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De-MISTED: Image-based Classification of
erroneous Multiple Sequence Alignments using
Convolutional Neural Networks

Hiba Khodji, Pierre Collet, Julie D. Thompson, Anne Jeannin-Girardon

Abstract—The widespread use of high throughput genome sequencing technologies has resulted in a significant increase in the
number of available sequences, creating new challenges for genome annotation and prediction of protein-coding genes, in terms of
error detection and quality control. Multiple Sequence Alignments (MSA) of the predicted protein sequences provide important
contextual information that can be used to distinguish errors (caused by artifacts in the raw genome data, badly predicted gene
sequences, or the alignment methods themselves) from true biological events, either by human expertise or statistical analysis of the
sequence data. Here, we propose a new approach that consists in using visual representations of MSAs from an in-house dataset, in
which errors are carefully identified, as inputs of Convolutional Neural Networks (CNN) classifying MSAs into erroneous and
non-erroneous categories. Our model, called De-MISTED (Deep learning for Multlple Sequence alignmenTs Error Detection) shows a
high accuracy (87%) and sensitivity (92%,) in identifying MSAs containing erroneous sequences. Visual explanation techniques show
that our model correctly identifies the correct position of multiple errors of different types (insertions, deletions and mismatches). Close
examination of the data showed that our model can also correctly identify errors that were not annotated in the data. The De-MISTED
method thus contributes to a more robust exploitation of the genome data.

Index Terms—Multiple Sequence Alignment, Error detection, Visual Recognition, Convolutional Neural Networks, Binary

Classification.

1 INTRODUCTION

Multiple Sequence Alignment (MSA) is a widely used
technique in the fields of molecular biology, computational
biology, and bioinformatics [1]. MSA consists in arranging
biological sequences (DNA, RNA or proteins) in a matrix
in order to identify regions of similarity and divergence
reflecting their biological relationships [2]. It is used, for
example, to perform phylogenetic studies of related organ-
isms and to predict molecular structures and functions [3].
MSAs thus provide useful information, which underlines
the importance of their accuracy [4]. However, generating
MSAs is a computationally challenging task; consequently,
errors often occur which are detrimental to the subsequent
applications [5]. Errors in MSAs can result from two main
sources. First, MSA algorithms can cause misalignments
where similar sequences are not correctly identified [4].
Second, the sequences themselves can also contain errors.
For example, in the case of protein sequences, sequence
misprediction errors are introduced by algorithms used to
predict protein-coding genes in DNA sequences. These algo-
rithms are not always accurate and have thus led to a certain
amount of inconsistencies in today’s protein databases [6],
[7].

Although there exists a number of algorithms designed
specifically to identify inconsistencies in MSAs [8] [9] [10], to
the best of our knowledge, there are no studies introducing
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an image-based approach to solve this problem. In this
paper, we propose a novel method, called De-MISTED
(Deep Learning for Multlple Sequence alignmenTs Error
Detection), that consists in using images to detect inaccurate
MSAs of protein sequences.

Convolutional Neural Networks (CNN) are one of the
most extensively used neural networks in Deep Learning.
CNNs are particularly praised for their ability to learn
hierarchical representations from data and extract relevant
information from images for the task at hand. This ability
has led to high performances in image classification tasks
applied to a diverse and wide spectrum of fields, ranging
from satellite to medical imagery. Binary classification con-
sists in classifying instances into one of two classes; it is
a supervised learning problem, since a labelled dataset is
used to teach the model about the different classes. In the
field of bioinformatics, analyzing a group of large multiple
sequence alignments in search of errors can be a laborious
and strenuous task. In order to overcome this issue, this
paper proposes a straightforward binary image classifier,
based on CNN:g, to filter out MSAs of protein sequences that
contain gene-prediction/sequence errors from an in-house
built image dataset.

This paper is organized as follows: Section 2 introduces
related works and a description of our classification prob-
lem. Our dataset is presented in Section 3. Section 4 de-
scribes the experimental protocol used for the proposed ap-
proach. Sections 5 and 6 discuss the conducted experiments
and their results. Finally, Section 7 concludes this paper and
draws some perspectives for future works.
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2 RELATED WORKS
2.1 Multiple Sequence Alignments

Multiple Sequence Alignment (MSA) is the first step in
analyzing and solving many bioinformatics-related prob-
lems [1] such as protein structure and function annotation,
evolutionary studies, analysis of effects of genetic muta-
tions, etc. It is, therefore, considered as one of the most
studied problems in computational biology. The MSA prob-
lem consists in finding an optimal alignment of three or
more biological sequences. Aligning thousands of sequences
and producing high-quality alignments require the use of
advanced and highly sophisticated methods. To this end,
a wide range of algorithms has been proposed over the
years, as reviewed in [3], including dynamic programming,
progressive multiple alignment, iterative alignment, Hidden
Markov Models, and Genetic Algorithms, among others.
By default, MSA algorithms create alignments in a simple
text format, such as FASTA [11]. The FASTA output, albeit
simple, is limited to the sequence data and does not allow
the inclusion of annotation or meta-data. To overcome this,
the authors in [12] introduced ADOMA (Alternative Display
Of Multiple Alignment) that proposes a graphical interface
with either a simplified multiple alignment output, where
only the mismatches with the parent sequence are shown, or
a colored output where amino acids (for protein sequences)
with similar physico-chemical properties share the same
color. Figure 1 shows an alignment of parts of protein
sequences produced by ADOMA in a simplified and colored
format.
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Fig. 1. Example of protein sequences shown in ADOMA’s simplified
and colored output format. The upper alignments are the default output
format. The middle and bottom alignments represent the simplified and
colored output formats, respectively.

