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Abstract

Although bulk transcriptomic analyses have significantly contributed to an enhanced comprehension of
multifaceted diseases, their exploration capacity is impeded by the heterogeneous compositions of
biological samples. Indeed, by averaging expression of multiple cell types, RNA-Seq analysis is
oblivious to variations in cellular changes, hindering the identification of the internal constituents of
tissues, involved in disease progression. On the other hand, single-cell techniques are still time,
manpower and resource-consuming analyses.

To address the intrinsic limitations of both bulk and single-cell methodologies, computational
deconvolution techniques have been developed to estimate the frequencies of cell subtypes within
complex tissues. These methods are especially valuable for dissecting intricate tissue niches, with a
particular focus on tumour microenvironments (TME).

In this paper, we offer a comprehensive overview of deconvolution techniques, classifying them
based on their methodological characteristics, the type of prior knowledge required for the algorithm,
and the statistical constraints they address. Within each category identified, we delve into the
theoretical aspects for implementing the underlying method, while providing an in-depth discussion of
their main advantages and disadvantages in supplementary materials.

Notably, we emphasise the advantages of cutting-edge deconvolution tools based on probabilistic
models, as they offer robust statistical frameworks that closely align with biological realities. We
anticipate that this review will provide valuable guidelines for computational bioinformaticians in
order to select the appropriate method in alignment with their statistical and biological objectives.

We ultimately end this review by discussing open challenges that must be addressed to accurately
quantify closely related cell types from RNA sequencing data, and the complementary role of
single-cell RNA-Seq to that purpose.
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1 INTRODUCTION

1 Introduction

1.1 Main sources of transcriptomic variability

The transcriptome refers to the complete set of RNA transcripts, expressed within a biological sample.
By providing a snapshot of gene expression patterns, studying its variations across phenotypical
conditions provide valuable insights into the regulatory mechanisms of gene expression that underlie
disease progression and individual responses to treatments.

The main biological sources of transcriptomic expression, between individuals and within tissues,
proceed from three main biological factors, summarised in Figure 1: the global environmental and
topic condition of the sample, encompassing disease state and tissue location; the genotype condition,
involving single-nuclear polymorphisms, haplotypes, and comparable genetic aspects; and the cellular
composition. Changes of cell composition are notably driven by intertwined physiological processes
activating cell motility and cell differentiation mechanisms ([SG13]). In addition, the pertinent
biological signal is often entangled with extraneous technical noise, requiring specific corrections in
subsequent downstream analyses.

In addition, intrinsic heterogeneity is also present at the cell population level itself, arising from the
presence of unspecified and infrequent population subtypes, coexistence of different developmental cell
states (see Figure 1, bottom subfigure), or asynchronous biological processes (such as the cell cycle or
circadian rhythm). Lastly, the kinetics of transcriptome regulation is inherently stochastic [Bue+15]
(see Figure 1, top subfigure).

figures/sample_heterogeinity_1.jpg

Figure 1. Main sources of transcriptomic variability, illustrated by the the intricacy of tumoral
environments. The diversity of molecular profiles proceeds from a combination of intrinsic and extrinsic fac-
tors. Intrinsic factors encompass stochastic genetic, transcriptional, and proteomic mechanisms, while extrinsic
factors include interactions between the resident cell populations and the surrounding microenvironment. The
interconnection between these factors requires a systematic and multi-layered approach to comprehensively un-
derstand the intricacy of such biological environments. Figure reproduced from [Kas+22, Fig. 1]

While the analysis of the transcriptome through bulk RNA-Seq reveals meaningful co-expression
patterns, by averaging measurements over several cell populations, it tends to ignore the intrinsic
heterogeneity and complexity inherent to biological samples. Accordingly, bulk RNA-based methods
are usually not able to determine whether significant changes in gene expression stem from a change of
cell composition, from phenotype-induced variations or a combination of these factors ([Kuh+12]).
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figures/shen_orr_bulk_vs_single.png

(a) Deconvolution methods. Physical methods for dealing with sample heterogeneity require a preliminary isolation
step at the single cell level, perturbing their physical integrity. On the other hand, profiling the global heterogeneous
sample directly, as performed in standard bulk RNA-Seq analyses, provides a systematic and comprehensive overview,
yet, without the individual cell characteristics. To that end, computational deconvolution algorithms seem to find the
sweet spot and capture simultaneously local and global information. Reproduced from [SG13, Fig .2].

figures/role_deconvolution.png

(b) Changes in cell composition impact the transcriptomic expression: here, at least two distinct biological
mechanisms can likely explain the increased expression of transcriptomic activity observed for a given marker gene. In
the scenario (A), the cell composition is unchanged, but previously inactivated cells are stimulated and released the TF
in the biological medium. In scenario (B), there is a change of cell composition, with the infiltration of a second cell type
in the sample. Reproduced from [Sho+12, Fig. 1].

Hence, failure to account for changes of the cell composition is likely to result in a loss of specificity
(genes mistakenly identified as differentially expressed, while they only reflect an increase in the cell
population naturally producing them) and sensibility (genes expressed by minor cell populations are
amenable being masked by highly variable expression from dominant cell populations), as simply
illustrated in Section 1.1. Overall, the intrinsic heterogeneity of complex tissues, above all tumoral
ones, reduces the robustness and reproducibility of downstream analyses, notably differential gene
expression analysis or clustering of co-expression networks 1.

Various computational methodologies have emerged in recent years to estimate automatically cell
type proportions in biological samples from bulk transcriptomic profiles, alleviating the high costs of
single-cell RNA-Seq technologies or enabling the exploitation of archived patient datasets whose
original material is not anymore available [Avi+18]. Furthermore, by requiring prior isolation of cell
populations single-cell technologies hinder the analysis of interactions occurring between them. In
contrast to bulk RNA-Seq and single cell methodologies, computational techniques can simultaneously
capture systemic and cell-specific information, respectively. Accordingly, by dissecting the intricacy of
tissues, they reveal a strong potential to identify causal drivers and provide insights on regulation

1[Whi+03] notably exhibits that most of the variability of gene expression in whole blood samples proceeds from relative
changes of the composition in neutrophils, the most abundant immune cell type.
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1.1 Main sources of transcriptomic variability 1 INTRODUCTION

mechanisms.

Overview of numerical deconvolution methods

Deconvolution generally speaking names the process that consists in retrieving from a mixture its
individual sub-components, popularised as the “cocktail party problem” [Che53]. In a biological
sample (whole blood, tissue, . . . ), this consists generally in retrieving the distinct cell populations
(immune, stromal. . . ) composing it, but it can be directly extended to identify the different sources of
the RNA production (for instance, many studies investigate on estimating a tumour purity score
returning the proportion of malignant cells in [Yos+13]) or, at higher resolution, identify the cycle
stages within a cell population (see Figure 3).

figures/sample_heterogeinity_2.png

Figure 3. We detail some common applications of deconvolution methods, ordered by tier of resolution, from
the least detailed resolution: tissue level ([QM09, Fig .1]), to the most detailed one, cell cycles ([LNM03, Fig
.1]), through the cell population strata ([Fin+19a, Fig .1]).

Traditionally, deconvolution models assume that the total bulk expression is linearly related to the
individual cell profiles. Precisely, they posit that the global expression can reconstructed by summing
the distinct contributions of every cellular population weighed by their respective abundance within
the sample (Equation (1)):

yi = X × pi matricial form

ygi =

J∑
j=1

xgj × pj algebraic form
(1)

, with the following notations:

• (y = (ygi) ∈ RG×N
+ is the global bulk transcriptomic expression, measured in N individuals.

• X = (xgj) ∈ MRG×J the signature matrix of the mean expression of G genes in J purified cell
populations.

• p = (pji) ∈]0, 1[J×N the unknown relative proportions of cell populations in N samples

Overall, the system includes G linear equations with J unknowns (the cellular proportions). In
addition, most deconvolution problems explicitly integrate the compositional nature of cell ratios,
enforcing in the estimation process the unit-simplex constraint (Equation (2)):{∑J

j=1 pji = 1

∀j ∈ J̃ pji ≥ 0
(2)

Implicitly, Equation (2) implies that no other, unknown cell population could contribute to the
measured bulk mixture. The main classes of deconvolution methods, defined on the basis of their
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figures/standard_linear_deconvolution_process.png

(a) Deconvolution principle.Infographic showing how to use the unit-simplex constraint Equation (2) and
the proportional relation correlating cell populations with their respective purified transcriptomic profiles and
the measured global bulk mixture Equation (1), here illustrated in the context of inferring cellular ratios, in
a standard linear regression framework.

figures/shenorr_purposes_deconvolution.jpg

(b) Deconvolution ecosystem to disentangle complex and heterogeneous biological samples.The deconvolution
methods are classified according to their input data requirements as well as the output type and resolution
they provide. Supervised, alternatively named partial methods, methods utilise markers, signatures, or cy-
tometry proportions, to achieve cell detection (A), estimating cell proportions (B), correcting heterogeneity
(C), or estimating cell type-specific expression profiles (D), ranked from the simplest to the most challenging
task. On the other hand, complete deconvolution methods sequentially estimate proportions from cell type-
specific expression and reciprocally. They require nonetheless comprehensive prior knowledge on proportions
or expression profiles (signatures, markers) and make a bench of assumptions to ensure the identifiability and
consistency of the output. Reproduced from [SG13, Fig. 3].
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2 REFERENCE-BASED APPROACHES: DECIPHERING CELL MIXTURE THROUGH
EXPRESSION SIGNATURES

biological objectives, are summarised in Figure 4(b), ranging from the approaches requiring the most
information to the most unsupervised approaches:

In the following Section 2, we focus on partial deconvolution methods, that require individual
cellular expression profiles to infer cell composition [Stu+04]. Besides, in the remainder of this paper,
we posit, as most deconvolution algorithms, that the samples are uncorrelated with each other
(independence assumption), allowing simultaneous and parallel cell ratio estimations. While this
assumption reduces computational complexity, [Efr09] demonstrates cross-correlation across samples in
real-world transcriptomic profiles.

2 Reference-based Approaches: Deciphering Cell Mixture
through Expression Signatures

2.1 Regression-based approaches

The system of linear equations, given in Equation (1) rarely holds in practice, due to technical noise or
unaccounted environmental variations. Most deconvolution algorithms model explicitly the error with
a residual unobserved term, added to each individual transcriptomic measure, ϵg.

Subsequently, the usual approach is to retrieve the ordinary least squares (OLS) estimate which
minimise the sum of squares (SSE) between predicted values fitted by the linear model: ŷ = X p̂ and
the actually observed and measured values: y:

p̂OLS ≡ argmin
p

||ŷ − y||2 = argmin
p

||Xp− y||2 =

G∑
g=1

yg − J∑
j=1

xgjpj

2

(3)

with p̂ the unknown coefficients to estimate, y known as the predicted, response variable in a linear
regression context and X the design matrix, storing the J purified profiles. Note that the
“Rouché-Capelli” theorem states that the uniqueness of a solution to Equation (3) requires that the
number of genes is at least equal to the number of cell ratios to estimate (see appendiX). The OLS
estimator,p̂OLS is explicitly given by the Normal equations (see appendiX):

Interestingly, if we consider a generative approach, in which the error term is described by a
white-Gaussian process (homoscedastic, null-centred), the Gaussian-Markov theorem (see appendiX)
states that the OLS estimate is unique and equal to the Maximum Likelihood Estimate (see appendiX).

Linear modelling, whose cellular ratios are the ones returned in Equation (11), has first been used
as such in [Abb+09] paper, using the lsfit function. The same method is used in [Li+16],to identify
subgroups of melanomas characterised by varying levels of TCD8 subsets and correlate them with
prognostic factors. To avoid accounting for tumoral cells when asserting ratios of infiltrated cells, only
genes both highly correlated to the cell types of the sample and negatively correlated to the tumour
purity, defined as the ratio of aneuploid cells exhibiting a non canonical number of chromosomes.

However, assumption of homoscedasticity of the residuals makes standard linear approaches
sensitive to outliers, while they do not endorse explicitly the unit-simplex constraint (Equation (2)),
requiring posterior normalisation of the coefficients.

2.1.1 Weighted linear approaches

The presence of an unknown cell population might be relaxed by including a constant intersection
term p0, adding in practice a column of ones in the design matrix. To account for potential
heteroscedascity (variance of the errors depends on the gene value), weighted linear approaches allow
users to add prior weights to modify the leverage (contribution) of each gene to the computation of the
OLS estimate. Considering W the diagonal matrix of weights, the Weighted version of the Least
Square estimate Equation (11) is given by Equation (4):
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p̂wOLS = (X⊤WX)−1X⊤Wy (4)

EPIC [Rac+17] combines this weighted approach with the addition of a column characterising the
tumour profile in the signature matrix. [Rac+17] notably provides two signatures of circulating and
tumour-infiltrating immune cells, CAFs (cancer-associated fibroblasts) and epithelial cells, respectively
designed for whole-blood and solid tumoral tissues, aggregating bulk and scRNA-Seq data.

Instead, the quanTIseq [Fin+19a] algorithm integrates an additional constant intersection term to
quantify the contribution of the unknown tumoral content. In addition, to address the issue of cell
“drop-outs” (cell populations, generally infrequent and/or exhibiting a strong correlation with other
cell types, that are wrongly estimated as absent), a heuristic approach is employed whereby the final
Tregs estimate is computed as the average of two Tregs measures, in the presence and absence of the
TCD4+ subset in the design matrix. Tregs are indeed highly correlated with TCD4+ cell populations.

