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Abstract: ABCB4 (ATP-binding cassette subfamily B member 4) is a hepatocanalicular floppase
involved in biliary phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene give rise to
several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), an
autosomal recessive disease that can be lethal in the absence of liver transplantation. In this study,
we investigated the effect and potential rescue of ten ABCB4 missense variations in NBD1:NBD2
homologous positions (Y403H/Y1043H, K435M/K1075M, E558K/E1200A, D564G/D1206G and
H589Y/H1231Y) all localized at the conserved and functionally critical motifs of ABC transporters,
six of which are mutated in patients. By combining structure analysis and in vitro studies, we found
that all ten mutants were normally processed and localized at the canalicular membrane of HepG2
cells, but showed dramatically impaired PC transport activity that was significantly rescued by
treatment with the clinically approved CFTR potentiator ivacaftor. Our results provide evidence that
functional ABCB4 mutations are rescued by ivacaftor, paving the way for the repositioning of this
potentiator for the treatment of selected patients with PFIC3 caused by mutations in the ATP-binding
sites of ABCB4.

Keywords: bile secretion; genetic liver disease; PFIC3; ABC transporter; potentiators; ivacaftor

1. Introduction

The adenosine triphosphate (ATP)-binding cassette, sub-family B, member 4 (ABCB4),
also known as multidrug resistance 3 (MDR3), is a hepatocanalicular floppase involved in
biliary phosphatidylcholine (PC) excretion [1]. PC forms mixed micelles with co-secreted
bile salts and cholesterol by ABCB11 and ABCG5/G8, respectively. The formation of
bile-acid/PC mixed micelles is critical to reduce the detergent activity of bile acids and to
prevent the formation of cholesterol gallstones. In the absence of PC due to ABCB4 defects,
the hepatocytes and cholangiocytes that line the biliary tree are exposed to the damaging
detergent action of free bile acids, leading to inflammation and cholestasis (Reviewed by
Reichert and Lammert [2]). The most severe liver disease related to dysfunctional ABCB4
is progressive familial intrahepatic cholestasis type 3 (PFIC3), which is characterized by
the early onset of persistent cholestasis that progresses to cirrhosis and liver failure before
adulthood and most often requires liver transplantation [3]. Less severe diseases are low-
phospholipid-associated cholelithiasis (LPAC) syndrome, which occurs in young adults [4],
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and intrahepatic cholestasis of pregnancy [5]. Up to now, about 400 distinct disease-causing
ABCB4 variants have been reported. A challenge is to find pharmacological treatments
for the severe forms of these diseases. We have unraveled several mechanisms by which
ABCB4 missense variations cause diseases, and proposed a functional classification of these
variations based on their impact on the traffic, activity or stability of the protein [6].

The resolution of the ABCB4 three-dimensional (3D) structure [7] confirmed that
ABCB4 has the characteristics of type IV ABC transporters [8]. It is composed of two
membrane-spanning domains (MSDs), each consisting of six transmembrane helices, which
allow PC translocation, and two nucleotide-binding domains (NBDs) that contain several
conserved motifs involved in ATP binding and hydrolysis. Structural and site-directed
mutagenesis studies carried out on various ABC transporters have elucidated the role of
several residues in each of these functionally critical motifs, notably (i) the Walker A motif,
which binds the alpha- and beta-phosphates of ATP; (ii) the Walker B motif, which provides
a conserved catalytic glutamate; (iii) the A-loop, which includes a residue with an aromatic
side chain interacting with the adenine ring of ATP; (iv) the D-loop, which is involved in
ATP hydrolysis; (v) the H-loop or a switch histidine, which contributes to the catalytic
reaction by stabilizing the transition-state geometry; (vi) the Q-loop, which connects the
catalytic site and the helical subdomain of the NBD and interacts with bound ATP, and
(vii) the LSGGQ signature, which is a specificity of ABC transporters and is involved in the
pinning and orientation of ATP during hydrolysis (More details about the mechanistic of
these conserved motifs can be found in the review by Kroll et al. [9]).

We previously showed that five disease-causing mutations, four of which are localized
in the signature motifs of NBD1 and NBD2 and one at the Walker A of NBD2 of ABCB4,
resulted in a defect in ABCB4 function, which could be rescued by the clinically approved
CFTR potentiator, ivacaftor [10]. The beneficial effect of ivacaftor was subsequently reported
to rescue functional mutants in the ATP-binding sites of another type IV ABC transporter,
the bile acid transporter ABCB11 [11].