The MSAs used in this paper contain protein sequences,
which are predicted from sequenced genomes. In these
alignments, three or more related protein sequences are
aligned in order to identify regions of similarity. The main
goal of an MSA is to match residues (amino acids) from the
aligned sequences. The resulting alignment is a rectangular
array where protein sequences are arranged horizontally, and
residues are matched vertically so that residues in a given
column are homologous, structurally superposable, and/or
share a functional role [13]. In other words, both the vertical
and horizontal contexts of an MSA are important to study and
analyze it.

2

Errors in an MSA can result either from (i) DNA sequenc-
ing errors, (ii) errors in the prediction of the exon/intron
structure of the protein-coding genes, (iii) misalignment
errors in the MSA construction process. These errors include
the presence of unusual deletions, insertions/extensions, or
mismatches that are inconsistent with the local context sur-
rounding them. A deletion error refers to one or more absent
amino acids from a sequence. An insertion involves the
inclusion of an additional sequence segment between two
amino acids, while the term “extension” is used specifically
when an additional sequence segment is added on either
end (N- or C-terminal) of a sequence. Finally, a mismatch is
represented by non-homologous amino acids in one or more
columns of the alignment.

Here, we refer to alignments containing at least one of
the aforementioned errors as erroneous, while error-free MSAs
denote accurate alignments with no known inconsistencies.

2.2 |dentifying errors in MSAs

A wide range of tools have been proposed in order to char-
acterize misalignment errors. In [14], the authors proposed a
knowledge-based approach, called RASCAL, which is used
to refine, correct, and improve either automatic or manually
constructed multiple sequence alignments. The RASCAL
algorithm involves two stages: first, it performs an align-
ment scanning and validation, which consists in localizing
well aligned regions in a given alignment. Second, it detects
potential misalignments and performs a re-alignment using
dynamic programming. This method was evaluated using
MSAs from three different databases: a total of 142 high-
quality multiple alignments from the BAIiBASE benchmark
database [15] were constructed using two progressive pro-
grams, ClustalW [16] and MAFFI-2 (FFT-NS2) [17], one
iterative technique, MAFFT-I (FFI-NSI) [17], and one co-
operative program T-COFFEE [18]. These alignments were
then refined using RASCAL. The quality of the produced
alignments was assessed using two different scores: the SP
(sum-of-pairs) score, which indicates the percentage of cor-
rectly aligned pairs of residues, and the Column score which
represents the percentage of correctly aligned columns in
the alignment [14]. Using these scores, the authors reported
significant improvements for the alignments produced by
RASCAL compared to the input MSAs. A subset of 946
alignments from the ProDom protein domain database [19]
was also used to evaluate the accuracy and reliability of
RASCAL. The alignments were refined using RASCAL and
evaluated using the NorMD score [20]. The authors ob-
served an increase in the NorMD score for 68% of the
alignments after refinement by RASCAL. A final evaluation
step consisted in using a set of 695 full-length nuclear
receptor proteins aligned using the MAFFT-2 program. This
alignment was then refined using RASCAL and MAFFT-
I. From an initial value of 0.27 (by MAFFT-2), the NorMD
score was increased to 0.57 after refinement by RASCAL,
and to 0.44 after using the iterative program MAFFT-I. In ad-
dition, RASCAL yielded an increase in alignment accuracy
using less CPU time compared to MAFFT-I: while RASCAL
required 9 minutes to detect and realign the errors, MAFFT-I
took 4.5 hours. Other knowledge-based approaches include
the integration of other information, such as structural ele-
ments [21] or evolutionary mutation rates [22].
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In order to identify errors in MSAs due to inaccurate
prediction of protein-coding genes, Khenoussi et al. [8]
developed a Bayesien model named SIBIS, which takes an
MSA as input and highlights all identified inconsistencies
in an XML file. In order to evaluate the proposed approach,
SIBIS was applied to protein sequences predicted from
the rhesus macaque genome [23]. The obtained results were
compared with a reference set of 90 protein sequences with
experimentally validated errors. The authors assessed the
performance of SIBIS against that of two different algo-
rithms: MisPred [24] [25] and their previously developed
method [26]. The accuracy of SIBIS was estimated in terms
of sensitivity and specificity; the reported results showed a
higher sensitivity for SIBIS (81%) compared to 27% for Mis-
Pred and 62% for the profile-based developed method. The
authors observed that while some errors were overlooked
by SIBIS, they were correctly identified by MisPred, and
therefore considered the two methods to be complementary.
Moreover, SIBIS reached 92% in specificity while the profile-
based method achieved 96%. However, the slight loss in
specificity by SIBIS was considered statistically insignificant.
Other knowledge-based methods have also been developed
to address this issue, including FixPred [27] that identifies
mispredicted sequences using information about known
functional regions. In [28], Jehl et al. proposed a software,
called OD-seq, which detects outlier sequences in a given
MSA. The algorithm uses a simple gap-based distance met-
ric to find outliers with unusual average distances to the
rest of the sequences. These distances are found in two
ways: bootstrapping or interquartile range analysis. The
performance of OD-seq was evaluated on over 1000 Pfam
families [29], where sequences were seeded with outliers
either from the same or different family and realigned
using Clustal Omega. OD-Seq was also tested on unaligned
sequences. When outliers were introduced from a different
family, OD-Seq is faced with clear outliers and therefore
achieved a good performance with area under the curve
(AUC) values of 0.978, 0.96, and 0.936 for aligned bootstrap
(AD), interquartile range (IR), and unaligned bootstrap (Ub),
respectively. When outliers are seeded from the same family,
however; the difference between an outlier and a homolo-
gous is not so obvious which led to a drop in performance
in AUCs (Ab= 0.759, IR= 0.745, Ub=0.732). The authors
also used Precision-recall curves and inferred that bootstrap
analysis yielded a more robust prediction than interquartile
range.

