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Hyperbolic Radial Spanning Tree∗

David Coupier †, Lucas Flammant ‡ and Viet Chi Tran §

August 6, 2023

We define and analyze an extension to the d-dimensional hyperbolic space of the Ra-
dial Spanning Tree (RST) introduced by Baccelli and Bordenave in the two-dimensional
Euclidean space (2007). In particular, we will focus on the description of the infinite
branches of the tree. The properties of the two-dimensional Euclidean RST are ex-
tended to the hyperbolic case in every dimension: almost surely, every infinite branch
admits an asymptotic direction and each asymptotic direction is reached by at least
one infinite branch. Moreover, the branch converging to any deterministic asymptotic
direction is unique almost surely. To obtain results for any dimension, a completely new
approach is considered here. Our strategy mainly involves the two following ingredients,
that rely on the hyperbolic Directed Spanning Forest (DSF) introduced and studied
in Flammant (2019). First, the hyperbolic metric allows us to obtain fine control of
the branches’ fluctuations in the hyperbolic DSF without using planarity arguments.
Then, we couple the hyperbolic RST with the hyperbolic DSF and conclude thanks to
the precise estimates mentioned before.

Key words: continuum percolation, hyperbolic space, stochastic geometry, random geometric
tree, Radial Spanning Tree, Directed Spanning Forest, Poisson point processes.
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1. Introduction
Geometric random trees are well studied in the literature since they interact with many other
fields, such as communication networks, particles systems or population dynamics (e.g. [15]).
Several works have established scaling limits for two-dimensional radial trees [10, 9] and translation
invariant forests [11, 27, 16]. In addition, random spanning trees appear in the context of first
passage percolation [17]. A complete introduction to geometric random graphs is given in [23].
Here we are interested in the Radial Spanning Tree (RST), introduced by Baccelli and Bordenave

[1] in the Euclidean plane and with motivations from communication networks. The construction
of this tree is the same on the plane R2 or on the hyperbolic space Hd+1 (presented below). The
set of vertices is given by a homogeneous Poisson Point Process (PPP) N of intensity λ. The RST
rooted at the origin 0 is the graph obtained by connecting each point z ∈ N to its parent A(z),
defined as the closest point to z among all points z′ ∈ N ∪{0} that are closer to the origin than z.
This defines a random tree rooted at the origin with a radial structure. Given a path, we will say
that the forward direction is towards 0 and the backward direction is towards infinity. An infinite
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backward path is defined as a sequence of Poisson points (zn)n≥0 ∈ (N ∪ {0})N with z0 = 0 and
zn = A(zn+1) for any n ≥ 0. Because a vertex can be the ancestor of no other vertex, all backward
paths are not infinite.
The topological properties of the bi-dimensional Euclidean RST are well-understood. Baccelli

and Bordenave showed that almost surely (a.s.), any infinite backward path admits an asymptotic
direction, i.e. that a.s. for any infinite path (zn)n≥0, the sequence (zn/|zn|)n≥0 converges to a
limit in the unit sphere S1 of R2. The limit is called the asymptotic direction of the infinite path.
Moreover, a.s., every asymptotic direction of S1 is reached by at least one infinite backward path
and there exists a.s. a unique infinite path in any given deterministic asymptotic direction [1].
These results on the infinite paths are completed by Baccelli, Coupier & Tran [2].

For any integer d ≥ 1, the hyperbolic space Hd+1 is a (d+ 1)-dimensional Riemannian manifold
with constant negative curvature, that can be chosen equal to −1 without loss of generality. It
admits a set of ideal boundary points ∂Hd+1, and Hd+1 := Hd+1 ∪ ∂Hd+1 denotes the hyperbolic
space endowed with its boundary. It is a non-amenable space, i.e. the measure of the boundary of
a large subset is not negligible with respect to its volume. The hyperbolic space is defined in more
details in [7, 8, 22, 26].
There is a growing interest for the study of random models in a hyperbolic setting. Benjamini and

Schramm establish percolation results on regular tilings and Voronoï tessellations in the hyperbolic
plane [3]. Mean characteristics of the Poisson-Voronoï tessellation have also been considered in
a general Riemannian manifold by Calka et al. [6]. This interest is explained by at least two
reasons. First, hyperbolic random graphs are well-fitted to model social networks [5]. Secondly,
strong differences have been noticed for properties of random models depending on whether they are
considered in an Euclidean or in a hyperbolic setting. For example, some hyperbolic random graphs
admit a non-degenerate regime with infinitely many unbounded components in the hyperbolic
space [28, 18], which is generally not the case in the Euclidean space. In addition, behaviors of
non-amenable spaces are well studied in a discrete context [4, 20, 24].
Thus it is natural to consider and study the hyperbolic RST, which we define in the same way

as the Euclidean RST. A simulation of the two-dimensional hyperbolic RST is given in Figure 1.
In this paper, we extend the results of Baccelli and his coauthors to hyperbolic geometry in every
dimension. Here is our main result:

