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Abstract: An original reformulation of the thermopower S , heat conductivity K  and heat capacitance C  in 

bulk silicon for electrons and phonons is first proposed. Closed-form analytical approximations for these 

coefficients as a function of Fermi level, temperature and/or carrier concentration are developed for 

implementation in TCAD simulation. These analytical expressions for S , K  and C  have been employed to 

simulate the electro-thermal properties of a FDSOI (Fully depleted silicon on insulator) MOSFET versus front 

gate voltage from room down to very low temperature. The obtained results allow discriminating the electron 

and phonon contributions to the whole properties. These analyses could be very useful to further performing 

TCAD simulations of FDSOI MOSFETs down to very low temperature for full assessment of electro-thermal 

performances.             

 

Keywords: thermopower, thermal conductivity, heat capacitance, phonon drag, TCAD simulation, MOSFET, 

FDSOI, cryogenic temperature 

 

1. Introduction 
 

The cryogenic microelectronics is still a crucial research subject as allowing circuit performance 

enhancements in terms of operation speed, turn-on behavior, thermal noise reduction, punch-through decrease 

[1–9]. It can be used in many fields of application such as high speed computing, detection and sensing, spatial 

electronics and lately in readout CMOS electronics and quantum-bit MOS devices for quantum computing 

[10,11]. In this context, there are many challenges in characterization and modelling of MOS devices down to 

deep cryogenic temperatures. Recently, efforts have been made for achieving TCAD device simulations down to 

deep cryogenic temperatures [12–14]. However, electro-thermal numerical simulations are still missing and are 

very challenging to be performed down to very low temperatures. They could bring paramount information 

about the electro-thermal properties such as electronic conductivity, thermopower, Peltier coefficient and 

thermal conductivity of MOS devices operated down to sub Kelvin temperature and further used for instance in 

self-heating simulation.  

Therefore, in this work, we first aim at developing original reformulations of thermopower, heat 

conductivity and heat capacitance for electrons and phonons in bulk silicon as a function of Fermi level position, 

temperature and/or carrier concentration, as well as closed-form analytical approximations useful for TCAD 

simulation. Then, these approximations are used for the assessment by numerical simulations of electro-thermal 
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performances of FDSOI (Fully depleted silicon on insulator) MOSFETs operated down to very low 

temperatures (100mK). These results will constitute a first step to further 2D/3D TCAD simulations of electro-

thermal properties (transport, self-heating…) in FDSOI MOSFETs at deep cryogenic temperatures. 

 

2. Theoretical Background 
 

In this section, we first reformulate in an original way the electronic parameters such as the electronic 

thermopower 
e

S , the electronic heat conductivity 
e

K  and the electronic heat capacitance 
e

C  needed for the 

simulation of the channel properties in a FDSOI MOSFET. We also recall the phonon-related parameters such 

as the phonon heat capacitance 
ph

C , the phonon heat conductivity 
th

K  and the phonon drag thermopower 
ph

S  

necessary for a complete simulation of charge and heat transport. To this end, we also establish closed-form 

analytical approximations of the thermal and transport coefficients useful for TCAD simulation. 

2.1 Electronic Parameters 

The electron concentration in a bulk semiconductor is obtained from the Fermi-Dirac statistics as [15], 

1/ 2

2
( ) ( )


=  

C f
n N T F u                                                                   (1) 
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C

N T  is the effective density of states (

3
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1/ 2
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f
F u  is the Fermi-Dirac 

integral defined as [15], 
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where /=u E kT  is the reduced energy and /=
f F

u E kT the reduced Fermi energy, kT being the thermal 

energy. The conduction band edge 
c

E  is herein referenced to zero. 

The electronic conductivity    calculated within the Kubo-Greenwood formalism is expressed as [16,17], 

0
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where 1 / 1

− 
= + 
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kTf e  is the Fermi distribution function and ( )
E

E  is the energy conductivity function 

given by, 
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with q  being the electronic charge, E  the carrier kinetic energy, 
1/ 2

( )N E E the 3D density of states and 

( ) E  the energy mobility function.  

The electronic thermoelectric power (or Seebeck coefficient) 
e

S is then obtained in the form [16,18], 
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Likewise, the electronic heat conductivity 
e

K can be expressed as [18], 

22

0
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e E
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Similarly, the electronic heat capacitance /=  
e e

C U T , 
e

U  being the electronic energy, can be equated to 

as [19], 
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If we assume, for the sake of simplicity, a constant mobility versus energy i.e. ( ) . =E const , the electronic 

thermopower 
e

S , the reduced electronic heat conductivity / ( ) 
e

K T and the reduced electronic heat 

capacitance /
e

C n  can then be calculated from the integrals (5), (6) and (7) as, 
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and 
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In the case of Maxwell-Boltzmann’s statistics (MB) i.e. 0
f

u ,  fu
f e , so that the carrier concentration, 

the electronic thermopower, the reduced electronic heat conductivity and the reduced heat capacitance read 

respectively, 
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In the case of degenerate (metallic) statistics (deg.), i.e. 0
f

u , 1=f up to 
f

u , such that the carrier 

concentration, the electronic thermopower, the reduced electronic heat conductivity and the reduced heat 

capacitance can be obtained using the Sommerfeld expansion of the integrals (8), (9) and (10) in the form [15], 

3/ 2
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2
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Note that Eq. (17) translates the so-called Wiedemann–Franz law, which gives the electronic heat 

conductivity in metals. 

