hours after the onset and offset 416 

of the photoperiod (day- and night-time, respectively). Exceptionally, for the acclimation 417 

temperature 22ºC, only day-time RNA samples were available. Samples were filtered on 418 

0.22-µm pore-size PES filters using a vacuum pump at a pressure of 5 psi. Immediately 419 

after filtration, filters were snap frozen in liquid nitrogen and stored at -80°C. The time 420 

elapsed from the start of the filtration until freezing was always lower than 2 minutes.  421 

Quantitative benchmarked RNA extraction was performed following (33) using five RNA 422 

standards from Saccharolobus (Sulfolobus) solfataricus P2 (NCBI Taxon ID 273057) 423 

obtained by in vitro transcription of genomic templates of the isolate (standards 3, 6, 7, 424 
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13 and 14, as described in (33)). The RNA standards were individually spiked (10 to 28 425 

µL) at a concentration of ca. 20 pg µL-1 to the filters prior to the initiation of the RNA 426 

extraction. Subsequently, RNA samples were extracted with the mirVana kit (Ambion), 427 

and DNA was removed using the TURBO DNase (Ambion). Samples were depleted from 428 

ribosomal RNA using the Ribo-Zero rRNA removal kit (Bacteria, Illumina) and quality 429 

check was performed using a Bioanalyzer (Agilent). mRNA samples were concentrated 430 

using the Zimo Clean & Concentrator kit, and cDNA libraries were constructed using the 431 

TruSeq Stranded mRNA Sample Preparation Kit (Illumina). cDNA libraries were 432 

sequenced as 75bp paired-end reads on an Illumina HiSeq v4 platform (CNAG, Spain). 433 

Raw reads have been submitted to ENA under project accession number PRJEB54738. 434 

Quantitative gene expression analysis of Prochlorococcus MIT9301 under culturing 435 

conditions 436 

Sequence read quality check was performed with the FastQC tool (68), and Trimmomatic 437 

(69) was used to trim raw sequences (SLIDINGWINDOW:50:35 and MINLEN:50) and 438 

pair those passing quality thresholds. rRNA sequences were removed using SortMeRNA 439 

(70) and the remaining reads were mapped with Bowtie2 (71) (using the ‘–non-determin-440 

istic’ parameter) against the Prochlorococcus marinus MIT9301 genome (NCBI Taxon 441 

ID 167546). The same procedure was done with the S. solfataricus genome to identify 442 

RNA internal standard reads. Read count tables were obtained using HTSeq (72) with the 443 

following parameters: ‘–stranded = reverse -a 10 -m intersection-nonempty’. Quantitative 444 

estimates of individual transcript abundance (Ta) of MIT9301 protein-coding genes in 445 

each RNA sample were obtained following the calculations described in (73): 446 

Ta = (Ts x Sa)/Ss 447 

where Ta corresponds to the estimated number of transcripts of an individual MIT9301 448 

protein-coding gene, Ts corresponds to the number of reads assigned to the corresponding 449 
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MIT9301 protein-coding gene, Sa corresponds to the molecules of internal RNA stand-450 

ards spiked to the RNA sample, and Ss corresponds to the number of reads assigned to S. 451 

solfataricus internal standards. In this calculation, one of the standards (standard 14) was 452 

removed from the analysis because it was consistently recovered in higher proportion 453 

than other standards. Ta values were divided by total cell abundance or estimates of total 454 

cell biovolume collected in the corresponding RNA filter to obtain estimates of transcript 455 

abundance per cell and per volume (i.e., transcript concentration), respectively (Tables 456 

S1- S3). This normalization is relevant because cell size, which varies over the thermal 457 

gradient in this strain (see Figure 1A), can impact the number of cellular transcripts (74, 458 

