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Ventilation is a simple physiological function that ensures the vital supply of
oxygen and the elimination of CO2. The recording of the airflow through the
nostrils of a mouse over timemakes it possible to calculate the position of critical
points, based on the shape of the signals, to compute the respiratory frequency
and the volume of air exchanged. These descriptors only account for a part of the
dynamics of respiratory exchanges. In this work we present a new algorithm that
directly compares the shapes of signals and considers meaningful information
about the breathing dynamics omitted by the previous descriptors. The algorithm
leads to a new classification of inspiration and expiration, which reveals that mice
respond and adapt differently to inhibition of cholinesterases, enzymes targeted
by nerve gas, pesticide, or drug intoxication.
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1 Introduction

Measurement of respiratory function in conscious, spontaneously breathing animals
is essential in different settings such as studying drug effects on the respiratory system
(Murphy, 2002), monitoring mouse models of human diseases (Willmann et al., 2017)
or evaluating airway irritant molecules (Vijayaraghavan et al., 1993). Plethysmography
methods are commonly used to record respiration. Several plethysmographs exist whole-
body [WBP, Bartlett and Tenney (1970)], dual-chamber [DCP, Hoymann (2012)], head out-
of-body [HOP, Vijayaraghavan et al. (1993)], and the choice between them is based on a
trade-off between invasiveness and accuracy of measurement (Bates and Irvin, 2003).

For WBP, the mouse is placed in near-natural conditions: it is a large box where the
mouse is not restrained and canmove freely. Changes in pressure or flowwithin the chamber
are measured over time, reflecting changes of volume, humidity and temperature of air
entering and leaving the lung. Flow or differential pressure recordings allow the computation
of the respiratory frequency and the volumes exchanged. Nevertheless, lung function is
poorlymeasured, and the reproducibility of the experiment depends onmany environmental
parameters (Bates and Irvin, 2003; Bruggink et al., 2022).

The DCP consists of two sealed compartments where the animal’s head is in one
compartment and its body in the other. The mouse is constrained in a tube with the nose
pointing into the nasal compartment (respiration is primarily nasal in mice) (Mailhot-
Larouche et al., 2018). This device allows for independent monitoring of the nasal airflow
and the airflow caused by the thoracic movements of an animal. DCP is a relevant approach
to assessing the ventilatory mechanics of the respiratory system, and it provides information
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on ventilatory and lung function (Hoymann, 2012). As the
mouse is constrained, it limits the duration of respiration
recording to less than 1 h. As an alternative, the HOP uses
only the thoracic compartment imposing less constraint on
the mouse (Vijayaraghavan et al., 1993). Recordings from DCP
and HOP directly reflect the air inhaled and exhaled during
respiration. These methods have been used for several decades
to monitor changes in mouse respiration caused by airborne
chemicals on the airways (Vijayaraghavan et al., 1993) and have
been improved to limit air leakage from collar (Bruggink et al.,
2022).

Respiration airflows are used to compute respiratory cycle
descriptors like inspiration/expiration duration, air volume
inhaled/exhaled, or respiratory frequency [IXO2 software,
emka TECHNOLOGIES, Mailhot-Larouche et al. (2018)]. These
descriptors are essential to quantify respiratory exchanges;
nevertheless, they only reveal part of the information contained
in the respiration airflow.

Recently, a new machine learning-based method attempted
to incorporate the missing information by extracting respiratory
cycle patterns from flows recorded in WBP (Sunshine and
Fuller, 2021). They used principal component analysis and
a clustering algorithm to group common respiratory cycle
patterns. The groups reveal variations in the temporal appearance
of the flows that are not detectable with standard analysis
of respiratory rate and tidal volume. Because each group
had physiological significance, they could track significant
changes over time. However, the different categories cannot
be associated with physiological alterations or adaptations
because the signals recorded in WBP mix too many parameters
(volume/temperature/humidity).

It is well established that DCP orHOP ismuchmore accurate for
studying respiratory physiology thanWBP. Nonetheless, descriptors
inferred from the nasal or thoracic airflow also miss meaningful
information to describe breathing dynamics adequately. In this
study, we propose a new approach to classify the different respiratory
behaviors from signals recorded with DCP or HOP. The method
relies on a robust algorithm to identify the beginning of inspiration
and expiration phases. As a difference with (Sunshine and Fuller,
2021) which studies the respiration cycle, we independently study
inspiration and expiration. Our method is based on machine
learning tools for time series. It uses a K-Means clustering algorithm
and the well-established Dynamic Time Warping (DTW) distance.
DTW compares the shape of time series independently of time
fluctuations. This property is particularly interesting for handling
inter-individual variability. In contrast to (Sunshine and Fuller,
2021), we assess the similarity between inspiratory or expiratory
cycles directly from their shapes rather than from learned features. It
allows amore robust and interpretable study of respiratory behaviors
and dynamics. To evaluate the relevance of this new method, we
exploited part of the recordings from a previous experiment of
our group (Nervo et al., 2019), where we studied the consequences
on respiration of partial deficits of acetylcholinesterase (AChE)
and its inhibition. AChE normally destroys acetylcholine (ACh)
in synapses of the nervous systems (central and peripheral)
and skeletal muscles. Inhibition of this enzyme results in
respiratory arrest, which may have multiple origins (Stone,
2018).

2 Methods

2.1 Background

With a Double Chamber Plethysmograph (DCP), the nasal
airflow induced by breathing is tracked through the head
compartment (Hoymann, 2012), as illustrated on Figures 1A.
The flow is expressed in ml.s−1, and is a positive quantity for
inspiration, and a negative quantity for expiration. The detection of
inspiration or expiration start times cannot be done accurately from
the nasal airflow due to biological phenomena such as coughing
or vocalizing (Bates and Irvin, 2003). As an alternative, the lung
volume, which is obtained by integration of the nasal airflow, offers
more robust properties for such detection (Vijayaraghavan et al.,
1993). Intuitively, the lung volume fluctuates successively frombeing
empty (inspiration start time: tin) to being full (expiration start time:
tout). These states correspond to local minima and maxima on the
volume, which are easy to track with automated procedures. The
characterization of breathing phases is illustrated in Figures 1B.