In Figure 1 are reported the typical dependence of the carrier concentration with reduced Fermi energy as 

given by Fermi-Dirac statistics (1) as well as its Maxwell-Boltzmann limit (11) and power law degenerate 

metallic approximation (15). 

 
(a) (b) 

Figure 1. Variations of carrier concentration n with reduced Fermi energy uf in log scale (a) and linear scale (b) as obtained 

by Fermi-Dirac statistics (solid line), Maxwell-Boltzmann (MB)  and degenerate metallic (deg.) approximations (dashed 

lines) (T=300K). 

Figure 2 shows the corresponding variations of the electronic thermopower, the reduced electronic heat 

conductivity and the reduced heat capacitance with reduced Fermi energy as obtained from Fermi-Dirac 

statistics (8), (9) and (10), as well as their Maxwell-Boltzmann (12), (13) and (14) and degenerate (16), (17) and 

(18) asymptotic approximations. Both the electronic thermopower 
e

S , the reduced electronic heat conductivity 

/ ( ) 
e

K T and the reduced heat capacitance /
e

C n strongly decrease with the reduced Fermi energy 
f

u  i.e. also 

with the carrier concentration. Note that, when the Maxwell-Boltzmann statistics holds, Eqs (12) and (13) 

indicate that 
2

/ ( )  
e e

K T S . In the case of degenerate statistics, 
e

S  decreases as the reciprocal reduced Fermi 

energy i.e. also as a power law of n  (see Eq. 16), whereas the reduced electronic heat conductivity / ( ) 
e

K T  

saturates to the so-called Lorenz number (Eq. 17) i.e. Wiedemann-Franz’s law. Interestingly, examination of 

Eqs (12) and (14) as well as of Eqs (16) and (18) indicate that ( )/ /
e

C n k is equal to 3 / (2 / )
e

S k q  as confirmed 

by the plot of Figure 2. Actually, this original feature, which is not evident to find by direct inspection of Eqs (8) 

and (10), follows from the fact that 
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1 3
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mentioned that this equality between ( )/ /
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e

S k q is only verified because the mobility µ(E) 

was assumed constant in Eq. (5). Otherwise, ( )/ /
e
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e

S k q would slightly differ but they would 

keep the same trend versus 
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(a) (b) 

 
(c) (d) 

Figure 2. Variations of electronic thermopower 
e

S  (a) and reduced electronic heat conductivity / ( ) 
e

K T  (b) and 

reduced electronic heat capacitance /
e

C n  (c) and 3 / (2 / )
e

S k q  (d) with reduced Fermi energy 
f

u  as obtained from 

Fermi-Dirac statistics expressions (8), (9) and (10), as well as from Maxwell-Boltzmann (12), (13) and (14) and degenerate 

(16), (17) and (18) asymptotic approximations (T=300K). 

The equations providing the carrier concentration n , the electronic thermopower 
e

S , the reduced electronic 

conductivity / ( ) 
e

K T and the reduced heat capacitance /
e

C n in bulk silicon, previously depicted, are not 

analytical since governed by the Fermi-Dirac statistics for the whole range of reduced Fermi energy (see Eqs 

(1), (8), (9)and (10)). For numerical simulation purpose, it is worthwhile to establish simple analytical closed-

form expressions providing accurate approximations for n , 
e

S , / ( ) 
e

K T  and /
e

C n versus 
f

u  or n  over the 

whole carrier concentration range from semiconductor to metallic regimes. 

Based on the Maxwell-Boltzmann and degenerate asymptotic limits presented above and on usual 

interpolation smoothing method already employed for n, for example in cryogenic TCAD simulations [14], it is 

easy to construct the following analytical expressions for n , 
e

S , / ( ) 
e

K T  and /
e

C n  as a function of the 

reduced Fermi energy, 
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It should be noted that these formulas well reduce to their Maxwell-Boltzmann and degenerate asymptotic 

limits for 0
f

u or 0
f

u , respectively (see Eqs (12), (13) and (14) or Eqs (16), (17) and (18)). The parameters 

in the analytical formulas have been optimized in order to minimize the error with respect to the exact results 

(see below). 

Figure 3a shows the variation of the carrier concentration with reduced Fermi energy as obtained from the 

rigorous Fermi-Dirac statistics (1) and from the analytical formula (15), both in log and linear scales. As can be 

seen from the figure, Eq. (19) provides a very good approximation to the exact solution with an error inferior to 

5% over the whole reduced Fermi energy range varying from -20 to +20 (see Figure 3b), which is quite 

sufficient for TCAD simulation of real devices [14]. 

 
(a) (b) 

Figure 3. (a) Variations of carrier concentration n  with reduced Fermi energy 
f

u  in log scale and linear scale as obtained 

by exact Fermi-Dirac statistics (solid lines) and by analytical approximation of Eq. (19) (dahsed lines) and (b) Variations of 

corresponding error. 