75).  459 

Bioinformatic analysis of transcriptional patterns of Prochlorococcus 460 

photosynthetic genes in oceanic samples and culture conditions 461 

For comparing the expression patterns of Prochlorococcus photosynthetic genes along 462 

the same thermal gradient under environmental and culturing conditions, two datasets 463 

were produced using a common normalization method (DESeq2 (76)). The experimental 464 

dataset was obtained from the raw read counts obtained by HTSeq2 in the long-term 465 

thermal acclimation experiments, as explained above. For obtaining the environmental 466 

database, a dataset of Tara Oceans metatranscriptomes (39) was initially selected based 467 

on the latitude range where Prochlorococcus is found in the ocean (i.e., between 45º N 468 

and S), the thermal range of MIT9301 (17ºC to 30ºC), and the time of sample collection 469 

(between 6 and 12 am, when the expression of photosynthetic genes should be close to 470 

their maximum). Fastq sequence files were quality filtered with fastp (77) using default 471 

parameters, and rRNA sequences were removed with RiboDetector (78) with the option 472 

“--ensure” selected. The remaining reads were filtered to remove reads not affiliated with 473 

Prochlorococcus, using a custom made database with the complete genome sequences in 474 
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the MarRef database, which included 16 Prochlorococcus genomes (79), and eukaryotic 475 

genes of interest extracted from Refseq (80) (i.e., psaA, psaB, psaD, psaF, psaL, psbA, 476 

psbD, and psbO, searched with Entrez filter [Gene Name] AND ((protists[filter] OR 477 

plants[filter]) AND refseq[filter]). Metatranscriptome sequences closest to 478 

Prochlorococcus were identified based on Blastn v.2.12.0+ searches (identity ≥ 98% and 479 

bitscore ≥ 30), and only those with highest bitscore to Prochlorococcus sequences were 480 

considered further. Subsequently, we applied a two-step filtering strategy to obtain read 481 

counts closely related to MIT9301. First, we aligned each metatranscriptome sample 482 

against MIT9301 genome using BWA mem version 0.7.17-r1188 with default parameters 483 

(81). Next, we discarded alignments which had a percent identity lower than 98%, a read 484 

length lower than 50 bases, and a number of matches lower than 50% of the total length 485 

of each aligned sequence. Percent identity was computed as 100 × (N_m / (N_m + N_i)), 486 

where N_m corresponds to the number of matches in the alignment and N_i to the number 487 

of mismatches. The number of matches was obtained by parsing the MD tag of the 488 

alignment record, while the number of matches and mismatches was obtained from the 489 

CIGAR string in the SAM file. Once alignments were filtered, we proceeded to count 490 

aligned reads with HTSeq v.2.0. with default parameters (82). Next, we removed non-491 

coding genes from the count matrices as well as genes which had no counts across all 492 

conditions, to facilitate the consequent normalization. We also discarded samples which 493 

had counts in less than 10 genes other than the psbA gene. Finally, we normalized count 494 

data using the default DESeq2 v.3.15 count normalization workflow (76). All analyses 495 

were assisted with customized Python code (83) available at 496 

https://github.com/Robaina/prochlorococcus. 497 

Softclustering and statistical analyses 498 
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Clusters of differentially expressed genes that responded similarly over the thermal 499 

gradient were identified using softclustering, following (84). A matrix of N genes x 9 500 

treatments (4 temperatures at night-time and 5 temperatures at day-time) was used as 501 

input data. Data for each gene was standardized to zero mean and unit variance. The 502 

optimal value of the parameter m in the Mfuzz algorithm was estimated through 503 

randomization following (85). The number of clusters was chosen to maximize the 504 

functional enrichment of gene clusters (COGs) and the ClusterJudge method (86). The 505 

standardized data was clustered by a generalized version of the fuzzy c-means algorithm. 506 

Finally, statistically significant differences in cellular transcript concentration among 507 

temperature regimes were determined by the Kruskall-Wallis test using R.  508 
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Figure legends 798 

Figure 1. Growth rates, cell size and number of mRNA transcripts per cell in samples of 799 

Prochlorococcus marinus MIT9301 collected after long-term thermal acclimation. 800 