In weighted linear approaches, individual gene contributions are usually provided by the user.
Without prior knowledge, the usual approach is then to give less importance to genes exhibiting strong
variability within a cell population. However, assigning appropriate weights to each gene typically
necessitates either prior knowledge or strong assumptions about the dataset’s distribution. We
subsequently review in next Section 2.1.2 robust linear regression methods that compute the weights
or trim outlying gene expression in a automated manner.

2.1.2 Review of Robust Regression and SVR Methodologies for Data-Driven Transcript
Feature Engineering

In the previously described approaches, the inclusion of all genes in the regression framework may
yield biased estimates when the expression of some genes significantly differ, due to significant changes
of sequencing protocol or phenotype condition between the bulk mixture and purified expression
profiles. Unfortunately, outlying genes in least-square approaches have the strongest influence on the
parameters estimation, in reason of the Euclidean metric used to evaluate the prediction error.

Several robust methods, making a compromise between efficiency and robustness of the estimate
(see Appendix), have been proposed. They are usually classified into M-estimates (see Appendix),
whereby an adaptive function is enforced on the residuals, giving less weights to those with strong
leverage, and LTS estimates, where a user-provided ratio of aberrant genes is automatically identified
and trimmed (see Appendix).

With both methods, the weights assigned to each observation depend on the estimator which in
turn depend on the weights. As a result, the robust estimator must be computed sequentially, these
methods are accordingly referred to as Iteratively Reweighted Least Squares (IRLS) approaches.
Uniform weights are usually assigned to each observation, subsequently, a standard least regression
estimate is computed. Once the OLS obtained, each observation is reweighted, using the
transformation induced by the influence function, and which usually depends on its leverage on the
regression framework. The subsequent IRLS estimates are then computed with those new weights, and
the process continues until convergence [Yoh87]).

Of note, a variant of the LTS (least trimmed squares) approach has been implemented by the
FARDEEP algorithm [Hao+19]. It has notably been modified to ensure convergence towards a final
set of trimmed observations, in a linearly growing number of iterations. However, the algorithm is
highly sensitive to the tuning parameter that controls the final number of observations trimmed during
the regression. And while convergence and consistency of the algorithm is guaranteed, there’s no
theoretical guarantee that the final estimate returned is indeed optimal.

Overall, all the variants proposed in this section are proned to overfitting. Indeed, since these
weights are derived from the model’s performance, they are highly sensible to dataset-specific patterns,
leading to potential inconsistent and poor results on newly observed datasets. In addition, they are less
efficient than the standard OLS estimate in case the Gauss-Markov assumptions hold. For instance,
the LAD estimate (see Appendix) as a relative efficiency of 0.64 compared to the OLS estimate.

Support-vector-regression are supervised machine learning algorithm featuring an alternative
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strategy to select genes. It turned out that in real-world experiences, they tend to exhibit increased
robustness to noisy observations. The first historical mention to SVR approach, termed ϵ-SVR [CV95],
uses a insensitive loss function, whose parameter ϵ is provided by the user to control the error rate
tolerated on the outputs (see Appendix).

CIBERSORT (Cell Type Identification By Estimating Relative Samples Of RNA Transcripts),
developed by [New+15], utilises the the ν−SVR ([CC02]) variant. Instead of optimising the precision
(error rate tolerance), the ν parameter controls the proportion of Support Vectors integrated in the
regression framework ([Sch+00]) 2. Compared to standard robust linear regression approaches,
[New+15] exhibits the better performance of SVR methods with “spillover effects” (see Section 5),
enabling them to integrate more closely related cell types in their analysis while providing a more
robust and explainable model.

In practice, CIBERSORT implements the nu− SVR approach with the svm function from R
package e1071 ([Mey+21]). CIBERSORT additionally provides a standalone web application, and
relevant purified signatures. The most popular is the LM22 profile, a meta transcriptomic collection of
6 studies of 22 distinct immune cell types (see Section 4.2). The ImmuCC algorithm ([Che+17])
harnesses the implementation from CIBERSORT algorithm, with a new reference signature
aggregating 25 cell types and tailored for murine deconvolution.

2.1.3 Correcting the Uncoupling Between RNA and Cytometry Fractions

It appears that most of the existing deconvolution algorithms estimate the fraction of mRNA coming
attributable to each cell type, rather than the underlying cell proportion itself. In other words, they
assume homogeneous cell populations, e.g. they consider that each cell subtype exhibits the same
RNA library depth ([Sos+21]). However, in real-world settings, this premise usually does not hold, for
both technical and biological reasons. For instance, the RNA extraction efficiency may depend on the
cell type, and its survival capacity to the lysis and extraction phase. Once the average production of
total transcriptomic expression has been estimated (or phsyically measured), it becomes feasible to
subsequently re-normalise the inferred cellular transcriptomic ratios, such that they align with the
anticipated, biologically interpretable cellular ratios (see Equation (5)):

p̂∗j = K
p̂j
rj
, K =

1∑J
j=1

p̂j

rj

(5)

with rj the average number of transcripts extracted per cell type, and K the normalisation constant.
Post-correction of this uncoupling is accounted in [Rac+17] and [Fin+19a] studies, with direct

measures of the total expression of cell subtypes, as quantified with RNAeasy mini kit (Qiagen) and he
Proteasome Subunit Beta 2, respectively 3.

When direct measures are not available, the MMAD (microarray microdissection with analysis of
differences, [LHP14]) proposes an iterated approach for estimating the coefficient extraction efficiency,
rj . Yet, the regression framework is not anymore linear, and the new cellular estimate is computed
using a non-linear conjugate gradient search algorithm.

2.1.4 Linear Regression Approaches with Explicit Unit-Simplex Constraint

All the previously described algorithms do not explicitly integrate the unit-simplex constraint
Equation (2) during the estimation process, and re-normalise instead, posterior to the estimation, the
inferred ratios.

The NNLS (Non Negative Least Squares) estimate relies on the Lawson Hanson algorithm [HH81],
and its output is often provided as a reference in most review papers benchmarking deconvolution

2[CC02] demonstrates the equivalence between the two approaches: increasing the ν hyper-parameter results in a
smaller ϵ-tube and a higher precision on the results. Asymptotically, determining the ν-proportion of support vectors
reaching a given precision ϵ̂, is even equal to the output of the ϵ-SVR with that degree of precision.

3In the back-end, they utilise the expression of the housekeeping genes as a surrogate variable of the absolute number
of transcripts produced by the cell population
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algorithms ([Stu+19b], [JL21]). The nnls function from the R limSolve package can be used to solve
this optimisation problem.

The Least Squares with Equality and Inequality Constraints (LSEI) generalises this approach by
enforcing both non-negativity and sum-to-one constraints. The lsei function in R, from limSolve
package, can be used to solve the corresponding optimisation problem. The Matlab lsqlin function,
returning the same output as lsei, is used by the Bioconductor package DeconRNASeq ([Gon+11],
[GS13]) .

Both algorithms belong to the class of QP (quadratic programming), which aims at optimising a
system of linear, convex functions, with a guaranteed unique solution.

2.1.5 Regularised linear regression

When the number of cell types J exceeds the number of transcripts G, the deconvolution problem
stated in Equation (1) is undetermined, with potential infinite set of solutions verifying the set of G
equations. Several regularised linear approaches have been implemented to deal specifically with
problems where the number of unknowns exceeds the number of variables (see appendix).

The DCQ algorithm [Alt+14] uses in particular the Elastic Net regularisation, a compromise
between the L1 and L2 penalties proposed by the Lasso and Ridge methods. In R, the glmnet [Fri+11]
offers a straightforward and versatile implementation of the method. The benchmark study led by
[JL21] exhibits the reduced performance of deconvolution methods applying these regularised
approaches. However, a comprehensive analysis of the settings used to conduct the benchmark study
show that they somehow miss the point: penalised linear regression approaches are not intended to
retrieve the cell ratios of a given biological sample, but rather retrieve the optimal support of cell
populations that induce transcriptomic variations from a biological state to another. Implicitly, these
methods assume that the proportions of most cell populations do not vary over time.

To illustrate the point, DCQ has been used to identify the dynamical evolution of immune cell
ratios during influenza infection. Indeed, dozens of immune cell types coordinate their efforts to
maintain tissue homeostasis. Precisely, DCQ studied the evolution dynamics of up to to 213 immune
cell subpopulations in mice lungs for ten time points and retrieve significant changes in 70 immune cell
type ratios.

Two years after, the ImmQuant package [Fri+16] offers a user-friendly tool for inferring immune
cells in both human and mice organisms. The pipeline includes automatic data import and cleansing,
selection of the marker genes, deconvolution of the biological samples provided and visualisation of the
output.

2.2 Probabilistic-based approaches

The second family of methods for inferring cellular ratios from purified reference profiles utilises
probabilistic models to capture the generative process underlying the bulk expression production.
Interestingly, these approaches naturally address the unit-simplex constraint (Equation (2)), provide a
more accurate representation of the discrete nature of transcript counts and can even account for an
unknown cell population or individual variations of the gene expression. In particular, these
approaches accurately reproduce the commonly observed correlation between the mean and the
variance of the gene expression ([Lob+08]).

Since a large number of parameters might be introduced in these models, it is common practice to
represent the conditional independence relating them using a directed acyclic graph and the
homogenised notation illustrated in Section 2.2.2.

2.2.1 Discrete probabilistic approaches

Latent Dirichlet Allocation (LDA) is a straightforward approach to model abundances (see also
[BNJ03] and appendix). The NNML (Non-negative maximum likelihood model) algorithm, by
[Qia+12], extends the frequentist LDA model adopting a Bayesian approach. Precisely, the prior
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distribution of the cell ratios is modelled by a symmetric Dirichlet distribution. This kind of
distributions exhibits several advantages: it naturally endorses the unit-simplex constraint
Equation (2) and streamlines the integration of prior knowledge, such as equibalanced hypothesis or
inclusion of cytometry measures 4

Extensions of the NNML algorithm introduce generative models that relax controversial
assumption, such as the completeness (no unknown cell population) or the validity (no sample-specific
variations of the purified signatures) of the reference profile. However, these probabilistic frameworks
often require regularisation strategies, classified as “hard” and “soft” constraints, to ensure problem
identifiability. Practical regularisation strategies often rely on strong constraints and assumptions
about the distribution of purified expression profiles. They must balance the trade-off between
introducing too much bias and risk overfitting, or insufficiently define the problem and suffer from
ill-conditioned modelling.

To that end, the ISOLATE algorithm ([QM09]) assumes that the expression profile of any gene of
the unknown cell type can be rewritten as the expression of one of the cell types already described, up
to an additional multiplicative perturbation described by an uninformative Gamma prior. In a
tumoral context, this constraint can be interpreted as a change of gene expression induced by
heterotypic tumoral conditions, on an unique cell population subset, termed CSO in the paper (cancer
site of origin). The basic framework described above has been extended in the ISOpure algorithm
([Quo+13]). Unlike the naive approach, ISOpure not only computes a shared cancer profile common
across all samples but also refines it to incorporate sample-specific variations in tumoral expression.
However, the CSO assumption only holds if the mutations concern only one cell line, an assumption
that usually does not hold in intricate TMEs, wehre both tumoral and normal cell lines expression are
impacted by the clonal growth.

Accordingly, the NNMLnp algorithm ([Qia+12] and Section 2.2.2) assumes instead that the
transcriptomic profile of the unknown cell type can be rewritten as a potential convex combination of
all (possibly a subset) the included cell populations. Biologically, this approach hypothesises that the
tumoral part of the sample is not a new cell line, but rather a mixture itself of the original cell
populations, whose expression has been altered upon tumoral mutations, or changes induced by the
new conditions of the medium. Their approach is nonetheless hindered by the stringent regularisation
assumption that the perturbation factor for a given gene is the same across cell populations.

The PERT algorithm ([Qia+12] and Section 2.2.2) relaxes the strong assumption that the purified
cell expression profiles are representative of the expression profiles of the mixture. Specifically, the
vector representing the expression profile of a cell population is altered through a multiplicative
perturbation factor ρG, which is gene-specific and sampled from a non-informative Gamma
distribution with an average value of 1.

TEMT (Transcript Estimation from Mixed Tissue samples, Section 2.2.2 ), by [LX13], harnesses
directly the reads (sequence of nucleotides) themselves, instead of raw RNA-Seq counts. This approach
enables to account for multiple transcripts resulting from alternative splicing (refer to Biological
introduction, in the PhD manuscript) and technical biases issued from read sequencing itself 5. The
methodology is thus particularly relevant for decomposing, and correcting technical artefacts from
relevant biological signal, and can be used as an alternative normalisation method (see also Appendix
1, in the PhD manuscript).

This approach uniquely incorporates technical artefacts into the deconvolution process, addressing
the assumption made by other methods that input data has been corrected for such noise.
Additionally, it estimates an unknown cell profile, in a process similar to the NNMLnp approach.

The complexity of the likelihood or the posterior function requires specific optimisation methods to
retrieve the relevant parameters: PERT and NNML uses a conjugate gradient descent algorithm, while

4To note, the Beta distribution is a variant of Dirichlet distribution with two-component mixtures, used as prior for
binomial distributions.

5Technical artefacts in RNA-Seq encompass length, positional and amino bias. For instance, longer transcripts may
yield more counts (“effective length”), while sequence-related biases include over-transcription around transcript ends.
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TEMT and the ISOLATE algorithm utilise a variational online EM [DLR77]. Since diverse
regularisation strategies do not address the same biological constraints, and often require different
optimisation strategies, [QM09] suggests to systematically benchmark the method against manually
annotated tumours, as evaluated by pathologists.