In Figure 4 are compared the variations of the electronic thermopower 
e

S  and of the reduced electronic heat 

conductivity / 
e

K T  with reduced Fermi energy 
f

u  as calculated from the exact integrals (8) and (9) to those 

obtained with the analytical formulas (20) and 21). As can be seen, Eqs (20) and (21) offer very good 

approximations to the exact results with an overall error below 8% and 12%, respectively, over the whole 

Fermi energy range (see Figure 4b) for both the thermopower 
e

S  and reduced electronic heat conductivity 

/ 
e

K T , with a better accuracy for 
e

S . 

 In Figure 5 are reported the variations of the reduced electronic heat capacitance /
e

C n  with reduced 

Fermi energy 
f

u  as computed from the exact integral (10) along with those obtained with the analytical formula 

(22). As can also be seen, Eq. (22) gives a very good approximation to the exact result with an overall error 

below 8% over the whole Fermi energy range as for ( )
e f

S u .  

It should also be mentioned that the electronic heat capacitance of bulk silicon has been extracted from low 

temperature measurements of thermal capacitance by Kobayashi et al [20] for various doping levels and can be 

well fitted by Eqs (10) or (22) without any parameter adjustment as can be seen from Figure 6, thereby 

validating our reformulation of 
e

C . 
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Therefore, both Figures 3, 4 and 5 indicate that Eqs (19), (20), (21) and (22) do constitute simple and 

analytical closed-form expressions for calculating the carrier concentration, the electronic thermopower, the 

reduced electronic heat conductivity and the reduced electronic heat capacitance in silicon as a function of 

reduced Fermi level from semiconductor regime (Maxwell-Boltzmann statistics) up to metallic regime 

(degenerate statistics) with a good accuracy for practical use in device numerical simulation.  

 

(a) (b) 

Figure 4. (a) Variations of electronic thermopower 
e

S  and and reduced electronic heat conductivity / 
e

K T  with reduced 

Fermi energy 
f

u  as obtained by exact Fermi-Dirac statistics (solid lines) and by analytical approximation of Eqs (20) and 

(21) (dahsed lines) and (b) Variations of corresponding error. 

 
 

Figure 5. Variations of reduced electronic heat capacitance /
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C n with reduced Fermi energy 
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u  as obtained by exact 

Fermi-Dirac statistics (solid lines) and by analytical approximation of Eqs (22) (dahsed lines). 
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Figure 6. Experimental (symbols) and theoretical (dashed lines) variations of electronic heat capacitance 
e

C  with 

temperature. Experimental data obtained from Ref. [20] on bulk silicon with various doping levels. Theoretical data from 

Eqs (10) or (22). 

2.2 Phononic-Related Parameters 

As for 
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C , the phonon heat capacitance in a crystal can be evaluated from /=  
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U  being the 

lattice vibrations (phonon) energy and can be equated to as [19], 
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2
( )g E E  the phonon density of 

states at low energies (i.e. for the acoustic branches). This readily yields the so-called Debye formula [19], 

( )

3
4

/

20
( ) 9

1

 
=     

  −


d

x
T T

ph
x

d

T x e
C T k N dx

T e

                                                   (24) 

where N  is the atom density (=5×1022/cm3 for silicon) and 
d

T  is the Debye temperature ( 645K=
d

T  for 

silicon). At high temperature (
d

T T ), the phonon heat capacitance tends to a constant 3  
ph

C k N , which 

corresponds to the Dulong and Petit heat capacitance limit. At low temperature (
d

T T ), the integral in Eq. (24) 

tends to 12.π4/45, such that the phonon heat capacitance 
ph

C  reduces to the usual 
3

T  power law [19], 

3
4

12
( )

5

  
     

 
ph

d

T
C T k N

T
                                                            (25) 

As it was done for the electronic heat capacitance, a closed-form analytical expression can be developed for 

( )
ph

C T  based on the two asymptotic limits at low and high temperature, yielding the simple expression, 

1

3
4

1 1
( ) with 0.85

3 12

5



−

  
  
   

= +     
      

      
    

a a

a

ph

d

C T a
k N T

k N
T

                           (26) 

Figure 7a shows the variations with temperature of the phonon heat capacitance 
ph

C  as given by the exact 

Debye model of Eq. (24) and the simple analytical expression of Eq. (26). As can be seen from the figure, Eq. 
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(26) provides a very good approximation to the exact formula with an error less than 12% over the whole 

temperature range up 
d

T . 

Figure 7b compares the variation with temperature of the phonon heat capacitance as obtained from the 

Debye model (Eqs 24 or 26) to bulk silicon experimental data from Ref. [21]. It indicates that the Debye model 

provides a sufficiently good description of the phonon heat capacitance over a wide range of temperature needed 

for device simulation. 

 
(a) (b) 

Figure 7. (a) Variations of phonon heat capacitance 
ph

C  with temperature as obtained from exact Debye equation (24) 

(solid line) and analytical approximation formula (26) (dashed line). (b) Experimental (symbols) and theoretical (solid line) 

variations of phonon heat capacitance 
ph

C  with temperature as obtained from bulk silicon data of Ref. [21] and from Debye 

model of Eqs (24) or (26). 