To gain insight into the molecular mechanism of ABCB4 potentiation, we identified
and functionally characterized ten variants in NBD1:NBD2 homologous positions. All
of them are localized within the conserved and functionally critical ABCB4 motifs, six of
which are mutated in PFIC3 or LPAC syndrome patients. We also evaluated the effect of
ivacaftor on the PC transport activity of the ten mutants. By combining structure analysis
and in vitro studies, we found that all ten mutants were normally processed and localized
at the plasma membrane but showed dramatically impaired PC transport activity that was
significantly rescued by treatment with the CFTR potentiator ivacaftor.

2. Results
2.1. ABCB4 Variations in Critical Motifs of the NBDs and Liver Diseases

The distribution of ABCB4 variations studied here are shown in Figure 1. They affect
homologous positions that all belong to highly conserved motifs of ABCB4 NBD1 and
NBD2 (Supplementary Figure S1), including the A-loops (Y403H in NBD1; Y1043 in NBD2),
the Walker A motifs (K435M in NBD1; K1075M in NBD2), the Walker B motifs (E558K
in NBD1; E1200A in NBD2), the D-loops (D564G in NBD1; D1206G in NBD2) and the
H-loops (H589Y in NBD1; H1231Y in NBD2). Of the ten variants studied, six (Y403H,
E558K, D564G, H589Y, E1200A and H1231Y) were identified in patients and four (K435M,
Y1043H, K1075M and D1206G) are theoretical variants. Y403H, H1231Y with homozygous
status and E558K, D564G with compound heterozygous status were detected in PFIC3
patients [3,12,13]. H589Y and E1200A with heterozygous status were detected in patients
with LPAC syndrome [14,15]. The main characteristics of the patients are shown in Table 1.
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c. 1691 A>G D564G HE DL/NBD1 PFIC3 [3] 
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c. 3691 C>T H1231Y HO HL/NBD1 PFIC3 [13] 

Nucleotide variant corresponds to the complementary DNA of the NM_000443.3 (ABCB4, transcript 

variant A, messenger RNA). Abbreviations: HO, homozygous; HE, heterozygous; CHE, compound 

heterozygous; AL, A-Loop; DL, D-Loop; HL, H-Loop; WA, Walker A; WB, Walker B; NBD, nucleo-

tide-binding domain; TV, theoretical variant. 
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the two composite ATP binding sites are depicted in Figure 2B. ATP binding site 1 is 

formed by residues belonging, on the one hand, to the NBD2 A-loop, Walker A and 
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Walker A and Q-loop residues and helps to orientate ATP in site 1 (Figure 2A,B). Asym-

metry is also observed for the position of the histidine of H-loops, with NBD2 H1231 also 

well orientated towards site 1 to form a dyad with the Walker B catalytic base [7], whereas 

NBD1 H589 shifts towards the NBD1:NBD2 interface (Figure 2B). As in ABCB1 [17], ATP 

molecules in the two sites are capped by the A-loops, with the conserved tyrosines (Y403 

and Y1043) stacking adenine and making H-bonds with Walker A amino acids on one side 

Figure 1. Topology diagram of ABCB4 illustrating the location of the variants studied here. The
five mutations of the conserved motifs in NBD1 (Y403H, K435M, E558K, D564G and H589Y) are
boxed on a blue background, and mutations of corresponding residues in NBD2 (Y1043H, K1075M,
E1200A, D1206G and H1231Y) are boxed on an orange background. A: Walker A motif, B: Walker B
motif, C: signature motif for ABC transporters, MSD: membrane-spanning domain, NBD: nucleotide-
binding domain.

Table 1. Characteristics of Patients with ABCB4 Variations.

Nucleotide Variant Amino Acid Variant Zygosity Localization Disease Reference

c. 1207 T>C Y403H Ho AL/NBD1 PFIC3 [12]
c. 1304 A>T K435M - WA/NBD1 TV [16]
c. 1672 G>A E558K CHE/G723E+A1193T WB/NBD1 PFIC3 [12]
c. 1691 A>G D564G HE DL/NBD1 PFIC3 [3]
c. 1765 C>T H589Y HE HL/NBD1 LPAC [14]
c. 3127 T>C Y1043H - AL/NBD2 TV This study
c. 3224 A>T K1075M - WA/NBD2 TV [16]
c. 3599 A>C E1200A HE WB/NBD2 LPAC [15]
c. 3617 A>G D1206G - DL/NBD2 TV This study
c. 3691 C>T H1231Y HO HL/NBD1 PFIC3 [13]

Nucleotide variant corresponds to the complementary DNA of the NM_000443.3 (ABCB4, transcript variant
A, messenger RNA). Abbreviations: HO, homozygous; HE, heterozygous; CHE, compound heterozygous;
AL, A-Loop; DL, D-Loop; HL, H-Loop; WA, Walker A; WB, Walker B; NBD, nucleotide-binding domain; TV,
theoretical variant.