In a similar line of research, Chiner-Oms et al. [30] devel-
oped EvalMSA, a software tool for evaluating and identify-
ing divergent sequences or outliers in MSAs. EvalMSA ana-
lyzes the length of the sequences used to construct the align-
ment and assigns a weight (i.e. influence on the alignment
quality) to each sequence; the program then computes the
“gappiness” (gpp) value for each sequence; sequences with
the highest gpp value are considered strongly divergent and
more likely to introduce gaps in the remaining sequences.
The authors explored the results of their approach using
an MSA from the Pfam database [29]. Three outliers were
added to the alignment which was then realigned with
MUSCLE [31]. EvalMSA identified two outliers based on
their high gpp (gappiness) values, while the third outlier
had the lowest weight amongst all sequences. The authors
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compared their approach to OD-Seq [28] on the same MSA
and observed that while EvalMSA identified all three out-
liers within the alignment, OD-seq identified only those
with the highest gappiness values and maintained the third
in the core alignment. While both OD-Seq and EvalMSA
use the number of gaps between sequences, EvalMSA also
takes into account gpp values as well as weights to identify
outliers and their cause of divergence. The authors argue
that EvalMSA provides a deeper analysis and can be com-
plementary to OD-seq.

2.3 Deep Neural Networks and MSA

Deep Neural Networks are widely used in many aspects of
scientific research to find solutions to complex problems. In
bioinformatics, experts have also benefited from the analyti-
cal ability of DNNs to extract insights from data. In [32], the
authors have proposed a deep learning solution to the prob-
lem of Multiple Sequence Alignment (MSA) construction by
using Deep Reinforcement Learning (DRL). Their proposed
approach utilizes Q-learning and LSTM —Long Short-Term
Memory networks— for their ability to memorize events.
The proposed DRL technique was compared with some
of the most popular tools for solving the MSA problem:
ClustalW [33] and MAFFT [34], and tested on the Lemur,
gorilla and Mouse (LGM) and Rat, Lemur and Opossum
(RLO) datasets [35]. While the DRL approach, ClustalW, and
MAFFT achieved an equal SP score on the LGM dataset, the
authors demonstrated that their approach achieved a better
performance compared to its matrix-based counterparts on
the Column Score, Alignment Length, and Exact Match
scores. On the RLO dataset, the DRL approach scored 486
on the SP score, which is higher than 480 for ClustalW and
471 for MAFFT. The proposed approach was also compared
with a reinforcement learning (RL) technique, proposed in
[36], and tested on six datasets: LGM, RLO, Papio Anubis
(PA) and Hepatitis C virus (HCV) from the EMBL nucleotide
sequence database [37], dataset 469 (d469) and dataset 429
(d429) from oxbench_mdsa_all [38]. The results showed
that the DRL and RL approaches scored equally on the
SP score on d469, RLO, LGM, and HCV. On the other
hand, the proposed DRL approach achieved better results
compared to the conventional RL technique on both PA and
d429: (PA: 18860; d429: 10218) for the DRL approach and
(PA: 18719; d429: 8668) for the RL technique. In terms of
computational time, the DRL approach was tested on two
other datasets against a different RL technique [39]. The
proposed approach proved to have a faster convergence:
486 s against 1334 s for the RL technique on the first dataset,
and 355 against 101 s on the second dataset.

In other lines of research, Zhang et al. [40] devel-
oped an open source deep learning-based program, called
DeepMSA, for sensitive MSA construction. This method
merges sequences from whole-genome and metagenome
sequence databases. In [41], Aoki et al. benefited from
deep learning technology by proposing a one-dimensional
CNN method to classify pairwise alignments of ncRNA
(non-coding RNA) sequences as either related or unrelated.
The proposed CNN approach takes as input a distributed
representation of a pairwise alignment with gaps of two se-
quences; each column represents a pair of five-dimensional
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N-terminal deletion

Mismatch segment

N-terminal extension

(a) MSA with three different types of errors: a deletion, an exten-
sion, and a mismatch.

b) MSA with an insertion error.

Fig. 2. Manually annotated alignments from our in-house built image dataset.

vectors, for the four nucleotides of RNA and the gap sym-
bol, as well as a three-dimensional vector for representing
secondary-structure information specific to ncRNAs.