The lattice thermal conduction is governed by the heat transport by phonon diffusion due to a temperature 

gradient such as the heat flux / ( / ) ( / )=  = 
Q ph ph

J D dQ dx D dQ dT dT dx , with / 3= 
ph s ph

D v  being the 

phonon diffusion coefficient, 
s

v  the phonon sound velocity and 
ph

the phonon mean free path. Integrating over 

all phonon energies for the acoustic branches yields for the phonon heat conductivity / ( / )=
ph Q

K J dT dx  

[22,23], 

( )

3
4

/
2

20
( ) 3

1


 

=      
  −


d

x
T T

ph s ph
x

d

T x e
K T k N v dx

T e

                                            (27) 

where / =
ph ph s

v  is the phonon relaxation time, which is in general a function of temperature and phonon 

energy. If we consider, in first approximation, that 
ph  is independent of energy, we can factorize the product 

2


s ph
v  outside the integral, such that the phonon heat conductivity can be related to the phonon heat capacitance 

according to the kinetic theory as [24], 

21
( ) ( )

3
=  

ph ph s ph
K T C T v                                                                (28) 

Figure 8 shows how Eq. (28) can be used to fit reasonably well the bulk silicon data from Ref. [23] for 

( )
ph

K T , provided that the phonon relaxation time is made explicitly temperature dependent as 

4

0 0
/ 1 ( / )   = + ph ph

T T . However, in section 3, a more accurate empirical combined power law vs T will be 

used to fit the ( )
ph

K T  silicon data for device simulation purpose (see Eq (42)). 
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(a) (b) 

Figure 8. Variations of phonon heat conductivity 
ph

K  with temperature T   in linear scale (a) and log scale (b) as obtained 

from Eq. (28) and experimental data of Ref. [23] for bulk silicon (Parameters: 
5

9 10 cm/s= 
s

v , 
0

0.21 =
ph

s  and 

0
14K=T ). 

Another important phenomenon appearing at low temperature is the so-called phonon drag effect, which 

enhances the electronic thermopower due to the interaction between diffusing phonons and electrons. The 

phonon drag effect has been addressed both experimentally and theoretically in the 50’s by Geballe and Hull [25] 

and Herring [26], whereas further developments have been proposed later by Cantrell and Butcher [27] and 

Mahan [28]. In first instance, the Herring formula should be used to depict the phonon drag thermopower 
ph

S  

and can be formulated using the Matthiessen rule as [26], 
2 2

( ) ( ) ( )
( )

( ) ( ) ( )

  

  

 
=  =

 

s ph eff s ph

ph

eff effph effph

v T T v T
S T

T T T T T
                                                 (29) 

where / ( ) = 
eff

q n  is the effective mobility and ( )
effph

T  is the phonon-limited electron mobility component 

described by 1.5
( ) 1400 ( / 300)

−
= 

effph
T T  for bulk silicon [29]. As can be seen from Figure 9, Eq. (29) well 

reproduces the modelling results of Mahan [28], which have been calibrated on Geballe and Hull silicon 

experimental data [25] after having adjusted the temperature dependence of the phonon drag relaxation time 

such as 
3

0 0
/ 1 ( / )   = + ph ph

T T . Note that this phonon relaxation time is 2 orders of magnitude lower than the 


ph

 entering the phonon heat conductivity formula (28). This discrepancy has been discussed in the literature 

and could be attributed to the difference of nature between pure phonon transport and electron-phonon 

interaction processes [26–28]. However, it should be mentioned that it is close to the one used in Mahan et al 

[28] and has the same trend versus T , indicating that Eq. (29) is physically sound. In any case, this is not so 

important since it is calibrated on both experimental and theoretical silicon data and therefore can be used in 

first approximation to evaluate the phonon drag thermopower in bulk silicon. 
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Figure 9. Variations of temperature-phonon drag thermopower product 
ph

T S  with temperature T  as obtained from model 

of Eq. (29) and from modelling data of Ref. [28] for bulk silicon (Parameters: 
5

9 10 cm/s= 
s

v , 
0

25ns =
ph

 and 

0
58K=T , Si doping level 1015/cm3). 

Nevertheless, Eq. (29) giving the phonon drag thermopower can be considered as too simplistic to be 

applied at low temperature where degeneracy occurs. This is why further improvement to (29) has been 

proposed by Cantrell and Butcher [27] to account for the electron energy dispersion in 2D inversion layers [30]. 

Applying their derivation to 3D electron gas leads to the generalized expression, 
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E T f
E N E dE
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fT T
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                                    (30) 

where the energy mobility functions ( , ) E T  and ( , )
ph

E T  are given by, 

1

1 1
( , )

( , ) ( )


 

−

 
= + 

  ph I

E T
E T E

                                                            (31) 

In Eq. (31), ( , )
ph

E T  is the phonon limited mobility function given by [29], 

1

2
2

0

300
( , ) 1300 (cm /Vs)

−

 
=    

 
ph

E
E T

T E
                                         (32a) 

and ( )
I

E  is the ionized and neutral imputity limited mobility function which can be expressed as [29], 

3

2
20

0

( , ) 600 80 (cm /Vs)
 

=   + 
 

d

I

d

N E
E T

N E
                                         (32b) 

where 
d

N  is the silicon doping concentration, 
17 3

0
2.5 10 /cm= 

d
N  and 

0
50meV=E .  