2.2.2 Continuous probabilistic approaches

The Demix generative model, by [Ahn+13], and its direct DemixT extension,by [Wan+18], infer the
proportion and expression profile of the tumoral content, in a two and three-component mixture,
respectively. Briefly, Demix(T) models the distribution of the bulk expression for each gene as a
convolution (sum of independent variables) univariate log Normal distributions (see Section 2.2.2),
each purified profile parametrised by its own parameters, inferred prior to the study. For the sake of
comparison, a generative model based on a convolution of Normal distributions is also compared to the
log Normal approach. This model streamlines the estimation process as a closed-form can be derived
for the log-likelihood. However, the log2-transformation required to endorse the assumptions of the
model is likely to disrupt the fundamental linearity deconvolution assumption (Equation (1)).

Modelling the mixture problem as a convolution offers several advantages, including the elimination
of a residual error term to account for the stochasticity of the resulting bulk profile, and the utilisation
of distributions that accurately depict the inherent compositional characteristics of RNA-Seq datasets.

However, no explicit form for the convolution of log2-normalised variables is known, and an iterated
conditional modes-like ([Bes86]) approach 6 is used to maximise the log-likelihood of the resulting
generative model:

• The unknown general parameters of interest (cellular proportions and mean and variance of the
tumoral profile), are determined by maximising the log-likelihood of the generative model
depicting the convolution, conditioned on the previously known mean and variance for healthy
cell populations. Since the closed form of the log-likelihood is not known for a convolution of
log-Normal, it is approximated through numerical integration (not needed with a convolution of
Normal distributions), and the MLE is obtained using a Nelder-Mead procedure.

• In a second time, tumoral profiles are estimated by plugging-in the parameters estimated in the
previous step. With a two-component model, the unit-simplex constraint (Equation (2)) and the
fundamental linear deconvolution assumption (Equation (1)), only one degree of freedom, or
unknown, namely the tumoral content, must be inferred (see [Ahn+13, Eq.1]).

[Erk+10] implements instead a Bayesian framework, Dsection (see Section 2.2.2, in which the bulk
expression of each gene in each sample, ygi, follows a Normal distribution whose parameters are
stochastic variables rather than point values. For instance, the distribution of the inverse of the
variance, referred to precision in the paper, is modelled by a Gamma distribution.

The posterior distribution of individual cell-specific expressions and bulk gene variances is
identifiable to known density distributions (conjugate priors). However, the posterior distribution of
cellular ratios lacks a known density distribution due to the intractable integration of the normalising
constant. The Metropolis-Hasting algorithm is employed to sample this posterior distribution, which is
only known up to a normalising constant, while Gibbs sampling is used to retrieve simultaneously the
joined posterior distributions of the whole set of parameters composing the generative model. Note
that in opposition to the Demix(T) approach ([Ahn+13]), the variance of the bulk expression is
uncoupled to the individual variance of the purified cellular profiles.

6The parameters are iteratively maximised, conditioned on the current updated value of the remaining subset of
parameters, rather than simultaneously
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2.2 Probabilistic-based approaches
2 REFERENCE-BASED APPROACHES: DECIPHERING CELL MIXTURE THROUGH

EXPRESSION SIGNATURES

figures/pert_probalistic_model.PNG

(a) Schematic of deconvolution probabilis-
tic methods.The non-negative least squares model
(NNLS) and the non-negative maximum likelihood
model (NNML) can only predict proportions of pre-
specified reference populations. In scenario ii), the non-
negative maximum likelihood new population model
(NNMLnp) can additionally account for a new unob-
served reference population, while in scenario iii) the
perturbation model (PERT) can integrate batch or en-
vironmental tissue-specific factors using a genome-wide
perturbation vector rho. Reproduced from [Qia+12,
Fig. 1].

figures/discrete_models.png

(b) DAGs displaying the generative model of closely re-
lated generative deconvolution models..All the shapes
and parameters with black outline are shared by any
of the described probabilistic models, all derived from
the ancestral method, namely LDA, better known as
the “bag-of-words” method, the other colours enhanc-
ing the differences between the various approaches.
NNML, NNMLNP and PERT were all introduced in
paper [Qia+12]. The TEMT model [LX13] clearly sets
apart from the others, as it accounts for, at least to nor-
malise the purified samples, the biases introduced by
commonly known technical artefacts, such as the ten-
dency of longer reads to overcrowd the RNA library, as
they provide by purely physical causes more initiation
sites for the RNA polymerase.

figures/demixt_dag.png

(c) Graphical representation of the Demix(T)
([Ahn+13] and [Wan+18]) probabilistic model.

figures/Dsection_DAG.png

(d) Graphical representation of the Dsection
[Erk+10] probabilistic model.

figures/DAG_legend.png

(e) Directed Acyclic Graph (DAG) legend.

Figure 5. Partial probabilistic models to infer cellular ratios.We follow the RevBayes convention to
homogenise indexes and parameters across a set of generative models. Notably, the likelihood density functions
describing the distribution of the observations, are in green colour while the prior distributions of the parameters
to estimate are in red colour.
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3 PATHWAY ENRICHMENT ANALYSIS AND OTHER MARKER-BASED SCORING METHODS

3 Pathway Enrichment Analysis and other Marker-Based
Scoring Methods

Some deconvolution algorithms simplify the estimation process by adopting a marker-based paradigm.
The definition of “markers” genes has gradually broadened, from designing genes uniquely expressed in
a cell a population to include genes comprehensively expressed in one cell type relatively to other cell
groups. Marker-based relied historically on strong definitions of marker genes ([GPT07], [CSC10]),
however, nowadays, weak markers approaches are favoured (markers are only required to be
consistently over-expressed in a given cell population), since they also enable to delineate closely
related cell types.

These markers can be derived through either knowledge-driven approaches ([Ang+15], [Roo+15])
or data-driven methods [CZS15], [Bec+16], [Zha+17]. The initial data-driven strategy for identifying
marker genes involved identifying genes whose mean expression value in a give cell population
consistently exceeded the expression value measured across other cell types ([Sho+12], [CZS15]). More
robust statistical approaches, evaluating the relevance of selected markers through the computing of
empirically estimatedp-values, have been developed since then, ranging from SNR (signal-to-noise)
ratios [Bec+16], to the F-statistic ([Wan+10]) through the Gini index ([Zha+17]).

Integrating the definition of a gene marker into the fundamental presumption of linear
deconvolution simplifies framework Equation (1)) into Equation (6):

y∀g∈G̃j
=

J∑
j′=1

xgj′ × pj′ = xgjpj ,

since by definition xgj′ = 0,∀j
′
̸= j

y
G̃1

y
G̃2

...
y
G̃J

 =


x
G̃1,1

. . . 0

0 x
G̃2,2

0
...

. . .
...

0 . . . x
G̃J ,J

×


p1
p2
...
pJ


(6)

with the following notations:

• G̃ = {1, . . . , G} is the set indexing the total number of genes selected in the signature matrix (we
introduce the tilde as a shorthand indicator for a set).

• G̃j ⊂ G̃ is the subset of genes expressed uniquely in cell population j ∈ J̃

• We additionally assume the unique existence of a partition G̃, shared across samples, such that
G̃j ∩ G̃l = ∅, ∀(l, j) ∈ J̃ , l ̸= j and

⋃J
j=1 G̃j = G̃.

• We introduce the shorthand y
G̃j

and X
G̃j ,j

to respectively denote the measured expression of the

market set G̃j in the bulk mixture, and its respective expression in the purified cell population j.

If eq. (6) holds, the bulk expression associated to a gene marker set is proportional to the
expression of the cell population associated to this marker, the multiplicative constant being the ratio
associated to this cell type, pj .

However, as already specified in Section 2, the presence of technical noise or intrinsic biological
stochasticiy usually renders the system of equations inconsistent. Assuming the same framework
detailed in Section 2.1, the Normal equations, outlined in appendix, give the following OLS solution
(Equation (7)):

p̂j =
1

|Gj |
∑
g∈G̃j

yg
xgj

(7)
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3.1 Abundance scores3 PATHWAY ENRICHMENT ANALYSIS AND OTHER MARKER-BASED SCORING METHODS

with |Gj | the module, namely the number of genes composing the marker set of a cell population.

Once specific markers for each population have been identified, the estimation of cellular ratios
relies either on abundance score (see Section 3.1) or enrichment score (see Section 3.2 and Section 3.3).

3.1 Abundance scores

Historical endeavours, by [GPT07] and [CSC10], assume the strong definition of a marker (section 3)
holds, and the cellular ratios that were returned correspond to the estimates given in eq. (7). [CSC10]
only differed by the addition of a link function, precisely a log2 transformation to reduce the noise bias
associated to small ratio values, applied to the bulk and purified profiles.

Later, the MCP (Micro-environment Cell Populations)-counter, by [Bec+16], adopts a weak marker
paradigm, and replaces the abundance score given in Equation (7), by the geometric mean of the genes
characterising a given cell population (eq. (8)):

ES(G̃j ∈ G̃) =

 ∏
g∈G̃j

yj

1/|G̃j|

∝ pj (8)

3.2 Enrichment scores, based on KS metric

Most of the methods computing an enrichment score rely on a variant of the weighted
enrichment-based method named ssGSEA, for single-sample gene set enrichment analysis ([Sub+05]
and [Bar+09]). The computation of enrichment scores, based on the Kolmogorov–Smirnov metric, is
reported in appendix, while its main limitations.

[Yos+13] implements the ESTIMATE metric to compute immune and stromal enrichment scores in
tumoral samples. Te best link function coupling the purity score (proportion of tumoral cells) with the
ESTIMATE measure was computed with the https://en.wikipedia.org/wiki/Eureqa software. [ASB15]
implements an extension of this method integrating orthogonal modalities. Precisely, the tumour
purity score is computed from four distinct sources: the ESTIMATE score itself , ABSOLUTE
(quantify the proportion of cancer cells based on the number and location of somatic copy-number
mutations), LUMP (correlation between the degree of methylation and the tumour proportion) and
immunehistochemistry image analysis.

[Roo+15] and [Ang+15] uses GSEA-based metrics to compute the tumoral activity and relate it to
mechanisms involved in immune tumour resistance. [Ang+15] notably demonstrates the co-existence
of two kinds of tumoural environments, distinguishing hypermutated tumours showing upregulation of
immunoinhibitory molecules from non-hypermutated and stagnant tumours, enriched with
immunosuppressive cells.

[Şen+16] infers gene markers for 24 distinct cell populations in 19 cancer types. With these
enrichment scores, they demonstrate that the over-expression of Th17, CD8+ and Tregs increases
chances of survival, while strong activity of Th2 cells is correlated with a negative prognostic.

Ultimately, the xCell algorithm, by [AHB17], claims to identify up to 64 distinct cell types,
including immune and stromal ones, derived from a compendium of 1822 purified transcriptomic cell
lines. Calibration, using a power link function to couple abundance scores with true cell ratios, and
reduction of the multi-collinearity of the signature matrix to avoid “spillover” effects, underlie the
originality, and robustness of the method.

Finally, TIminer, by [Tap+17], is a free Docker pipeline, aggregating the marker sets of [AHB17],
[Ang+15] and [Cha+17]. It was initially designed for estimating the proportion of infiltrated immune
cell types, along with neoantigen prediction and tumour immunogenicity.

3.3 Enrichment scores, based on alternative metrics

We present alternative strategies for calculating enrichment scores, emphasising that any method
capable of comparing two distributions could be utilised for this purpose (for a theoretical definition of
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4 REFERENCE-FREE APPROACHES: SIMULTANEOUS DECONVOLUTION OF CELL
FRACTIONS AND PURIFIED EXPRESSION PROFILES

these methods, report to appendix).
[BUK11] implements SPEC (Subset Prediction from Enrichment Correlation) to predict which cell

population is more likely to contribute to an observed change in the gene expression, based on Pearson
correlation. SPEC notably demonstrates that the main resistance mechanism of the gold-standard
treatment against Hepatis C was the cross-interaction between the myeloid cells and the
anti-interferon therapy.

[Sho+12] uses the z-score (negative log10 of p-value), resulting from a Fisher’s exact test (see
appendix).

The Bioconductor package BioQC, by [Zha+17], computes abundance scores by evaluating the
relevance of median differential expressions with a non-parametric Wilcoxon-Mann-Whitney test.

In conclusion, marker-based methodologies provide abundance scores that are only proxy of relative
cellular ratios. [AHB17] and [Yos+13] attempt to mitigate this issue, by learning a link function
coupling these two features. Overall, these restrictions render marker-based methods impractical for
intra-sample comparisons, in contrast to the signature-based methods discussed in previous Section 2.

4 Reference-Free Approaches: Simultaneous Deconvolution of
Cell Fractions and Purified Expression Profiles

Complete deconvolution algorithms attempt to simultaneously estimate both the proportions and the
pure expression profile of cell types [SG13] from the bulk profile alone, namely minimising the
following quantity (Equation (9)):(

P̂ , X̂
)
= arg min

P ,X
{|Y −X × P |} Y ∈ RG×N

+ , X ∈ RG×J
+ , P ∈ RJ×N

+ (9)

Without further information, the system of equations described in Equation (9) is undetermined,
having either an infinite set of solutions or no one at all. Hence, the identifiability of the unsupervised
deconvolution problem require strong assumptions on the distribution.