2.4 Convolutional Neural Networks

Convolutional Neural Networks are a type of deep neural
networks which proved to be more efficient than regular
neural networks for image processing systems. AlexNet
[42], VGG [43], GoogLeNet [44], Inception [45], and ResNet
[46] are popular CNN models, which have achieved state-of-
the-art performances in image classification. While the best
performance in ILSVRC-2010 (ImageNet Large-Scale Visual
Recognition Challenge) [47] achieved a top-1 error of 47.1%
and a top-5 error of 28.2%, AlexNet [42] yielded top-1 and
top-5 test set error rates of 37.5% and 17.0%. In the ILSVRC-
2012 competition, a variant of AlexNet yielded a winning
top-5 test error rate of 15.3%, compared to 26.2% achieved
by the second-best entry. ResNet [46] has won first place
in the ILSVRC-2015 competition with an ensemble of six
models with different depths which led to 3.57% top-5 error
on the test set.

In medical imaging, CNNs’ performance was compared
with that of human experts on image classification tasks: the
authors in [48] have developed a 121-layer convolutional
neural network, called CheXNet, to detect pneumonia from
chest X-rays. The authors evaluated the performance of
their model and found that CheXNet yielded a higher F1
score (0.435) compared to average radiologist performance
(0.387).

CNNs’ rising popularity is attributed to their ability
to extract hierarchical features from data. For instance, in
image classification, it has been shown that low level layers
in a CNN learn general features (colors, simple shapes,
textures, etc.), while high level layers can learn more abstract
representations [49].

In this work, CNNs were used to process and dissect
images of multiple sequence alignments in order to detect
inconsistencies in given image MSAs. The detection of er-
roneous multiple sequence alignments is a binary classifi-
cation problem, where the input is an image of a multiple
sequence alignment predicted to belong to either the class
NO_ERROR or the class ERROR, indicating the absence or
presence of at least one error in a given MSA, respectively.

3 DATASET
3.1 Description

The dataset used in this paper consists of 19942 multiple
sequence alignments from a set of automatically anno-
tated alignments described in [7]. In [7], multiple sequence
alignments were used to detect sequence errors in protein

sequences, extracted from the Uniprot reference proteomes
and RefSeq databases, using the SIBIS algorithm [8]. Of all
the 19942 annotated multiple sequence alignments, 12545
were identified as containing errors and the remaining 7 397
alignments were found to be error-free. As described in Sec-
tion 2.1, three types of errors can be found in an alignment:
deletions, insertions/extensions, and mismatches. The au-
thors of [7] were able to detect 44001 deletions, 27289
insertions, and 11015 mismatches. It is important to note
that, since the original alignments weren’t annotated manu-
ally, some alignments may contain certain errors that were
overlooked by the annotation tool.

In order to obtain a balanced dataset, we used 3811
alignments from the set of 12545 erroneous MSAs from
which we removed the erroneous sequences using a filtering
protocol ! in order to produce 3811 error-free alignments.
The original 3811 erroneous MSAs were conserved, and in
total we obtained 11208 error-free alignments and 12545
alignments containing errors.

The next step in building our dataset is to convert the
alignments from their XML format into images, using the
ADOMA [12] command line tool. ADOMA takes a FASTA
file as input and produces either a simplified multiple
alignment output, or a colored output where amino acids
with similar physico-chemical properties share the same
color. For our study, we were only interested in the colored
output, which we slightly adjusted to remove the characters
and their color code to make the sequences more contrasted.
XML format files were converted to FASTA format using
ClustalW [16] and then passed as input to ADOMA to pro-
duce HTML files in the colored format. Finally, the HTML
files were converted into images using an open source
command line tool [50]. Figure 2 shows two alignments with
annotated errors from our created image dataset. The errors
were manually highlighted with bounding boxes. Three
different errors are shown in alignment (a): a deletion, an
extension, and a mismatch error. Alignment (b) shows an
internal insertion error.

During the final conversion process, from HTML format
to JPG, some alignments were too large for the ADOMA
program, and therefore resulted in 419 blank images. After
filtering out these blank images from the entire dataset, we
obtained a total of 23 334 images. These images are then
used as input to a binary classifier in order to be categorized
into one of two classes: NO_ERRORS: for error-free MSAs,
and ERRORS: for MSAs containing at least one error.

1. The filtering protocol is a simple program that takes as input an
erroneous MSA in XML format and filters out erroneous sequences
which are defined by specific start and end tags
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Fig. 3. Models (2) and (B) share the same backbone: six convolutional blocks followed by a fully connected layer and a sigmoid layer. Each
convolutional block consists in a single convolutional layer for model (2), and two convolutional layers for model (B). While the filters of (a) are
square, the filters of model (B) are rectangular, in order to consider the horizontal and vertical contexts of a sequence alignment.

3.2 Data split

In order to train our classifiers, we split our data into
60%, 20%, and 20% for our training, validation, and test
sets, respectively. Figure 4 summarizes the distribution of
samples between two classes: ERRORS (i.e. sequences con-
taining at least one error) and NO_ERRORS (i.e. sequences
containing no errors) across our training, validation, and
test subsets. There are no duplicates between the subsets.
Each MSA contains the primate orthologs of a different
human protein. Although there could be some redundancy
at the sequence level due to paralogous sequences, each
MSA contains a unique human sequence and each MSA is
therefore different.

mmm ERRORS
== NO _ERRORS

Taining set Validation set Test st

Fig. 4. Distribution of samples across training, validation, and test sets.

4 EXPERIMENTAL PROTOCOL

We defined two convolutional neural network architectures,
which are depicted in Figure 3. Both architectures (2)
and (B) share the same backbone: six convolutional blocks
computing respectively 16, 32, 64, 128, 256, and 512 feature
maps, followed by a fully connected layer with 512 units,
and a final sigmoid layer computes the output of our binary

classification. For Model (2), we defined a single convolu-
tional layer for each block. In model (B), each convolutional
block contains two convolutional layers. Since the images
in our dataset are of a large rectangular shape, they were
downsampled to 224x1024 for both models.