Note that the parameters used in Eq. (32) have been properly calibrated such that the effective mobility 

/ ( ) = 
eff

q n  calculated with Eqs (1), (3), (31) and (32) fits reasonably well the standard electron mobility 

data versus doping level at room temperature for silicon [31] as shown in Figure 10. 
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Figure 10. Variations of electron effective mobility 
eff

 with doping level 
d

N  as obtained from modelling with Eqs (1), 

(3), (31) and (32) (red solid line) and from experiment (room temperature standard Si data [31]). 

Besides, it is worthwhile to examine which are the asymptotic limits of the Cantrell and Butcher equation 

(30) for Maxwell-Boltzmann and degenerate metallic statistics. In the case of MB statistics, Eq (30) can be well 

approximated by, 
2

( )
( )

(3 )






=



s ph

ph

ph

v T
S T

T kT
                                                                   (33) 

which is nothing else than Herring’s formula (29). 

In the case of degenerate statistics, Eq. (30) reduces to, 
2

( )
( , )

( , )






=



s ph

ph f

ph f

v T
S E T

T E T
                                                              (34) 

indicating that 
ph

S  now depends directly on the phonon limited mobility function at Fermi energy ( , )
ph f

E T . 

Figure 11a shows the variations of the phonon drag thermopower 
ph

S  with temperature as obtained from 

Cantrell and Butcher model [27] of Eq. (30) and corresponding MB and degenerate approximations given by 

Eqs (33) and (34), respectively. We can notice that, for such doping level (here 
17 3

3 10 /cm= 
d

N ), the 

degeneracy prevails only below 5KT , whereas MB statistics dominates for all higher temperatures. Figure 

11b reveals that, for low doping level (here 
15 3

10 /cm=
d

N ), the Cantrell and Butcher model [27] of Eq. (30) 

provides similar results than Mahan modelling data [28] calibrated on Geballe and Hull [25] experiments. 

Therefore, it appears clearly that Eq. (30) allow to extend the range of application of the Herring formula (29) to 

the degenerate case at very low temperature and/or higher doping level.  

These results also reveal that, for low doped silicon used in FDSOI MOS channel, the Herring formula of 

Eq. (29) calibrated on Mahan modelling results and Geballe and Hull experimental silicon data should constitute 

a first approximation for the phonon drag thermopower evaluation. Nevertheless, it should be mentioned that it 

is not able to describe the temperature and 2D carrier density dependence obtained at very low temperature in 

MOS inversion layers by Gallagher et al [32]. This issue goes beyond the scope of the present theoretical 

analysis and should be further discussed. 
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(a) (b) 

Figure 11. Variations of phonon drag thermopower 
ph

S  with temperature T: (a) as obtained from Cantrell and Butcher 

model [27] of Eq. (30) (red solid line) and from MB and degenerate asymptotic approximations (dashed lines) of Eqs (33) 

and (34), and, (b) as obtained from Eq. (30) (solid line) and extrapolated Mahan’s data [28] (symbols) for low doped silicon 

(Parameters: 
5

9 10 cm/s= 
s

v , 
0

18ns =
ph

 and 
0

58K=T ). 

3. Results and Discussion 

The electro-thermal properties of a FDSOI MOS structure have been simulated after solving the Poisson 

equation in two dimensions using the finite element partial differential equation software FlexPDE [33]. The 

simulated SOI structure is illustrated in Figure 12 and features a 2nm EOT (equivalent oxide thickness) top 

oxide thickness, a 10nm undoped silicon film and a 20nm buried oxide (BOX). No source and drain electrodes 

were considered here since limiting our analysis to 1D profiles, sufficient to evaluate in a long channel the sheet 

quantities integrated over the silicon thickness. For simplicity, the front (resp. back) gate voltage 
1g

V  (resp. 
2g

V ) 

was directly applied to the top (resp. bottom) oxide external boundary. In this case, the electrical potential V  

across the structure follows the Poisson equation as, 

0 0
( ) ( )

( ) (Silicon)
 − − −    

  =  −    
    

si

q V V q V V
V q n p

kT kT
                                  (35a) 

( ) 0 (Oxide)  =
ox

V                                                              (35b) 

where 
ox

 and 
si

 being the oxide and silicon permittivities, respectively, and 
0

V  (0.55V) the mid-gap 

potential. The carrier concentrations in Eq. (35a) were computed using the analytical approximation of Eq. (19). 