4.1 Unsupervised approaches

[Ven+01] proposes the first version of a reference-free approach, inspired from Gaussian mixtures, to
deconvolve colon cancer samples, from which two clusters, on a total of four identified, could be
labelled with strong evidence as hematopoietic and fibroblast cells. [Ven+01] also demonstrates that
the marker-based assumption (see Section 3) is a necessary condition for the existence and uniqueness
of the system of equations (Equation (9)).

Repsilber and colleagues then extended the method proposed by [Ven+01], by solving Equation (9)
using a Non-Negative Matrix Factorisation algorithm. NMF notably guarantees that both X and P
are strictly non-negative (see details in appendix and [Rep+10]), as reported in Equation (10):

min
P ,X

∥Y − PX∥2F

subject to the non-negativity constraints:

P ≥ 0, X ≥ 0

(10)

Variants of the NMF approach were used in UNDO, by [Wan+15] and CAM, by [Wan+16],
methodologies. The Convex Analysis of Mixtures (CAM) enforces both the non-negativity of the
outputs returned, and the unit-simplex constraint Equation (2) for the ratios. Precisely, these convex
geometry-based methods project the resulting bulk expression matrix Y into a J-dimensional polytope,
whereby each cell population profile forms a convex hull whose vertices are the marker genes of the
so-called cell population. The final set of convex solutions are the ones covering the most precisely the
facets of the convex hulls derived from the bulk profile. CAMTHC, by [Che19], for Convex Analysis of
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4.2 Semi-supervised approaches integrating prior information
4 REFERENCE-FREE APPROACHES: SIMULTANEOUS DECONVOLUTION OF CELL

FRACTIONS AND PURIFIED EXPRESSION PROFILES

Mixtures for Tissue Heterogeneity Characterisation, and CAMfree, by [JL21], are both R package
implementing the CAM methodology.

4.2 Semi-supervised approaches integrating prior information

Since then, semi-supervised approaches, coupling partial prior knowledge of markers associated with a
cell type with numerically inferred de-novo molecular markers, enable to increase the identifiability of
the problem by reducing the set of possible solutions. Semi-approaches directly extending [Wan+16]
have been implemented in R, as packages CAMmarker and CellMix 7 The usual approach to integrate
prior information is to constrain all input values of the purified expression profile to zero, except
whether the gene has formally been associated with a cell population.

Closely related is the semi-CAM approach, by [Don+20]. In details, the semi-CAM approach is a
two-step estimation procedure; first, it identifies the final gene partition for the deconvolution process,
assigning each unlabelled gene to its most probable cell type, given the already identified marker
genes. To achieve this, it enhances the k-means clustering employed by the CAMfree approach,
whereby the initial centroids are the vertices covering the most the convex hulls, by incorporating
known marker information into the cluster centre construction. Whenever known marker genes for
partially described cell types are available, [Don+20] demonstrates that the semi-CAM method
outperforms the unsupervised historical CAMfree method.

The Digital Sorting Algorithm (DSA, [Zho+13]), is another semi-supervised approach, adopting a
EM-like approach. Precisely, the cellular ratios and the purified expression profiles are iteratively
estimated, conditioned on the current update of the remaining parameters, until convergence. Prior
information can easily be integrated as initial values for either cellular ratios or purified expression
profiles. However, the identifiability of the problem still requires the marker assumption.

Overall, all the methods described in this section are much more sensitive to the quality of data
provided, especially when no prior information is provided.

Outline of the Cellular Deconvolution Procedure

The estimation of the composition of a biological sample is only one of the steps composing the
deconvolution framework. In the remainder of the text, we define as pipeline this whole process,
ranging from the pre-processing and collection of purified profiles to the downstream analyses, while
the term “algorithm” only refers to the estimation stage itself.

A standard cellular deconvolution pipeline typically involves the following main steps:

1. Data Preprocessing and Marker Gene Selection: This step (see stage 1, in Section 5.2.2)
involves the formatting of gene expression profiles obtained through RNA-seq or microarray,
ranging from quality control to data transformation transformation and normalisation, and the
removal of unwanted batch effects induced by technical artefacts.

2. Construction of purified signature matrices Partial methods inferring cell ratios requires
an additional step consisting of identifying and characterising a subset of genes, able to delineate
all the cell populations ought to compose the mixture. This step is illustrated in Section 5.2.2,
part 2.

3. Parameter Estimation: This step refers to the deconvolution algorithm itself (stage 3,
Section 5.2.2). The type of tissue or/and organism to deconvolve along with the objective
biological goal guide the final choice of the algorithm used.

7CellMix, by [Gau13], benchmarks a whole set of deconvolution methods, in particular, ssKL and ssFrobenius that solve
optimisation problem Equation (10) by minimising the KullBack Leibler divergence and the Frobenius norm, respectively.
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5 MAIN CHALLENGES IN THE AUTOMATED QUANTIFICATION OF CELL POPULATIONS
FROM RNA SEQUENCING DATA

4. Evaluate the output: This step involves the formulation of statistical tests to assess the
presence of a cell population within the sample (intra-sample comparison) or to compare two cell
fractions across different biological conditions (inter-sample comparison). Surprisingly, there is a
notable absence of robust and widely accepted methods proving theoretically the consistency and
precision of the outputs returned by most deconvolution methods. Alternatively, it is possible to
benchmark the performance of a new deconvolution algorithm against gold-standard
deconvolution methods and against cytometry data.

5. Visualisation and biological interpretation: Ultimately, various visualisations and expert
validations play a pivotal role in verifying the precision and biological relevance of the algorithm
in deciphering disease mechanisms, or providing new biomarkers (see stage 4, in Section 5.2.2).
All these aspects are listed comprehensively in review paper, by [Che+18], and we provide a
practical example in appendix.

In this section, we notably focus on the methods used for selecting the minimal subset of genes,
that best discriminate the cell populations included in the deconvolution study. Overall, they fall
under the general feature-engineering machine-learning concept, which refers to the preprocessing
stage that filters irrelevant variables before applying the model [GE03].

Precisely, partial deconvolution methods based on signature profiles (Section 2) typically employ
the “one-vs-all strategy” to identify the minimal set of transcripts consistently expressed in a given cell
population, compared to all others. This strategy notably aims to reduce gene expression variance
within a given cell type while simultaneously maximising the variance between different cell
populations. However, once concatenated, the number of identified markers is still usually intractable
to perform deconvolution tasks, and the resulting signature matrix often exhibits strong
multicollinearity. Thus, most partial deconvolution approaches integrate an additional step to refine
the purified references, which usually enables faster computation, increases the Signal-to-Noise Ratio
(SNR) and increases the robustness and reproducibility of the model.

To select the genes in a global approach, the most common approach, for models based on
regression optimisation, relies on optimising the condition number of the final reference matrix. In
short, the idea is to identify the subset of quantified genes whose combined expression in the
transcriptomic expression profile has the smallest condition number (see appendix for the definition
and theoretical proof of the relevance of Condition Number with a OLS approach).

5 Main Challenges in the automated quantification of cell
populations from RNA sequencing data

Several benchmarks have recently been developed to compare the performances of numerical
deconvolution methods in relation with the biological objective ( [Stu+19b]), the preprocessing
protocol chosen to normalise datasets ([Fa+20]) or the noise structure and magnitude ([JL21]).

5.1 Impact of normalisation techniques

[Fa+20] defines data normalisation as the set of techniques to make samples’ distribution comparable,
including universal scaling methods (min-max, z -score, row or column-wise). It also encompasses more
specific methods, such as TPM or FPKM, to account for variations of the library size and depth. On
the other hand, data transformation refers to the link function applied on raw datasets, such that the
assumptions underlying the generative model hold.

[Fa+20] exhibits that scaling methods, such as row scaling, or z-score, which are used to smooth
extreme values, decrease overall the performance of the deconvolution algorithms. In addition, [Fa+20]
demonstrates that applying log-normalisation leads to suboptimal performances while the best results
are reached without transforming the data, conclusions consistent to the findings from [Zho+13].
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Indeed, [Hof+06] shows that the log2 transformation, while better guaranteeing the normality
requirements on the distribution of the residuals, breaks the fundamental linear assumption
(Equation (1)).

[JL21] suggests to apply the same transformations on both the purified signature matrix and the
bulk matrix expression, with the best performances obtained with the Transcripts Per Kilobase Million
(TPM) transformation (see Appendix A, in the manuscript). [Rac+17] indeed suggests that the TPM
normalisation, as a linear mapping, naturally enforces the unit-simplex constraint Equation (2).

Regarding the construction of a signature matrix, [Avi+18] emphasises that pre-filtering genes
exhibiting the strongest differences between cell types improves the robustness and reproducibility of
the algorithm. With LLS-based methods (see Section 2.1), [New+15] notably demonstrates the
relevance of minimising the condition number of the signature matrix, by reducing its multicollinearity
(see appendix).

To counterbalance technical biases induced by the transcriptomic quantification technology, either
RNA-Seq or microarray, some deconvolution methodologies, such as CibersortX ([New+19]) propose
automated batch correction effect with the ComBat function, prior to the deconvolution process.
Interestingly, [JL21] demonstrates that Cibersort [New+15], CibersortX [New+19] and MuSiC
[Wan+19] were less sensitive to the choice of normalisation and sequencing platform, compared to
other methods benchmarked.

5.2 General guidelines for constructing the reference matrix

5.2.1 Guidelines for the Selection of Cell Populations for Profiling

Many deconvolution methods are highly sensitive to the absence of cell subtypes in the reference
signature, yielding the best estimates when the reference profile faithfully represents the actual
composition of the biological sample [Stu+19b].

These discrepancies, most pronounced in the absence of closely correlated or orthogonal cellular
profiles, lead to the “spillover” phenomena ([SG13], [Fa+20]). For instance, [Hao+19] demonstrates
substantial reduction in estimating the cellular ratios of moncotyes, when myeloid dendritic cells are
not included in the reference profile, despite being truly present in the mixture.

On the other hand, background prediction refers to erroneous identification of a cell population as
being present in a mixture. This issue is even more pronounced with marker-based methods
(section 3), assuming transcriptomic markers are associated with an unique cell population.

Overall, Cibersort [New+15], CibersortX [New+19] and MuSiC [Wan+19] are the least sensitive to
the presence of undescribed highly-correlated or rare cell types in the mixture ([JL21]).

5.2.2 Guidelines for Phenotype and Tissue Selection in Data Collection

To mitigate the recommendations of constructing the most representative cell signature, we should
highlight that comprehensive and simultaneous estimation of the whole array of cell populations
composing the mixture is usually infeasible.

Firstly, some rare cell types may remain unprofiled, in particular, tumoral profiles are complex to
dissect. Tumoral microenvironments display significant variability and plasticity, characterised by
distinct mutation patterns, and intra-tumour heterogeneity resulting from the joint presence of diverse
tumoral subclones ([Bok+22]). In addition, somatic mutations in native cell lines may lead to the loss
of certain markers, posing challenges in defining pro-metastatic immune cell subsets ([Boe+22]),
especially for marker-based approaches.

TIMERtumour, by [Li+16] and EPICabsolute, by [Rac+17], are computational methodologies
specifically tailored to quantify the level of infiltration and contamination of tumoral tissues by
immune cells. Yet, none of the existing deconvolution methodologies address the intra tumoral
heterogeneity, stemming from the potential presence of distinct tumoral subclones ([Yu22]).
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[Rac+17] additionally pinpoints that the actual deconvolution solutions for unravelling tumoral
heterogeneity are targeted towards decomposition of solid tumours, rather than ”liquid” tumours, such
as haematological malignancies (leukaemia).

Secondly, there is no unique and consistent nomenclature for identifying immune cell subsets, as
translating functional insights into reliable phenotypic definitions based on protein markers is
challenging ([ALH21]). We describe computational solutions in Appendix A of the PhD manuscript to
integrate updated cell atlases ([Lew20]), dictionary of immunological terms ([Uni23]) and ontologies in
tree-like, highly scalable structures in an automated framework.

Thirdly, it is strongly deterred to incorporate cell populations from different hierarchical levels in
the analysis, as this may lead to increased multicollinearity or even violate the independence
assumption between purified expression profiles. The best results are typically achieved by
constructing signature matrices at the finest level of granularity, as they mitigate “dropouts” effects by
better delineating closely related cell types.

In order to compute back the contributions of the parental and higher-ranked cell lines, [Stu+19b]
provides the R function map result to celltypes in the immunedeconv package, which automatically
aggregates estimated descendant ratios to compute the parental fraction (or even cell lines separated
by further layers of lineage).

Ultimately, bad characterisation of cell populations may stem from existing intra-variability within
a cell population, which results from asynchronous dynamics, such as the coexistence of different
phases of the cell cycle.

While in controlled conditions, such as cell cultures, chemical arrest or nutrient starvation can
achieve synchronisation of the cell cycles [Bar+08], it becomes a challenging task when profiling living
tissue 8.

Sample-specific events, such as heterotypic contamination (for instance, infiltrates of blood
circulating immune cells, [Cha+19]), disease-induced ([Gau13]) or microenvironment dysregulations
([TPZ20]) may additionally alter the transcriptomic profiles of purified cell lines.

Accordingly, to mitigate the significant loss of performance commonly observed between artificial
benchmarks and real-world conditions, it is recommended to collect purified profiles in a variety of
tissues, or at least representative of the phenotype condition of the bulk profiles to deconvolve 9. The
performance of deconvolution algorithms in real conditions depends more on the representativeness of
cell types profiled in the signature and environmental conditions than the choice of the regression or
probabilistic framework, as discrepancies between the phenotype and tropic conditions of purified
samples, compared to bulk profiles, can introduce significant bias and reduce model accuracy ([SFL20],
[Cai+22]).