The key difference between the proposed models is the
size of the convolutional filters. In model (&), we used
5x5 filters in each convolutional layer. For model (B) we
considered the following: as described in Section 2.1, it is
important to take into account the structural shape of a
MSA: while the constituting protein sequences are arranged
in a horizontal manner, homologous amino acids of each
sequence are matched vertically to highlight the conserved
regions. Therefore, given the horizontal nature of the protein
sequences and the vertical context of the alignment, we used
a horizontal filter (5x7) in the first convolutional layer; and
a vertical filter (3x2) in the second: an approach which we
refer to as hybrid filtering.

The models were trained during 100 epochs using a
batch size of 32. The training process was optimized using
the Adam optimizer (learning rate: le~2, weight decay:
le=*) using a binary cross-entropy loss. In order to im-
prove the speed and performance of our network, Batch
Normalization (BN) is added after each convolutional layer,
resulting in a significant decrease in training time.

A deep neural network with a large number of pa-
rameters is prone to overfitting [51]. This can be avoided
using a regularization technique. The most commonly used
regularization technique is the Dropout method, which we
added after each batch-normalization layer. Early stopping
was used with a patience of 10 training epochs. The initial
learning rate starts at le~2, and is reduced after 5 epochs
with a factor of 0.1 if the validation loss does not improve.

5 EXPERIMENTAL RESULTS

In order to assess the performance of our binary classifiers,
we plotted their training and validation losses and accura-
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cies over the training epochs. For model (2) the training
stopped after 25 epochs and reached a validation accuracy
of around 86%, while the training and validation losses
decreased to around 0.3. Model (B) stopped training after
30 epochs, while achieving the same validation accuracy
(~ 86%) and loss (0.3) as model (A).

We tested our binary classifiers on the test set and
evaluated their performances; while both models yielded an
accuracy of 87%, they achieved slightly different loss values:
0.34 for model (A), and 0.32 for model (B). However, the
classification accuracy and loss metrics are not conclusive
assessment tools; therefore, we used the F1-Score to measure
the class-identification ability of our trained models. The F1-
score combines two metrics: the precision, which quantifies
the number of correctly predicted instances over all posi-
tive predictions, and recall, which measures the number of
correct positive predictions out of all positive instances in
the dataset. Our aim is to evaluate our proposed models on
their ability to identify as many erroneous MSAs as possible
with a high precision; in other words, we are interested in
finding the best optimal combination of precision and recall
for the ERRORS class. Table 1 provides an overview of model
(A)’s precision, recall, F1 score, accuracy, and loss for each
class. Figure 5 shows the confusion matrix of this model, and
provides the number of correctly and incorrectly classified
instances.

TABLE 1
Classification report for model (a)

Class Precision | Recall | F1 Score | Acc Loss
ERRORS 0.84 0.92 0.88 087 | 034
NO_ERRORS 0.90 0.80 0.85

2250

2000
ERRORS 1750
1500
1250

1000

True label

NO_ERRORS 750

500

250
ERRORS

NO_ERRORS

Predicted label
Fig. 5. Confusion Matrix for model (a)

Table 2 and Figure 6 depict the classification report and
confusion matrix for model (B), respectively. From Tables
1 and 2, we observe that both models achieved the same
F1 Score (0.88) with a slight drop of 1% in the NO_ERRORS
class for model (2). While both models achieved the same
recall score of 0.92 for the ERRORS class, model (B) reached
a precision score of 0.85 compared to 0.84 by model ().
This means that model (B) correctly identifies 92% of all
erroneous MSAs in the test set with a precision of 85%.

6
TABLE 2
Classification report for model (B)
Class Precision | Recall | F1 Score | Acc. | Loss
ERRORS 0.85 0.92 0.88 087 | 032
NO_ERRORS 091 0.82 0.86

2250
2000
ERRORS 1750
1500
1250

1000

True label

NO_ERRORS 750

500

250

ERRORS

NO_ERRORS

Predicted label

Fig. 6. Confusion Matrix for model (B)

In order to better interpret the resulting confusion ma-
trices in Figures 5 and 6, it is important to remember that
the original MSAs used to create the dataset were annotated
using SIBIS, an automatic Bayesian model [8]. According to
the results reported in [8], SIBIS yielded better specificity
(92%) than sensitivity (81%), which means it is possible that
some errors within the original dataset have been left unde-
tected by SIBIS. This indicates that a higher number of False
Negatives (error-free alignments classified as erroneous) is
tolerable, since it is very likely for an initially error-free MSA
(as annotated by SIBIS) to be identified as containing at least
one error by our models.

As shown in Figures 5 and 6, while model (2) misclas-
sified 193 (7.9%) erroneous MSAs, model (B) misidentified
slightly less erroneous MSAs, 187, (7.6%) as error-free. On
the other hand, both models found an important number of
initially error-free set of alignments to contain at least one
error: 435 (19.6%) for model (), and 409 (18.4%) for model
(B).