2.2. The Structure of ABCB4 NBDs and In Silico Predictions of the Impact of the Variants

A ribbon view of the 3D structure of the NBD1:NBD2 head-to-tail dimer, viewed from
the membrane, is displayed in Figure 2A, while the main amino acids involved in the two
composite ATP binding sites are depicted in Figure 2B. ATP binding site 1 is formed by
residues belonging, on the one hand, to the NBD2 A-loop, Walker A and Walker B motifs
and H-loop and, on the other hand, to the NBD1 ABC signature and D-loop. ATP binding
site 2 is formed by residues belonging to the NBD1 A-loop, Walker A and Walker B motifs
and H-loop and to the NBD2 ABC signature and D-loop. Although ABCB4 contains two
consensus ATP-binding sites, a structural asymmetry was observed in the cryo-EM 3D
structure, with a magnesium ion only observed at site 1 [7]. This ion mediates strong
contacts between the beta and gamma phosphates of ATP and NBD2 Walker A and Q-loop
residues and helps to orientate ATP in site 1 (Figure 2A,B). Asymmetry is also observed for
the position of the histidine of H-loops, with NBD2 H1231 also well orientated towards site
1 to form a dyad with the Walker B catalytic base [7], whereas NBD1 H589 shifts towards
the NBD1:NBD2 interface (Figure 2B). As in ABCB1 [17], ATP molecules in the two sites are
capped by the A-loops, with the conserved tyrosines (Y403 and Y1043) stacking adenine
and making H-bonds with Walker A amino acids on one side of the site. The aspartic acids
of the D-loops are positioned similarly. These amino acids were proposed to coordinate
the attacking water in the hydrolysis reaction and participate in the modulation of the
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hydrolysis competent state [18]. As all the amino acids studied here form critical bonds
or contacts through their side chains with ATP, magnesium ions or water molecules, the
studied mutations are predicted to impair ATP binding and hydrolysis.
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Figure 2. (A) Ribbon representation of the experimental 3D structure of the human ABCB4
NBD1:NBD2 dimer (PDB: 6S7P), viewed from the membrane towards the cytosol. The amino acids of
the conserved motifs at the interface between the two domains are highlighted in a ball-and-stick
representation. The two ATP molecules are represented as surface meshes. (B) The same view as in
panel A, highlighting only the amino acids of the conserved motifs. Amino acids whose mutations
were analyzed in this study are colored in green, those studied previously are in pink, and the other
ones are in gray. The magnesium ion bound to site 1 ATP is also shown. Motif names are colored
according to their belonging to NBD1 (blue) or NBD2 (orange).

2.3. Localization of ABCB4 Mutants in HepG2 and HEK293 Cells

To functionally characterize the variants identified in the critical motifs of the ABCB4
NBDs, we first studied their impact on ABCB4 subcellular distribution. The mutated
complementary DNAs reproducing the ABCB4 variations were transfected in polarized
HepG2 cells and nonpolarized epithelial HEK293. HepG2 cells derive from a human
hepatocellular carcinoma and form neo-bile canaliculi in culture and allow localization
studies, whereas HEK293 cells are suitable for studies of transport activity. It is worthy
of note that, in our experimental conditions, no endogenous ABCB4 was detected in
either cell line. The localization of the mutants was compared to that of ABCB4-wt after
transient and stable transfection in HepG2 and HEK293 cells, respectively. Forty-eight
hours after transfection, HepG2 cells were fixed, permeabilized and stained for ABCB4, in
addition to MRP2 as a canalicular marker [10]. Confocal microscopy showed that ABCB4-
wt was exclusively detected at the canalicular membrane where it co-localizes with MRP2
(Figure 3A). Similarly to ABCB4-wt, all the mutants displayed canalicular localization
and colocalized with MRP2 (Figure 3A). In HEK293 cells, the subcellular localization of
the mutants was studied after the selection of stable cell populations. As in HepG2 cells,
all of the mutants were localized exclusively at the plasma membrane (Figure 3B). These
observations indicate that all the mutants of the conserved motifs of the ABCB4 NBDs did
not impair the intracellular trafficking and the plasma membrane localization of ABCB4.