Quantum confinement effects were taken into account using Hansch’s quantum correction at each Si-SiO2 

interface with a quantum length of 1nm as in [14]. Once the electron density ( )n x  was known from Poisson’s 

equation solution, the electronic thermopower 
e

S , the reduced electronic heat conductivity / ( )
e

K T  and the 

reduced electronic heat capacitance /
e

C n  across the silicon film were then calculated using Eqs (20), (21) and 

(22). 
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Figure 12. Schematic of FDSOI structure used for simulation (
1

2nm=
ox

t , 
2

20nm=
ox

t , 10nm=
si

t ). 

In Figure 13 are illustrated typical spatial variations of the electron density ( )n x  across the silicon channel 

for a FDSOI MOSFET biased in strong inversion (
1

1.5V=
g

V , 
2

0=
g

V ) and for various temperatures varying 

from 300K down to 1K. From the log scale plot of this figure, one can clearly see the progressive depopulation 

of the carriers from the BOX interface (left side) as the temperature is lowered. Instead, the linear scale plot 

indicates that the carrier profiles near the top oxide interface (right side) are nearly temperature independent 

since the device is polarized in strong inversion.  

 
(a) (b) 

Figure 13. Spatial variations of the electron density ( )n x  plotted in log scale (a) and linear scale (b) for various 

temperatures as obtained in a FDSOI structure biased in strong inversion (
1

2nm=
ox

t , 
2

20nm=
ox

t , 10nm=
si

t , 

1
1.5V=

g
V , 

2
0=

g
V ). 

Figure 14 shows the corresponding spatial variations of the normalized electronic thermopower / ( )
e

S T x  

and of the reduced electronic heat conductivity / ( )( )
e

K T x  across the silicon film calculated with Eqs (20) 

and (21). As was explained in Figure 2, both the electronic thermopower and reduced electronic heat 

conductivity increase as the carrier concentration diminishes within Maxwell-Boltzmann statistics, whereas the 

normalized electronic thermopower /
e

S T  and the reduced electronic heat conductivity / ( )
e

K T  reach their 

temperature independent degenerate limits at high carrier concentration and/or at very low temperature. Since 

/
e

C n  is proportional to 
e

S  (see Eq. (22)) it presents the same spatial variations than 
e

S  (not shown). 
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The sheet carrier density 
s

N  was then calculated by integrating the electron concentration ( )n x  across the 

silicon channel as, 

0
( )= 

sit

s
N n x dx                                                                        (36) 

 

(a) (b) 

Figure 14. Spatial variations of the electronic thermopower ( )
e

S x  (a) and of the reduced electronic heat conductivity 

/ ( )( )
e

K T x  (b) for various temperatures as obtained in a FDSOI structure biased in strong inversion (
1

2nm=
ox

t , 

2
20nm=

ox
t , 10nm=

si
t , 

1
1.5V=

g
V , 

2
0=

g
V ). 

Typical variations of the inversion charge density 
s

N  with front gate voltage 
1g

V  are shown in Figure 15 

for various temperatures both in log and linear scales. One should clearly notice the usual strong increase of the 

subthreshold slope as the temperature is lowered due to the onset of Maxwell-Boltzmann statistics [1,2]. In 

contrast, at strong inversion above threshold, as is well known [1,2], the sheet carrier density 
s

N  becomes 

nearly temperature independent. 

 
(a) (b) 

Figure 15. Variations with front gate voltage 1g
V  of the sheet carrier density 

s
N  in log scale (a) and linear scale (b) for 

various temperatures as obtained in a FDSOI structure (
1

2nm=
ox

t , 
2

20nm=
ox

t , 10nm=
si

t , 
2

0=
g

V ). 

The local electrical conductivity ( ) x  was then evaluated by considering a standard mobility law both 

depending on temperature and local vertical electric field 
x

F  as [14,34], 

( , ) ( , ) ( ) =  x T q x T n x                                                                (37a) 
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2
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1


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 
+  

 

x

c

T
x T

F
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where 
c

F  is a critical field (1MV/cm) allowing to emulate the mobility degradation at high gate voltage due to 

the surface roughness scattering. The low field empirical mobility law 
0
( ) T  accounts for the mobility increase 

with temperature reduction governed by phonon scattering and for mobility saturation at low temperature due to 

prevailing neutral defect scattering [2,35]. Knowing the local electrical conductivity ( ) x , it is then possible to 

calculate the sheet electrical conductivity 
s
 by integrating the parallel contribution to charge transport of each 

channel layer as, 

0
( , ) = 

sit

s
x T dx                                                                      (38) 

In Figure 16 are reported typical evolutions of the sheet electrical conductivity 
s  with front gate voltage 

1g
V  for various temperatures from 300K down to 1K, as obtained from Eqs (37) and (38). As for the 

1
( )

s g
N V  

characteristics, one should also note the strong increase of the subthreshold slope with temperature lowering 

when Maxwell-Boltzmann’s statistics prevails. However, in this case, the sheet electrical conductivity 
s
 is 

significantly improved above threshold at low temperature due to the low field mobility enhancement. The onset 

of a zero temperature coefficient point (ZTC) in the 
1

( )
s g

V  is noticeable and is the consequence of the 1/T 

mobility dependence. It should be pointed out that this is in full agreement with usual cryogenic transfer 

characteristics data obtained in long channel Si MOSFETs [2,35]. It should also be mentioned that the effective 

mobility deduced from the sheet conductivity / ( ) =
eff s s

qN exhibits variation with temperature from 400 

cm2/Vs at 300K up to 2500 cm2/Vs at 10K (not shown here), which are in good agreement with the 

experimental data obtained on FDSOI MOSFETs [35,36]. 