As a final note, we quote [Stu+19b], who believed that the “improvements made to signature
matrices largely outweigh potential algorithmic improvement”. We refer the reader to Section 5.2.2
providing general guidelines on the best signature to harness, with respect to the cell populations
profiled.

On the contrary, [Avi+18] and [Fa+20] single-cell-based deconvolution methods, capitalising on
virtually reconstructed signature profiles from scRNA-Seq data, do not show significant improvement
over more classical methods based on bulk-deconvolution methods.

On average, [JL21] shows that penalized regression approaches, including Lasso, Ridge and Elastic
Net approaches, the latter formally implemented in the DCQ algorithm [Alt+14], underperformed,

8For instance, the CD3 marker, commonly used to define T cell subsets, may exhibit variable expression levels or even
be entirely absent, depending on the cell cycle phase.

9Unfortunately, this recommendation is rarely observed, for instance, the expression profile of eosinophils, in the LM22
signature of Cibersort ([New+15]) was solely estimated from three distinct samples, from the same cohort.
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while on the contrary, standard OLS, see Section 2.1, and robust regression approaches (RLR,
FARDEEP, SVR, see Section 2.1.2) partial deconvolution methods, exhibit overall the best
performances.

Interesting review papers encompass the works by [Fin+19b], [Pet+18], [Avi+18] and [Bla+21].

Perspectives: the Fate of Deconvolution Algorithms with the
Development of Spatial Transcriptomics and single cell
RNA-Seq

5.2.3 Overview of Spatial Transcriptomics and Single-Cell RNA Sequencing

Spatial transcriptomics enables the simultaneous profiling of gene expression at a high spatial
resolution in-situ, while preserving the global cellular layout. ST reveals notably useful to determine
the general layout of cell populations within a tissue and to identify hotspots, also known as “niches”
(localised microenvironments in which stem cells prevail over fully differentiated cell subtypes) 10.

However, the design of the lattice of spots in ST technologies, such as HDST [Vic+19] or Slide-Seq
[Rod+19]), is constrained by physical limitations that directly alleviate the final resolution (namely
the distance between capture spots). Hence, it is not uncommon that the mRNA collected at a given
sport constitutes a mixture of cell types, rather than representing a single cell.

Thus, SRT techniques have to meet a middle ground between cellular resolution and the depth and
coverage of the RNA library. For instance, approaches like SeqFISH+ ([Eng+19]) and MERFISH
([Che+15]) provide subcellular resolution but are limited in throughput. Conversely, Spatial
Transcriptomics ([St̊a+16]) and FISSEQ ([Lee+14]) exhibit larger coverage of the genome, yet they
cannot achieve single-cell resolution sequencing and are further constrained by high detection
thresholds 11.

Single-cell RNA sequencing (scRNA-Seq) provides a high-resolution view of the transcriptome, by
quantifying RNA content at the single-cell level. scRNA-Seq enabled to uncover cellular heterogeneity,
identify rare cell populations, and capture complex dynamic changes in gene expression, that were
typically obscured in bulk RNA-Seq analysis.

However, scRNA-Seq is costly and time-consuming, making it challenging to scale up for large
sample sizes. In addition, the sparse nature of scRNA-Seq outputs, resulting from “drop-outs” and the
complexity of the technology, renders the analysis challenging and prone to higher technical biases and
variability. Hence, going down to the single cell level, scRNA-Seq typically exhibits lower coverage and
depth compared to bulk RNASeq (but still higher compared to SRT).

Coupling scRNA-Seq with spatial transcriptomic data streamlines the understanding of the
mechanisms relating gene expression patterns with changes of cell populations within tissues, by
bridging the advantages of both methodologies while mitigating their major limitations. However,
mismatch, designing the discordance between the cell types inferred from expression profiles derived
from single-cell RNA sequencing and SRT, is commonly observed. Mismatch usually results from
pre-sequencing and post-sequencing artefacts. Pre-sequencing mismatch can stem from sampling bias
of the tissue section (lower depth with spatial barcoding or lower access to intertwined tissue
structures with HPRI) or from an artificial and ectopic stimuli perturbing the cellular expression
profile (stress response, or less likely, alteration of cell phenotype due to the disruption of in situ
spatial dynamics resulting from tissue dissociation).

10It is common to use the abbreviation “SRT”, for Spatially Resolved Transcriptomics, when referring to the general
spatial sequencing framework, in order to mitigate nomenclature confusion with the specific and corporate technology
“Spatial Transcriptomics” ([St̊a+16])/

11A minimal number of 200 mRNA molecules per cell is required to detect the expression of a transcript, excluding
practically a large amount of genes involved only in specific phases of the cell cycle
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5.2 General guidelines for constructing the reference matrix
5 MAIN CHALLENGES IN THE AUTOMATED QUANTIFICATION OF CELL POPULATIONS

FROM RNA SEQUENCING DATA

5.2.4 Integrating Spatial Transcriptomics with Single-Cell RNA-Seq Data Through
Deconvolution Approaches

Recent alternative to mitigate the low detection threshold of scRNA in SRT and better handle
mismatch issues, involve two primary approaches: deconvolution algorithms and mapping (report to
appendix).

Spatial deconvolution tools, a close synonym to stochastic profiling techniques, estimate the cell
composition for each capture spot. While sequencing the transcriptome at the single cell level is
usually infeasible in a spatial context, aggregating the expression of a random pool of cells (usually
rather small, aggregating no more than a dozen of them) automatically increases the depth and
coverage of the RNA library, which in turn counterbalances the intrinsic noisiness and low resolution
of scRNA-Seq methods.

Spatial deconvolution algorithms usually capitalise on reference signatures obtained from single-cell
RNA sequencing profiles (see section 5.2.5), instead of bulk expression. The final signature is finally
computed by summing the individual cellular contributions in order to reconstitute a “pseudo-bulk”
mixture.

Nonetheless, spatial deconvolution algorithms necessitate specific adjustments compared to
traditional approaches, as conventional deconvolution algorithms, designed for bulk transcriptome,
often yield suboptimal results when dealing with sparse expression matrices, inherent to the SRT
framework ([Kle+20]). In addition, spatial deconvolution methods face similar challenges to
traditional deconvolution algorithms, as they too, cannot obtain absolute estimation of cell ratios, thus
limiting their applicability for meaningful intra-sample comparisons.

The most population spatial deconvolution methods encompass, ranked by analytical complexity:

• The most basic methods calculate “enrichment scores” that indicate the degree of association
between an individual spatial location and a specific cell type. These scores are computed using
the same techniques outlined in Section 3. For example, in Seurat, by [Kis+17], each spatial
location is assigned to the cell type whose expression profile, composed of the markers within its
gene set, exhibits the highest similarity.

Taking a more advanced approach, the Multimodal Intersection Analysis (MIA, [Mon+20])
combines gene pathway information inferred from single cell RNA-Sequencing (scRNA-Seq) data
with gene modules that are identified as enriched through spatial barcoding techniques.

• SPOTlight [Elo+21] and SpatialDWLS [DY21] are both regression-based models that used linear
solvers to estimate cellular ratios while enforcing the unit-simplex constraint, through the
non-negative least squares (NNLS) algorithm.

• Probabilistic models, represent the mixture as a convolution of parametric distributions whose
estimated cell ratios are the MLE (alternatively the MAP whereby a prior distribution is
assigned to the cell ratios) of the distribution. Stereoscope ([Kho+21], also illustrated in
section 5.2.4) and Cell2location ([Kle+20]) fit the distribution with a mixture of negative
binomial(NB) distributions, while Robust cell-type decomposition (RCTD, [Cab+22]) utilises
Poisson distributions.

• NMF regression (NMFref) is an unsupervised algorithm used both by SlideSeq [XHB16] and
SPOTLight [Gul+13] to infer simultaneously cellular ratios and individual expression profiles.

• More exotic and recent methods explore alternative ways, such as DSTG [He+20] algorithm
using mutual nearest neighbour clustering or deep-learning methods, with Tangram [Ber+20].

To conclude, we should mention promising studies extending the investigation ability of spatial
transcriptomics, by coupling high-resolution tissue images with histological annotations (cell sizes and
shapes, for instance) and SRT data ([Lar+22]).
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5.2.5 Construction of reference signatures, based on single Cell RNA-Seq profiles

On the other hand, single-cell RNA sequencing technologies empower cellular deconvolution
algorithms, by enabling the derivation of signature matrices more representative of the phenotype
condition.

Indeed, by capturing gene expression profiles at the single-cell level, scRNA-Seq allows better
discrimination of closely related cell types, and identification of rare cell type variants, which are likely
to be confused with noise using bulk RNA-Seq.

Even better, the stronger granularity of scRNA-Seq outputs enables to capture the heterogeneity
within cell populations, including unravelling asynchronous states of a cell population.

5.2.6 Integrate other omic modalities

To close this discussion, we should point out that the common observation of lack of reproducibility of
any deconvolution method might be mitigated by coupling scores obtained from distinct biological
sources.

For instance, epigenomics (DNA methylation and CpG distribution patterns) has recently been
used by EpiDISH ([Tes+17]) and methyICC ([HI19]) to deconvolve cell populations, using purified
methylated profiles of cell populations. Similarly, BayesCCE [Rah+18], Edec [Onu+16], RefFreeEwas
[Hou+16], and MeDeCom [Lut+17] determine both cell ratios and methylome reference profiles, but
adopting a reference-free approach, leveraging on variants of the non-negative matrix factorisation
(NNMF, section 4) optimisation.

SpaDecon, by [Col+23], is one of the most promising spatial integrated approach, coupling
histological annotations with metabolic and transcriptomic activity. 34P, by [Occ+23], even claims to
be able to dissect intra-tumour heterogeneity in luminal breast cancer by integrating morphological
annotations, SRT data and whole slide images to a neural network architecture.

It is hence believed that the integration of multiple biological inputs in a spatially resolved context
is poised to elucidate the as-yet-unsolved biological processes conducting the spatial organisation of
tissue niches, and notably the key drivers controlling the level of immune cell infiltration ([Roz+17]).

However, [Tes+17] highlighted the absence of a comprehensive benchmark comparing the
deconvolution performance of transcriptomic-based versus methylation-based approaches.

To conlude this section, we mention the review papers from [Rao+21], [Lon+21], [Kre21] and
[Wil+22], that describe comprehensively a whole array of methods integrating spatial transcriptomic,
scRNA-Seq technologies and imagery annotations.
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Appendix, describing relevant statistical concepts

Linear regression and Gauss-Markov theorem

If relation Equation (1) holds perfectly (no additional technical noise nor stochastic transcriptomic
expression, no additional cell content, ...), the number of solutions is given by the “Rouché-Capelli”
theorem [SR13], detailed in theorem .1.
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Theorem .1: Rouché-Capelli theorem

The number of solutions for a system of linear equations depend on both the rank of its augmented
matrix with respect to its coefficient matrix, and the number of unknowns with respect to the
number of equations:

• Uniqueness of the solution generally implies that the number of genes G is equal to the
number of cell types studied J , and that the expression of any given individual gene can
not be rewritten as the linear combination of other genes expressed within the sample
(matricially, this implies that the reference signature, X, also termed as the coefficient
matrix, is invertible).

• If the number of equations is less than the number of unknowns, in other words the number
of rows of the coefficient matrix is inferior to the number of columns, then in most cases an
infinite number of equally probable solutions hold, rendering the system undetermined and
consequently irrelevant. In practice, with the development of efficient sequencing techniques
able to quantify simultaneously the expression of thousands of genes, this situation is rarely
encountered.

• When the number of genes exceeds those of cell populations, the system is said overdeter-
mined, and the existence of a solution to the corresponding system of equations, requires
collinear redundancy in the coefficient matrix (in other words, the information from at least
one of the G equations can be rewritten as a linear combination of the others (summing
lines over or/and multiplying them by real constants). Otherwise, the system is inconsis-
tent (alternatively degenerate) if there is no set of solutions that satisfies simultaneously
all the G equations.

All these statements can be encompassed into the following more general statement: a system of
linear equations with J unknowns has a solution if and only if the rank ( dimension of the space
spanned by its columns) of its coefficient matrix, here X, is equal to the rank of its augmented
matrix, here [X|y]. If any set of solutions exist, their projection is a subspace of RJ , of dimension
J−Rank(X) (actually, the unit simplex constraint, see Equation (2), decreases by one dimension
the projected subspace of solutions). This set of solutions is unique, provided J = Rank(X),
otherwise an infinite number of solutions hold. An example of all three possible scenarios with
an overdetermined system is illustrated in Figure 10, in dimension 2.

The general principle underlying lls regression and the hyperplane obtained from maximising the
parameters is illustrated in Section 3.3.

Theorem .2: Normal equations

The Normal equations, regardless of the distribution of the error term, provide the following
Ordinary Least Squares (OLS) estimate Equation (11):

p̂OLS = (X⊤X)−1X⊤y (11)

whose existence implies that the design matrix Xis invertible, alternatively that its rank is equal
to the number of its columns J for an overdetermined system.
In a cellular deconvolution context, this statement particularly enforces that a cell transcrip-
tomic profile cannot be rewritten as a linear combination of the other expression vectors (no
multicollinearity), alternatively that you should not simultaneously infer the cellular ratios of
overlapping cell subsets, notably child cell lines mixed with parent cell lines.
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Theorem .3: Gauss-Markov theorems

The Gauss-Markov assumptions encompass:

1. Strong exogeneity: The cell type-specific expression profiles are not random variables
but rather fixed and constant observations, underlying implicitly that cell populations do
no interact: ∀i ∈ J̃ ,∀j ∈ J̃ , i ̸= j, Cov [x.i,x.j ] = 0.