Classifying MSAs as containing at least one error or
error free relies on the ability of our models to identify
different types of errors within MSAs. To assess this ability,
we compared the number of all errors present in the test set
with the number of errors found in the correctly classified
erroneous alignments by models (2) and (B). It is impor-
tant to note that, in order to conduct this comparison, we
used the annotation tool, SIBIS, on the original XML version
of the MSAs to identify the type of errors found within.

Deletion errors are the most present in the test set, with a
total of 5158. Mismatches were found to be the least present,
with only 419 occurrences. From 6793 errors (of all types)
in the test set, 6485 errors (95.5%) were found across all
correctly predicted erroneous MSAs by model (a), while
6498 (95.6%) were found in the correct erroneous predic-
tions by model (B). Considering that MSAs can contain
multiple errors of different types, it is difficult to determine
which errors were identified by the models that led to a
correct classification. To this end, we also compared the
number of errors in the correctly classified single-error MSAs
by models (2) and (B) and reported the results in Table
3. Out of 825 errors in the test set, model (A) identified
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TABLE 3
Comparative table of the number of errors (per type) present in the test set and the number of errors found in the correctly classified erroneous
predictions of models (a) and (B). We consider all MSAs as well as MSAs containing only a single error.

Number of errors in the test set Number of errors in TN (&) Number of errors in TN (B)
Error type all MSAs | single-error MSAs | all MSAs | single-error MSAs | all MSAs | single error MSAs
N-terminal extension 436 89 394 71 403 73
N-terminal deletion 2058 298 1991 278 1986 282
C-terminal extension 179 23 159 16 157 16
C-terminal deletion 619 96 582 80 591 84
Internal insertion 601 59 559 32 555 34
Internal deletion 2481 227 2416 200 2422 196
Mismatch 419 33 384 21 384 17
Total 6793 825 6485 698 6498 702

TN (True Negatives) : the correctly classified erroneous MSAs.

698 errors (84.6%), while model (B) found 702 (85%).
Across all different error types (with the exception of the
mismatch and internal deletion types), model (B) achieves
a relatively higher number of identified errors than model
(A): 87 extensions (N- and C- terminal) were found by
model (2) (77.7%) compared to 89 (79.5%) by model (B);
358 deletions (N- and C- terminal) were detected by model
(2) (90.9%) compared to 366 (92.9%) by model (B); lastly,
32 insertions were identified by model (2) (54.2%), while
34 (57.6%) were found by model (B). These comparative
results further support our previous conclusion that model
(B) exhibits a slightly better predictive performance than
model (A).

Overall, both models (2) and (B) exhibit good perfor-
mance when distinguishing between erroneous and non-
erroneous MSAs, regardless of the kind of error (although
insertions are more challenging to identify). This supports
our idea that visual representations of MSAs contain useful
information that Convolutional Neural Networks can use.

5.1 Performance comparison

We compared the performance of our proposed CNN-based
approach against EvalMSA [30] and OD-seq [28]. Both al-
gorithms are based on the concept of gap penalty; OD-
Seq uses an alignment gap metric to measure gap-based
distances between sequences in a pairwise fashion, and
identifies sequences with missing parts compared to the
rest of the alignment. EvalMSA computes a gappiness value
(gpp) for each individual sequence in order to measure its
contribution to insert gaps in the alignment; sequences with
high gpp values are considered divergent from the rest. We
evaluated these methods on our test data using precision
and recall metrics for each class and reported the results
in Table 4. It is important to note that these tools do not
perform a binary classification of MSAs; their goal is to
detect outlier sequences within a given alignment. There-
fore, the classification in Table 4 was conducted manually
based on the results obtained by the algorithms; if outlier
sequences are found within a given MSA, it is deemed
erroneous; in case no outliers are detected, the alignment
is considered as accurate and containing no errors. We
evaluated the ability of each model to accurately identify
erroneous MSAs within the test set; the study showed that
our approach outperformed EvalMSA and OD-Seq by a

significant margin: De-MISTED was able to detect 92% of
all inaccurate MSAs with high accuracy compared to 81%
by EvalMSA and 73% by OD-Seq. While the gap penalty
based methods exhibited a similar performance in terms of
precision (61%), our approach reached a higher precision
value of 85%.

6 MODEL INTERPRETABILITY: A QUALITATIVE

ANALYSIS

While classifying an MSA as containing at least one error
constitutes the main objective of this work, it is important to
assess whether our models” correct erroneous predictions
are based on their ability to correctly localize the actual
discrepancies within the alignment. Therefore, in order to
interpret our classifiers’ predictions, we produced saliency
maps using a post-hoc visual explanation technique based
on class activation mapping, called Score-CAM [52]. Score-
CAMs provides insights on how the models achieved their
classifications by highlighting the important regions in an
input image that led them to their prediction. This tech-
nique also enables us to visually verify whether our model
has succeeded in learning the underlying patterns in our
dataset: if our models predict an MSA as containing at least
one error, it should be able to identify the erroneous region
within the image. To generate Score-CAMs, we input an
image into the network, and chose the final convolutional
layer to extract activation maps. The importance of each ac-
tivation map is then measured by the Channel-wise Increase
of Confidence (CIC). CIC upsamples each activation map
and uses it as a mask on the input image to obtain its score
on the target class. The final result is produced by a linear
combination of score-based weights and activation maps.
Let f be our model, and ! denote the final convolutional
layer. A; denotes the activations of layer I, while A denotes
the activation map for the k-th channel. For a given class of
interest ¢, Score-CAM is defined as [52]:

LcScore—CAJV[ = RGLU(Z OCEA;C) (1)

where

2
and C(.) denotes the CIC score for the activation map Af.

af = C(A})
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TABLE 4
Performance comparison results. We evaluated our approach, De-MISTED, against EvalMSA [30] and OD-Seq [28] on the test set. De-MISTED
yielded higher precision (85%) and recall (92%,) in identifying erroneous MSAs.