 
(a) (b) 

Figure 16. Variations with front gate voltage 
1g

V  of the sheet electrical conductivity 
s

 in log scale (left) and linear scale 

(right) for various temperatures as obtained in a FDSOI structure (
1

2nm=
ox

t , 
2

20nm=
ox

t , 10nm=
si

t , 
2

0=
g

V ). 

Once having evaluated the local and sheet electrical conductivity, it is now possible to calculate the sheet 

electronic thermopower 
es

S , the sheet electronic heat conductivity 
es

K  and the sheet electronic heat capacitance 

es
C  by integrating the parallel contribution of each channel layer to electronic and heat transport as [18,37], 
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and 
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t
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Representative variations of the sheet thermopower 
es

S  and reduced sheet electronic heat conductivity 

/ ( )
es s

K T  with front gate voltage 
1g

V  are depicted in Figure 17 for various temperatures from 300K down to 

1K as obtained using Eqs (39) and (40). Overall, 
es

S  and / ( )
es s

K T  diminish as the temperature is increasing, 

which is mainly due to the augmentation of the sheet carrier concentration with front gate voltage. Below 

threshold, both 
es

S  and / ( )
es s

K T  sharply increase as the temperature is lowered due the onset of subthreshold 

regime. Since the variations of /
es s

C N  with 
1g

V  and temperature resemble those of 
1

/ ( , )
es g

S V T , they are not 

shown here. 

 

(a) (b) 

Figure 17. Variations with front gate voltage 
1g

V  of the sheet thermopower 
es

S  and reduced sheet electronic heat 

conductivity / ( )
es s

K T  for various temperatures as obtained in a FDSOI structure (
1

2nm=
ox

t , 
2

20nm=
ox

t , 

10nm=
si

t , 
2

0=
g

V ). 

Moreover, the other electro-thermal parameters of interest for semiconductor devices related to 
es

S  and 
es

K  

are the Peltier coefficient, = 
es

Pel T S , and thermoelectric figure-of-merit factor 
2

/=  
s s ths

zT T S K , 
ths

K  

being the whole sheet thermal conductivity of the silicon channel. The latter can be obtained by adding the sheet 

electronic heat conductivity 
es

K  to the channel sheet phonon heat conductivity = 
phs ph si

K K t , where 
ph

K  is the 

phonon heat conductivity of undoped bulk silicon, so that = +
ths es phs

K K K . Instead of using Eq. (28) of section 

2 for ( )
ph

K T , the bulk silicon heat conductivity data from Callaway [22] were adapted to account for the 

reduction of ph
K  in thin silicon film (here 10nm) due to increased phonon boundary scattering using the 

approach of Ashegi et al [38] and were interpolated versus temperature by a combined power law analytical 

function of the form, 

 2.5 4 1
( ) (13 1.2 10 ) W/(cm K)

− − −
=  +   

ph
K T T T                                           (42) 
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 It should be mentioned that the thermal leakage in the front and BOX oxides surrounding the channel have 

been overlooked since their heat conductivity is at least two orders of magnitude lower than those of bulk silicon. 

 In Figure 18a are compared the variations with temperature of the total sheet thermal conductivity 
tots

K  

with the electronic (
es

K ) and phonon (
phs

K ) components as obtained using Eqs (40) and (42) for a FDSOI 

MOSFET biased in strong inversion (
1

1.5V=
g

V ). This figure clearly reveals that the phonon contribution 

dominates the channel thermal conduction down to very low temperature (3K), whereas the channel electronic 

heat conductivity 
es

K  only prevails at extreme low temperature below 0.3K. Similarly, in Figure 18b are 

displayed the variations with temperature of the total sheet thermal capacitance Ctots (=Ces+Cphs) with the 

electronic (
es

C ) and phonon ( = 
phs ph si

C C t ) components as obtained using Eqs (41) and (26) for a FDSOI 

MOSFET biased in strong inversion (
1

1.5V=
g

V ). The figure also clearly indicates that the phonon contribution 

phs
C  to the total sheet thermal capacitance dominates above 6K, whereas the electronic contribution 

es
C  

prevails at very low temperature below 1K. 

 

(a) (b) 

Figure 18. (a) Variations with temperature of whole sheet thermal conductivity 
tots

K  (red solid line), sheet phonon thermal 

conductivity 
phs

K  (blue dashed line) and sheet electronic thermal conductivity 
es

K  (green dashed line). (b) Variations with 

temperature of whole thermal capacitance 
tots

C  (red solid line), sheet phonon thermal capacitance 
phs

C  (blue dashed line) 

and sheet electronic thermal capacitance 
es

C  (green dashed line) as obtained in a FDSOI structure (
1

2nm=
ox

t , 

2
20nm=

ox
t , 10nm=

si
t , 

1
1.5V=

g
V , 

2
0=

g
V ). 