2.4. Expression and Processing of ABCB4 Mutants

The expression and the processing of the mutants were assessed by Western blot anal-
yses and compared to that of ABCB4-wt. As shown in the representative blot (Figure 4A),
ABCB4-wt was expressed as a major mature band migrating with an apparent molecular
weight of 160 kDa and a minor immature band at 140 kDa, as previously reported [19].
The ten mutants displayed the same pattern of migration; they were found essentially
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under the slow-migrating 160 kDa form (Figure 4A). The quantification of replicate data
sets confirmed that the expression profile of all mutants was indistinguishable from that of
ABCB4-wt (Figure 4B). These results indicate that the ten mutants of the conserved motifs
of the ABCB4 NBDs did not impair the expression and the maturation of ABCB4.
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Figure 3. Localization of ABCB4-wt and mutants in HepG2 and HEK293 by immunofluorescence
and confocal microscopy. (A) HepG2 cells transiently expressing ABCB4-wt or mutants of the
conserved motifs (A-loop, Walker A, Walker B, D-loop and H-loop) in NBD1 and NBD2 were fixed
and permeabilized, and processed for immunofluorescence using the anti-ABCB4 (P3-II-26) and
anti-MRP2 (M2-I-4) monoclonal antibodies, followed by goat anti-IgG2b Alexa Fluor 488- and goat
anti-IgG1 594-conjugated secondary antibodies, and visualized by confocal microscopy. In transfected
cells, ABCB4-wt and all mutants are exclusively detected at the canalicular membrane and colocalized
with endogenously expressed MRP2; yellow denotes the colocalization of both proteins in merged
images. Nuclei are stained in blue with Draq5. Transfected cells are indicated by dashed lines. Bile
canaliculi are indicated by asterisks. Bars = 10 µm. (B) The localization of ABCB4-wt or the mutants
in stably transfected HEK293 cells was assessed by indirect immunofluorescence using anti-ABCB4
antibodies as in (A). The data show that as in HepG2 cells, ABCB4-wt and all mutants were expressed
at the plasma membrane. Bars = 10 µm.
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Figure 4. (A) Representative Western blot of the expression levels of the mutants with respect to
ABCB4-wt. The expression and the processing of ABCB4-wt and the mutants was examined by
Western blot analysis of whole-cell lysates from stably transfected HEK293 cells. ABCB4 expression
was detected following SDS-PAGE and immunoblotting with the P3-II-26 antibody. Tubulin was
used as a loading control. Molecular masses are indicated on the right (in kDa). Presented data
were cropped from full immunoblots shown in supplementary Figure S2. (B) Biological replicates
were quantified by densitometry. The mature and immature bands were separately quantified on
gels, and their relative amounts were calculated. Results are the means (±SD) of at least three
independent experiments.

2.5. PC Secretion Activity of ABCB4 Mutants and the Effect of Ivacaftor

As all the mutants were located in functionally critical motifs of ABCB4, we hypothe-
sized that their PC secretion activity would be impaired. Furthermore, as all mutants were
expressed exclusively at the plasma membrane, it seems obvious that their function was
altered, which strongly supports our hypothesis. The PC secretion activity of the mutants
was examined in transiently transfected HEK293 cells and compared to that of ABCB4-wt.
We observed that, as expected, no PC secretion activity could be measured for either of
these mutants (Figure 5). These results indicated that mutations in the critical motifs of
ABCB4 impaired its PC secretion activity. Previously, we have shown that the PC secretion
defect of five disease-causing mutations, four of which are located in the ABC signature
motifs of NBD1 and NBD2 and one in the Walker A of NBD2 of ABCB4 could be rescued
by the clinically approved CFTR potentiator ivacaftor [10]. We then wondered whether the
potentiating effect of ivacaftor could be extended to all mutants located in the functionally
critical motifs of ABCB4. For this purpose, we tested the effect of ivacaftor on the ten
mutants. HEK293 cells transiently expressing ABCB4-wt or the mutants were treated
with 10 µmol/L of ivacaftor for 24 h, as previously described [10]. As shown in Figure 5,
treatment with ivacaftor rescued the mutants Y403H/Y1043H (up to 44% and 70% of WT,
respectively), K435M/K1075M (up to 42% and 67% of WT, respectively), E558K/E1200A
(up to 20% and 23% of WT, respectively), D564G/D1206G (up to 70% and 61% of WT,
respectively) and H589Y/H1231Y (up to 64% and 27% of WT, respectively). These effects
on PC secretion activity are in line with those previously reported for ABCB4 missense
mutations that reside in the LSGGQ signature motifs of NBD1 and NBD2 and the Walker A
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of the NBD2 [10], and indicate that the potentiating effect of ivacaftor can be extended to
all mutants located in ATP-binding sites of ABCB4.

Int. J. Mol. Sci. 2023, 24, 1236 7 of 14 
 

 

missense mutations that reside in the LSGGQ signature motifs of NBD1 and NBD2 and 

the Walker A of the NBD2 [10], and indicate that the potentiating effect of ivacaftor can 

be extended to all mutants located in ATP-binding sites of ABCB4. 