ERRORS NO_ERRORS
Method Precision (%) | Recall (%) | Precision (%) | Recall (%) | Accuracy (%)
EvalMSA 61 81 67 42 63
OD-seq 61 73 62 50 62
De-MISTED (B) 85 92 91 82 87

In the following sections, we use Score-CAM to provide
visual qualitative interpretations of our classification results
on randomly selected MSA examples. We assess the ability
of our models to correctly identify and localize inconsisten-
cies in MSA images.

6.1

Figure 7 shows two examples of Score-CAMs generated by
models (&) (top) and (B) (bottom). The same alignments
were used for both models and contain a single error:
internal insertion in alignments (a) and (c) and a mismatch
in alignments (b) and (d). All alignments were correctly
predicted by the models as erroneous. As observed in the
resulting Score-CAMs, both models succeeded in identify-
ing the encountered error within each alignment; this is
represented by the clear focus of the Score-CAM on the loca-
tion of the detected errors. We observe that, in the obtained
Score-CAMs by model (2), the applied focus is spread
over a large area surrounding the error. In Score-CAMs by
model (B), however, the focus outlines the exact location
of the detected error. The following comment can be made
with regard to this behavior: the hybrid filters enable model
(B) to analyze the input image in vertical and horizontal
contexts, which means it considers the relevant sequences as
well as their vertical arrangement (i.e the sequences they are
aligned with); this allows the model to extract more precise
features about the location of the detected error within a
given MSA. Further Score-CAM examples can be found in
the supplementary material.

Identifying single errors in MSAs

6.2

In order to assess the ability of our models to identify more
than one error within a given MSA, we applied Score-CAM
on MSAs containing different types of errors. The results are
shown in Figure 8 for models (A) (top) and (B) (bottom).
The same alignments were used for both models.

In Figure 8, models () and (B) correctly classify the
MSAs as erroneous. In alignment (a), the obtained Score-
CAM by model (a) highlights the existing deletion with a
strong focus, while a weaker focus is visible on the location
of the extension error. Alignment (b) contains three deletion
errors, two of which were correctly identified by the model
with an equally strong focus on the location of both errors.
It is important to note that, as observed in the previous
examples, all detected errors in the these examples were
identified by highlighting a large area around the located
errors. This behavior can also be observed in different ex-
amples presented throughout the remainder of this paper. In
alignment (c), the deletion and extension errors are correctly

Identifying more than one error in MSAs

identified by model (B): the Score-CAM shows a strong
focus on both errors. In alignment (d), we observe that
model (B) succeeded in identifying all three deletion errors
within the MSA (contrary to model (2)). Further Score-
CAM examples can be found in the supplementary material.

It should be noted that, within certain MSAs, there
exist gaps and constituent extended /inserted sequences that
could very easily be misidentified as errors by our proposed
models. Therefore, we applied Score-CAM on specific align-
ments to assess the ability of our classifiers to distinguish
normal gaps/extensions/insertions from erroneous ones.
The results are shown in Figure 9. Both models correctly
classify the alignments as erroneous. In alignment (a), model
(A) identifies the existing extension error on the far left by
highlighting its location in the alignment. A second focus
appears approximately in the middle of the alignment over
a non-erroneous gap: this indicates that model (A) misiden-
tified the normal gap as a deletion error. In alignment (b),
model (A) identifies the existing deletion error (far right)
with a strong focus; however, the resulting Score-CAM also
shows a visible focus over certain sequence groupings of
the MSA that are structurally similar to extension errors
which the model misidentified as erroneous insertions. In
contrast to model (2)’s behavior, the Score-CAM results
produced by model (B) are comparatively more accurate:
for both alignments, the model focuses solely on the existing
(annotated) errors and disregards any similarities that could
lead to a misidentification. Further examples can be found
in the supplementary material.

6.3

In the previous sections, we have demonstrated the ability
of our classifiers to detect different types of annotated errors
within MSAs. However, the statistical method SIBIS used to
annotate the errors in the initial MSAs is not 100% accurate,
and tends to have better specificity than sensitivity when
detecting errors [8]. Consequently, some MSAs annotated as
error free by SIBIS may actually contain errors which were
overlooked by the annotation tool, as described in Section
5. Therefore, we used Score-CAM to investigate some of the
435 and 409 (from Figures 5 and 6) False Negative MSAs that
were annotated as error-free, yet predicted by both models
to contain at least one error. The results are shown in Figure
10.

Upon close examination of the obtained results, the
following comments are supported by human expertise: in
example (a), while SIBIS deemed the MSA error-free, both
models identified a deletion error on the far left whose exis-
tence was confirmed upon careful inspection. In alignment
(b), model (A) (top) identified an extension and a deletion

Identifying non-annotated errors



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(a) MSA with an insertion error. Model (a) correctly classifies the
alignment as erroneous and detects the location of the error.

(c) MSA with an insertion error. Model (B) correctly classifies the
alignment as erroneous and identifies the location of the error.

(a) MSA with two errors: an extension and a deletion. The MSA is
correctly classified by model (a) as containing at least one error.
The Score-CAM shows a strong focus on the deletion error, while a
slightly weaker focus is applied on the extension.

(c) MSA with two errors: an extension and a deletion. Model (B)
correctly classifies the MSA as erroneous. Both errors are highlighted
in the Score-CAM.

(a) MSA with a single extenstion error. Models (a) (top) and (B)
(bottom) correctly classify the MSA as erroneous. Both models iden-
tify the existing extension error in the alignment. The Score-CAM
obtained by model (A), however, highlights a non-erroneous gap
misidentified as a deletion error.

Fig. 9. A comparative analysis of Score-CAMs obtained by model (&) (top) and model (B) (bottom). We evaluate each model’s ability to distinguish
normal gaps/extensions/insertions from erroneous ones within a given MSA.

(b) MSA with a mismatch error. Model (a) makes a correct predic-
tion. The produced Score-CAM clearly identifies the location of the

error.

r .
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(d) MSA containing a mismatch error. Model (B) makes an accurate

prediction. The produced Score-CAM correctly identifies the location
of the error.

Fig. 7. Score-CAMs [52] produced using models (2) (top) and (B) (bottom) on single-error MSAs. Score-CAM highlights the portion of the image
responsible for the model’s final prediction.

(b) MSA with three deletion errors. Model (&) correctly identifies
the alignment as erroneous. The Score-CAM highlights two deletions
with a strong focus, and shows that model (2) fails to detect the third

‘) " l'lluﬂ.”

(d) MSA with three deletion errors. Model (B) correctly classifies
the MSA and identifies the errors. Score-CAM strongly highlights two
deletions and shows a weak focus on the third.

Fig. 8. Score-CAMs obtained by models (2) (top) and (B) (bottom) for MSAs containing more than one error. The models make accurate
predictions and succeed in identifying most of the annotated errors.

(b) MSA with a single deletion error. Both models correctly classify
the alignment as erroneous. The existing deletion is identified by both
models with a strong focus, as shown in the respective Score-CAMs.
In the Score-CAM by model (2), however, a second focus is drawn
to a non-erroneous extension.
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(a) MSA classified by models (n) (top) and (B) (bottom )as
erroneous. The resulting Score-CAM by both models indicates
the existence of a detection error.

(c) MSA predicted by both models as erroneous. The Score-
CAMs highlight an identified insertion error.

(b) MSA classified as erroneous by both models. The obtained
Score-CAMs highlight the existence of an extention error and two

deletions.
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(d) MSA classified by models (a) and (B) as containing at least
one error. The obtained Sore-CAMs support this predcition by
highlighting the existence of a deletion error.

Fig. 10. Initially error-free MSAs classified by models (a) (top) and (B) (bottom) as containing at least one error. The obtained Score-CAMs
highlight the different errors identified by the models in the MSAs, which were missed by the original annotation tool.

error: while a strong focus of the obtained Score-CAM is
observed over the deletion error, a weaker and slightly
shifted focus indicates the existence of the extension error.
The Score-CAM by model (B), however, strongly highlights
the extension and deletion errors with a clear focus that
outlines their respective locations. A third deletion error is
identified by model (B) with a weak yet visible focus. While
the models successfully identified the existence of said
errors, a manually detected mismatch error was missed by
both models as well as the annotation tool. The existence of
all aforementioned errors is confirmed by human expertise.
Example (c) shows that both models identified an insertion
error that SIBIS has failed to detect. A thorough examination
of the MSA confirms the existence of the detected insertion
error. Lastly, a non-annotated deletion was detected by our
models in alignment (d), whose existence in the alignment
was manually confirmed. From these manual analyses, we
conclude that the precision levels of 90% by model (2) and
91% by model (B) cited above are minimum values, and
the true precision levels are probably higher than this.

7 CONCLUSION

Multiple Sequence Alignments are often riddled with differ-
ent types of errors stemming either from inaccurate MSA-
generating algorithms or from the constituent sequences.
Since MSAs can be represented in the form of a colored
output showing the similarity of aligned sequences, we hy-
pothesized that this information could be exploited by Con-
volutional Neural Networks. To support our hypothesis, we
proposed two CNN models, one of which implements a
hybrid filtering within its convolutional layers, as an attempt

to better consider both the horizontal and vertical context of
an MSA.

Both models were tested on an in-house MSA dataset
in which errors were carefully annotated. Our results show
that both models exhibit good performance to distinguish
erroneous MSAs from non-erroneous ones, obtaining 87%
accuracy and 92% sensitivity. Although the metrics did not
allow us to observe a significant difference between our two
models, using a visualization technique on the activation
maps of both models showed that the model implementing
hybrid filtering more accurately identified the errors within
MSAs. Overall, this qualitative analysis showed that both
models can identify and localize the four kinds of errors
found in MSAs: insertion, deletion, extension and mismatch.
This further supports the idea that Convolutional Neural
Networks are an appropriate approach to sort erroneous
from non-erroneous MSAs.

These encouraging results open the possibility of design-
ing multi-label classification models that can distinguish
between the different kinds of errors found in MSAs and
to accurately locate these errors within the sequences, in
order to provide automated assistance to bioinformaticians
working with Multiple Sequence Alignments. Moreover, as
an attempt to widen the scope of portability of our models,
we plan to use a transfer learning approach to transfer
the knowledge learned by a model trained on the primate
sequence dataset to different sequence sets.
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