Between 3 and 7 biological replicate samples are represented depending on the 801 

temperature treatment and error bars report the standard deviation between replicates.  On 802 

the top of each plot, the minimum (Tmin), optimum (Topt) and maximum temperature 803 

(Tmax) are indicated and, additionally, in the upper left plot, temperature treatments where 804 

RNA samples were collected are shown with arrows.  (A) Growth rate and size of 805 

MIT9301 cells along the thermal niche. (B) Estimates of mRNA transcripts per cell along 806 

the thermal niche in samples collected at day-time (left panel) and night-time (right 807 

panel). Letters denote statistical significant differences (ANOVA test, Tukey post-hoc 808 

test, p < 0.001).  809 

Figure 2. Clusters of Prochlorococcus marinus MIT9301 genes according to their pattern 810 

of day- and night-time expression along the thermal niche. Within each cluster, right- and 811 

left-side panels represent day- and night-time expression of the same genes, respectively. 812 

Dot colours indicate local density at each point of the scatterplot, with red circles 813 

indicating a high density of dots. Line colours within each softcluster indicate the 814 

membership value assigned by the “Fuzzy c-means soft” clustering of each gene, ranging 815 

from 1 (red, high score) to 0.5 (blue, low score). Genes with a membership value lower 816 

than 0.5 are not plotted, neither included in the total number of genes for each cluster (but 817 

they are included in Table S5). Below each cluster, the 20-top expressed genes are shown 818 

in rank order plots, and the expression levels (measured as [mRNA]) and day/night log-819 

2-fold expression ratio) of a selection of representative genes are shown. Day-time values 820 

appear as blue lines and night-time values as black lines. Between 3 and 7 biological 821 

replicate samples are represented depending on the temperature treatment and error bars 822 
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report the standard deviation between replicates. Asterisks in the plots denote significant 823 

differences in transcript concentration along the thermal gradient in day-time (blue 824 

asterisks) or night time (black asterisks) according to Kruskal-Wallis test (* p< 0.05, ** 825 

p < 0.01, *** p < 0.001). In the log2fold ratios, values above 0 represent preferential 826 

expression during day-time (highlighted in blue), while values below 0 represent 827 

preferential expression during night-time.  828 

Figure 3. Cellular expression levels (measured as [mRNA]) in Prochlorococcus marinus 829 

MIT9301 during day-time (blue lines) and night-time (black lines) along the thermal 830 

niche of (A) RNA polymerase components including sigma factors, (B) Histidine kinases 831 

and other regulatory proteins, (C) genes involved in the stress response, and (D) Nitrogen 832 

and Phosphate acquisition genes. Asterisks denote significant differences in transcript 833 

concentration along the thermal gradient in day-time (blue asterisks) or night time (black 834 

asterisks) according to Kruskal-Wallis test (* p< 0.05, ** p < 0.01, *** p < 0.001).  The 835 

softcluster membership of each gene is shown only for those cases where the probability 836 

score was > 0.80. 837 

Figure 4. Schematic diagram showing some of the main components of the 838 

photosynthetic and carbon metabolism pathways in Prochlorococcus. Colours of genes 839 

(or their corresponding protein complexes) follow the same code of their respective 840 

softclusters in Figure 2. 841 

Figure 5.  Expression patterns of a selection of Prochlorococcus photosynthetic genes of 842 

Photosystem II (psbA, psbJ) and Photosystem I (psaA, psaB, psaF) along the thermal 843 

gradient 17 to 30ºC in experimental acclimations (as analysed in P. marinus MIT9301 by 844 

transcriptomics, left pannel) and in situ environmental conditions (as analysed in 845 

MIT9301-like reads identified in metatranscriptomes of the Tara Oceans dataset, right 846 

panel). In both cases, reads were normalized using DESeq2 and log-transformed. Linear 847 



36 

 

regression lines are shown for all genes with significant Spearman correlation coefficients 848 

at a p-value < 0.05 (indicated in the plots). 849 
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