 

Figure 5. PC secretion activity of ABCB4-wt and the mutants and response to ivacaftor. HEK293 

cells were transiently transfected with plasmids encoding ABCB4-wt or the indicated mutants, and 

PC secretion was measured after 24 h in the absence (-) or presence (+) of 10 µmol/L of ivacaftor. PC 

secretion was normalized to the expression level of the mature form of the respective protein 

(ABCB4-wt or mutants) and expressed as a percentage of the secretion activity of ABCB4-wt. Results 

are the means (±SD) of at least six independent experiments performed in triplicate. * p < 0.05; ** p < 

0.01; *** p < 0.001; **** p < 0.000. 

3. Discussion 

In the present study, we examined the effects of ten ABCB4 missense variations 

(Y403H/Y1043H, K435M/K1075M, E558K/E1200A, D564G/D1206G and H589Y/H1231Y) 

that reside in the NBD1:NBD2 homologous positions within the highly conserved motifs 

of ABC transporters, which are involved in ATP binding and hydrolysis. Among the ten 

mutations studied, six were identified in patients. We show that, although correctly tar-

geted to the canalicular membrane, all of the mutants significantly impaired the ability of 

ABCB4 to secrete PC from cells. According to our functional classification, all the variants 

belong to class III variations [6]. Interestingly, the functional defect displayed by the ten 

mutants was successfully rescued by the clinically approved CFTR potentiator, ivacaftor. 

All of the mutants affect highly conserved motifs within the nucleotide binding sites 

of ABCB4 and other ABC transporters. Y403/Y1043 were located at equivalent positions 

of NBD1 and NBD2 of ABCB4, respectively, and they form the A-loop that interacts with 

the adenine ring of ATP. Several studies have been conducted to assess the effects of mu-

tating this aromatic residue in several ABC transporters (for review see Ambudkar et al., 

2006 [20]). The Y16S mutation in the HisP subunit of the bacterial histidine permease was 

shown to prevent the binding of ATP and its transport function [21]. Kim et al., 2006, 

showed that the replacement of these aromatic residues on MDR1 (Y401, Y1044) with non-

aromatic residues results in the loss of ATP binding and hydrolysis and also affects its 

transport function [22]. The Y403H variation was identified in a homozygous patient who 

was diagnosed as PFIC3 at the age of 3 months (no. 1, Table 1) [12]. The immunohisto-

chemical staining of ABCB4 in liver biopsies from this patient previously showed the pres-

ence of ABCB4 at the canalicular membrane in at least 60% of hepatocytes [23]. In HUH28 

cells transfected with the Y403H mutant, Degiorgio et al. showed a defect in phosphati-

dylcholine secretion, although the cell surface expression of the mutant was comparable 

to that of wild-type ABCB4 [24]. In agreement with this observation, we found that Y403H 

Figure 5. PC secretion activity of ABCB4-wt and the mutants and response to ivacaftor. HEK293
cells were transiently transfected with plasmids encoding ABCB4-wt or the indicated mutants, and
PC secretion was measured after 24 h in the absence (−) or presence (+) of 10 µmol/L of ivacaftor.
PC secretion was normalized to the expression level of the mature form of the respective protein
(ABCB4-wt or mutants) and expressed as a percentage of the secretion activity of ABCB4-wt. Results
are the means (±SD) of at least six independent experiments performed in triplicate. * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.000.

3. Discussion

In the present study, we examined the effects of ten ABCB4 missense variations
(Y403H/Y1043H, K435M/K1075M, E558K/E1200A, D564G/D1206G and H589Y/H1231Y)
that reside in the NBD1:NBD2 homologous positions within the highly conserved motifs
of ABC transporters, which are involved in ATP binding and hydrolysis. Among the
ten mutations studied, six were identified in patients. We show that, although correctly
targeted to the canalicular membrane, all of the mutants significantly impaired the ability of
ABCB4 to secrete PC from cells. According to our functional classification, all the variants
belong to class III variations [6]. Interestingly, the functional defect displayed by the ten
mutants was successfully rescued by the clinically approved CFTR potentiator, ivacaftor.