Moreover, the combination of the sheet thermal capacitance and sheet thermal channel resistance, defined 

as /=
ths tots

R L K , allows us to evaluate the channel total thermal response time 

2
/ 6( / (6 )) =   = 

tot ths tots tots tots
R C L C L K , L  being the channel length, in analogy to what is done for the 

channel electronic response time [39]. Figure 19 shows the variations with temperature of the total channel 

thermal response time 
tot

 along with its phonon 2
( / (6 )) = 

ph phs phs
C L K  and electronic 

2
( / (6 )) = 

e es es
C L K  

components as obtained for a FDSOI MOSFET biased in strong inversion ( 1
1.5V=

g
V ) with a channel length 

100nm=L . As can be seen from the figure, the thermal response time is dominated by the phonon contribution 

above 10K, while it is mainly controlled by the electronic contribution below 1K. Note that for such a gate 

length, the channel thermal response time lies in the picosecond range below 10K. 
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Figure 19. Variations with temperature of the total thermal response time 
tot

 (red solid line), thermal phonon response time 


ph

 (blue dashed line) and electronic response time 
e

 (green dashed line) as obtained in a FDSOI structure (
1

2nm=
ox

t , 

2
20nm=

ox
t , 10nm=

si
t , 100nm=L ,

1
1.5V=

g
V , 

2
0=

g
V ). 

 The variations of the Peltier coefficient Pel  and thermoelectric figure-of-merit factor zT  with front gate 

voltage 
1g

V  can be evaluated as shown in Figure 20. As can be seen, the Peltier coefficient variations with gate 

voltage mainly mimic those of the thermopower above threshold, whereas there is a relative temperature 

independency below threshold. Similarly, the thermoelectric figure-of-merit factor variations with gate voltage 

are mainly controlled by those of the electrical conductivity below threshold, whereas they are mostly reflecting 

those of 
2

 
s es

S  in strong inversion, since 
ths

K  is constant with 
1g

V  as being mostly dominated by the sheet 

phonon heat conductivity term (see Figure 18). In any case, both the Peltier coefficient and the thermoelectric 

figure-of-merit factor take values well below one, indicating a poor thermoelectric efficiency for such a FDSOI 

MOSFET, especially at cryogenic temperatures, indicating that such structures are not optimized for pure 

thermoelectric applications. 

 

(a) (b) 

Figure 20. Variations with front gate voltage 
1g

V  of the Peltier coefficient Pel  and thermoelectric figure of merit factor 

zT  for various temperatures as obtained in a FDSOI structure (
1

2nm=
ox

t , 
2

20nm=
ox

t , 10nm=
si

t , 
1

1.5V=
g

V , 

2
0=

g
V ). 
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Finally, in Figure 21 are compared, for completeness, the variations with temperature of the sheet electronic 

thermopower 
es

S  for two front gate voltages 
1g

V  and of the phonon drag thermopower 
ph

S  as given by the 

extrapolated Mahan model [28] of Eq. (29) calibrated on Geballe and Hull silicon data [25]. It appears from the 

figure that the phonon drag thermopower component should dominate the electronic thermopower component, 

especially below T50K (see Figure 11). However, these results have to be taken with caution since the simple 

model of Eq. (29) does not account for the 1 / n  and 
3

T  dependence of the thermopower observed at very low 

temperature e.g. by Gallagher et al in Si MOS inversion layers [32]. Therefore, a more accurate modelling of the 

phonon drag thermopower component should be developed, especially at very low temperatures, as a function of 

carrier concentration (i.e. also Fermi level) and temperature to be further included in FDSOI MOSFET 

simulation, bringing more reliable electro-thermal simulation results. But this issue goes beyond the scope of 

this paper.  

 

Figure 21. Variations with temperature T  of the sheet electronic thermopower 
es

S  for two front gate voltages 
1g

V  (red 

solid lines) and of the phonon drag thermopower 
ph

S  as given by Mahan model [28] of Eq. (29) (blue dashed line) as 

obtained in a FDSOI structure (
1

2nm=
ox

t , 
2

20nm=
ox

t , 10nm=
si

t ,  
2

0=
g

V ). 

4. Summary and Conclusions 

In this work, we have proposed an original reformulation of the thermopower S, heat conductivity K and 

heat capacitance C coefficients for electron in bulk silicon as a function of Fermi level position and temperature 

applicable from Maxwell-Boltzmann to degenerate statistics. Similarly, the phonon related coefficients have 

also been reformulated in this context. Besides, we have also developed closed-form analytical approximations 

for these coefficients versus Fermi level, temperature and/or carrier concentration, and which are useful for 

implementation in TCAD simulation. Then, these analytical expressions for S, K and C have been further 

employed to simulate the electro-thermal properties of a FDSOI MOSFET versus front gate voltage from room 

down to very low temperature (0.1K). The obtained results enable the discrimination between the electron and 

phonon contributions to the whole properties. These analyses pave the way to further 2D/3D fully coupled 

electro-thermal numerical simulations of FDSOI MOSFETs down to very deep cryogenic temperatures for full 

assessment of their electro-thermal performances (transport, self-heating…). 
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