2.2 Overview of the method

Themethod is composed of three main steps:

1. Detection of the respiratory cycles and extraction of the
inspiration/expiration sequences,

2. Computation of the reference sequences through an
unsupervised clustering procedure,

3. Characterization and symbolization of recordings based on the
extracted reference sequences.

Step 1: Detection of the respiratory cycles and extraction of
the inspiration/expiration sequences. The first step of the process
consists in extracting the respiratory cycles from the input data.
Each cycle is composed of two phases: inspiration and expiration.
A segmentation algorithm isolates the two periods. Simplistically,
given a raw signal s, the first step of our method outputs a set
of inspiration sequences {s(1)in ,…,s

(Ns)
in } and a set of expiration

sequences {s(1)out,…,s
(Ns)
out }, where Ns is the total number of cycles

observed in the original signal s. Figures 2A illustrates the detection
and extraction process of inspiration/expiration.

Step 2: Computation of the reference sequences. The second
step consists in computing a small number of reference sequences
from the sets of inspiration/expiration sequences. The reference
sequences represent groups of sequences with common properties
to highlight typical inspiration/expiration behaviors. To that aim,
the clustering algorithm K-means is combined with the measure of
fit Dynamic TimeWarping (DTW), which computes the similarities
between sequences of potentially different lengths.The output of this
step is a set of inspiration reference sequences {r(1)in ,r

(2)
in ,… } and

a set of expiration reference sequences {r(1)out,r
(2)
out,… }. Figures 2B

illustrates the computation process of reference sequences in the case
of inspiration.

Step 3: Characterization and symbolization of recordings. The
objective is to automatically characterize a recording s′ using the
reference sequences extracted in Step 2. To that end, the signal is
first segmented through the procedure described in Step 1. Then,
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FIGURE 1
(A): Illustration of a double-chamber plethysmograph. The term dpt stands for differential pressure transducer which measures the pressure in each
compartment, the pressure then being converted to flow. (B): Nasal airflow (top) and lung volume (bottom). During inspiration, airflow is positive (grey)
and during expiration, airflow is negative (pink).

FIGURE 2
(A): Step 1, Detection of the respiratory cycles and extraction of the inspiration/expiration sequences. (B): Step 2, Computation of the reference
sequences. The C(i) denote the clusters and r(i), the reference sequences. (C): Step 3, Characterization and symbolization of a recordings.

each of the Ns′ inspiration/expiration sequences present in s′, is
assigned a symbol which represents the reference sequence that
is closest considering the measure DTW. This procedure results
in a symbolic representation of s′, where each respiratory cycle is
replaced by a symbol composed of a letter (which specifies the type
of inspiration sequence observed) and a number (which specifies
the type of expiration sequence observed), Figures 2C illustrates the
process of building a symbolic representation.

2.3 Detection of the respiratory cycles and
extraction of the inspiration/expiration
sequences

As mentioned previously, nasal airflow suffers from noise,
making current inspiration and expiration phases detection
methods unreliable. Inaccurate detection then leads to biased
descriptors and eventually to false experimental conclusions. To
address this challenge we propose an algorithm that looks for local

minima andmaxima of the lung volume. Let s denote a nasal airflow
signal.

First the lung volume v is computed from the nasal airflow s.This
can be done by robust numerical integration:

vt ≔ (
t

∑
u=1

su)− (ât+ b̂) (1)

where â, b̂ ∈ ℝ are such that ∑tvt = 0 and ∑ttvt = 0. The affine
function t→ ât+ b̂ removes the linear trend appearing during the
integration process.

Next, the inspiration start times tin and the expiration
start times tout are identified using a peak-searching procedure
that detects local minima (respectively maxima), of the nasal
volume signal v. To ensure an alternation between inspiration
and expiration, the algorithm first searches for all local minima
(corresponding to the starts of the inspirations) and then searches
for the maximum between two consecutive local minima. The
algorithm that detects local minima/maxima is described in
Supplementary Appendix S1. Once all inspiration/expiration start
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FIGURE 3
(A): Undesirable sequence distortions. The grey line is the original signal and the blue line is the distorted signal. (B): Difference between Euclidean
alignment and DTW alignment. The compared sequences are in blue, and the orange lines represent the point-wise matching between the two
sequences in the Euclidean case and the DTW case. (C): Representation of a barycenter computed through our method BS-DBA. The learned
barycenter is in red, and the observations are in black.

times tin and tout are extracted, the original nasal airflow signal s is
split into a set of inspiration sequences {s(1)in ,…,s

(Ns)
in } and a set of

expiration sequences {s(1)out,…,s
(Ns)
out }, whereNs is the total number of

cycles observed in the original signal s.

2.4 Computation of the reference
sequences

Provided a set of inspiration/expiration sequences, we now aim
to compute K reference sequences that represent typical respiratory
behaviors. In the following sections, X = {x(1),…,x(N)} represents
a set of sequences (either inspiration or expiration) of potentially
different durations.

2.4.1 Clustering algorithm
The K reference sequences from the set X are computed

with the well-known unsupervised clustering procedure called K-
Means (Kaufman and Rousseeuw, 2009). This algorithm creates K
non-overlapping groups (or clusters) {C(1),…,C(K)} of sequences
with common properties. Roughly, K-Means is a two-step iterative
refinement technique that assigns each sequence to the closest
current centroid and then updates each centroid with regard to
the new assignments. A centroid is a reference sequence r(i) which
corresponds to the average sequence of the cluster C(i). Two crucial
ingredients of the K-means algorithm are the measure of fit that is
used to assign each sequence to a cluster and the procedure used
to compute the reference sequence of each cluster. Although most
publications usually use the Euclidean distance, it is not possible
in our context since the sequences to cluster do not have the same
duration. Also, themeasure of fitmust be invariant to some sequence
properties: amplitude offset, amplitude shift, time fluctuation, noise
and outliers. Visual representation of each distortions are presented
in Figures 3A.

The main steps of our clustering approach are:

1. The input sequences are pre-processed by taking the z-
normalized sequences.

2. The clustering algorithm is initialized using the K-Means++
algorithm (Arthur and Vassilvitskii, 2007).

3. Sequences are assigned to a cluster according to the Dynamic
Time Warping (DTW)measure of fit.

4. The reference sequences are computed using the Batch Stochastic
DTW Barycenter Averaging (BS-DBA) procedure.

5. Step 2 and 3 are repeated until a certain stopping criterion is met.

For our experiment, the stopping criterion corresponds to 10
iterations of steps 2 and 3.

2.4.2 Pre-processing
During the pre-processing step, all sequences are first centered

to zero mean and scaled to unit variance (z-normalization):

x̃t =
xt − x̄
σx

(2)

where x̄ and σx are respectively the average and the standard
deviation of x. The pre-processing step allows being invariant to
amplitude offset and amplitude shift.

2.4.3 Dynamic time warping
At each iteration, the K-Means algorithm assigns each sequence

to the nearest centroid. The distance is computed using DTW
(Berndt and Clifford, 1994). DTW is commonly used in times-
series data-mining (Fu, 2011; Esling and Agon, 2012). Intuitively,
DTW considers as very similar (the distance is close to zero) two
sequences of a given phenomenon occurring at different speeds.
This property is particularly interesting for our problem since some
mice may breathe in or exhale faster than others. To do this, DTW
finds an optimal match between a query sequence and a referent
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sequence by locally stretching or contracting the time axis of the
query sequence.TheDTWmeasure produces the squared Euclidean
distance between the aligned time series.

This measure is invariant to temporal fluctuation and can
compare sequences of different duration. Considering two
sequences x ∈ ℝm and y ∈ ℝn, the computation of the DTWmeasure
is done inO(mn) in time and space using dynamic programming. In
its original form, theDTWmeasure is sensitive to noise and outliers.
Such distortions can lead to pathological alignments with unrealistic
time dilations. To avoid such alignments, we use the Sakoe-Chiba
constraints which impose that the dilations are smaller than a given
duration (Sakoe and Chiba, 1978).

Figures 3B shows the difference between the linear mapping
of the Euclidean distance and the nonlinear mapping of the
DTW distance. A mathematical definition of DTW is given in
Supplementary Appendix S2.

2.4.4 Time-series averaging
Finding an average sequence is an important sub-routine of

K-Means algorithm. Indeed, the quality of each cluster is highly
dependent on the quality of its centroid (Aghabozorgi et al., 2015).
At each iteration, all sequences in the data setX are assigned to their
closest centroids {r(1),…,r(N)}. Then, each centroid is updated by
computing the average sequence based on the new assignment.

For any set of sequences X ′ ⊂ X , the average sequence, with
respect to the DTW, is the solution of the following optimization
problem:

arg min
y∈ℝL
∑

x′∈X ′
DTW2 (y,x′) (3)

where L > 0 is the average duration of the sequences in X ′.
Accurately and efficiently solving Expression 3 is not trivial

(Niennattrakul and Ratanamahatana, 2007; Jain, 2019). Traditional
averaging methods cannot deal with the non-linear mapping
between sequences of potentially different duration and several
algorithms have tried to solve this issue (Petitjean et al., 2011;
Morel et al., 2018). A recent work (Schultz and Jain, 2018) uses the
subdifferentiability property of the optimization function to develop
a stochastic subgradient descent algorithm (S-DBA). For a trade-off
between accuracy and speed, we implemented a batch version of S-
DBA called BS-DBA. Figures 3C illustrates the result of averaging
a time series data set using BS-DBA. Supplementary Appendix S3
provides details on the subdifferentiability of the optimization
function and the implementation of BS-DBA.

2.5 Characterization and symbolization of
recordings

From a recording s′, we first perform the segmentation
process described in Section 2.3 in order to extract the
inspiration/expiration sequences. Then, we use a 1-NN (nearest
neighbor) algorithm to assign each sequence to the reference
sequence, which is the closest to it, in the sense of theDTWmeasure.

To avoid incoherent symbols, some inspiration/expiration
sequences are treated as outliers if their distance to their reference
sequence is higher than a threshold. The threshold is different for
each reference sequence. It corresponds to the α-quantile of the

distance distribution observed within the reference sequence cluster
during the learning step. By default we choose the threshold value
α = 0.95.

This procedure yields a symbolic representation of s′, where each
respiratory cycle is replaced by a symbol composed of a letter (which
specifies the type of inspiration) and a number (which specifies the
type of expiration).

2.6 Connection with ventilation pattern
descriptors

Most ventilation pattern descriptors are computed with
algebraic formulas based on a cycle segmentation of airflow
using IOX2 software from emka TECHNOLOGIES (Mailhot-
Larouche et al., 2018). The algorithm to extract inspiration and
expiration sequences presented in Section 2.3 can be used as a
preprocessing step to compute such descriptors withmore precision.

In the present work and for the purpose of validation, we have
used four descriptors:

• Inspiratory/Expiratory Time (Ti/Te, s): Duration of
inspiration/expiration.
• Nasal Inspiratory/Expiratory Volume (NIV/NEV, ml):
Volume of air in/out during inspiration/expiration.

3 Data and experiment

3.1 Data origin

We applied our methodology to a subset of data from
experiments that aimed to understand and evaluate how
cholinesterase (ChE) inhibitors affect mice respiration with partial
deficit in AChE (Nervo et al., 2019). Acetylcholine (ACh) is a well-
known neurotransmitter in the central and peripheral nervous
systems. It is also found at the neuromuscular junction (NMJ).
ACh in synapses is hydrolyzed by acetylcholinesterase (AChE).
ACh is also used by numerous non-neuronal cells to communicate
(Grando et al., 2015). Inhibition ofChE changes the dynamic ofACh
and thus may modify respiration at different physiological levels. To
better understand the mechanisms, we have recorded the nasal
and thoracic airflow of mice with different partial AChE deficits
induced by injection of physostigmine, an inhibitor of ACHe, using a
Double Chamber Plethysmograph (DCP), (Mailhot-Larouche et al.,
2018). We recorded nasal and thoracic airflow from control mice
(WT mice), PRiMA KO mice [PRiMA mice: AChE deficiency in
cholinergic neurons of the brain and peripheral nervous systems
(autonomic and enteric)] (Farar et al., 2012); muscle KO mice
(AChE1iRR; absence of AChE in skeletal muscles); ColQ KO mice
(ColQ mice: no AChE anchoring in muscles and some tissues)
(Bernard et al., 2011).

As described in (Nervo et al., 2019), mice of different genotypes
were exposed as follows:

1. Phase 1: The mouse is placed in a DCP for 15 or 20 min to serve
as an internal control.

2. Phase 2: The mouse is removed from the DCP and injected with
physostigmine.
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FIGURE 4
Respiratory cycle map displays with nasal airflow (mL.s−1) on the left and nasal volume (mL) on the right. Positive flow corresponds to inspiration and
negative flow corresponds to expiration.

3. Phase 3:Themouse is placed back into theDCP, and its nasal flow
is recorded for 35 or 40 min.

3.2 Experiment

In order to test our approach, we have run and evaluated the
results of the following experiment:

1. Creation of a data set.
2. Extraction of training data set for inspiration/expiration.
3. Computation of inspiration/expiration referent sequences.
4. Symbolization of all signals in the data set.

Step 1: Creation of a data set. Our data set includes the
nasal airflow recording of 32 different mice. Among all recordings
available from Nervo et al. (2019), we have selected 8 mice for each
genotype: WT, PRiMA, AChE1iRR, ColQ. All mice were exposed
to the same inhibitor: physostigmine. All signals were recorded at
2,000 Hz and have been down-sampled to 250 Hz. By default, the
double chamber plethysmograph includes a bandpass filter, whose
band limits are 0.250 Hz and 35000Hz,which has not beenmodified.

Step 2: Extraction of training data set for inspiration/expiration.
On average, a mouse’s respiratory cycle lasts about 0.3 s.The original
data set contains approximately 350,000 cycles, and therefore
computing reference sequences (Section 2.4) from the entire data
set would have been time-consuming. Thus, for each recording,
we extracted 1,800 cycles that were evenly selected in time. This
subsampling corresponded to approximately 36 cycles per minute,
resulting in a set of 57,600 cycles that were divided into an
inspiration training data set and an expiration training data set.

Step 3: Computation of inspiration/expiration reference
sequences. Referent sequences were computed according to the
algorithm presented in Section 2.4. The hyperparameters are
presented in the following section. The learning is based on the
inspiration/expiration training data set.

Step 4: Symbolization of all signals in the data set. All recordings
in the original data set are symbolized. The symbolization is based
on the reference sequences learned from the training data sets.

3.3 Hyperparameters

The main parameters are presented below. Parameters for
respiratory cycle detection have been set based on physician
knowledge of the typical respiratory cycles. For the clustering
algorithm, the number of clusters has been set arbitrarily and the
Sakoe Chiba radius authorizes small dilatation.

• Respiratory cycle detection (Step 1):
• Prominence: 0.03 mL
• Window length: 2 s
• Minimum inspiration/expiration duration: 0.05 s
• Maximum inspiration/expiration duration: 2 s
• Clustering algorithm (Step 2, identical settings for inspiration
and expiration):
• Number of clusters: 5
• Number of iterations for K-Means: 10
• Sakoe Chiba radius: 0.01 s
• Reference sequence length: 0.2 s
• Symbolization (step 3):
• Quantile threshold: 0.95

A python implementation of the method is available https://
github.com/thibaut-germain/DCP_Clustering.

4 Results

In this section, we summarized the complete pipeline of our
method. It is composed of three main steps:
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1. The first step consists in detecting of the respiratory cycles and
extracting the inspiration/expiration sequences from the input
data, Figure 2A.

2. The second step consists in computing a small number of
reference sequences from the sets of inspiration/expiration
sequences. The reference sequences represent groups of
sequences with common properties to highlight typical
inspiration/expiration behaviors, Figure 2B.

3. The third step consists in simplifying a recording using a
symbolization based on the reference sequences extracted in Step
2, Figure 2C.

4.1 Categorization of the respiratory cycles

We first aim to categorize breathing cycles, inspirations,
and expirations. The limits of inspiration and expiration are
unambiguously defined from the volume obtained by integrating the
flow (Vijayaraghavan et al., 1993). We define a referent cycle as the
association between a referent inspiration and a referent expiration.
Considering K1 referent inspirations and K2 referent expirations,
there exist K1K2 referent cycles. In order to compare them, we
develop a map where each row corresponds to a referent inspiration
and each column to a referent expiration. Each referent cycle is
represented by an actual cycle selected as follows:

• Among the identically labeled cycles in the training database,
we select the cycle whose cumulative DTW distance (DTW
distance to the referent inspiration + DTW distance to the
referent expiration) is the smallest.
• The respiratory cycle map can be displayed using either
the nasal airflow or the nasal volume. In any case, the
inspiration/expiration phases are matched, accordingly, to their
attributed colors. For inspiration, the color scale goes from red
to yellow; for expiration, it goes from blue to green.
• Inspiration/expiration referent sequences are ordered in
increasing order according to the average duration observed
in each group. Therefore, as the number/letter increases, the
average inspiration/expiration duration is longer. Visually,
lighter colors (yellow/green) correspond to longer duration.

In our experiment, we set the number of inspiration and
expiration referent sequences to 5, as presented in Figure 4. Short
duration cycles (A0, A1, B0, B1) are characterized by a nasal airflow
of sinusoidal shape. All 25 of the resulting classes are used in the
following sections to visualize and compare the respiratory cycles of
mice of different strains before and after physostigmine injection.

4.2 Distribution of respiratory cycle
categories

In order to study the importance of each reference cycle for a
given symbolic representation, we introduce a new visualization of
the histogram that takes the form of a heat map. The respiratory
cycle map (RC map) corresponds to a heat map where rows
are inspiration symbols and columns are expiration symbols as
presented in Figure 5A. Thus, each cell corresponds to a referent

cycle, and its value is set to the percentage of time assigned to that
specific referent cycle. To ease the study of less frequent referent
cycles, we use a thresholded version of the respiratory RC map
where all reference sequences that represent more than 20% of the
total duration are assigned to the threshold value of 20%. A RC
map provides a quick understanding of the dominant respiratory
behavior of a mouse. In addition, RCmaps can be aggregated over a
population, allowing comparisons of a mouse’s respiratory behavior
to the average behavior.

In Figure 5B, RC maps are grouped by genotype: WT, PRIMA,
AChE1iRR, ColQ. For each genotype, the two left columns gathered
RC maps before injection, and the two left columns gathered RC
maps after injection.The bottom line corresponds to the average RC
maps observed per genotype before and after drug injection.

In addition, we have created two conjoint polar plots, one for
inspiration and one for expiration. Each angular axis corresponds
to a referent sequence, and the value on each axis is equal to the
percentage of time assigned to that specific referent sequence.These
values are linked together to form a polygon. As for RC maps, the
visualization can be done at the individual level or aggregated over
a group of mice. This representation complements RC maps as it
decorrelates inspiration from expiration, easing the study of both
mechanisms independently as presented in Figure 5C.

4.3 Time line representation of respiratory
cycle categories (bar codes)

Previous representations give an overview of the respiratory
behavior of a mouse or a population. Nonetheless, they do not
offer insights into the temporal evolution of a mouse’s respiratory
behavior when facing a stressor.This evolution can be read from the
symbolic representation with proper visualization.

To that aim, we construct a respiratory bar code for each mouse
that includes the time information, as presented in Figure 6A.
The respiratory bar code is composed of two lines, the upper
line represents the inspirations, and the lower line representing
the expirations. The central white area corresponds to the period
of inhibitor injection, and the light grey area corresponds to
unpredictable cycles. Each line is composed of rectangles whose
color refers to the associated reference sequence and whose length
is proportional to the duration of the associated respiratory cycle.

Figure 6B presents respiratory bar codes of all mice in the
data set. They are gathered by genotype, and mouse identification
numbers are on the left of the bar codes. For each genotype, the
left section corresponds to bar codes before injection and the right
section to bar codes after injection.

4.4 Statistical analysis of respiratory cycle
categories

RC maps provide visual comprehension of the heterogeneity in
breathing behaviors and changes due to the presence of a stressor.
In complement to the visual presentation, we provide a statistical
analysis that compares the breathing behaviors between genotypes
and the breathing responses to the presence of a stressor.
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FIGURE 5
(A): Respiratory Cycle map (RC map) built-up process. (B): Respiratory RC maps: All RC maps are truncated at the threshold value of 20%. RC maps are
grouped by genotype: WT, PRIMA, AChE1iRR, ColQ. For each genotype, the two left columns and the two right columns gathered RC maps
respectively before and after physostigmine injection. Numbers on RC maps correspond to the mouse id. The bottom line corresponds to the average
RC maps observed per genotype before and after drug injection. (C): Average reference sequence polar plots: Polar plots are grouped by genotype.
Inspirations are on the top, and expirations are on the bottom. The values on each angular axis correspond to the average percentage of time assigned
to the associated reference sequence. The blue polygon corresponds to the values observed before injection, and the red polygon corresponds to the
values observed after the injection.

The first statistical test compares the respiratory cycle
distribution of AChE-deficient mice (PRIMA, AChE1iRR, ColQ)
with that of controlmice (WT).Thenull hypothesis is that the cohort
of AChE-deficient mice has the same respiratory cycle distribution
as the cohort of control mice. The alternative hypothesis is different
respiratory cycle distributions.

The second statistical test compares the distribution of
respiratory cycles for each genotype before and after drug injection.
For the cohort of a given genotype, the null hypothesis is to have
the same distribution of respiratory cycles before and after drug
injection. The alternative hypothesis is different respiratory cycle
distributions.

In both cases, we implemented a multiple testing scheme with a
false discovery rate (FDR) correction of 5%, performing a Mann-
Whitney U test for each type of respiratory cycle. Application of
this test gives a map where each cell represents a type of respiratory
cycle, with the row corresponding to the type of inspiration and the
column to the type of expiration. A cell is colored black if the unit
null hypothesis is rejected after FDR correction. In each cell, we also
displayed the corrected p-value of the associated unit test.

All tests are rejected, Figure 7A, and the number of unit tests
rejected at 5% is for WT vs. PRIMA: 21, WT vs. AChE1iRR: 4,

WT vs. COLQ: 3. Similarly, all tests are rejected, Figure 7B, and
the number of unit tests rejected at 5% is for WT: 15, PRiMA: 3,
AChE1iRR: 3, COLQ: 3.

5 Discussion

This paper presents a new method to compare and quantify
cyclic signals that may be particularly appropriate for biological
investigations, such as respiratory signals. Rather than comparing
cycles based on the ventilation descriptors, cycles’ shapes are
compared to shape representations of most typical cycles. We will
discuss the contributions and limitations of this new strategy by
analyzing a part of recordings previously published (Nervo et al.,
2019).

5.1 Inspiration and expiration classes fit
respiratory physiological control

The classes learned with the new approach represent various
respiratory profiles that carry biological meaning. We illustrate
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FIGURE 6
(A): Respiratory bar codes built-up process. (B): Respiratory bar codes are gathered by genotype: (top,left): WT, (bottom, left): PRIMA, (top,right):
AChE1iRR, (bottom, right): ColQ. Numbers to the left of bar codes correspond to the mouse id. For each genotype, the left section corresponds to
barcodes before drug injection and the right section to bar codes after injection. Grey areas in bar codes like mouse PRIMA-2 correspond to
unpredictable cycles. Some experiments were shorter than others resulting in shorter bar codes.

some respiratory profiles through their classes in Figure 8. The last
15 min before physostigmine injection represents mice’s baseline
breathing behaviors. The control mice (WT) breathe with cycles of
type A0 and B0. Figure 8A shows 5 consecutive seconds of a raw
signal with respiratory cycles of B0. After injection of physostigmine,
the inspiration classes (A and B) are not changed for the control
mice (WT), as shown with the polar plot (Figure 5C). However, the
expiration class changes from type 0 to type 2, 3, 4. Raw signals
of 5 consecutive seconds of classes B4 are presented in Figure 8B.
The profile of these classes shows a long pause when the lungs
are inflated. They correspond to post-inspiratory pauses. They were
analyzed in Nervo et al. (2019), and the authors quantified the
duration of these pauses. The new approach captures significant
respiratory behaviors making previous results apparent with the
new representation: for control mice (WT), post-inspiratory pauses
appear after inhibitor injection.

The approach also presents details about the inspiration dynamic
of ColQ mice. Indeed, the cycles of ColQ mice before injection are
grouped into types C0 and D0, which we present in Figure 8C, D.
Inspiratory classes C and D are characterized by a nasal airflow
that enters in two phases. The two phases in class D are distinctive.
Compared to D, the separation between phases is less visible in C.
TheColQmouse is amodel of congenitalmyasthenic syndromewith
AChE deficit at the neuromuscular junctions. This mouse shows an

impairment of motor control, which could be reflected during the
motor control required for a smooth inspiration.

Bar codes (Figure 5B) also validate inspiration and expiration
classes. A bar code represents the symbolization of a raw signal
as a timeline where inspirations and expirations are colored
accordingly to their classes. Bar codes reveal the dynamics of
respiratory behaviors and their changes. For example, inspiration
classes for control mice (WT) after physostigmine injection are
almost unchanged. On the contrary, their expiration classes change
significantly after a latent period. This dynamic is consistent with
results in Nervo et al. (2019) where the mean frequency per minute
of respiratory cycle decreases after the injection of physostigmine
for control mice (WT). The frequency decrease corresponds to an
increase in the duration of the post-inspiration pauses per min.
Through the bar codes, it is possible to visualize the appearance
of expiration classes 3 and 4 after injection with remarkable
precision.

The inspiration and expiration classes have been constructed
without prior knowledge ofmice’s breathing behaviors. Nonetheless,
the classes present differences that can be interpreted in terms of
physiological modifications. For instance, some of the expiration
classes represent post-inspiratory pauses. New inspiration classes
have also been described, probably related to the motor controls
dynamics during the active ventilation phase.
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FIGURE 7
Multiple testing scheme with a false discovery rate (FDR) correction of 5%, performing a Mann-Whitney U test for each type of respiratory cycle. A cell
is colored black if the unit null hypothesis is rejected after FDR correction and includes the corrected p-value of the associated unit test. (A): Statistical
tests comparing the distribution of respiratory cycles of control (WT) and AChE-deficient (PRIMA, AChE1iRR, COLQ) mice before drug injection. (B):
Statistical tests comparing the distribution of respiratory cycles before and after drug injection for each genotype.

5.2 Classes reveal heterogeneity: an
observation masked by the averaging of
algebraic descriptors

Analyses on a small cohort can be biased if individual
responses are heterogeneous. Unfortunately, it is often difficult
to recognize this heterogeneity through some descriptors. The
new symbolization, based on typical inspiration/expiration, the
visualization and the quantification tools we proposed, offer
perspectives on this critical issue in biology. For example, it is
apparent on individual RC maps and bar codes that control mice
(WT) present homogeneous respiration; the respiration cycle types
are A0 and B0. After injection of AChE inhibitor, the RC maps and
bar codes of control mice WT-1, 2, 6, 7 show that they follow the
same evolutionary dynamics. Nevertheless, mice WT-3, 8 present
different dynamics, and mice WT-4,5 died during the experiment.
Thus, we can conclude that mice adapt differently to cholinesterase
inhibition by physostigmine. In addition, the tests highlight changes
that are significantly different.

We proposed in Boudinot et al. (2009) and Nervo et al. (2019)
that mice with partial AChE deficiency were remarkably adapted to
AChE deficit in the brain, autonomic nervous systems, and muscles.
Indeed, the most frequent respiratory cycles before injection are
composed with the inspiration of type A, B, C and the expiration
of kind 0, 1, 2. Looking at Figure 9, these reference sequences
share similar duration and volume. Therefore, it is impossible to
differentiate the genotypes based on inspiration/expiration duration
or volume.

The present study shows that the distributions of inspiration
and expiration classes on AChE1iRR mice are similar. AChE1iRR

mice do not have AChE in skeletal muscle. These mice show
a high homogeneity of adaptation despite muscle weakness. In
contrast, PRiMA mice, which have AChE deficiency in the brain
and autonomic nervous systems, adapted well to AChE inhibition,
but showed heterogeneous respiratory behavior. The heterogeneity
is apparent in inspiration and expiration classes, which suggests
the possibility of different respiratory behaviors to cope with
AChE deficit in the nervous system. The cohort of ColQ mice
also presents heterogeneity in respiratory behaviors, specifically
for inspiration. As discussed, the inspiration of ColQ mice is
characterized by types C and D. In contrast, the inspiration of
other genotypes is characterized by types A and B. While ColQ and
AChE1iRR mice have similar AChE deficiency in neuromuscular
junctions, AChE1iRR mice adapt better than ColQ mice which
also have AChE deficit in other tissues. This result suggests that
AChE deficit in skeletal muscle is insufficient to affect these mice’s
inspiration.

If the respiratory adaptations are different, it is not surprising
that the consequences of the injection of physostigmine are so
variable. Visualization of inspiration and expiration classes, either
in RC maps or bar code, makes it possible to account for this
diversity. After injection of physostigmine, the changes tend to affect
inspiration in AChE1iRR and ColQ mice, whereas expiration is
more affected in WT and PRiMA mice.

In summary, representing respiratory cycles by classes sharing
similar shapes reveals a diversity of unsuspected respiratory
behaviors that were not identifiable with descriptors deduced
from the airflow. This rich information is synthesized in graphical
representations highlighting how mice respond differently to
cholinesterase deficits or inhibition.
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FIGURE 8
Examples of typical respiratory behaviors. For each panel, the left column represents the referent cycle, and the right column is an extract from a
recording of up to 5 s where the reference cycle is repeated continuously. Charts with a blue background are expressed in nasal airflow, and charts
with a yellow background are expressed in nasal volume. (A): Referent cycle B0. (B): Referent cycle B4. Inspiration, expiration, and end-inspiratory
pause (EIP) duration are illustrated. (C): Referent cycle C0. (D): Referent cycle D0.

5.3 Inspiration and expiration classes evoke
distinct biological processes

Inspiration and expiration classes are defined without prior
knowledge of underlying biological processes. Inspiration classes A
and B represent a regular inspiration phase, while classes C and
D represent an inspiration phase with a more or less significant
pause. The pauses in category C are very short and always during
inspiration; they probably correspond to amotor impairment during
lung inflation (themain action of the diaphragm, a powerfulmuscle)
or by a fine control of the glottis. The longer pauses of class D may
occur during the air inflow and are probably similar, in nature, to
class C. In contrast, the long pauses of Class E correspond to a sort
of pause before the air enters the lungs. From a physiological point of
view, these pauses could correspond to a delay in the glottis’s active
opening, which is required to allow air to enter into the trachea. Two
situations can lead to the glottis remaining closed: the cessation of
muscle contractions that control the glottis opening or the spasm
(cramp) of the muscles that control the closing of the glottis.
Expiration class 0 represents a regular and probably passive phase
of expiration. Classes 2, 3 and 4 start with a post-inspiratory pause
whose duration increases progressively from category 2 to category
4. These post-inspiratory pauses are well described in the literature
and appear in different physiological conditions. They appear when
it is necessary to increase the air pressure in the lungs (short pauses)
or as reflexes (long pauses), such as those resulting from inhaling
molecules that irritate the upper airways (Dutschmann et al., 2014).

From these results we can conclude that inspiration and
expiration classes learned from a subset of recordings selected from
(Nervo et al., 2019) carry interpretable physiological meaning. It is
important to note that these classes are specific to the experiment.
For instance, applying our method to a set of signals presenting
bronchoconstrictions will likely lead to classes differentiating the
severity/variety of constrictions in a finer way than using the EF50
metric (Glaab and Braun, 2021).

5.4 Limits and future work

Our approach to analyzing respiratory signals is based on
learning typical inspirations and expirations, called reference
sequences. Currently, the number of referent sequences is arbitrarily
set by the user. By doing so, the user chooses the degree of
detail incorporated in the symbolization: adding referent sequences
divides typical breathing behaviors into subgroups with minor
variations. In that manner, reference sequences carry meaningful
physiological information for the user. Nevertheless, choosing a
good number of reference sequences can be complicated and time-
consuming without knowledge of respiratory behavior. In such
cases, several heuristics based on mathematical criteria exist to
define the number of reference sequences automatically (Kodinariya
and Makwana, 2013). In any case, these heuristics can be used as a
starting point to properly define the number of clusters in light of
the experiment objective.
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FIGURE 9
Box plots of the respiratory cycle descriptors: inspiration/expiration time and inspiration/expiration volume. Each box plot represents a referent
sequence. A box represents the first quartile (Q1), median, and third quartile (Q3). The lower whisker corresponds to the minimum value observed, and
the upper whisker is above the third quartile by 1.5 interquartile range (IQR: Q3-Q1).

In the current work, we limited ourselves to static descriptors of
reference sequences (RCmap, polar plot) and visual interpretation of
the breathing behavior evolution over time (bar plot). Nevertheless,
breathing behavior dynamics can also be quantified using the
proposed symbolization of recordings and applying symbolic
dynamics theory (Morse and Hedlund, 1938; Lind and Marcus,
2021). Symbolic dynamic theory has been developed to study how
a system’s configurations change over time and how similar initial
states can grow dissimilar.

During the experiment, we only symbolized recordings included
in the training data set. By doing so, we guaranteed that the
most common behaviors present in the recordings were taken
into account during the learning step. We do not recommend
symbolizing on other recordings as some typical behavior might be
negelcted. In future work, we would like to investigate the use of a
hierarchical clustering algorithm on a large data set composed of
recordings with various experimental conditions. By doing so, we
would like to create a universal referential of typical behaviors usable
across experiments that can adapt to the level of detail required by
selecting a symbolization directly from the hierarchy.

5.5 Prospective use

In this work, we have limited ourselves to plethysmograph
signals recorded with DCP, but the method and it can easily be

extended to head-out plethysmography (Bruggink et al., 2022) as
well as to other biological systems. Indeed, our approach relies on
accurate segmentation of plethysmograph signals, allowing relevant
studies of inspiration and expiration. Any biological system which
results in the recording of a cyclic signal can use our approach with
proper segmentation. For instance, in the case of electrocardiogram
signals, we could combine our approach with a heartbeat detection
algorithm (Pan and Tompkins, 1985; Zong and Jiang, 2003) to
detect and represent patterns of diseases like arrhythmias, heart
attacks, cardiomyopathy, and coronary heart disease. Then, the
symbolization of these signals could offer insightful information
about the underlying dynamics of such diseases.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Ethics statement

The animal study was reviewed and approved by Paris
Descartes University ethics committee for animal experimentation
(CEEA34.EK/AGC/LB.111.12).

Frontiers in Physiology 12 frontiersin.org

https://doi.org/10.3389/fphys.2023.1154328
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Germain et al. 10.3389/fphys.2023.1154328

Author contributions

Drafting of the original protocol EK Coordination of the study
CT, LO, and EK Acquisition of data E.K. Design of the statistical
analysis plan TG, CT, LO, and EK Analysis of data TG. Drafting
of the present manuscript TG, CT, LO, and EK Final approval
TG, CT, LO, and EK. All authors listed have made a substantial,
direct, and intellectual contribution to the work and approved it for
publication.

Funding

The work was supported by CNRS and AFM Telethon (Grant
No. 23138) to EK, and DIMMath Innov to TG.

Acknowledgments

We thank Lyle Graham for proofreading.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can
be found online at: https://www.frontiersin.org/articles/
10.3389/fphys.2023.1154328/full#supplementary-material

References

Aghabozorgi, S., Shirkhorshidi, A. S., andWah, T. Y. (2015). Time-series clustering -
a decade review. Inf. Syst. 53, 16–38. doi:10.1016/j.is.2015.04.007

Arthur, D., and Vassilvitskii, S. (2007). “K-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM symposium on discrete
algorithms (USA: Society for Industrial and Applied Mathematics), 1027–1035.

Bartlett, D., and Tenney, S. (1970). Control of breathing in experimental anemia.
Respir. Physiol. 10, 384–395. doi:10.1016/0034-5687(70)90056-3

Bates, J. H., and Irvin, C. G. (2003). Measuring lung function in mice:
The phenotyping uncertainty principle. J. Appl. physiology 94, 1297–1306.
doi:10.1152/japplphysiol.00706.2002

Bernard, V., Girard, E., Hrabovska, A., Camp, S., Taylor, P., Plaud,
B., et al. (2011). Distinct localization of collagen q and prima forms of
acetylcholinesterase at the neuromuscular junction. Mol. Cell. Neurosci. 46,
272–281. doi:10.1016/j.mcn.2010.09.010

Berndt, D. J., and Clifford, J. (1994). “Using dynamic time warping to find patterns
in time series,” in Proceedings of the 3rd International Conference on Knowledge
Discovery and Data Mining, 359–370. AAAI Press.

Boudinot, E., Bernard, V., Camp, S., Taylor, P., Champagnat, J., Krejci, E., et al.
(2009). Influence of differential expression of acetylcholinesterase in brain and
muscle on respiration.Respir. physiology Neurobiol. 165, 40–48. doi:10.1016/j.resp.2008.
10.003

Bruggink, S., Kentch, K., Kronenfeld, J., and Renquist, B. (2022). A leak-free head-out
plethysmography system to accurately assess lung function in mice. J. Appl. Physiology
133, 104–118. doi:10.1152/japplphysiol.00835.2021

Dutschmann, M., Jones, S., Subramanian, H., Stanic, D., and Bautista, T. (2014). The
physiological significance of postinspiration in respiratory control. Prog. brain Res. 212,
113–130. doi:10.1016/B978-0-444-63488-7.00007-0

Esling, P., and Agon, C. (2012). Time-series data mining. ACM Comput. Surv. 45,
1–34. doi:10.1145/2379776.2379788

Farar, V., Mohr, F., Legrand, M., d’Incamps, B. L., Cendelin, J., Leroy, J.,
et al. (2012). Near-complete adaptation of the prima knockout to the lack
of central acetylcholinesterase. J. Neurochem. 122, 1065–1080. doi:10.1111/j.1471-
4159.2012.07856.x

Fu, T. (2011). A reviewon time series datamining.Eng. Appl. Artif. Intell. 24, 164–181.
doi:10.1016/j.engappai.2010.09.007

Glaab, T., and Braun, A. (2021). Noninvasivemeasurement of pulmonary function in
experimental mousemodels of airway disease. Lung 199, 255–261. doi:10.1007/s00408-
021-00443-9

Grando, S., Kawashima, K., Kirkpatrick, C., Kummer, W., and Wessler, I. (2015).
Recent progress in revealing the biological andmedical significance of the non-neuronal
cholinergic system. Int. Immunopharmacol. 29, 1–7. doi:10.1016/j.intimp.2015.08.023

Hoymann, H. (2012). Lung function measurements in rodents in safety
pharmacology studies. Front. Pharmacol. 3, 156. doi:10.3389/fphar.2012.00156

Jain, B. (2019). Revisiting inaccuracies of time series averaging under dynamic time
warping. Pattern Recognit. Lett. 125, 418–424. doi:10.1016/j.patrec.2019.05.022

Kaufman, L., and Rousseeuw, P. J. (2009). Finding groups in data: An introduction to
cluster analysis. New Jersey, United States: John Wiley and Sons.

Kodinariya, T., and Makwana, P. (2013). Review on determining number of cluster
in k-means clustering. Int. J. 1, 90–95.

Lind, D., and Marcus, B. (2021). An introduction to symbolic dynamics and coding.
Cambridge: Cambridge University Press.

Mailhot-Larouche, S., Deschênes, L., Lortie, K., Gazzola, M., Marsolais, D., Brunet,
D., et al. (2018). Assessment of respiratory function in conscious mice by double-
chamber plethysmography. J. Vis. Exp. 2018, 57778. doi:10.3791/57778

Morel, M., Achard, C., Kulpa, R., and Dubuisson, S. (2018). Time-series averaging
using constrained dynamic time warping with tolerance. Pattern Recognit. 74, 77–89.
doi:10.1016/j.patcog.2017.08.015

Morse, M., and Hedlund, G. (1938). Symbolic dynamics. Am. J. Math. 60, 815–866.
doi:10.2307/2371264

Murphy, D. J. (2002). Assessment of respiratory function in safety pharmacology.
Fundam. Clin. Pharmacol. 16, 183–196. doi:10.1046/j.1472-8206.2002.00060.x

Nervo, A., Calas, A., Nachon, F., and Krejci, E. (2019). Respiratory failure triggered
by cholinesterase inhibitors may involve activation of a reflex sensory pathway by
acetylcholine spillover. Toxicology 424, 152232. doi:10.1016/j.tox.2019.06.003

Niennattrakul, V., and Ratanamahatana, C. A. (2007). “Inaccuracies of shape
averaging method using dynamic time warping for time series data,” in Proceedings
of the International conference on computational science, 513–520. Springer.

Pan, J., and Tompkins, W. J. (1985). A real-time qrs detection algorithm. IEEE Trans.
Biomed. Eng. 32, 230–236. doi:10.1109/TBME.1985.325532

Petitjean, F., Ketterlin, A., and Gançarski, P. (2011). A global averaging method for
dynamic time warping, with applications to clustering. Pattern Recognit. 44, 678–693.
doi:10.1016/j.patcog.2010.09.013

Sakoe, H., and Chiba, S. (1978). Dynamic programming algorithm optimization
for spoken word recognition. IEEE Trans. Acoust. speech, signal Process. 26, 43–49.
doi:10.1109/tassp.1978.1163055

Frontiers in Physiology 13 frontiersin.org

https://doi.org/10.3389/fphys.2023.1154328
https://www.frontiersin.org/articles/10.3389/fphys.2023.1154328/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2023.1154328/full#supplementary-material
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/0034-5687(70)90056-3
https://doi.org/10.1152/japplphysiol.00706.2002
https://doi.org/10.1016/j.mcn.2010.09.010
https://doi.org/10.1016/j.resp.2008.10.003
https://doi.org/10.1016/j.resp.2008.10.003
https://doi.org/10.1152/japplphysiol.00835.2021
https://doi.org/10.1016/B978-0-444-63488-7.00007-0
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1111/j.1471-4159.2012.07856.x
https://doi.org/10.1111/j.1471-4159.2012.07856.x
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1007/s00408-021-00443-9
https://doi.org/10.1007/s00408-021-00443-9
https://doi.org/10.1016/j.intimp.2015.08.023
https://doi.org/10.3389/fphar.2012.00156
https://doi.org/10.1016/j.patrec.2019.05.022
https://doi.org/10.3791/57778
https://doi.org/10.1016/j.patcog.2017.08.015
https://doi.org/10.2307/2371264
https://doi.org/10.1046/j.1472-8206.2002.00060.x
https://doi.org/10.1016/j.tox.2019.06.003
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1109/tassp.1978.1163055
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Germain et al. 10.3389/fphys.2023.1154328

Schultz, D., and Jain, B. (2018). Nonsmooth analysis and subgradient methods
for averaging in dynamic time warping spaces. Pattern Recognit. 74, 340–358.
doi:10.1016/j.patcog.2017.08.012

Stone, R. (2018). How to defeat a nerve agent. How defeat a nerve agent 359, 23.
doi:10.1126/science.359.6371.23

Sunshine, M. D., and Fuller, D. D. (2021). Automated classification of whole body
plethysmography waveforms to quantify breathing patterns. Front. Physiology 1347,
690265. doi:10.3389/fphys.2021.690265

Vijayaraghavan, R., Schaper, M., Thompson, R., Stock, M., and Alarie, Y. (1993).
Characteristic modifications of the breathing pattern of mice to evaluate the effects

of airborne chemicals on the respiratory tract. Archives Toxicol. 67, 478–490.
doi:10.1007/BF01969919

Willmann, R., Gordish-Dressman, H., Meinen, S., Rüegg, M., Yu,
Q., Nagaraju, K., et al. (2017). Improving reproducibility of phenotypic
assessments in the dyw mouse model of laminin-α2 related congenital
muscular dystrophy. J. Neuromuscul. Dis. 4, 115–126. doi:10.3233/JND-
170217

Zong, W., and Jiang, G. B. M. D. (2003). “A robust open-source algorithm to detect
onset and duration of qrs complexes,” in Computers in cardiology (New Jersey, United
States: IEEE), 737–740.

Frontiers in Physiology 14 frontiersin.org

https://doi.org/10.3389/fphys.2023.1154328
https://doi.org/10.1016/j.patcog.2017.08.012
https://doi.org/10.1126/science.359.6371.23
https://doi.org/10.3389/fphys.2021.690265
https://doi.org/10.1007/BF01969919
https://doi.org/10.3233/JND-170217
https://doi.org/10.3233/JND-170217
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