All of the mutants affect highly conserved motifs within the nucleotide binding sites
of ABCB4 and other ABC transporters. Y403/Y1043 were located at equivalent positions of
NBD1 and NBD2 of ABCB4, respectively, and they form the A-loop that interacts with the
adenine ring of ATP. Several studies have been conducted to assess the effects of mutating
this aromatic residue in several ABC transporters (for review see Ambudkar et al., 2006 [20]).
The Y16S mutation in the HisP subunit of the bacterial histidine permease was shown to
prevent the binding of ATP and its transport function [21]. Kim et al., 2006, showed that the
replacement of these aromatic residues on MDR1 (Y401, Y1044) with non-aromatic residues
results in the loss of ATP binding and hydrolysis and also affects its transport function [22].
The Y403H variation was identified in a homozygous patient who was diagnosed as PFIC3
at the age of 3 months (no. 1, Table 1) [12]. The immunohistochemical staining of ABCB4 in
liver biopsies from this patient previously showed the presence of ABCB4 at the canalicular
membrane in at least 60% of hepatocytes [23]. In HUH28 cells transfected with the Y403H
mutant, Degiorgio et al. showed a defect in phosphatidylcholine secretion, although the
cell surface expression of the mutant was comparable to that of wild-type ABCB4 [24]. In
agreement with this observation, we found that Y403H and Y1043H mutants were detected
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at the canalicular membrane of transfected HepG2 cells, but displayed major activity defects.
K435/K1075 are part of the Walker A motifs of NBD1 and NBD2 of ABCB4, respectively.
The amino acids of the Walker A motif (GCGKS) are critical for the binding of ATP as they
form the phosphate binding loop. Our results are in agreement with those of Morita et al.
who showed that the substitution of the lysine by methionine in both NBDs resulted in a
defect in PC transport by ABCB4 [16]. In another study, Andress et al. showed that the
variant K435T, identified in a patient with Biliary cirrhosis [25], localizes to the plasma
membrane of HEK293T cells but lacks PC secretion activity [26]. The residues E558/E1200
are part of the extended Walker B motifs of NBD1 and NBD2 of ABCB4, respectively. The
combined mutation of these carboxylate residues in both NBDs strongly reduce the ATPase
activity of ABC transporters [27]. The E558K variation was identified in a compound
heterozygous patient with PFIC3 clinical phenotype (no. 3, Table 1) [12]. The E1200A
variation was identified in a heterozygous patient with LPAC syndrome (no. 8, Table 1) [15].
Our data are in line with those previously reported by two studies, showing that the
mutation of glutamate to glutamine in both Walker B motifs (E558Q/E1200Q) resulted
in the absence of PC secretion in HEK293 cells [7,28], indicating that the PC secretion
activity of ABCB4 was dependent on ATP hydrolysis. The aspartate residues D564/D1206
belong to the D-loop of NBD1 and NBD2 of ABCB4, respectively. The D564G variation was
identified in a heterozygous patient with PFIC3 (no. 4, Table 1) [3]. The function of this
conserved motif (SALD) has been investigated in several studies. In the Escherichia coli ABC
transporter MsbA, substitution of the aspartate to glycine (D512G) resulted in the lack of cell
viability [29]. In the sulfonylurea receptor SUR1, substitution of the aspartate by a cysteine
interferes with the gating of the associated Kir6.2 channel [30]. In the ABC transporter
associated with antigen processing (TAP), substitution of the conserved aspartate to alanine
leads to a decrease in the dimerization affinity of NBDs and a transformation of the
unidirectional active transport into a passive bidirectional transport [31]. In line with these
observations, we found that, although correctly targeted to the canalicular membrane of
HepG2 cells, D564G and D1206G displayed a major activity defect. The ABCB4 mutants
H589Y/H1231Y affect equivalent residues in the H-loop of NBD1 and NBD2, respectively.
Equivalent histidines have been shown to be essential for ATP hydrolysis in various ABC
transporters. Mutations of the conserved histidine (H211D, H211Y and H211R) in HisP [21]
and H192R in Malk [32] and H662A in HlyB [33] resulted in the loss of ATPase activity
and the transport function. However, an exception has been reported for the yeast ABC
transporter Pdr5. Indeed, Ernst et al. have shown that mutation of the histidine 1068 to
alanine (H1068A) had no effect on ATP hydrolysis, but abolished rhodamine transport,
while leaving the transport of other substrates unaffected [34]. The H589Y mutation
was identified in a heterozygous patient with LPAC syndrome (no. 5, Table 1) [14]. The
H1231Y mutation was identified in a homozygous patient who was diagnosed as PFIC3
at the age of 4 years (no. 10, Table 1) [13]. The staining of ABCB4 in a liver biopsy
from this patient previously showed normal localization of ABCB4 at the canalicular
membrane of hepatocytes, which had suggested that H1231Y mutation did not affect
the targeting of the protein at the plasma membrane, but rather could be the cause of a
function defect [13]. Consistent with this observation, we found that both H589Y and
H1231Y mutants were detected at the canalicular membrane of HepG2 cells but in a
completely inactive form. As the ten residues studied are located in conserved motifs
involved in NBDs dimerization and ATP binding and/or hydrolysis, it is not surprising
that their substitution results in a defect in ABCB4 PC transport function. Because we have
previously shown the efficacy of the clinically approved CFTR potentiator ivacaftor on five
function-defective mutants located in the ATP-binding sites of ABCB4 [10], it was tempting
to suggest that the potentiating effect of this molecule could be extended to all mutants
that affect these sites. Indeed, we show here that the functional defect of the ten mutants
was successfully rescued by ivacaftor, although the efficiency of the correction varies from
one mutant to another. The weakest effect is observed for mutations of the Walker B
catalytic glutamate (E558K/E1200A), consistent with the critical role of this residue in ATP
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hydrolysis (see above). Interestingly, a difference in the effect is also observed relative
to the mutations of the homologous histidine of the H-loop (H589Y/H1231Y), which
might be related to the asymmetry which was observed for the position of these residues
relative to the ATP-binding sites in the cryo-EM 3D structure of ABCB4 [7]. Ivacaftor is a
highly effective drug clinically approved to treat cystic fibrosis patients carrying mutations
affecting CFTR channel gating that works by increasing channel open probability [35,36].
Ivacaftor enhances the ATP-independent activity of wild-type CFTR to a similar extent
as its effect on G551 D mutation, abolishing responsiveness to ATP, but also increases the
open time of wild-type CFTR in an ATP-dependent-manner [37,38]. The fact that ivacaftor
has been shown to be effective on other members of the ABC transporter family [10,11,39]
suggests a common mechanism of action. The mechanism of rescue by ivacaftor is not yet
clear, but is likely to be complex. The binding site of ivacaftor on CFTR was examined by
different methods, and several binding sites have been proposed. Using cryo-EM, a binding
site considered as specific to CFTR has been identified at the protein-lipid interface within
the membrane-spanning domains, involving the transmembrane helices TM8, TM4 and
TM5 [40]. This is consistent with the independence of ivacaftor action from ATP hydrolysis
or NBD dimerization [37,38]. However, no major change in the overall 3D structure of CFTR
occurred when comparing the ivacaftor-bound and unbound CFTR structures, leaving the
question of the potentiation mechanism still open. Other ivacaftor-binding sites have been
proposed for CFTR at the interface between Membrane-Spanning domain 2 and NBD1 by
two different studies, one based on Hydrogen-deuterium exchange coupled with mass
spectrometry [41], and the other on the use of two photoactivable probe analogs of ivacaftor
on biological membranes [42]. Whether this/these binding site(s) exist(s) on ABCB4 and
other ABC transporters remains to be established. A further interesting observation was
that ivacaftor was identified as a substrate of P-gp (ABCB1) [43], suggesting that it can
bind directly to ABCB1. Indeed, a binding site of ivacaftor, which seems to be absent on
CFTR, was identified in the substrate-binding pocket of ABCB1 [44]. As ABCB4 shares
76% sequence identity with ABCB1, it is tempting to speculate that these two transporters
may share the same ivacaftor binding site. However, these speculations remain to be
tested experimentally.