2. Gaussian-Markov noise: This hypothesis postulates that the residual error term is
described by a white Gaussian noise process, characterised by null mean and variance that
is independent on the gene, thus homoscedastic, which yields, in mathematical terms:

yg =

J∑
j=1

xgjpj + ϵg, ϵg ∼ N
(
0, σ2

g

)
.

By integrating the exogeneity and homoscedasticity assumptions, it is possible to derive
the distribution of each transcript, which reveals Gaussian as articulated in Equation (12):

yg|xg. ∼ N (

J∑
j=1

xgjpj , σ
2) = φ(yg|xg.,p, σ) (univariate formula)

y1:G|X ∼ NG(Xp, σ2IG) 2: multivariate formula)

(12)

The second line is the matricial representation of the equation. It highlights that the
conditional distribution is identifiable to a spherical multivariate Gaussian distribution,
parametrised by a diagonal covariance matrix Σ with only one constant diagonal term.

3. Independence: From the aforementioned Gaussian-Markov and exogeneity assumptions,
we readily deduce that the gene expressions of the bulk measures are independent: ∀j ∈
G̃,∀k ∈ G̃, j ̸= k, Cov [yj , yk] = 0.

4. Completeness: We assume no additional latent variable, such as a non-observed cell
population.

If they hold, the MLE estimate is then equal to the OLS estimate given by the Normal equa-
tions (Equation (11)). Additionally, the MLE is the unique BLUE (best linear unbiased estima-
tor), i.e. the unbiased estimator with the lowest variance.
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Proof .4: Gauss-Markov proof

Under the Gaussian-Markov assumptions (see theorem .3 and notably Equation (12)) and as-
sumption of independence between samples, then, the global log-likelihood distribution of the
response variable y conditioned on X is given by Equation (13):

θ̂MLE = ℓθ(y,X)

= argmax
θ

[
G∑

g=1

log (Pθ(yg|xg.)

]

= argmax
θ

[
G∑

g=1

log

(
1√
2πσ

e−
(yg−

∑J
j=1 xgjpj)

2

2σ2

)]

= K −G log(σ)−
G∑

g=1

(
(yg −

∑J
j=1 xgj × pj)

2

2σ2

)
(13)

with K = −G
2 log(2π), the normalising constant. Finding the values for which the derivative

of the function Equation (13) cancels yield the same estimate returned by the OLS method
Equation (11).
The MLE estimate provides additionally an estimate of the standard deviations:

σ̂2 =
1

G

G∑
g=1

yg −
J∑

j=1

xgj × p̂j

Ultimately, to prove that the estimate p is indeed the unique global maxima of the log-likelihood
function Equation (13), we just have to differentiate the equation once more, and show that the
resulting Hessian matrix is indeed positive definite.

.1 Robust regression approaches

To evaluate robust least-squares regression methods, two metrics are generally used: the relative
efficiency of the robust estimate, compared to the OLS estimate when the assumptions of the
Gaussian-Markov theorem apply (the OLS estimate is indeed asymptotically efficient estimate, in the
sense of attaining the Cramér-Rao bound), and the breakdown point (BP), which is the minimal
proportion of outliers in the dataset required so that the estimate does not converge anymore. The
OLS estimate has a small BP of 1

G , implying that only one single unusual observation can contribute
to the mean of the estimated ratios [Rou85].
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Definition .5: M-estimates Regression

M-estimates, short for “maximum likelihood estimates” design the class of estimators that max-
imise a likelihood function. In practice, M-estimates replaces the equally weighted observations
from lls regression with an adaptive function of the residuals:

p̂M = argmin
p

G∑
g=1

ρ (yg|xg.;p) (14)

where ρ is the robust loss function and ψ = ρ′ is its derivative called the influence function. Set-
ting ρ(x) = 1

2 t
2, we return on the original OLS problem. Different loss functions lead to different

properties of M-estimators, and the choice of the loss function depends on the distribution of the
dataset and the desired properties of the estimator:

• Huber’s loss was the first used, in 1981 Equation (15):

ρ(x;p) =

{
1
2 (x− p)2, if |x− p| ≤ c

c · |x− p| − 1
2c

2, if |x− p| > c
(15)

The Huber loss is a compromise between the squared loss (least squares) and the absolute
loss (L1 loss), the latter being less sensitive to outliers.

• Tukey’s bisquare function is a softer smoothing function Equation (16):

ρ(x,p) =

 c2

6

[
1−

(
1−

(
x−p
c

)2)3]
, if |x− p| ≤ c

c2

6 , if |x− p| > c
(16)

With c = 4.6885, its efficiency is equal to the Huber’s estimate (95% of an OLS estimate).
Although not implemented independently in any deconvolution paper, the standard rlm (for
robust linear modelling) function in the R MASS package, which performs the Tukey’s bi-
weight iterative regression, is often used as a gold-standard robust linear regression method
in most of the deconvolution benchmark papers ([Stu+19b], [Gau13]).

• The bisquare loss is similar to Tukey’s loss but has a more compact support. It also
downweights outliers with a stronger penalty Equation (17):

ρ(x;p) =

 c2

6

[
1−

(
1−

(
x−p
c

)2)3]
, if |x− p| ≤ c

0, if |x− p| > c
(17)

• The Least Absolute Deviation (LAD) minimises the absolute differences of the residuals
(L1 distance) rather than their squared differences (L2 distance):

p̂MAE = argmin
p̂

(|xp− y|) (18)

where MAE stands for Mean Absolute Deviation. A distribution of these functions is
reported in Section 3.3.

The RCR (Robust Computational Reconstitution) algorithm, presented in [Hof+06], em-
ploys LAD regression with additional trimming and the enforcement of non-negativity and
sum-to-one constraints.
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Definition .6: Least Trimmed Squared Regression

The LTS method was first proposed in [Rou85], with the idea to select the gene subset that
exhibit the smallest residuals altogether. Practically, the estimate is given by Equation (19):

p̂LTS = argmin
p

G∑
g=1

∗rg(p)
2 (19)

with
∣∣∣G̃∗
∣∣∣ = G(1 − α) + 1 with α the trimming proportion, and rg(p) the residuals ordered by

increasing order. Taking α = G
2 , LTS asymptotically displays a strong BP of 0.5, implying it

is robust to outliers, but a very low efficiency of 0.08. In addition, LTS is an NP-hard problem

[Rou85], as any combination of
( G

|G̃∗|
)
observations should be tested, to find the

∣∣∣G̃∗
∣∣∣ genes with

the minimal residual error. [RV06] hence extends the method in high dimension, or with a large
number of observations, by proposing a stochastic and faster version of this algorithm. However,

its performance is highly dependent on the initial random
∣∣∣G̃∗
∣∣∣-subset chosen. Last but not least,

the trimming ratio is an additional hyper-parameter that plays a key role on the accuracy of the
estimate.

A comprehensive review of robust linear estimates is supplied in [YYB14], with 10 influence
functions benchmarked. It notably demonstrates that MM-estimates and RWLSE estimates have
overall the best performance in terms of robustness and asymptotic efficiency.
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Definition .7: Support Vector Regression

As in classical linear regression, linear SVR identifies the hyperplane that fits as many data
points as possible, but contrary to classical linear regression approaches, only a subset of data
points, termed as “support vectors” (SVs) impact the prediction.
Precisely, like most penalised approaches, the optimisation function Equation (20) reflects the
need of finding the sweet spot between minimising the error (herein, the difference between the
estimated and observed transcriptomic values) and maintaining a controlled level of complexity
to prevent overfitting:

τ(p, ζ, ϵ) =
1

2

J∑
j=1

p2j︸ ︷︷ ︸
L2 metric

+C

(
νϵ+

1

G

G∑
g=1

(ζg + ζ∗g )

)
︸ ︷︷ ︸

ν−insensitive function

(20)

where C is a regularisation parameter controlling the trade-off between complexity and error
control, p the estimates, referred to as the weights of the model, and ζg and ζ∗g slack variables to
control the number of points outside the ϵ-tube. The penalty function of the L2-norm in Equa-
tion (20), which is identical to that employed in ridge regression, penalises the model complexity
by putting less weight on the estimated ratios of highly correlated cell types [CM04].
Finally, each pair of observation and covariates, yg,xg., are subjected to the following constraints
Equation (21):

yg − pTxg. − b ≤ ϵ+ ξg

pTxg + b− yg ≤ ϵ+ ξ∗g
(21)

with b is the bias term (corresponding to the intercept in linear regression models), ϵ the margin
of tolerance, and slack variables ξi and ξ

∗
i the allowed deviations from the margin (see Section 3.3

for an univariate visualisation of the constraints induced by the SVR dual optimisation problem
described in Equation (21)). The bias term corresponds to the null intercept in standard linear
regression framework, and is usually negative in SVM models ([Yan19]).
Furthermore, SVR models can further transform the input data using a kernel function, allowing
to find non-linear decision boundaries and intricate relations, even though assumption Equa-
tion (1) suggests to use the default identity kernel. For a comprehensive tutorial on SVR based
methods, we refer the reader to Introduction to SVR modelling).

39 39/55

https://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf


.2 Regularised linear approaches REFERENCES

.2 Regularised linear approaches

Definition .8: Regularised linear regression

Historically, the Ridge regression [HK70] employs a L2-penalty Equation (22):
p̂Ridge = argminp


G∑

g=1

yg − J∑
j=1

pjxgj

2

︸ ︷︷ ︸
linear regression

+ λ

J∑
j=1

p2j︸ ︷︷ ︸
penalty function


subject to

∑J
j=1 p

2
j ≤ c

(22)

where λ is a constant to apply the Lagrange multiplier optimisation theorem [Fue00]. Ridge
regression shrinks the coefficients but not necessarily to zero, implying that there is no hard
feature selection: a particularly problematic concern in high-dimensional datasets. Otherwise,
Ridge is particularly useful when multicollinearity is a concern.
Subsequently, the Lasso regression [Tib96] uses a L1-penalty, which allows a hard variable selec-
tion: p̂Lasso = argminp

[∑G
g=1

(
y −

∑J
j=1 pjxgj

)2
+ λ

∑J
j=1 |pj |

]
subjected to

∑J
j=1 |pj | ≤ c

(23)

Efficiency of this optimisation approach relies strongly on the sparsity of the dataset, inducing
that most of the coefficients are truly null. The set of coefficients with non-null values is called the
true support, with an increase of the Lagrangian multiplier being associated to a more stringent
feature selection.
However, Lasso regression underperforms and shows inconsistency when estimating closely re-
lated cell types with highly correlated transcriptomic profiles, since it tends to arbitrarily choose
one out of a group of correlated features. Especially, the true support can not be found when
the irrepresentable condition assumption is violated, namely when the correlation between the
explanatory (those belonging to the true support) and non-explanatory variables is smaller that
the intra correlation between the variables associated to the true support. Finally, if the number
of features J is much larger than the number of observations G, Lasso might overfit the model.
Elastic net [ZH05] has been developed to keep the middle ground of both worlds Equation (24):

p̂ElasticNet = argmin
p


G∑

g=1

yg − J∑
j=1

pjxgj

2

︸ ︷︷ ︸
regression function

+λ

J∑
j=1

(1− α)p2j + α|pj |︸ ︷︷ ︸
penalise complexity

 (24)

in which α is a trade-off parameter between the L2-penalty (α = 0) and the L1-penalty (α = 1).
This formulation enables continuous shrinkage, including hard feature selection, and can even
by deployed with highly correlated cell expression profiles. However, enhanced versatility of the
ElasticNet regression comes at the expense of cumbersome hyper-parameter tuning to find the
right balance between L1 and L2 penalties, notably, if the L1 penalty is not strong enough,
ElasticNet might not perform effective feature selection.

Interesting, [Zho+14] demonstrates that the Elastic net problem is identifiable to a linear SVR
under specific reparametrisation, allowing to utilise highly-scalable and parallel SVM solvers.
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.3 Probabilistic approaches

Definition .9: Latent Dirichlet Allocation: introduction

LDA, as a generative probabilistic model, has first been used in natural language processing and
topic modelling, with the goal of inferring the distribution of topics across documents. Precisely,
LDA assumes that documents are mixtures of topics, and topics are mixtures of words. Applied to
our cellular deconvolution context, the documents, for which only the respective number of words
is available, represent each patient or sample bulk transcriptomic profile and the distribution of
words represent read counts. Finally, the latent topics describe cell populations that make up
each document.
Formally, let’s introduce the following couple of independent random variables (T,Z) in the

probabilistic framework, along with L =
∑G

g=1 yg, the total number of counts in the sample (aka
the library depth):

• Z = Z1:L ∈ {1 : J}L: a discrete latent variable identifying from which reference population
each count originates. With that modelling, the cell ratios (document-topic proportions)
can be recovered with:

pj =

∑L
l=1 zl1zl=j

L

, note that this framework naturally enforces the unit-simplex constraint Equation (2).

• T = T1:L ∈ {1 : G}L: it its the vectorised transcriptomic expression profile y. The total
expression of a given gene g is retrieved by summing all transcripts from T associated to
this gene: yg =

∑L
l=1 tl 1tl=g.

• Finally, let’s introduce the individual purified expression profile for a gene g produced by a
given cell population j: xgj =

∑L
l=1 tl 1(tl=g)∩(zl=j), then the ratio of this specific gene over

the total transcriptomic expression for population j (topic-word proportions) is given by:
βgj =

xgj

Lj
, with Lj the total number of counts in population j and βj its multidimensional

generalisation.
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Definition .10: Latent Dirichlet Allocation: estimation

With this modelling approach, the joint distribution of (T,Z) in the LDA model for a given
sample is given by Equation (25):

Pθ(Z1:L, T1:L) = P(p)×
L∏

l=1

J∑
j=1

pj︷ ︸︸ ︷
P(Z = j)

βg,j︷ ︸︸ ︷
P(T = g|Z = j) (25)

which corresponds to a parametric mixture model of multinomial (the generalisation of binomial
distributions, with more than two outputs for each generation) distributions, and θ = (p,β)
the minimal set of parameters to estimate (all other quantities of interest can be deduced from
them).
Simultaneously optimising both sets of parameters is analytically intractable. Instead, adopting
a process similar to the EM algorithm (see Section Introduction to Mixture modelling in
the PhD manuscript), the optimisation is computed sequentially until convergence:

1. Initialisation: LDA requires an initialisation step, initial parameters θ0 = (p0,β0) being
drawn from prior distributions that should generate candidates in the support of the solu-
tion space.

2. E-step: At step (q), MAP (maximum a posteriori) is used to assign the production of each
gene g for the count l ∈ {1, . . . L} to a given population j Equation (26):

Ẑq
l , l ∈ {1, . . . , L} = argmax

j∈J̃
[P(Zl = j|Tl = g)] (26)

, using the prior inferred parameters of the mixture of multinomial distributions θq−1

3. M-step: Injecting the latent variables inferred in the previous estimation step, the para-
metric vector θ = (p,X) which maximised the conditional distribution Pθ(T1:L|Z1:L) =∏L

l=1 Pθ(Tl|Zl) is returned.

The main advantage of LDA relies on its versatility, since this approach can be applied to
various types of data (provided it has been discretised), can be easily interpreted and is close to
the biological process. We refer the reader to [Lee+18] and [Xu+23] for a comprehensive report
of the main features and limitations provided by this “bag-of-words” approach.
However, determining the number of cell types J can be challenging without proper biological
annotation, the method is highly sensitive to preprocessing choices, and struggles with sparse
data or short documents (in a biological context, this implies that this method should not be
used to characterise rare cell populations, contributing poorly to the final pool of transcripts).

42 42/55



A ENRICHMENT-BASED METHODS

A Enrichment-based methods

Definition A.1: Principles of GSEA

Gene Set Enrichment Analysis (GSEA) is a bioinformatics method used initially to determine
whether a predefined set of genes shows significant differences between two biological states.
They hence differ from Differential Gene Expression Analysis (DGEA) analyses, since GSEA
operates on groups of genes associated with a biological function or process rather than con-
sidering independently one gene after the other. In a second time, GSEA assigns a statistical
significance score to each gene set which evaluates the null hypothesis of randomly distributed
throughout the ranked gene list against the alternative hypothesis of a clustering pattern at the
top or bottom of the ranked list.
The enrichment score (ES) for each gene set returned by GSEA analyses, reflecting the degree
to which genes are unequally distributed in the ties of the ranked list, is given by the following
running sum statistic, assuming beforehand that G̃ and G̃j are ranked by decreasing order of
fold change (or any relevant metric) Equation (27):

ES
(
G̃j ∈ G̃

)
=

|G̃j |
sup
g=1

∣∣∣F ∗
g∈G̃j

(g)− Fg∈G̃(g)
∣∣∣

with F ∗
g∈G̃j

(g) = P∗(G̃j ≤ g) =
R∗(g)∣∣∣G̃j

∣∣∣ , Fg∈G̃(g) =
R(g)∣∣∣G̃∣∣∣

(27)

with
∣∣∣G̃∣∣∣ = G the number of genes (I commonly use the second notation for consistency

and conciseness reasons, since there is no real risk of confusion), |G̃j | the module, namely
the number of genes composing the gene set associated to cell population j, F ∗

g∈G̃j
(g) =

index of gene g, alternatively number of genes higher ranked

|G̃j| and Fg∈G̃(g) are the cumulative distribution func-

tions (CDF) of the gene rankings/positions (ordered by decreasing order of fold change) of gene

set Gj (R∗(g) being the index of gene g in gene module G̃j), respectively within the module

itself and with respect to the total set of genes quantified in the study G̃ (note the asterisk to
set apart both distributions).
Note that this score, without weights, is the standard Kolmogorov-Smirnov running sum statistic,
used traditionally to compare empirical distributions and for which the existence for an asymp-
totic one-sided statistical test of the null hypothesis distribution is known [SL11], and that ES
scores can be easily computed in R with the gsva function.
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Definition A.2: Main limitations of GSEA

GSEA approaches are yet hindered by the requirement of carefully identifying all genes involved
in the biological process of interest, GSEA identifies associations and correlations between gene
sets and phenotypes rather than causal mechanistic information and is sensitive to the choice of
the metric. In addition, GSEA does not specify the sense of variation induced by the phenotypical
condition on the gene set expression, namely whether it is up- or down-regulated. Ultimately,
to evaluate the significance of the enrichment score returned, it is required that the size of the
gene set is not too large, neither too small. Indeed, chances of considering smaller pathways as
significantly enriched is biased upwards by chance, leading to increased chances of returning false
positives. In addition, neither asymptotic tests nor bootstrap-computed p-values are tailored to
small gene subsets, in the latter case due to the impossibility of computing the required number
of permutations to compute the null distribution.
However, these limitations can be partly alleviated by coupling several complementary metrics,
for example by combining the index returned with the fold-change ranks of gene expression with
weights obtained from the p−values retrieved from DGEA. Regarding the lack of information on
the sense of variation, the Connectivity Map [Lam07] proposes a direct extension of the ES scores
in Equation (27), by computing two distinct metrics, one for the genes down regulated within
the pathway, and one for the up regulated. If the sign of both outputs is congruent, [Lam+06]
suggests to conclude of the absence of any significant enrichment (no matter the negative or
positive feedback role of a given gene within the pathway, its expression is impacted similarly).

Definition A.3: Using Hypergeometric Laws for Gene Pathway Enrichment Analysis:

Hypergeometric distribution is commonly used in gene pathway enrichment analysis, such as
in the Gene Ontology (GO) database. The main purpose is to assess whether a particular
set of genes, often the set of differentially expressed genes, is statistically over-represented in a
predefined gene pathway compared to what would be expected by chance. If the observed overlap
is larger than expected, it suggests that the pathway is enriched.
Mathematically, the hypergeometric distribution returns the probability of observing X = k ≡∣∣∣G̃j

diff
∣∣∣ genes (likely the subset of genes differentially expressed) from the set of interest in a

pathway of size
∣∣∣G̃j

∣∣∣, drawn randomly without replacement from the total set of genes marked

as differentially expressed in Differential Gene Expression Analysis (DGEA) G̃diff ∈ G̃, and is
computed by the following probability mass function Equation (28):

P(X = k) =

(|G̃j|
k

)
·
(|G̃|−|G̃j|
|G̃diff|−k

)
( |G̃|
|G̃diff|

) (28)

Before the advent of efficient computational tools, it was common to approximate the hyperge-
ometric distribution with a standard binomial distribution, X ∼ Binom(p, n), parametrised by

p =
|G̃j|
|G̃| the probability of a success, defined here as drawing by chance a gene associated to

pathway G̃j from the universe of genes G̃, and n =
∣∣∣G̃diff

∣∣∣ the number of trials (this strategy is

comparable to perform an experience with replacements).
Ultimately, any test used to compare equality of proportions, here the number of differentially
expressed genes respectively within the pathway and in the whole gene population, can be used,
ranging from contingency tables evaluated by asymptotic χ2 statistical test to Fisher’s exact
test. With quantitative gene expression available, any test comparing two continuous statistical
distributions including the Pearson correlation score, could alternatively be employed as well.
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Definition A.4: Main limitations of hyper-geometric approaches

The hypergeometric test is roughly subjected to the same limitations as GSEA analyses, mak-
ing similar assumptions. Namely, application of the method assumes that genes are selected
independently for inclusion in the pathway (while in the real world, genes cooperate each other
to perform intricate biological processes), it is sensitive to the gene size [Aba+09] and to the

Background Set, namely the choice of the gene universe G̃ sequenced, and like any type of down-
stream analyses, multiple testing correction is necessary to control the family-wise error rate
when performing statistical evaluation independently for multiple items simultaneously.
In addition, the method is even less informative than GSEA, since the hypergeometric test treats
all genes in the pathway equally, regardless of their relevance or the magnitude of gene expression
changes (according to our latest state-of-the-art review, there is no implementation of a weighted
hypergeometric test). However, this set of limitations, likely to decrease the statistical power of
the tool, is counterbalanced by its heightened versatility, as it remains agnostic to the inherent
characteristics of the evaluated datasets. A brief overview of methods aiming at quantifying the
level of activation of gene pathways, in a given cell population or phenotype condition, is detailed
in Section 3.3.
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B Unsupervised and reference-free approaches appendix

Definition B.1: Principles of LS-NMF

Least-Square Non-Negative Matrix Factorization (LS-NMF) is originally a dimensionality re-
duction technique, based on factorising a given non-negative data matrix into a product of two
non-negative matrices. LS-NMF enables to reduce the dimensionality of the original data in a
meaningful manner, by representing the data as a product of two lower-dimensional matrices
while keeping the fundamental linear assumption of linearity in cell deconvolution methods (see
Equation (1)) and enforcing non-negativity in both the factor matrices P and X (indeed, in
both cases, negative values can not be interpreted).
More generally, it is a powerful method to extract relevant features or components of the data
(here we assume that the subdimensional features match the individual cellular profiles, X), while
the coefficients in P represent the weights of these features for each data point (in a deconvolution
framework, they are assimilated to cellular ratios). The number of hidden components/spanning
dimensions J , which is also the rank of X are interpreted as the number of cell populations at
the same lineage level.
Given a non-negative data matrix Y ∈ RG×N

+ , LS-NMF seeks to determine the best two-terms
matrix factorisation that approximate Y ∼ XP , both non-negative matrices, by minimising the
Frobenius norm of the difference a Equation (29):

min
P ,X

∥Y − PX∥2F

subject to the non-negativity constraints:

P ≥ 0, X ≥ 0

(29)

This optimisation problem is often intractable, and thus typically solved iteratively using algo-
rithms like multiplicative updates or gradient descent.
However, LS-NMF suffers from two main limitations: it is highly sensitive to the initial set of
values provided for P and X, and different initialisation can lead to different factorisation and
convergence to local optima. The choice of the number of components, which can be interpreted
as the rank of X is often arbitrary and critical.

aInstead of the Frobenius norm, it is also possible to employ the Kullback-Leibler divergence, as in [Don+20]

Acronyms

DGEA Differential Gene Expression Analysis 43, 44

LLS Linear Least Squares 48

LS-NMF Least-Square Non-Negative Matrix Factorization 46

MLE Maximum Likelihood Estimator 49

scRNA-Seq single cell RNA-Sequencing 19, 21, 22

ST Spatial transcriptomics 51

TPM Transcripts Per Kilobase Million 18
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Acronyms

DGEA Differential Gene Expression Analysis 43, 44

LLS Linear Least Squares 48

LS-NMF Least-Square Non-Negative Matrix Factorization 46

MLE Maximum Likelihood Estimator 49

scRNA-Seq single cell RNA-Sequencing 19, 21, 22

ST Spatial transcriptomics 51

TPM Transcripts Per Kilobase Million 18

C Feature-engineering and condition numbers

Definition C.1: Condition number: general definition

The condition number is especially employed in the field of linear regression to quantify the
sensitivity of the output to perturbations of the input, which could interpret as the expected
error made on their measure.
The condition number is defined more precisely to be the maximum ratio of the relative error in
the measured value to the relative error made on the input. Consider for an explicit mathematical
formula the following variables: p is the input of our problem, y (alternatively f(p) the measured
value, and f̃(p)) (alternatively ŷ) the predicted value by any algorithm or predictive function.
Then, the relative condition number is formally defined by Equation (30):

κ(f,p) = lim
ϵ→0+

sup
∥δp≤ϵ∥

∥δf(p)∥ / ∥f(p)∥
∥δp∥ / ∥p∥

(30)

with || ||, namely the double vertical bars, the usual typology used to mark any matrix norm a

and ∥δf(p)∥ =
∥∥∥f(p)− f̃(p)

∥∥∥ the relative error.

aSee definitions, properties and popular matrix norm definitions on this Wikipedia page: Matrix Norm.
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C FEATURE-ENGINEERING AND CONDITION NUMBERS

Theorem C.2: Application of the Condition Number as a predictive quality metric
for linear-based regression problems

Now, let’s focus on an overdetermined linear regression problem, as defined in Equation (3) and
whose Linear Least Squares (LLS) solution, ˆpOLS, is given by Equation (11). Then, we can show
that the condition number associated to this is given by Equation (31) a :

κ(X) = ||X|| × ||X⊤|| (31)

It is then possible to show the following inequality, derived directly from the definition of a matrix
norm, holds Equation (32):

||X|| × ||X⊤|| ≥ ||XX⊤|| ≥
∥∥XX−1

∥∥ = 1 (32)

, which provides an upper bound on the precision we can achieve with linear regression in the
best case scenario. This bound is only reached if, and only if, the condition number of X is equal
to 1.
Defining ∥∥ as the L2 or Euclidean norm, and building the design matrix such that it is normal
yields an explicit general formula relating the condition number of the matrix to its eigen values
Equation (33):

κ(X) ≡ cond(X) =
λmax

λmin
(33)

with λmax and λmin respectively the largest and smallest eigenvalues resulting from the singular
value decomposition of X. In R, this condition number can be easily computed with the kappa
function.
As such, this metric assesses how small perturbations in the input data can affect the stability and
robustness of the regression model, successfully identifying ill-posed or multicollinear regression
problems. Indeed, a matrix associated with a high condition number indicates that matrix
X⊤X is close to being singular and often exhibits strong Multicollinearity, rendering the task
of correlating the variations of the response variable with the dependent challenging.
When coping with high condition number matrix, it is thus often recommended to capitalise
on Regularised linear methods, such as the Lasso or Elastic regression methods described in
Section 2.1.2, to reduce the multicollinearity by removing irrelevant features, with the purpose
of stabilising the model and prevent overfitting.

aNote that this definition of the condition number recovers the usual formula of the condition number, defined
with respect to matrix inversion of a linear system Equation (1): ||X|| × ||X−1||, provided the design matrix X
is orthogonal (in that case, the solution returned by the Normal equations simplifies to X−1y, since (X⊤X)−1

is then equal to the identity matrix), implying that all covariates are independent to each other.
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D PRACTICAL USE CASE: CONSTRUCTION OF THE LM22 SIGNATURE

Theorem C.3: Correlating Condition Number with a MLE approach

A probabilistic approach provides meaningful insights to reconsider the LLS regression problem.
Remember that we model the error by explicitly adding an error term following a null-centred and
homoscedastic Gaussian distribution: ϵ ∼ N (0, σ2) a. Considering that the Maximum Likelihood
Estimator (MLE) estimate p̂mle is unbiased, we can show that the associated variability is given
by Equation (34):

Var [p̂] =
(
X⊤X

)−1

σ2 (34)

, then, we have the following equality Equation (35):

Var [p̂] = σ2

⇔(
X⊤X

)−1

= 1

⇔∥∥∥X⊤X
∥∥∥−1

=
∥∥∥X⊤X

∥∥∥ = 1

⇔
κ(X) = 1

(35)

In other words, the variability Var [p̂], which we can interpret here as the error made by the
algorithm oracle, of the estimated ratios, is equal to the measure error made on the response
variable σ2, if, and only if, the condition number of the design matrix is equal to 1. In addition,
the precision we can achieve on the estimates is bounded by the precision on the response variable.
However, the condition number as a predictive metric for the robustness of a model suffers from
specific limitations. First, hampered by its global encompassing approach of a problem, it can
not be used to determine which variables are most influential. In addition, it is often diverted
from its original purpose and misused to quantify and predict the impact of numerical stability.
However, it should not be used to take into account round-off numerical errors nor floating-point
accuracy of the computer since the condition number is a property of the matrix that strictly
depends on the error performed on the measure of the response variable.
Its value is highly dependant on the nature and the scale of the datasets analysed, making com-
parisons across different conditions or sequencing technologies null and void. Paired with that
issue, there is no universal threshold that would discriminate ill-conditioned matrices with a high
CN from well-designed experiments with low CN. Researchers often rely on domain knowledge
and heuristics to determine whether the condition number is problematic for their specific anal-
ysis. Ultimately, the condition number does not return the expected inaccuracy to expect when
solving a problem, but rather a maximal upper bound, making this metric rather conservative.

aremember from the Gaussian-Markov theorem Proof .4 proves that both approaches are equivalent

D Practical use case: construction of the LM22 signature

Let’s take a practical example by deriving the process used to generate the most popular signature
matrix, the LM22 signature which gathers the transcriptomic fingerprints of 22 functionally defined
human hematopoietic cell lines profiled for G = 547 genes using Affymetrix HGU133A microarray
data, isolated from peripheral blood [New+15]. This signature notably includes seven T cell types,
näıve and memory B cells, plasma cells, NK cells, and myeloid subsets.

1. First of all, Robust Multi-array Average (RMA) normalisation was performed to aggregate probe
sets information at the gene level, uniformed using the HUGO annotation.
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Briefly, RMA consists of three steps: background correction aims at correcting for the inherent
non-specific binding of probes, quantile normalisation ensures the intensity distributions of all
samples are comparable (a key feature when conducting comparative analyses across different
conditions), relying on the assumption that most genes are not differentially expressed across
samples, and finally an optional log2-transformation to stabilise the variance, notably towards
highly or poorly expressed transcripts, and render the data approximately bell-shaped and close
to a Normal distribution.

2. Batch correction was performed to remove differences related to the source of the transcriptomic
GEP (gene expression profiles), since a collection of datasets, all from the public domain, were
required to get a comprehensive number of replicates for each cell population.

3. Differentially expressed genes were identified using a two-sided unequal variance t-test (better
referenced as the Welch test), all transcripts exhibiting an adjusted q-value inferior to 0.3 being
considered as markers of the related leukocyte subset and ordered by decreasing fold change.

4. Subsequently, for each leukocyte subset, the intersection of the top g∗ marker genes from each
cell subset were combined into a signature matrix, iterating g from 50 to 200 across all subsets.

5. The signature matrix that exhibits the lowest condition number, denoted as the LM22 signature,
identifies a total of 22 whole blood cell populations, by a staggering reduced subset of 547
distinct genes.

6. Additional filtering steps, tissue and study-specific, may be carried out to further discard genes
displaying non specific expression, or likely to be expressed in non identified/characterised cell
populations, such as tumoral cell lines. For instance, [Che+18] suggests adding this two-step
filtering protocol, when applying CIBERSORT to deconvolve tumoral samples:

• Exclude genes presenting a strongly enriched expression in non-hematopoietic cell lines,
based on the scores computed by the Gene enrichment profiler [CCI18]. The underlying
idea is to exclude genes expressed in non-hematopoietic cells, namely that do no originate
from blood cell lines, and thus should not appear as differentially expressed in whole blood
samples. A strong score is thus generally the marker of an ectopic transcriptomic expression.

• Second step is removing all genes consistently expressed in cell lines profiled in the Cancer
Cell Line Encyclopaedia (CCLE 12 ). The idea underlying the removal of genes significantly
enriched in CCLE is to exclude genes that are expressed in both healthy and tumoral cell
lines, inn order to prevent potential biases in the estimation of endogenous cell populations.
To enhance the performance of CIBERSORT, it’s advisable to incorporate purified tumour
cell profiles for even stronger filtering of confounding genes.

Interestingly, the SVR approach chosen for CIBERSORT incorporates an additional round of
feature selection, controlled by the ν hyper-parameter, within the deconvolution process itself.
[Gen+15] demonstrates that this additional feature selection increases the robustness and versatility of
the methodology, by discarding genes displaying an ectopic transcriptomic expression in a given
phenotype.

E Mapping

Mapping, generally employed for highplex RNA imaging assays, consists first to assign each spatially
detected cell to its corresponding (scRNA-seq) profile and secondarily, infer a pattern predicting the
location of each scRNA-seq cell based on its transcriptome.

12CCLE is a database of 100 human cancer cell lines storing their genetic and molecular fingerprints. Its main purpose
is to study antiproliferative activities of various drugs and anticancer agents against these cell lines and identify pathways
associated with drug resistance [Sac+20].
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Mapping workflow can be subdivided into four main stages, often referred to as the four A’s
([Lon+21, Fig. 4]):

7.• Adopt From literature, a subset of the tissues or the populations of interest, with intricate
spatial patterns, is selected for further analysis.

• Assay Survey the same tissue (to keep the same phenotypical conditions and limit technical
variability) with scRNA-sequencing (its higher coverage and unbiased nature makes it a
promising candidate for the selection of candidate genes) and spatial barcoding to locate their
prevailing location within the tissue. Then, track the spatial and temporal dynamics of this
subset of genes with HPRI imaging (recall that this method requires to know in advance the
sequence of the genes).

• Assemble Using deconvolution and mapping algorithms, generate maps that assigns each
coordinate to one cell type. Matching histology images may reveal informative landmarks and
help denoising complex areas, such as the tumour leading edge, transition region between cancer
and normal tissue.

• Analyse The high-dimensionality of ST datasets was use to corroborate ligand-receptor
interactions involved in cellular signalling, or to survey evolving dynamics occurring in a disease
progressing condition.

Mapping methods, by coupling scRNA-Seq with SRT, reveals intricate intercellular communication
networks, by capturing the emphco-localisation of cell subtypes. Co-localisation patterns are further
used to evaluate the strength of the interactions between a receptor and its ligand. Receptor-ligand
bounds are usually predicted using computational tools, such as co-expression network analysis or
molecular screening, and prior information from literature review.

In practice, if two cell subtypes are spatially distant, the likelihood of intercellular communication,
and accordingly ligand-receptor binding, is small, even though physically possible. Indeed, [Arm+21]
demonstrates that cellular signalling primarily occurs within the proximity of the secreting cell,
predominantly at the juxtacrine and paracrine levels.

[Tra+20] benchmarks 14 mapping algorithms, and demonstrates that the three best performing are
LIGER [Wel+19], Seurat Integration [Stu+19a] and Harmony [Kor+19]). The principle underlying
this co-localisation validation is further described in [Lon+21].

Recent endeavours encompass SpaOTsc, by [CN20], and Monkeybread, by [Ber+23]. Both methods
are user-friendly frameworks for the analysis of the spatial cellular layout and automated inference of
co-localisation patterns, and have already been successfully applied to identify the niches making up
the TME, providing enhanced insights into the underlying intricate biology of the tumour.
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figures/classification_algorithmes_deconvolution.png

Figure 6. General classification of partial-based deconvolution algorithms.
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figures/linear_regression.jpg

(a) LLS principle. Here, we present briefly the
methodology with a simplified univariate regression
framework, including an intersection term β0. Repro-
duced from [MAL21, Fig. 2].

figures/M-estimates.png

(b) Common influential functions.The weight
function distributions for Huber’s robust estimator and
Tukey’s bisquare (or biweight) compared with least
squares estimation, in which each observation is as-
signed the same weight, no matter its contribution to
the residuals errors. Reproduced from [Wri09, Fig. 1]

figures/pathway_enrichment_analysis.png

(c) Overview of three pathway enrichment anal-
ysis methods. Over-representation techniques focus
on investigating whether a given gene list displays any
pathways that are more prevalent than expected by
chance when compared to a reference set. (B) In
ranking-based methods, the whole gene set is examined
to determine whether genes associated with the same
pathway exhibit a tendency to cluster at either the top
or the bottom of the ordered list of the universe of
quantified genes. Such methods return an enrichment
score reflecting the amplitude and the sense of the vari-
ation induced by the phenotype (C) Topology-based
strategies incorporate scores that gauge both gene abso-
lute positions and gene pairwise interactions (up to our
knowledge, none of the marker-based methods we re-
viewed integrate this feature). Reproduced from [ZR23,
Fig. 1].

figures/svr_plot.PNG

(d) Illustration of support vector regression (SVR).ξ
and ξ∗ are slack variables controlling the upper and
lower error margins, respectively. Together, slack vari-
ables enable to define boundary decision lines, all points
lying outside of the ϵ− tube making up the set of “sup-
port vectors” (red circles). ν−SVR is a recent ap-
proach, in which the so-called hyper-parameter controls
the amount of SVs (for instance, in the right picture,
half of the genes lie beyond the confidence boundaries).
Interestingly, only the set of SVs is required to pre-
dict cellular ratios, avoiding as such overfitting. Re-
produced from [New+15, Supplementary Fig. 1].
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figures/full_pipeline_deconvolution.png

(a) Workflow for bulk deconvolution methods. Reproduced from [Avi+18, Fig. 1].

figures/compare_signatures.png

(b) Guidelines for the selection of a deconvolution algorithm. The overall performance metric quantifies
the correlation between the numerically inferred fractions with the initial parameters used within the generative
model of the benchmark. The background prediction is a proxy of of the inclined of a deconvolution method to
forecast the presence of a cellular classification, even when absent in the mixture. Reproduced from [Stu+19b,
Table. 2].
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figures/sc_deconvolution.jpg

Figure 9. Illustration of a spatial deconvolution algorithm principle, with stereoscope.A deconvo-
lution algorithm is used to model and infer the mixture composition of cell populations at a specific capture
site using signatures derived from single-cell datasets. stereoscope precisely employs a convolution of Negative
Binomials to model the mixture of cell types within a captured side. Reproduced from [Kho+21, Fig. 1].

figures/overdetermined_inconsistent.jpeg

(a) An inconsistent system, with
three non concurrent lines: you can
only find a set of solutions that ver-
ifies simultaneously two equations
over three.

figures/overdetermined_one_solution.jpeg

(b) A consistent system, with three
converging lines intersecting each
other at an unique point. The
system has only one solution, but
exhibits redundancy since you can
rewrite one equation as a linear com-
bination of the others.

figures/overdetermined_infinite_solution.jpeg

(c) A trivially consistent system,
displaying an infinity of solutions,
all matching the identity function.
Note interestingly that adding the
unit-simplex constraint guarantees
however an unique solution, namely
equi-balanced cellular ratios: p1 =
p2 = 1

2
.

Figure 10. Over-determined (three equations against only two unknowns) linear system, adapted from
System of equations.
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