Theorem 1.1. For any dimension d ≥ 1 and any intensity λ, the following happens:

(i) almost surely, any infinite backward path (zn)n∈N admits an asymptotic direction, i.e. there
exists z∞ ∈ ∂Hd+1 such that limn→∞ zn = z∞ (in the sense of the topology of Hd+1);

(ii) almost surely, for any z∞ ∈ ∂Hd+1, there exists an infinite backward path (zn) with asymptotic
direction z∞;

(iii) for any deterministic boundary point z∞ ∈ ∂Hd+1, the path with asymptotic direction z∞ is
almost surely unique;

(iv) almost surely, the random set of boundary points with at least two infinite backward paths is
dense in ∂Hd+1;

(v) almost surely, this random set is countable in the bi-dimensional case (i.e. d = 1).

Theorem 1.1 describes the infinite branches of the hyperbolic RST: every infinite branch admits
an asymptotic direction and Point (ii) and (iii) say that for any fixed and deterministic boundary
point z∞ , there exists a unique infinite path having z∞ as asymptotic direction. But there is a
random dense set of boundary points having more than one backwards paths, and in dimension 2
(for d = 1) this set is countable.

Establishing the results announced in Theorem 1.1 in every dimension constitutes the main
originality of this paper. For the two reasons explained further, the proofs of Baccelli and Bordenave
in the 2D-Euclidean setting [1] cannot be generalized to higher dimensions.
In both contexts R2 and Hd+1, for any d ≥ 1, the proofs of (i), (ii), (iv) and (v) of Theorem 1.1

follow the strategy of Howard and Newman [17], which is to show that the tree is straight, that is,
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the descendant subtree of a vertex far from the origin is included in a thin cone. To prove that the
2D-Euclidean RST is straight, Baccelli and Bordenave used a translation invariant model derived
from the RST: the Directed Spanning Forest (DSF), which constitutes a local approximation of
the RST far from the origin [1]. They exploit the theory of Markov chains to bound from above
fluctuations of trajectories in the DSF and then, they deduce the straightness of the RST via
planarity. This strategy cannot be generalized to higher dimensions. However, in Hd+1, we manage
to control the angular deviations of branches in the RST without resorting to an auxiliary model
that requires planarity as in the Euclidean setting. The hyperbolic metric guarantees that angular
deviations decay exponentially fast with the distance to the origin, which is strong enough to show
straightness.
In addition, in the Euclidean context, the uniqueness part (point (iii) in Theorem 1.1) is only

proved in dimension 2 since it strongly uses planarity [17, 1], and the strategy of proof cannot be
generalized to higher dimensions. To prove (iii) in Hd+1, our strategy consists in exploiting the link
existing between the hyperbolic RST and the hyperbolic DSF, defined and studied in Flammant
[12], which is the hyperbolic counterpart of the Euclidean DSF used by Baccelli and Bordenave.
Roughly speaking, the hyperbolic DSF can be defined as the limit of the hyperbolic RST when the
origin point tends to an ideal boundary point. Similarly to the Euclidean setting, it constitutes a
local approximation of the RST far from the origin. The proof of (iii) exploits the coalescence of
the hyperbolic DSF (i.e. it is almost surely a tree) [12, Theorem 1.1], which is a non-trivial fact
obtained by exploiting the mass-transport principle, and a local coupling between the two models.

After defining the hyperbolic RST and giving its basic properties, we define two quantities
that encode angular fluctuations along trajectories, the Cumulative angular Forward Deviations
(CFD) and the Maximal Backward Deviations (MBD). We then establish upper bounds of these
quantities: first, we upper-bound the Maximal Backward Deviations in a thin annulus of width
δ > 0 (Proposition 2.5) and then we deduce a global control of MBD in the whole space (Proposition
2.6), that roughly says that angular deviations decay exponentially fast with the distance to the
origin. From this upper-bound, we deduce that the RST is straight in the sense of Howard &
Newman (Proposition 2.7). The points (i), (ii), (iv) and (v) in Theorem 1.1 can be deduced from
straightness and the upper-bound of MBD given by Proposition 2.6. The point (iii) (the uniqueness
part) is done by exploiting a local coupling existing between the RST and the DSF far from the
origin.

The rest of paper is organized as follows. In Section 2, we set some reminders of hyperbolic
geometry and we define the hyperbolic RST. Then, we give its basic properties and a road-map
of the proofs. We also announce the upper bounds of angular deviations (Propositions 2.5 and
2.6) and the straightness property (Proposition 2.7). The proof of Theorem 1.1 is done in Section
3. Proposition 2.5 is proved in Section 4 and the proofs of Propositions 2.6 and 2.7 are done in
Section 5.

2. Definitions, notations and basic properties
We denote by N the set of non-negative integers and by N∗ the set of positive integers. In the rest
of the paper, c (resp. C) will be some small (resp. large) constant whose value can change from a
line to another.

2.1. The hyperbolic space
We refer to [26] for a complete introduction to hyperbolic geometry. For d ∈ N∗, the (d + 1)-
dimensional hyperbolic space, denoted by Hd+1, is a (d+ 1)-dimensional Riemannian manifold of
constant negative curvature −1 that can be defined by several isometric models. One of them is
the open-ball model consisting in the unit open ball

I = {(x1, ..., xd+1) ∈ Rd+1, x21 + ...+ x2d+1 < 1} (2.1)

3



Figure 1: Simulation of the two-dimensional hyperbolic RST, with λ = 30, in the Poincaré disc
model. The edges are represented by geodesics. The different connected components of
the RST (apart from the root) are represented with different colors.

endowed with the following metric:

ds2I := 4
dx21 + ...+ dx2d+1

(1− x21 − ...− x2d+1)2
. (2.2)

We denote by d(·, ·) the hyperbolic distance in Hd+1, and by ‖ · ‖ the Euclidean norm in Rd, with
the convention ‖∞‖ =∞.

The volume measure on (I, ds2I), denoted by VolI , is given by

dVolI = 2d+1 dx1...dxd+1

(1− x21 − ...− x2d+1)d+1
. (2.3)

An important fact about hyperbolic geometry is that Hd+1 is homogeneous, isotropic and rota-
tion invariant. It means that the group of isometries of Hd+1 acts transitively on the unit tangent
bundle of Hd+1: given two points x, y ∈ Hd+1 and two unit tangent vectors u ∈ TxHd+1, v ∈
TyHd+1, there exists an isometry g of Hd+1 such that g(x) = y and that pushes forward u on v.
The notations Tx, Ty and the vocabulary relating to Riemannian geometry are defined in [19]. We
refer to [22, Proposition 1.2.1 p.5] for a proof.

Let 0 ∈ Hd+1 be some arbitrary origin point (it can be thought as the center of the ball in the
open-ball representation), which will play the role of the root of the RST.
The hyperbolic space Hd+1 is naturally equipped with a set of points at infinity, denoted by ∂Hd+1.
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In the open-ball model (I, ds2I), the set of points at infinity is identified by the boundary unit sphere.
Let us denote by Sd the unit Euclidean sphere in Rd+1 and by ν its d-dimensional volume measure.
We denote by Hd+1 := Hd+1 ∪ ∂Hd+1 the hyperbolic space Hd+1 plus the set of points at infinity,
with the topology given by the closed ball. A point z∞ ∈ ∂Hd+1 is called ideal point or point at
infinity.
The metric becomes smaller as we get closer to the boundary unit sphere ∂I, and this boundary
is at infinite distance from the center 0.
For any subset E ⊂ Hd+1, E denotes the closure of E in Hd+1.

In the open ball model (I, ds2I), the geodesics are of two types: the diameters of I and the arcs
that are perpendicular to the boundary unit sphere Sd, see Figure 2. We refer to discussion [7, p.80]
for a proof. This model is conformal, which means that the hyperbolic angle between two geodesics
corresponds to their Euclidean angle in the open-ball representation. For z1, z2, z3 ∈ Hd+1

, ẑ1z2z3
is the measure of the corresponding (non-oriented) angle.

Figure 2: Geodesics in the open ball model

For z1, z2 ∈ Hd+1
, let us denote by [z1, z2] the geodesic between z1 and z2. Moreover, we set the

notations:

[z1, z2[:= [z1, z2]\{z2}, ]z1, z2] := [z1, z2]\{z1}, ]z1, z2[\({z2} ∪ {z2}).

Let us denote by [z1, z2) (resp. (z1, z2]) the semi-geodesic passing through z2 (resp. z1) and ending
at z1 (resp. z2).

For z ∈ Hd+1 and r > 0, we denote by B(z, r) := {z′ ∈ H, d(z, z′) < r} (resp. S(z, r) :=
{z′ ∈ H, d(z, z′) = r}) the hyperbolic ball (resp. sphere) centered at z of radius r, and we
set B(r) := B(0, r) (resp. S(r) := S(0, r)). For x ∈ Rd and r > 0, let us also denote by
BRd(x, r) := {x′ ∈ Rd, ‖x′ − x‖ < r} the Euclidean ball centered at x of radius r.
For any point z ∈ Hd+1 and θ > 0, Cone(z, θ) := {z′ ∈ Hd+1, ẑ0z′ ≤ θ} is defined as the cone of
apex 0 and aperture θ (if θ ≥ π then Cone(z, θ) is the whole space Hd+1).

Since the RST is a graph rooted at 0, a convenient way to represent points in Hd+1 is to use polar
coordinates. Recall that 0 is the origin point. For any point z ∈ Hd+1, we denote by z = (r;u) its
polar coordinates w.r.t. 0: r is its distance to 0 and u ∈ UT0Hd+1 ' Sd is its direction (UT0Hd+1

is the unitary tangent space of 0 in Hd+1, consisting of tangent vectors of norm 1). In polar
coordinates, the volume measure Vol is given by

dVol(r;u) = sinh(r)d dr dν(u). (2.4)

A direct consequence is that the volume of a ball of radius r is given by:

Vol(B(r)) =

∫ r

0

sinh(t)d dt× ν(Sd) � edr when r →∞, (2.5)
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where � means that Vol(B(r)) is asymptotically proportional to edr when r → +∞. We refer the
reader to [8, Section III.3 and (III.4.1)].

The hyperbolic law of cosines [25, (6.3-5) p.197] is a well adapted tool to compute distances
using polar coordinates. Given z1 = (r1;u1), z2 = (r2, u2) ∈ Hd+1, the hyperbolic law of cosines
gives,

cosh d(z1, z2) = cosh(r1) cosh(r2)− 〈u1, u2〉 sinh(r1) sinh(r2). (2.6)

2.2. The hyperbolic RST
In the rest of the paper, the dimension d ≥ 1 and the intensity λ > 0 are fixed. Let N be a
homogeneous PPP of intensity λ in Hd+1. The definition of the hyperbolic RST is similar to the
Euclidean case. The set of vertices is N ∪ {0}. Each vertex z ∈ N has a unique outgoing edge
that connects z to the closest Poisson point among those that are closer to the origin:

Definition 2.1 (Radial Spanning Tree in Hd+1). For any z = (r;u) ∈ N , the parent (or ancestor)
of z is defined as

A(z) := argmin
z′∈(N∪{0})∩B(r)

d(z′, z) .

We call Radial Spanning Tree (RST) in Hd+1 rooted at 0 the oriented graph (V, ~E) where

V := N ∪ {0}, ~E := {(z,A(z)), z ∈ N}.

It is possible to assume that N ∪ {0} does not contain isosceles triangles, since this event has
probability 1. Thus the ancestor A(z) is well-defined, and clearly the RST is a tree rooted at 0.
For z ∈ N ∪ {0} and k ∈ N, let us define the k-th ancestor of z by A(k)(z) = A ◦ .. ◦ A(z),

where composition is taken k times, and their descents after k generations by A(−k)(z) = {z′ ∈
N , A(k)(z′) = z} (in particular A(−1)(z) is the set of daughters of z). For z ∈ N and r ≥ 0, let us
define

B+(z, r) := B(z, r) ∩B(0, d(0, z)) and B+(z) := B+(z, d(z,A(z))). (2.7)

By definition of the parent, B+(z) ∩ N = ∅ for all z ∈ N . This fact is responsible for many diffi-
culties when studying the RST. Indeed, when restarting from A(z) = (r′;u′) and constructing the
path forward (towards 0), with probability one B(r′)∩B+(z, d(z,A(z))) 6= ∅. This means that the
geometric information used to determine A(z) is still involved for later steps of the process, gen-
erating statistical and geometrical dependencies. Properties such as random walks or martingales
can not be used in our context, and we resort here to the control of maximal backward deviations
permitted by our hyperbolic setting.

To end this section, let us mention the following basic properties about RST proved in Appendix
A.

Proposition 2.2. The RST is a tree and it has finite degree a.s. Moreover, in the bi-dimensional
case (d = 1), the representation of the RST obtained by connecting each vertex z ∈ N to its
parent A(z) by the geodesic [z,A(z)] is planar, i.e. their is no two points z1, z2 ∈ N such that
[z1, A(z1)] ∩ [z2, A(z2)] 6= ∅.

In the above proposition, the edges are geodesics. However, Definition 2.1 does not specify the
shape of edges. Since the results announced in Theorem 1.1 only concern the graph structure of
the hyperbolic RST, their veracity does not depend on the geometry of edges. Although it is more
natural to represent edges with hyperbolic geodesics, we do another choice in the sequel which
will appear more convenient for the proofs. Given z1 = (r1;u1), z2 = (r2;u2) ∈ Hd+1 such that
0 /∈ [z1, z2], we define a path [z1, z2]∗, in an isotropic way, verifying the two following conditions:

i) the distance to the origin 0 is monotone along the path [z1, z2]∗,

ii) the distance to z1 is also monotone along this path.
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It is a simplification for the proofs that the shape of edges satisfy conditions (i) and (ii): remark
that the geodesic [z1, z2] or the Euclidean segment between z1 and z2 do not satisfy condition (i) in
general. Since 0 /∈ [z1, z2], u1 and u2 are not antipodal. Thus one can consider the unique geodesic
path γu1,u2 : [0, 1]→ UT0Hd+1 on the sphere with constant speed connecting u1 to u2, and define
the path [z1, z2]∗ as

[0, 1] → Hd+1

t 7→
(
(1− t)r1 + tr2; γu1,u2(φr1,r2,û1,u2

(t))
)
, (2.8)

where φr1,r2,û1,u2
: [0, 1]→ [0, 1] is defined as:

φr1,r2,û1,u2
(t) :=

1

û1, u2
arccos

(
(1− t) sinh(r1) + t cos(û1, u2) sinh(r2)

sinh((1− t)r1 + tr2)

)
.

This function φr1,r2,û1,u2
is built to ensure that the distance to the origin z1 is monotone along the

path [z1, z2]∗. Indeed, by the hyperbolic law of cosines (2.6),

cosh d
(
z1, ((1− t)r1 + tr2; γu1,u2

(φ(t))
)

= cosh(r1) cosh((1− t)r1 + tr2)− cos(φ(t)(û1, u2)) sinh(r1) sinh((1− t)r1 + tr2)

= t
[
cosh(r1) cosh(r2)− cos(û1, u2) sinh(r1) sinh(r2)

]
is monotone in t.
We define [z1, z2[∗:= [z1, z2]∗\{z2} and ]z1, z2]∗ := [z1, z2]∗\{z1}. It is possible to assume that
N does not contain two points z1, z2 such that 0 ∈ [z1, z2] since this event has probability 1. Let
us now define the random set RST by connecting each point z ∈ N to A(z) by the path [z,A(z)]∗:

RST :=
⊔
z∈N

[z,A(z)[∗.

It may exist some points z belonging to several paths [z1, A(z1)[∗, ..., [zk, A(zk)[∗; in that case, z is
counted with multiplicity k in RST. Formally, we should define the RST as

⋃
z∈N [z,A(z)[∗×{z} ⊂

Hd+1 ×Hd+1., i.e. an element (z, z′) ∈ RST is a couple where z ∈ Hd+1 is a point of the RST and
z′ is the root of an edge containing z. For (z, z′) ∈ RST, we define

z↓ = z′, z↑ = A(z′). (2.9)

With this formalism, edges of the RST do not cross anymore, apart at vertices. For the sake
of simplification, we will commit an abuse of notations by considering that RST ⊂ Hd+1 and
identifying an element (z, z′) ∈ RST to the corresponding point z ∈ Hd+1. Given z ∈ RST, let
n := min{k ≥ 0, A(k)(z↑) = 0} be the number of steps required to reach the origin from z↑; we
define the trajectory from z as

π(z) := [z, z↑]
∗ ∪

n−1⋃
k=0

[
A(k)(z↑), A

(k+1)(z↑)
]∗
.

For r > 0, we define the level r as

Lr := RST ∩ S(r).

For 0 < r ≤ r′ and for z′ ∈ Lr′ , the ancestor at level r of z′, denoted by Ar′r (z′) is the intersection
point of π(z′) and S(r). For 0 < r ≤ r′ and for z ∈ Lr, the set of descendants at level r′ is defined
as

Dr
′

r (z) := {z′ ∈ Lr′ , z ∈ π(z′)}

(we extend the notation for z /∈ Lr by setting Dr′r (z) := ∅). For z = (r;u) ∈ RST, the descendant
subtree of z is defined as D(z) :=

⋃
r′≥r Dr

′

r (z), see Figure 3. Recall that an infinite backward path

is a sequence (zn)n∈N ∈
(
Hd+1

)N such that z0 = 0 and zn = A(zn+1) for all n ≥ 0.
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0

r

r′

z2 ∈ Lr

z1 ∈ Lr′
Ar
′

r (z1)

Dr′r (z2)

Figure 3: Representation of levels r and r′, the ancestor Ar
′

r (·) and the set of descendants Dr′r (·).
Note that ancestors are towards the root 0 of the RST, which is the “forward” direction.
Descendants are seen when moving to higher radii, which is the “backward direction”.

2.3. Sketch of proofs
In order to prove our main result (Theorem 1.1), the key point is to upper-bound angular deviations
of trajectories. We first introduce two quantities, the Cumulative Forward angular Deviations
(CFD) and Maximal Backward Deviations (MBD) to quantify those fluctuations.

Definition 2.3 (Cumulative Forward angular Deviations). Let 0 < r ≤ r′ and z′ ∈ S(r′). If z′ /∈
RST, we set CFDr

′

r (z′) = 0 by convention and we now suppose that z′ ∈ RST. Let z := Ar′r (z′).
We define the Cumulative Forward angular Deviations of z′ between levels r and r′ as

CFDr
′

r (z′) :=


ẑ′0z if z↓ = z′↓,

ẑ′0z′↑ +

n−1∑
k=0

̂A(k)(z′↑)0A
(k+1)(z′↑) + ẑ↓0z otherwise,

where n is the unique non negative integer such that A(n)(z′↑) = z↓.

Definition 2.4 (Maximal Backward angular Deviations). Let 0 < r ≤ r′ and z ∈ S(r). We define
the Maximal Backward angular Deviations between levels r and r′ as

MBDr
′

r (z) :=


0 if z /∈ RST,

sup
r′′∈[r,r′]

max
z′′∈Dr′′r (z)

CFDr
′′

r (z′′) if z ∈ RST.

We extend the definition to r′ =∞ by setting:

MBD∞r (z) := lim
r′→∞

MBDr
′

r (z),

the limit exists since r′ 7→ MBDr
′

r (z) is non-decreasing.

8



All forward paths of the RST end at the root 0, but they can be finite in the backward direction
if a vertex is the ancestor of no other vertex. The quantity MBDr

′

r (z) takes into account backward
paths from z that either end (in the backward direction) before level r′ or reach level r′.
These quantities will be upper-bounded in two steps. First, a percolation argument is used to

control angular deviations in any annulus of width δ > 0 for some small δ > 0 (Proposition 2.5) and
then we deduce a global control of angular deviations (Proposition 2.6). These two propositions
are proved in Sections 4 and 5.
Let us introduce some further notations. For r > 0, z ∈ Hd+1 and θ > 0, we define

BS(r)(z, θ) := Cone(z, θ) ∩ S(r). (2.10)

We will control moments of the maximal backward angular deviations between close radii r and
r + δ when z belongs to such arc BS(r)(z, θ).

Proposition 2.5. There exists δ > 0 such that, for any p ≥ 1, there exists C = C(d, p) > 0 such
that for any r > 0, θ ≥ 0 and any direction u ∈ Sd,

E

 ∑
z∈BS(r)(u,θ)∩RST

(
MBDr+δr (z)

)p ≤ Cθder(d−p), (2.11)

Proposition 2.6. For any p ≥ 3d/2, there exists some constant Cfl > 0 such that, for any
0 < r0 <∞, A > 0 and any direction u ∈ Sd,

E

 ∑
z∈BS(r0)(u,Ae

−r0 )∩RST

(
MBD∞r0 (z)

)p ≤ CflA
de−r0p.

These controls of angular deviations will be first used to show that the RST is straight (Propo-
sition 2.7). The straightness property is the key to show (i), (ii) and (iv) in Theorem 1.1.

Proposition 2.7 (straightness property). Almost surely, the following happens. For any ε > 0,
there exists some R0 > 0, such that, for any radius r0 ≥ R0, for any z ∈ RST with d(0, z) ≥ r0,
the descendant subtree D(z) is contained in a cone of apex 0 and aperture e−(1−ε)r0 , i.e. for any
z′, z′′ ∈ D(z), ẑ′0z′′ ≤ e−(1−ε)r0 .

The proof of (iii) in Theorem 1.1 exploits the controls of angular deviations (Proposition 2.6) and
the link existing between the RST and the hyperbolic Directed Spanning Forest introduced: the
DSF approximates locally the RST far from the origin. The uniqueness of the infinite backward
path with some given deterministic asymptotic direction has been shown for the DSF [14], and the
local coupling existing between the two models, together with the controls of angular deviations,
permits to show that this property remains true for the RST.

3. Proof of Theorem 1.1
Here we assume that Propositions 2.6 and 2.7 are proved and we show that it implies Theorem
1.1.

3.1. The existence part: proof of (i),(ii),(iv) and (v)
Proof of (i) and (ii) We first show that any infinite backward path admits an asymptotic direction
and that any ideal boundary point is the asymptotic direction of an infinite backward path. The
strategy consists in exploiting the straightness property (Proposition 2.7).
Let (zn)n≥0 be an infinite backward path, we prove that (zn)n≥0 admits an asymptotic di-

rection. For n ≥ 0, let us decompose zn in polar coordinates: zn = (rn;un). Proposition 2.7
immediately implies that the sequence (un)n≥0 is a Cauchy sequence in UT0Hd+1 ' Sd. To see
this, let ε > 0. Since the path (zn) is infinite, the sequence (rn) converges to infinity. Let nε be such
that e−rnε/2 ≤ ε. By the straightness property, there exists N0 such that for n0 ≥ N0, the path
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(zn)n≥n0
remains inside Cone(zn0

, e−rn0
/2) ∩B(rn0

)c. Thus, for n0 ≥ N0 ∨ nε, the path (zn)n≥n0

remains in a cone of aperture ε, proving that (un)n≥0 is a Cauchy sequence. Thus the sequence
(un)n≥0 converges, and so (zn)n≥0 converges to some boundary point z∞ ∈ ∂Hd+1, which proves (i).

Let Ψ = {limn→∞ zn, (zn) is an infinite backward path} ⊂ ∂Hd+1 be the set of asymptotic
directions reached by at least one infinite backward path. In order to prove that Ψ = ∂Hd+1, we
proceed in two steps: we first show that Ψ is dense in ∂Hd+1, then we show that Ψ is closed in
∂Hd+1.
Since the RST is an infinite tree with finite degree a.s. (Proposition 2.2), there exists an infinite
backward path from 0 and the corresponding infinite backward path converges to an ideal boundary
point by the previous paragraph, thus Ψ 6= ∅ almost surely.
We denote by Stab(0) the set of isometries that fix 0, in particular it contains rotations centred

at 0. Let B be an open subset of ∂Hd+1. Since ∂Hd+1 ' Sd is compact, there exists finitely many
isometries γ1, ..., γk ∈ Stab(0) such that

⋃
i=1,...,k γiB = ∂Hd+1. The random set RST is invariant

in distribution by Stab(0), so the events {Ψ∩ γiB 6= ∅} all have the same probability. Since Ψ 6= ∅
almost surely, P

[⋃
i=1,...,k{Ψ ∩ γiB 6= ∅}

]
= 1 therefore P(Ψ ∩ B 6= ∅) > 0. In addition, for any

neighbourhood Φ ⊂ Hd+1 of B, the event {Ψ ∩B 6= ∅} is entirely determined by N ∩Φ, therefore
it has probability 0 or 1, by Kolmogorov’s 0-1 law. Thus Ψ∩B 6= ∅ almost surely, since we already
showed that P(Ψ∩B 6= ∅) > 0. Since the topology on ∂Hd+1 admits a countable basis, Ψ is almost
surely dense in ∂Hd+1.
It remains to show that Ψ is a closed subset of ∂Hd+1. Let I ∈ Ψ (recall that Ψ is the closure of Ψ

in Hd+1). We construct by induction an infinite backward path (zn)n≥0 ∈ NN∗ such that, for any
i ∈ N, I ∈ D(zi). Suppose 0, ..., zi−1 already defined such that zj = A(zj+1) for 0 ≤ j ≤ i− 2 and
I ∈ D(zi−1). Since the vertex zi−1 has finitely many daughters, there exists some z ∈ A(−1)(zi−1)
such that I ∈ D(z). We define zi as such a z.

We now use straightness to show that the infinite backward path (zn) constructed above con-
verges to I (and thus I ∈ Ψ). This infinite backward path converges to some I ′ ∈ ∂Hd+1 by (i).
Let ε > 0, by Proposition 2.7 there exists some i ≥ 0 such that D(zi) (and thus D(zi)) is contained
in a cone of apex 0 and aperture at most ε. Since both I and I ′ belong to D(zi), Î0I ′ ≤ ε. Thus
I = I ′, which achieves the proof of (ii).

Proof of (iv) and (v) Let us denote by Ψ′ ⊂ ∂Hd+1 the set of asymptotic directions with two
infinite backward paths. To show (iv), we first show that, a.s. Ψ′ 6= ∅. For z ∈ RST, let us define
Ψz ⊂ ∂Hd+1 as the set of asymptotic directions of infinite backward paths from z (empty or not).
By the same argument as above for the proof of (ii), Ψz is a closed subset of ∂Hd+1. By (ii),
a.s., there exists at least two infinite backward paths, so there exists a.s. some level r0 > 0 with
two points connected to infinity. Thus {Ψz, z ∈ L(r0)} is a covering of ∂Hd+1 by closed subsets,
where at least two of them are nonempty. Since ∂Hd+1 is connected, it implies that there exists
z1, z2 ∈ Lr0 such that Ψz1 ∩Ψz2 6= ∅. Thus Ψ′ 6= ∅ a.s.
We use the same argument as in the proof of (ii) to deduce that Ψ′ is dense. Let B be an open

subset of ∂Hd+1. Since ∂Hd+1 ' Sd is compact, there exist finitely many isometries γ1, ..., γk ∈
Stab(0) such that

⋃
i=1,...,k γiB = ∂Hd+1. The random set RST is invariant in distribution by

Stab(0), so the events Γi := {Ψ′ ∩ γiB 6= ∅} all have the same probability. Since Ψ 6= ∅ almost
surely, P

[⋃
i=1,...,k Γi

]
= 1 and therefore P(Γi) > 0. In addition, for any neighbourhood Φ ⊂ Hd+1

of B, the event Γi is entirely determined by N ∩ Φ, which implies that it has probability 0 or 1.
Thus Ψ′∩B 6= ∅ almost surely. Since the topology on ∂Hd+1 admits a countable basis, Ψ′ is almost
surely dense in ∂Hd+1.
The proof of (v) is done by exploiting the planarity in the bi-dimensional case (Proposition 2.2).

Let us associate to any z∞ ∈ Ψ′ a couple of vertices P (z∞) = (z1, z2) ∈ N 2 with z1 6= z2 such that
z∞ ∈ Ψz1 ∩ Ψz2 . By planarity, such an application P must be injective. Indeed, if z∞ 6= z′∞ are
such that P (z∞) = P (z′∞) = (z1, z2), then there exist four distinct backward infinite paths joining
z∞ to z1, z∞ to z2, z′∞ to z1 and z′∞ to z2. This implies that two paths among them intersect each
other, even if the representation of edges are replaced by geodesics, which contradicts planarity.
Therefore Ψ′ is a.s. countable in the case d = 1.
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3.2. The uniqueness part: proof of (iii)
The strategy consists in exploiting a coupling between the hyperbolic RST and the hyperbolic
Directed Spanning Forest (DSF), stated in Proposition 3.1 below, and the fact that there exists
a.s. a unique infinite backward path in the DSF that converges to any given deterministic direction
(see [14, Theorem 1.2]).
First, recall that the space Hd+1 can be described with several isometric models. We have already

seen the open-ball model (I, ds2I) and we introduce here another one, called the upper half-space
model, (H, ds2), where:

H = {z = (x1, . . . , xd, y) ∈ Rd+1, y > 0}, ds2 =
dx21 + · · ·+ dx2d + dy2

y2
.

In the following, we will identify the point z = (x1, . . . , xd, y) ∈ H with the couple (x, y) ∈ Rd×R∗+
with x := (x1, . . . , xd) and y := xd+1. The coordinate x is referred as the abscissa and y as the
ordinate. The coordinate y plays a special role and will be the direction in which the DSF is built.
Let us remind that, in the half-space representation, the boundary set ∂Hd+1 is identified as the
boundary hyper-plane Rd × {0}, plus an additional point at infinity denoted by ∞, obtained by
compactifying the closed half-space Rd × R+.

Let us now define the hyperbolic DSF with direction ∞ in the half-space model (H, ds2).
The hyperbolic DSF with direction ∞ is a graph with vertex set given by the points of the PPP
N and in which each vertex has outdegree one. Thus we connect each vertex z ∈ N to the closest
Poisson point in the direction of∞: this point, denoted by ADSF(z), is the parent of z = (x, y) ∈ N .
It is defined as:

ADSF(z) := argmin
z′=(x′,y′)∈N ,y′>y

d(z′, z) (3.1)

where d(·, ·) is the hyperbolic distance.
To compare the DSF (with direction ∞) and the RST, we also define the RST in the half-space

model (H, ds2) whose root O(h) is devoted to tend to ∞. Precisely, for any h ≥ 0, let us set
RST(h) as the Radial Spanning Tree of N with origin O(h) := (0, eh) similarly as in Definition
2.1. This is a tree rooted at O(h) with vertex set N and in which each vertex has outdegree one.
In RST(h), each vertex z ∈ N is connected to its parent

ARST(h)(z) := argmin
z′∈(N∪{O(h)})∩B(O(h),r)

d(z′, z) (3.2)

with r = d(O(h), z). To avoid confusion, the parent of z in the hyperbolic RST is now denoted by
ARST(z) instead of A(z) when necessary.
When h → ∞, i.e. when O(h) tends to the point ∞, the graph RST(h) mimics the DSF with

direction∞ in any compact set with probability tending to 1. Proposition 3.1 is proved at the end
of the section.

Proposition 3.1 (Coupling between RST and DSF). Let K ⊂ Hd+1 be a compact set. Then

lim
h→∞

P
[
∀z ∈ N ∩K, ARST(h)(z) = ADSF(z)

]
= 1 .

Let us now prove Item (iii) of Theorem 1.1. Since the law of RST(h) is invariant w.r.t. horizontal
translations, it is sufficient to prove the uniqueness result with the deterministic boundary point
z∞, represented by (0, 0) in H, and defined as (0, ...,−1) ∈ UTO(h)Hd+1 ' Sd. To do so, let us
introduce, for any h > 0, the event

U(h) :=
{
RST(h) admits only one infinite path towards z∞

}
.

We proceed by contradiction with assuming that P[U(h)] < 1. Since the law of RST(h) is invariant
w.r.t. dilatations (x, y)→ (eαx, eαy), the probability q := P[U(h){] does not depend on h, and by
our assumption,

q = P
[
RST(h) admits two infinite paths towards z∞

]
> 0 .
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The two infinite paths of RST(h) mentioned above eventually bifurcate at some horizontal axis
with (random) ordinate. