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Abstract

In this paper, we analyze a new asynchronous rumor spreading protocol to deliver
a rumor to all the nodes of a large-scale distributed network. This protocol relies
on successive pull operations involving k different nodes, with k ≥ 2, and called
k-pull operations. Specifically during a k-pull operation, an uninformed node
a contacts k − 1 other nodes at random in the network, and if at least one
of them knows the rumor, then node a learns it. We perform a detailed study
in continuous-time of the total time Θk,n needed for all the n nodes to learn
the rumor. These results extend those obtained in a previous paper which dealt
with the discrete-time case. We obtain the mean value, the variance and the
distribution of Θk,n together with their asymptotic behavior when the number
of nodes n tends to infinity.

Keywords: Rumor spreading time, k-pull protocol, Poisson Process, Markov chain,
Asymptotic analysis

1 Introduction

Randomized rumor spreading or gossiping is an important communication mecha-
nism that allows the dissemination of information in large-scale and open networks.
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A large-scale and open network comprises a collection of sequential computing enti-
ties (e.g., processes, processors, nodes, agents, peers) that join and leave the system
at any time, and communicate with one another by exchanging messages. Random-
ized rumor spreading was initially proposed by Deemers et al. [1] for the update of a
database replicated at different sites, and has then been adopted in many applications
due to its robustness and simplicity. In contrast to reliable communication broadcasts
which must provide agreement on the broadcast value with possibly additional order-
ing guarantees on the delivery of updates from different sources, a randomized rumor
spreading procedure provides reliability only with some probability. A randomized
spreading rumor protocol describes the rules required for one or more pieces of infor-
mation known by an arbitrary node in the network (we call such a node an informed
node) to be spread to all the nodes of the network. The push and pull protocols are
the basic operations used by the nodes to propagate an information over the entire
network [1, 2]. With the push operation, an informed node contacts some randomly
chosen node in the system, and gives it the rumor while with the pull operation, an
uninformed node contacts some random node and asks for the rumor. Note that in
both cases the contacted node may already know the rumor or not. The same node
can perform both operations according to whether it knows or not the rumor, which
corresponds to the push-pull protocol, or performs only one, either a pull or push
operation, which corresponds to the pull or push protocols respectively. One of the
important questions raised by these protocols is the spreading time, that is the time
needed for the rumor to be known by all the nodes of the network.

To answer such a question, one first needs to specify how synchronized nodes
are, or in other words whether we suppose that all the nodes of the system act in a
synchronous way or not. In the former case, the system model is synchronous while
in the latter case it is asynchronous. The most studied one is the synchronous model.
This model assumes that all the nodes of the network act synchronously, which allows
the algorithms designed in this model to divide time in synchronized rounds. During
each synchronized round, each node a of the network selects at random one of its
neighbors b and either sends the rumor to b if a knows it (push operation) or gets
the rumor from b if b knows the rumor (pull operation). In this model, the spreading
time of a rumor is defined as the number of synchronous rounds necessary for all the
nodes to know the rumor. When the underlying graph is complete, it has been shown
by Frieze [3] that the number of rounds divided by log2(n) converges in probability to
1 + ln(2) when the number n of nodes in the graph tends to infinity. Further results
have been established (see for example [4, 5] and the references therein), the most
recent ones resulting from the observation that the rumor spreading time is closely
related to the conductance of the graph of the network, see [6]. Investigations have
also been done in different topologies of the network as in [7–10], in the presence of
link or nodes failures as in [11], in dynamic graphs as in [12], and in general graphs in
terms of vertex expansion [13]. Another alternative consists in letting the nodes make
more than one call during the push or pull operations [14]. The authors show that
the push-pull protocol takes O (log n/ log log n) rounds in expectation if the number
of neighbors of a node is chosen independently according to a power law distribution
with exponent β ∈ (2, 3).
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In large scale networks, that is in networks involving several thousands of nodes,
assuming that all nodes act synchronously is a very strong assumption. Thus several
authors, including [15–19], suppose an asynchronous model, that is a model in which
nodes asynchronously trigger operations with randomly chosen nodes in the system,
either to push, pull or push-pull information. The asynchronous gossip protocol is
usually modeled by a continuous-time stochastic (Markovian) process [15–19]. This
type of stochastic processes belongs to the death process category, which has many
applications in demography, queuing theory, performance engineering, epidemiology,
biology and many other distributed applications. For instance, in [20], an analysis of
the susceptible-infected model –corresponding to an asynchronous push-pull model–
allows us in some cases to explicit the state probabilities by using the Laplace trans-
form on the Kolmogorov forward equation. However, these techniques prove ineffective
when the transition rate is non-linear (Laplace transform inversion becomes a tricky
exercise). Most of the rumor spreading protocols studied in the asynchronous models
rely either on the push-pull operations or on the push operations. Indeed, pushing the
information allows us to initiate the rumor very quickly but then struggles to reach the
few uninformed nodes. In contrast, the pull algorithm attracted very little attention
because this operation was long considered inefficient to spread a rumor within a large
scale network [21]. It is actually very useful in systems fighting against message satu-
ration (see for instance [22]). The ineffectiveness of the pull protocol stems from the
fact that it takes some time before the rumor reaches a phase of exponential growth.

The objective of this paper is to further develop this line of inquiry by studying
the k-pull protocol in the continuous-time case. This protocol counterbalances the
slow initiation of pull-based rumour spreading protocols by increasing the chances
of learning the rumor with each operation. A local clock following an exponential
distribution with rate λ is associated with each uninformed node of the system. Each
time the clock of an uniformed node rings, this node contacts k−1, with k ≥ 2 distinct
nodes, chosen at random uniformly among the n − 1 other nodes. If at least one of
these contacted nodes knows the rumor, the initiator of the k-pull operation learns
the rumor and clears its clock.

Concretely, the k-pull operation is interesting in all situations in which you would
like to benefit from multiple concomitant responses to build up your opinion. This
is typically the case in fault tolerant distributed applications (including Byzantine
fault tolerance, consensus, clock synchronization, leader election), as well as in large
distributed applications (e.g., peer-to-peer communication, blockchain) where nodes
require sufficiently many responses/votes to cope with the presence of faulty nodes.
Other scenario that would take advantage of such an operation is cybersecurity. When
investigating cybersecurity incidents, experts typically conduct their investigation in
the form of a knowledge graph to explore and discover complex attack paths. For
instance, the Defants company [23] has developed a model for representing raw system
and network information in the form of a knowledge graph. This graph can contain up
to millions of nodes about an incident that took place on a network of several hundreds
machines and users. In such a graph, the nodes model the elements of the system:
machines, user accounts, session information, files, services and so on. Two nodes are
related if an action carried out on one of them has generated the second. These actions
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may include decryption, decompression, execution or packet transmission. By relying
on the k-pull operation, the expert will be able to compare or audit concomitant
responses, giving rise to fast and informed decisions.

The remainder of the paper is organized as follows. In Section 2, we present the
asynchronous k-pull protocol and introduce the random variable Θk,nwhich represents
the total amount of time needed for all the nodes to know the rumor. We prove in
Section 3 that the mean number of k-pull operations needed to inform all the n nodes
of the system, assuming that a single node initially knows the rumor, that is E(Θk,n),
is equivalent to k ln(n)/(k − 1)λ when the number of nodes n in the system tends
to infinity. We also show that the limiting variance of Θk,n is equal to (1 + 1/(k −
1)2)π2/6λ2 when n tends infinity. The distribution of the rumor spreading time Θk,n

is analyzed in Section 4. We provide explicit limiting distributions of Θk,n −E(Θk,n)
and Θk,n − k ln(n)/(k − 1)λ when n tends to infinity. All these results are illustrated
using numerical values. Section 5 concludes the paper.

2 The model

As we will see in this section, the results obtained for the discrete-time model of the
k-pull rumor spreading, which has been analyzed in [24], cannot be used to deal with
the continuous-time model of the k-pull rumor spreading. Indeed, we need here a much
more sophisticated analysis.

We consider a complete network of size n in which each node may be asked for a
piece of information (pull event). The algorithm starts with a single node informed of
the rumor. A local clock following an exponential distribution with rate λ is associated
with each uniformed node of the system. Each time the clock of an uniformed node s
rings, this node contacts k−1, with k ≥ 2, distinct nodes, chosen at random uniformly
among the n−1 other nodes. If at least one of these contacted nodes knows the rumor,
node s learns it and clears its clock (i.e., s remains contactable but does not contact
other nodes). We suppose that the k-pull operation once triggered is instantaneous
i.e., the time for a node to contact k − 1 other nodes and to receive their response is
immediate

Since the clock of an uninformed node rings after a time that is exponentially
distributed with rate λ, we naturally introduce the continuous-time Markov chain
Z = {Zt, t ≥ 0}, where Zt represents the number of informed nodes at continuous-
time t ≥ 0. Specifically the transitions of Z occur at successive instants τ0 = 0, τ1, . . .,
where the τi − τi−1, i ≥ 1, are independent and exponentially distributed with rate
(n− i)λpk,n(i), where

pk,n(i) =


1−

(
n− 1− i

k − 1

)
(
n− 1

k − 1

) = 1−
k−1∏
h=1

(
1− i

n− h

)
if 1 ≤ i ≤ n− k

1 if n− k + 1 ≤ i ≤ n− 1.

(1)
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Indeed, pk,n(i) is the probability, given that Zt = i, that the set of k− 1 chosen nodes
(i.e., k − 1 among n − 1) at the next alarm clock contains at least one node among
the i informed nodes. Hence the global clock of the process rings according to an
exponential distribution whose rate is proportional to the amount of uniformed nodes.
Note that a jump of process Z corresponds to a new informed node.

Observe also that the continuous-time model of the rumor spreading corresponds
to a physical time, that is the total amount of time needed for all the n nodes to
learn the rumor, while the discrete-time model stands for the total number of k-pull
operations needed for all the n nodes to learn the rumor.

We denote by Θk,n the random variable defined by

Θk,n = inf{t ≥ 0 | Zt = n}

which represents the continuous-time model i.e., the total amount of time needed for
all the nodes to know the rumor. The spreading time Θk,n can thus be expressed as
a sum of independent and exponentially distributed random variables. Specifically,
introducing the notation Uk,n(i) = τi − τi−1, for i ≥ 1 with τ0 = 0, we have

Θk,n =

n−1∑
i=1

Uk,n(i), (2)

where Uk,n(1), . . . , Uk,n(n−1) are independent and Uk,n(i) is exponentially distributed
with rate (n− i)λpk,n(i).

The authors of [24] used two technical lemmas (Lemma 2 and 3 of [24]) to analyze
the asymptotic behavior of the moments and the distribution of the rumor spreading
time in the discrete-time case. These two lemmas allow them to provide simple lower
and upper bounds for the probabilities pk,n(i). These bounds are then used to get
other asymptotically equal bounds of the moments of the discrete-time rumor spread-
ing time which the sum of geometric random variables with parameters pk,n(i). In
the continuous-time case, the bounds of the pk,n(i) obtained in [24] do not lead to
asymptotically equal bounds of the moments of the continuous-time rumor spreading
time which is the sum of exponential random variables with rates (n− i)λpk,n(i). This
is due to the multiplicative factor n − i which arises in the rates (n − i)λpk,n(i). We
thus need much more refined bound than those obtained in [24].

3 Moments of the rumor spreading time

We analyze in this section the first two moments of the rumor spreading time by using
appropriate lower and upper bounds. The following technical lemma is used to obtain
their asymptotic behavior. In this lemma, γ is the Euler-Mascheroni constant given
by γ ≈ 0.5772156649.
Lemma 1. Let g be a Lipschitz function on interval [0, 1].

If g(0) ̸= 0 then

n∑
i=1

1

i
g

(
i

n

)
= g(0) ln(n) + γg(0) +

∫ 1

0

g(x)− g(0)

x
dx+ ε(n).
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where ε(n) is the remainder of the Euler-Mascheroni representation of the harmonic
sum in terms of the logarithm which satisfies limn−→∞ ε(n) = 0.

Proof. Using the integral form of the remainder for the Taylor series of function g, we
get

g(x)− g(0) = xG(x), where G(x) =

∫ 1

0

g′(tx)dt,

function g′ being the derivative of g. We then have

n∑
i=1

1

i
g

(
i

n

)
− g(0)

n∑
i=1

1

i
=

n∑
i=1

1

i

i

n
G

(
i

n

)
=

1

n

n∑
i=1

G

(
i

n

)
−→
n→∞

∫ 1

0

G(x)dx,

since the last term is a Riemann sum. We then use the following well-known
development of the harmonic sum

n∑
i=1

1

i
= ln(n) + γ + ε(n),

where ε(n) is such that limn−→∞ ε(n) = 0.

As usual, for two sequences (un) and (vn) we introduce the notation un ∼
n−→∞

vn to

mean that lim
n−→∞

un/vn = 1. In particular, from Lemma 1 we get, for any function g

Lipschitz on [0, 1],

If g(0) ̸= 0 then

n∑
i=1

1

i
g

(
i

n

)
∼

n−→∞
g(0) ln(n). (3)

3.1 Expected rumor spreading time

Using (1) and (2), the expected rumor spreading time writes

E(Θk,n) =
1

λ

n−1∑
i=1

1

(n− i)pk,n(i)
=

1

λ

n−k∑
i=1

1

(n− i)pk,n(i)
+

1

λ

k−1∑
i=1

1

i
. (4)

Using the fact that 0 ≤ h ≤ k in Relation (1), we easily get

1−
(
1− i

n

)k−1

≤ pk,n(i) ≤ 1−
(
1− i

n− k

)k−1

. (5)

Introducing the notation

αn =

n−k∑
i=1

1

(n− i)pk,n(i)
,

these inequalities lead to
γn ≤ αn ≤ βn, (6)
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where

βn =

n−k∑
i=1

1

(n− i)

[
1−

(
1− i

n

)k−1
] and γn =

n−k∑
i=1

1

(n− i)

[
1−

(
1− i

n− k

)k−1
] .

We now show that a refined analysis of the terms βn and γn leads to a precise
description of the asymptotic behavior of the expected rumor spreading time E(Θk,n).

For k ≥ 2, we introduce the function fk defined, for all x ∈ [0, 1] by

fk(x) =
1

1 + (1− x) + (1− x)
2
+ · · ·+ (1− x)

k−2
.

Observe that function fk is clearly Lipschitz on [0, 1]. It is frequently used in the
remainder of the paper.
Lemma 2. For all k ≥ 2, we have

βn =
k ln(n)

k − 1
+

γk

k − 1
−

k−1∑
i=1

1

i
− ln(k − 1)

k − 1
+ ε(n),

where ε(n) is such that limn−→∞ ε(n) = 0.

Proof. For all k ≥ 2 and y ∈ R, using the identity

1− yk−1 = (1− y)
(
1 + y + · · ·+ yk−2

)
,

and by definition of function fk, we have

βn =

n−k∑
i=1

fk

(
i

n

)
(n− i)

[
1−

(
1− i

n

)] =

n−k∑
i=1

n

i(n− i)
fk

(
i

n

)

=

n−k∑
i=1

(
1

i
+

1

n− i

)
fk

(
i

n

)
(7)

=

n−k∑
i=1

1

i
fk

(
i

n

)
+

n−1∑
i=k

1

i
fk

(
1− i

n

)

=

n∑
i=1

1

i
fk

(
i

n

)
+

n∑
i=1

1

i
fk

(
1− i

n

)

−
n∑

i=n−k+1

1

i
fk

(
i

n

)
−

k−1∑
i=1

1

i
fk

(
1− i

n

)
− 1

n
fk(0).
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Observing that

lim
n−→∞

[
n∑

i=n−k+1

1

i
fk

(
i

n

)
+

k−1∑
i=1

1

i
fk

(
1− i

n

)
+

1

n
fk(0)

]
= fk(1)

k−1∑
i=1

1

i
,

we obtain

βn =

n∑
i=1

1

i
fk

(
i

n

)
+

n∑
i=1

1

i
fk

(
1− i

n

)
− fk(1)

k−1∑
i=1

1

i
+ ε(n),

where ε(n) is such that limn−→∞ ε(n) = 0. Using now twice Lemma 1, once with
g(x) = fk(x) and once again with g(x) = fk(1 − x), we obtain, since function fk is
Lipschitz with fk(0) = 1/(k − 1) ̸= 0 and fk(1) = 1 ̸= 0,

βn =
k ln(n)

k − 1
+

γk

k − 1
−

k−1∑
i=1

1

i
+

∫ 1

0

(
fk(1− x) + fk(x)

x
− k

(k − 1)x

)
dx+ ε(n).

We need to compute the quantity

I :=

∫ 1

0

(
fk(1− x) + fk(x)

x
− k

(k − 1)x

)
dx.

Coming back to the definition of fk, we introduce the polynomial

qk(x) = 1 + x+ · · ·+ xk,

so that fk(x) = 1/qk−2(1− x) and fk(1− x) = 1/qk−2(x). On top of that, we observe
that k/(k − 1) = 1 + 1/(k − 1) = fk(0) + fk(1). These two observations lead to

I =

∫ 1

0

1

x

(
1

qk−2(x)
− 1

qk−2(0)
+

1

qk−2(1− x)
− 1

qk−2(1)

)
dx,

and the variable change x := 1− x to deal with the second difference leads to

I =

∫ 1

0

[
1

x

(
1

qk−2(x)
− 1

qk−2(0)

)
+

1

1− x

(
1

qk−2(x)
− 1

qk−2(1)

)]
dx.

Now the whole point in order to compute this integral is to factorize x in the first
difference 1/qk−2(x) − 1/qk−2(0), and to factorize 1 − x in the second difference
1/qk−2(x) − 1/qk−2(1), so as to remove the apparent singularities and to recover
computable quantities.

Concerning the first difference, we observe that

qk−2(0)− qk−2(x) = −x− x2 − · · · − xk−2 = −xqk−3(x),
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which gives

1

x

(
1

qk−2(x)
− 1

qk−2(0)

)
= − qk−3(x)

qk−2(0)qk−2(x)
= −qk−3(x)

qk−2(x)
.

The other difference requires slightly more attention. We claim that the following
formula holds

qk−2(1)− qk−2(x) = (1− x)
[
(k − 2)qk−3(x)− xq′k−3(x)

]
. (8)

Admitting the result for the time being, we obtain

1

1− x

(
1

qk−2(x)
− 1

qk−2(1)

)
=

(k − 2)qk−3(x)− xq′k−3(x)

qk−2(1)qk−2(x)

=
(k − 2)qk−3(x)− xq′k−3(x)

(k − 1)qk−2(x)
.

Eventually, this provides

I =

∫ 1

0

[
−qk−3(x)

qk−2(x)
+

(k − 2)qk−3(x)− xq′k−3(x)

(k − 1)qk−2(x)

]
dx

= − 1

k − 1

∫ 1

0

qk−3(x) + xq′k−3(x)

qk−2(x)
dx

= − 1

k − 1

∫ 1

0

qk−3(x) + xq′k−3(x)

xqk−3(x) + 1
dx,

where the last equality comes from the observation qk−2(x) = xqk−3(x)+1. As a final
result, we recover, since (xqk−3(x) + 1)

′
= xq′k−3(x) + qk−3(x), the value

I = − ln (pk−3(1))

k − 1
= − ln (k − 1)

k − 1
.

There remains to prove formula (8). The formula can easily be proved using a recursion

procedure. Alternatively, one may write, using the fact that 1−xj = (1−x)
∑j−1

ℓ=0 x
ℓ,

the relations

qk−2(1)− qk−2(x) =

k−2∑
j=1

(
1− xj

)
= (1− x)

k−2∑
j=1

j−1∑
ℓ=0

xℓ = (1− x)

k−3∑
ℓ=0

k−2∑
j=ℓ+1

xℓ

= (1− x)

k−3∑
ℓ=0

(k − 2− ℓ)xℓ = (1− x)
[
(k − 2)qk−3(x)− xq′k−3(x)

]
,

which completes the proof.

We consider now the term γn.
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Lemma 3. For all k ≥ 2, we have

lim
n−→∞

(γn − βn) = 0.

Proof. By definition of function fk, we obtain easily

γn =

n−k∑
i=1

fk

(
i

n− k

)
(n− i)

[
1−

(
1− i

n− k

)] = (n− k)

n−k∑
i=1

1

i(n− i)
fk

(
i

n− k

)

=
n− k

n

n−k∑
i=1

(
1

i
+

1

n− i

)
fk

(
i

n− k

)
(9)

The function fk being Lipschitz on interval [0, 1], defining Ck = maxz∈[0,1] |f ′
k(z)|

where f ′
k is the derivative of fk, we get, using Relations (7) and (9),

∣∣∣∣γn − n− k

n
βn

∣∣∣∣ ≤ n− k

n

n−k∑
i=1

(
1

i
+

1

n− i

) ∣∣∣∣fk ( i

n− k

)
− fk

(
i

n

)∣∣∣∣
≤ Ck

n− k

n

n−k∑
i=1

(
1

i
+

1

n− i

)
ik

n(n− k)

≤ Ck
k

n

(
n−k∑
i=1

1

i
+

n−1∑
i=k

1

i

)
.

This bound tends to 0 when n tends to infinity. Using Lemma 2, we have
lim

n−→∞
βn/n = 0. It follows that

lim
n−→∞

|γn − βn| ≤ lim
n−→∞

∣∣∣∣γn − n− k

n
βn

∣∣∣∣+ k lim
n−→∞

βn

n
= 0,

which completes the proof.

The following theorem gives the asymptotic behavior of the expected rumor spread-
ing time. It will be used in Corollary 12 to get an asymptotic behavior of the
distribution of Θk,n.
Theorem 4. For all k ≥ 2, we have

E(Θk,n) =
1

λ

(
k ln(n)

k − 1
+

γk

k − 1
− ln(k − 1)

k − 1

)
+ ε(n),

where ε(n) is such that limn−→∞ ε(n) = 0.
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k E

(
Θk,103

)
Fk,103 E

(
Θk,104

)
Fk,104 E

(
Θk,105

)
Fk,105

2 14.95397 14.96994 19.57305 19.57511 24.18003 24.18028
3 10.87364 10.88088 14.33386 14.33476 17.78853 17.78864
4 9.60801 9.613757 12.68314 12.68387 15.75380 15.75399
5 9.00458 9.009640 11.88722 11.88787 14.76602 14.76610
6 8.65542 8.660076 11.42258 11.42318 14.18621 14.18628
7 8.42946 8.433840 11.11962 11.12019 13.80647 13.80654
8 8.27209 8.276265 10.90724 10.90779 13.53925 13.53932
9 8.15665 8.160662 10.75054 10.75107 13.34141 13.34148
10 8.06861 8.072498 10.63041 10.63093 13.18929 13.18935

Table 1 Values of E
(
Θk,n

)
and Fk,n for k = 2, . . . , 10, λ = 1 and n = 103, 104, 105.

Proof. Relations (4) and (6) give

γn
λ

+
1

λ

k−1∑
i=1

1

i
≤ E(Θk,n) ≤

βn

λ
+

1

λ

k−1∑
i=1

1

i
.

Using Lemma 2 and Lemma 3, we easily get the desired result.

In particular, from Theorem 4 we get,

E(Θk,n) ∼
n−→∞

k ln(n)

(k − 1)λ
.

We illustrate our results through Table 1, which gives the expected rumor spreading
time E(Θk,n) when λ = 1, for different values of k and n and the approximation given
by Theorem 4. For that purpose, we introduce the notation

Fk,n =
1

λ

(
k ln(n)

k − 1
+

γk

k − 1
− ln(k − 1)

k − 1

)
.

We observe that the asymptotic value Fk,n is very close to E (Θk,n). Observe
also, as expected, that E (Θk,n) increases with n and decreases with k. Moreover, for
example when k = 5, we see that if the local clock of each uninformed node rings at
an expected frequence of 1 per unit of time (i.e. λ = 1) then, when the number n of
nodes is equal to 105, the expected rumor spreading time is equal to 14.76602 units
of time, which is quite small regarding the large number of nodes.

3.2 Variance of the rumor spreading time

The following lemma is needed to obtain the limiting value of the variance of Θk,n

when n tends to infinity.
Lemma 5. Let g be a Lipschitz function on interval [0, 1].

If g(0) ̸= 0 then lim
n−→∞

n∑
i=1

1

i2
g

(
i

n

)
= g(0)

π2

6
.

11



Proof. Function g being Lipschitz on interval [0, 1], for all x, y ∈ [0, 1], we have

|g(x)− g(y)| ≤ C|x− y|, where C = max
z∈[0,1]

|g′(z)|

and g′ is the derivative of function g. We then have, by taking x = i/n and y = 0,∣∣∣∣∣
n∑

i=1

1

i2
g

(
i

n

)
− g(0)

n∑
i=1

1

i2

∣∣∣∣∣ ≤
n∑

i=1

1

i2

∣∣∣∣g( i

n

)
− g(0)

∣∣∣∣ ≤ C
1

n

n∑
i=1

1

i
∼

n−→∞
C
ln(n)

n
.

This means that

lim
n−→∞

n∑
i=1

1

i2
g

(
i

n

)
= g(0)

∞∑
i=1

1

i2
= g(0)

π2

6
,

which completes the proof.

Using (1) and (2), the variance of the rumor spreading time writes

V(Θk,n) =
1

λ2

n−1∑
i=1

1

(n− i)2p2k,n(i)
=

1

λ2

n−k∑
i=1

1

(n− i)p2k,n(i)
+

1

λ2

k−1∑
i=1

1

i2
. (10)

As we did for the expected rumor spreading time and introducing the notation

δn =

n−k∑
i=1

1

(n− i)2p2k,n(i)
,

we obtain
ηn ≤ δn ≤ ζn, (11)

where

ζn =

n−k∑
i=1

1

(n− i)2

[
1−

(
1− i

n

)k−1
]2 , ηn =

n−k∑
i=1

1

(n− i)2

[
1−

(
1− i

n− k

)k−1
]2 .

In the following two lemma, we obtain the limiting value of both ζn and ηn when
n tends to infinity.
Lemma 6. For all k ≥ 2, we have

lim
n−→∞

ζn =
1

(k − 1)2
π2

6
+

∞∑
i=k

1

i2
.

12



Proof. By definition of function fk, we have

ζn =

n−k∑
i=1

f2
k

(
i

n

)
(n− i)2

[
1−

(
1− i

n

)]2 =

n−k∑
i=1

n2

i2(n− i)2
f2
k

(
i

n

)
. (12)

Observing that

n2

i2(n− i)2
=

1

(n− i)2
+

1

i2
+

2

n

(
1

i
+

1

n− i

)
, (13)

we have

ζn =

n−k∑
i=1

1

(n− i)2
f2
k

(
i

n

)
+

n−k∑
i=1

1

i2
f2
k

(
i

n

)
+

2

n

n−k∑
i=1

(
1

i
+

1

n− i

)
f2
k

(
i

n

)
.

We denote respectively by ζn,1, ζn,2 and ζn,3 these three sums. Concerning ζn,3, we
have

n−k∑
i=1

(
1

i
+

1

n− i

)
f2
k

(
i

n

)
=

n−k∑
i=1

1

i
f2
k

(
i

n

)
+

n−1∑
i=k

1

i
f2
k

(
1− i

n

)
.

Applying twice Relation (3), once with g(x) = f2
k (x) and once again with g(x) =

f2
k (1− x), we obtain

n−k∑
i=1

1

i
f2
k

(
i

n

)
+

n−1∑
i=k

1

i
f2
k

(
1− i

n

)
∼

n−→∞

(
f2
k (0) + f2

k (1)
)
ln(n) =

(
1 +

1

(k − 1)2

)
ln(n)

which implies that

lim
n−→∞

ζn,3 = lim
n−→∞

2

(
1 +

1

(k − 1)2

)
ln(n)

n
= 0.

Concerning ζn,2, since we have

ζn,2 =

n−k∑
i=1

1

i2
f2
k

(
i

n

)
,

applying Lemma 5 with function g(x) = f2
k (x), we obtain

lim
n−→∞

ζn,2 = f2
k (0)

π2

6
=

1

(k − 1)2
π2

6
.

13



Finally, for term ζn,1, we have

ζn,1 =

n−k∑
i=1

1

(n− i)2
f2
k

(
i

n

)
=

n−1∑
i=k

1

i2
f2
k

(
1− i

n

)

Applying again Lemma 5 with function g(x) = f2
k (1− x), we obtain

lim
n−→∞

ζn,1 = f2
k (1)

∞∑
i=k

1

i2
=

∞∑
i=k

1

i2
.

Putting these three limits together leads to

lim
n−→∞

ζn =
1

(k − 1)2
π2

6
+

∞∑
i=k

1

i2
,

which completes the proof.

We analyze now the limiting value of ηn when n tends to infinity.
Lemma 7. For all k ≥ 2, we have

lim
n−→∞

ηn =
1

(k − 1)2
π2

6
+

∞∑
i=k

1

i2
.

Proof. Using again the function fk, we obtain

ηn =

n−k∑
i=1

f2
k

(
i

n− k

)
(n− i)2

[
1−

(
1− i

n− k

)]2 =
(n− k)2

n2

n−k∑
i=1

n2

i2(n− i)2
f2
k

(
i

n− k

)
. (14)

The function fk being Lipschitz on interval [0, 1], defining Ck = maxz∈[0,1] |(f2
k )

′(z)|
where (f2

k )
′ is the derivative of f2

k , we get, using Relations (12) and (14),

∣∣∣∣ηn − (n− k)2

n2
ζn

∣∣∣∣ ≤ (n− k)2

n2

n−k∑
i=1

n2

i2(n− i)2

∣∣∣∣f2
k

(
i

n− k

)
− fk

(
i

n

)∣∣∣∣
≤ Ck

(n− k)2

n2

n−k∑
i=1

n2

i2(n− i)2
ik

n(n− k)

≤ Ck
k(n− k)

n2

n−k∑
i=1

n2

i2(n− i)2
.

14



Using Relation (13), we have

lim
n−→∞

n−k∑
i=1

n2

i2(n− i)2
=

∞∑
i=1

1

i2
+

∞∑
i=k

1

i2
=

π2

3
−

k−1∑
i=1

1

i2
.

It follows that

lim
n−→∞

∣∣∣∣ηn − (n− k)2

n2
ζn

∣∣∣∣ = 0.

This result together with the result of Lemma 6 leads to

lim
n−→∞

ηn = lim
n−→∞

ζn =
1

(k − 1)2
π2

6
+

∞∑
i=k

1

i2
,

which completes the proof.

Theorem 8. For all k ≥ 2, we have

lim
n−→∞

V(Θk,n) =

(
1 +

1

(k − 1)2

)
π2

6λ2
.

Proof. Relations (10) and (11) give

ηn
λ2

+
1

λ2

k−1∑
i=1

1

i2
≤ V(Θk,n) ≤

ζn
λ2

+
1

λ2

k−1∑
i=1

1

i2
.

The use of Lemma 6 and Lemma 7 leads to the desired result.

We illustrate this result through Table 2, which gives the variance of the rumor
spreading time V(Θk,n) when λ = 1, for different values of k and n and its limiting
value given by Theorem 8. For that purpose, we denote this limiting value by Vk, that
is

Vk =

(
1 +

1

(k − 1)2

)
π2

6λ2
.

We observe that V (Θk,n) is very close to its limiting value Vk. Observe also that
V (Θk,n) decreases with k.

4 Distribution of the rumor spreading time

This section provides explicit limiting distributions such as Θk,n − E(Θk,n) when n
tends to infinity. We introduce the notation µk,n(i) = λ(n − i)pk,n(i). Recall that
Uk,n(i) is exponentially distributed with rate µk,n(i) and that

Θk,n =

n−1∑
i=1

Uk,n(i).

15



k V

(
Θk,103

)
V

(
Θk,104

)
V

(
Θk,105

)
Vk

2 3.3111727246 3.2929244424 3.2902659327 3.2898681337
3 2.0598946906 2.0567171079 2.0562398628 2.0561675836
4 1.8290154857 1.8279392316 1.8277382394 1.8277045187
5 1.7481896847 1.7478599785 1.7477614057 1.7477424460
6 1.7107521018 1.7107894334 1.7107427649 1.7107314295
7 1.6903987592 1.6906492342 1.6906334201 1.6906266798
8 1.6781158082 1.6785034176 1.6785078427 1.6785041498
9 1.6701368648 1.6706190746 1.6706376972 1.6706361616
10 1.6646618989 1.6652127502 1.6652418289 1.6652418948

Table 2 Values of V
(
Θk,n

)
and Vk for k = 2, . . . , 10, λ = 1 and

n = 103, 104, 105.

The main result of this section is Theorem 10 whose proof needs the following lemma.
Lemma 9. For all k ≥ 2, we have

lim
m−→∞

lim sup
n−→∞

n∑
i=m

1

(2n+ 1− i)2p2k,2n+1(i)
= 0.

and

lim
m−→∞

lim sup
n−→∞

n∑
i=m

1

i2p2k,2n+1(2n+ 1− i)
= 0.

Proof. Introducing the notation

∆m,n(k) =

n∑
i=m

1

(2n+ 1− i)2

[
1−

(
1− i

2n+ 1

)k−1
]2

we obtain, using inequality (5),

n∑
i=m

1

(2n+ 1− i)2p2k,2n+1(i)
≤ ∆m,n(k).

By definition of function fk we write

∆m,n(k) =

n∑
i=m

(2n+ 1)2

(2n+ 1− i)2i2
f2
k

(
i

2n+ 1

)
.

Observing that function fk is increasing on interval [0, 1] and that fk(1) = 1, we obtain
using Relation (13), with 2n+ 1 instead n,

∆m,n(k) ≤
n∑

i=m

(2n+ 1)2

(2n+ 1− i)2i2

16



=

n∑
i=m

1

(2n+ 1− i)2
+

n∑
i=m

1

i2
+

2

2n+ 1

n∑
i=m

(
1

i
+

1

2n+ 1− i

)

=

2n+1−m∑
i=n+1

1

i2
+

n∑
i=m

1

i2
+

2

2n+ 1

(
n∑

i=m

1

i
+

2n+1−m∑
i=n+1

1

i

)

=

2n+1−m∑
i=m

1

i2
+

2

2n+ 1

(
2n+1−m∑

i=m

1

i

)
≤

2n+1−m∑
i=m

1

i2
+

2(1 + ln(2n+ 1−m)

2n+ 1
.

The limm−→∞ lim supn−→∞ of both terms is 0 because
∑

i 1/i
2 is a converging series.

This proves the first relation.
Concerning the second relation, introducing the notation

Λm,n(k) =

n∑
i=m

1

i2

[
1−

(
1− 2n+ 1− i

2n+ 1

)k−1
]2

we obtain in the same way, using inequality (5),

n∑
i=m

1

i2p2k,2n+1(2n+ 1− i)
≤ Λm,n(k)

and, using function fk,

Λm,n(k) =

n∑
i=m

(2n+ 1)2

(2n+ 1− i)2i2
f2
k

(
1− i

2n+ 1

)
.

As we did for term ∆m,n(k), we have

Λm,n(k) ≤
n∑

i=m

(2n+ 1)2

(2n+ 1− i)2i2
,

which in turn leads to the same result.

We are now able to prove the following theorem.
Theorem 10. Let (Zi)i≥1 be a sequence of i.i.d. random variables exponentially
distributed with rate 1 and let W be defined by

W =

∞∑
i=1

Zi − 1

i
.
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We then have

Θk,n −E(Θk,n)
L−−→ 1

(k − 1)λ
W (1) +

1

λ
W (2) as n −→ ∞

where W (1) and W (2) are i.i.d. with the same distribution as W .

Proof. Recalling that µk,n(i) = λ(n−i)pk,n(i), we have, for all n ≥ 2, i ∈ {1, . . . , n−1}
and x ≥ 0,

P{µk,n(i)Uk,n(i) > x} = P{Uk,n(i) > x/µk,n(i)} = e−x.

Thus if Zi is exponentially distributed with rate 1, we have µk,n(i)Uk,n(i)
L
=

Zi. Moreover since the (Uk,n(i))i∈{1,...,n−1} are independent, the (Zi)i≥1 are also
independent.

Observing now that for each fixed i and k, we have, from Relation (1),

pk,n(i) = i

k−1∑
h=1

1

n− h
+ o(1/n),

we obtain
lim

n−→∞
µk,n(i) = λ lim

n−→∞
(n− i)pk,n(i) = (k − 1)λi.

From Relation (1), we also trivially get

lim
n−→∞

µk,n(n− i) = λi lim
n−→∞

pk,n(n− i) = λi.

Defining Rk,n(i) = Uk,n(i)−E(Uk,n(i)) we obtain, since E(Uk,n(i)) = 1/µk,n(i),

Rk,n(i) = Uk,n(i)−E(Uk,n(i)) =
µk,n(i)Uk,n(i)− 1

µk,n(i)

L−−→ Zi − 1

(k − 1)λi
as n −→ ∞. (15)

In the same way, we get

Rk,n(n− i) =
µk,n(n− i)Uk,n(n− i)− 1

µk,n(n− i)

L−−→ Zi − 1

λi
as n −→ ∞. (16)

Suppose that n is odd, i.e., that n = 2ℓ+ 1. Defining

Vk,ℓ =

ℓ∑
i=1

Rk,2ℓ+1(i) and V k,ℓ =

ℓ∑
i=1

Rk,2ℓ+1(2ℓ+ 1− i),

we have

Θk,2ℓ+1 −E(Θk,2ℓ+1) =

2ℓ∑
i=1

[Uk,2ℓ+1(i)−E(Uk,2ℓ+1(i))]

18



=

2ℓ∑
i=1

Rk,2ℓ+1(i) = Vk,ℓ + V k,ℓ. (17)

Observe that the random variables Vk,ℓ and V k,ℓ are independent.
The rest of the proof consists in checking the hypothesis of the principle of

accompanying laws of Theorem 9.1.13 of [25]. We introduce the notation

Vk,ℓ,m =

m−1∑
i=1

Rk,2ℓ+1(i) and V k,ℓ,m =

m−1∑
i=1

Rk,2ℓ+1(2ℓ+ 1− i).

Using the fact that E(Rk,n(i)) = 0 and that the Rk,n(i) are independent, we have

E
(
(Vk,ℓ − Vk,ℓ,m)2

)
= E

[ ℓ∑
i=m

Rk,2ℓ+1(i)

]2 = V

(
ℓ∑

i=m

Rk,2ℓ+1(i)

)

=

ℓ∑
i=m

V(Rk,2ℓ+1(i)) =

ℓ∑
i=m

V(Uk,2ℓ+1(i)) =

ℓ∑
i=m

1

µ2
k,2ℓ+1(i)

=
1

λ2

ℓ∑
i=m

1

(2ℓ+ 1− i)2p2k,2ℓ+1(i)

and, in the same way,

E
(
(V k,ℓ − V k,ℓ,m)2

)
=

ℓ∑
i=m

1

µ2
k,2ℓ+1(2ℓ+ 1− i)

=
1

λ2

ℓ∑
i=m

1

i2p2k,2ℓ+1(2ℓ+ 1− i)

Using Lemma 9, we have

lim
m−→∞

lim sup
ℓ−→∞

E((Vk,ℓ − Vk,ℓ,m)2) = lim
m−→∞

lim sup
ℓ−→∞

E((V k,ℓ − V k,ℓ,m)2) = 0.

Using now the Markov inequality, we obtain, for all ε > 0,

P{|Vk,ℓ − Vk,ℓ,m| ≥ ε} = P{(Vk,ℓ − Vk,ℓ,m)2 ≥ ε2} ≤ E((Vk,ℓ − Vk,ℓ,m)2)

ε2

and

P{
∣∣V k,ℓ − V k,ℓ,m

∣∣ ≥ ε} = P{(V k,ℓ − V k,ℓ,m)2 ≥ ε2} ≤ E((V k,ℓ − V k,ℓ,m)2)

ε2
.

Putting together these results, we deduce that for all ε > 0, we have

lim
m−→∞

lim sup
ℓ−→∞

P{|Vk,ℓ − Vk,ℓ,m| ≥ ε} = lim
m−→∞

lim sup
ℓ−→∞

P{
∣∣V k,ℓ − V k,ℓ,m

∣∣ ≥ ε} = 0.

(18)

19



Let us introduce the notation

Wk,m =
1

(k − 1)λ

m−1∑
i=1

Zi − 1

i
and W k,m =

1

λ

m−1∑
i=1

Zi − 1

i
.

Using (15) and (16) and the fact that the Rk,n(i) are independent, we have

Vk,ℓ,m
L−−→ Wk,m and V k,ℓ,m

L−−→ W k,m as ℓ −→ ∞. (19)

The hypothesis of the principle of accompanying laws of Theorem 9.1.13 of [25] are
properties (18) and (19). We can thus conclude that

Vk,ℓ
L−−→ 1

(k − 1)λ
W and V k,ℓ

L−−→ 1

λ
W as ℓ −→ ∞.

This means, from Relation (17), that

Θk,2ℓ+1 −E(Θk,2ℓ+1)
L−−→ 1

(k − 1)λ
W (1) +

1

λ
W (2) as ℓ −→ ∞,

where W (1) and W (2) are independent and identically distributed as W . The same
reasoning applies in the case where n = 2ℓ.

Corollary 11. For all x ∈ R and k ≥ 2, we have

lim
n−→∞

P {Θk,n −E(Θk,n) ≤ x} =

∫ ∞

0

exp
(
−t− t−(k−1)e−(k−1)λx−kγ

)
dt.

Proof. L. Gordon has proved in [26] that

−γ +

+∞∑
i=1

1− Zi

i

L
= ln(Z1),

where (Zi) are i.i.d. exponential with rate 1. Thus, by definition of W in Theorem 10,
we have

W
L
= −γ − ln(Z1).

Introducing W (1) L
= −γ − ln(Z1) and W (2) L

= −γ − ln(Z2), we obtain from
Theorem 10, for all x ∈ R,

lim
n−→∞

P {Θk,n −E(Θk,n) > x} = P

{
1

(k − 1)λ
W (1) +

1

λ
W (2) > x

}
= P

{
− 1

λ

(
kγ

k − 1
+

ln(Z1)

k − 1
+ ln(Z2)

)
≤ x

}
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= P

{
ln(Z1)

k − 1
+ ln(Z2) ≥ −λx− kγ

k − 1

}
= P

{
Z

1/(k−1)
1 Z2 ≥ e−λx−kγ/(k−1)

}
=

∫ ∞

0

P

{
Z1 ≥ t−(k−1)e−(k−1)λx−kγ

}
e−tdt

=

∫ ∞

0

exp
(
−t− t−(k−1)e−(k−1)λx−kγ

)
dt,

which completes the proof.

Corollary 12. For all x ∈ R and k ≥ 2, we have

lim
n−→∞

P

{
Θk,n − k ln(n)

(k − 1)λ
≤ x

}
=

∫ ∞

0

exp

(
−t− t−(k−1)e−(k−1)λx

k − 1

)
dt

Proof. Observe first that we have

P

{
Θk,n − k ln(n)

(k − 1)λ
≤ x

}
= P

{
Θk,n −E(Θk,n) ≤ x+

k ln(n)

(k − 1)λ
−E(Θk,n)

}
.

From Theorem 4, we have

lim
n−→∞

(
k ln(n)

(k − 1)λ
−E(Θk,n)

)
= −γk − ln(k − 1)

(k − 1)λ
.

It follows from Corollary 11 that

lim
n−→∞

P

{
Θk,n − k ln(n)

(k − 1)λ
≤ x

}
=

∫ ∞

0

exp

(
−t− t−(k−1)e−(k−1)λx

k − 1

)
dt.

which completes the proof.

We illustrate the result of Corollary 11 using simulations experiments. We
introduce the notation

Fk(x) =

∫ ∞

0

exp
(
−t− t−(k−1)e−(k−1)λx−kγ

)
dt

We plot in Figure 1 the cumulative distribution function P {Θk,n −E(Θk,n) ≤ x} for
the values k = 2 and k = 10 when n = 104 nodes using a sample of 104 values
resulting from the distribution of Θk,n. We also plot in Figure 1 the correspond-
ing limits F2(x) and F10(x). We observe that the limiting distribution Fk(x) is very
close to the simulation results which tells us that the convergence speed seems to be
quite good. Indeed, the maximal absolute value of the difference observed between
P
{
Θk,104 −E(Θk,104) ≤ x

}
and Fk(x) is less than 0.006.
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Fig. 1 Cumulative distribution function of Θk,n −E(Θk,n) for k = 2, k = 10 and n = 104 and their
limiting distribution when n −→ ∞

5 Conclusion

We considered the asynchronous k-pull protocol in continuous time and analyzed the
total amount of time needed for all the nodes to know a rumor that a single node
possesses initially. We obtained asymptotic values of both the expectation and the
variance of this total amount of time. We also provided explicit limiting results con-
cerning its distribution. All this work has been done by considering that the network
of nodes is a complete network which means to each node may be asked for the rumor.
Clearly, this analysis will not hold for more general networks and this is one of our
objectives for future works.
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