In conclusion, the results obtained in this study reinforce our previous findings on
the efficacy of ivacaftor on ABCB4 class III mutants, and support the suggestion that
CFTR potentiators could be useful, and that therapeutics in patients with ABCB4 function
deficiency are caused by mutations in the ATP-binding sites.

4. Materials and Methods
4.1. Patients

Six patients, including four with PFIC3 and two with LPAC syndrome were included in
the present study (Table 1). An ABCB4 gene analysis was performed as previously described [6].

4.2. Antibodies and Reagents

Mouse monoclonal anti-ABCB4 (clone P3-II-26) and anti-MRP2 (multidrug resistance-
associated protein 2; clone M2-I-4) antibodies were purchased from Enzo Life Sciences
(Villeurbanne, France); and anti-α-tubulin (clone 1E4C11) was sourced from ProteinTech
(Manchester, United Kingdom). Alexa Fluor-labeled secondary antibodies, the DRAQ5 flu-
orescent probe and culture media came from ThermoFisher (Cergy-Pontoise, France), and
peroxidase-conjugated secondary antibodies were acquired from Rockland Immunochemi-
cals (Gilbertsville, PA, USA). The ECL-Prime detection kit was from VWR (Courtaboeuf, France).
The transfection reagents Turbofect and JetPrime were purchased from Thermo-Fisher Scien-
tific, (Saint-Herblain, France) and Ozyme (Saint-Cyr-l’Ecole, France), respectively. Ivacaftor
(VX-770) came from Clinisciences (Nanterre, France). All other reagents were obtained
from Sigma-Aldrich (Lyon, France).
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4.3. The 3D Structure Analysis

Three-dimensional structures were visualized with the UCSF Chimera package [45].

4.4. DNA Constructs and Mutagenesis

The construction of the human wild-type (wt) ABCB4 (ABCB4-wt), isoform A (NM_000443.3)
in the pcDNA3 vector was reported [19]. pcDNA3-ABCB4-wt was used as a template
to introduce the substitutions Y403H, K435M, E558K, D564G, H589Y, Y1043H, K1075M,
E1200A, D1206G, and H1231Y by site-directed mutagenesis using the Quik-Change II XL
mutagenesis kit (Agilent Technologies, Massy, France). DNA primers used for ABCB4
mutagenesis were acquired from Invitrogen-Life Technologies and are listed in Supporting
Table S1. All constructs were verified for the introduction of the substitutions and the
absence of additional mutations by automated sequencing of the entire cDNA.

4.5. Cell Culture and Transfections

Human Embryonic Kidney HEK-293 (ATCC®-CRL-1573TM) cells and Human hepato-
cellular carcinoma HepG2 (ATCC®-HB-8065TM) cells were obtained from ATCC (Manassas,
VA, USA). They were grown at 37 ◦C in Dulbecco’s Modified Eagle’s Medium (DMEM), as
previously reported [6]. Transfections with plasmids encoding ABCB4-wt or the mutants
were performed using Turbofect at a ratio of reagent:DNA of 2:1 for HEK-293 cells, and
JetPrime at a ratio of reagent:DNA of 2:1 for HepG2 cells, according to the manufacturer’s
instructions and as previously described [6]. Stable expression in HEK-293 cells was ob-
tained by selection with 400 µg/mL of G-418 sulfate (GE Healthcare, Chicago, IL, USA) for
three weeks. Cells were subsequently grown in the presence of 100 µg/mL of G-418. For
the experiments with HEK-293 cells, plates were precoated with 100 µL poly-L-lysine for
1 h at RT.

4.6. Immunofluorescence Staining and Laser Scanning Confocal Microscopy

Stably transfected HEK-293 cells or transiently transfected HepG2 cells were grown on
glass coverslips and fixed with methanol at −20 ◦C. Incubations with monoclonal primary
and secondary antibodies were performed as described [10]. Nuclei were stained with
DRAQ5. Images of the stained cells were obtained using a Leica TCS-SP2 laser scanning
spectral system attached to a DMR inverted microscope equipped with a 63/1.4 immersion
objective. Digital images were analyzed using the online ScanWare software and processed
with ImageJ and Photoshop software.

4.7. Electrophoresis and Western Blot Analysis

Transfected cells were washed with phosphate-buffered saline (PBS) and lysed at 4 ◦C
for 30 min in TNE buffer (20 mM Tris HCl, 150 mM NaCl, 1 mM EDTA, pH 7.4) containing
1% (w/v) Triton X-100 in the presence of a protease inhibitor cocktail. Lysates were cen-
trifuged at 12,000× g for 10 min to remove insoluble materials. SDS-PAGE on 7.5% (w/v)
polyacrylamide gels and western blotting were performed as previously described [10].
Blots were probed with anti-ABCB4 and anti-α-tubulin used as a loading control. The
development of peroxidase activity was performed with the ECL prime western blotting de-
tection reagent. Images were acquired with Ibright imaging systems and signal intensities
were quantified using Ibright analysis software.

4.8. Measurement of ABCB4-Mediated Phosphatidylcholine Secretion

HEK293 cells were seeded on poly-lysine-precoated six-well plates at a density of
1.3 × 106 cells/well. Six hours after seeding, the cells were transiently transfected with 1µg
of ABCB4-encoding plasmids using Turbofect, following the manufacturer’s instructions.
Twenty-four hours post-transfection, cells were washed twice with Hanks’ balance salt
solution, and the medium was then replaced by phenol red-free Dulbecco’s modified
Eagle’s medium containing 0.5 mmol/L of sodium taurocholate and 0.02% fatty-acid-free
BSA in the presence or absence of 10µmol/L of ivacaftor as previously described [10].
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Media were collected after 24 h. The measurement of PC content in the collected media was
performed as described [46]. Results were normalized to the expression levels of ABCB4,
which were quantified from immunoblots obtained from the corresponding cell lysates.

4.9. Statistics

Data were analyzed using GraphPad Prism 7.00 (La Jolla, CA, USA) and are presented
as means ± SD. Statistical analyses were performed using the Student’s t-test, with a
p value < 0.05 considered to be significant.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24021236/s1. Reference [47] is cited in the supplementary materials.
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ABC ATP-Binding Cassette
ATP Adenosine Triphosphate
CFTR Cystic fibrosis transmembrane conductance regulator
DMEM Dulbecco’s Modified Eagle’s Medium
HEK Human Embryonic Kidney
ICP intrahepatic cholestasis of pregnancy
LPAC low-phospholipid associated cholelithiasis
MSD Membrane spanning domain
NBD Nucleotide binding domain
PC Phosphatidylcholine
PFIC 3 Progressive familial intrahepatic cholestasis type 3
WT Wild Type
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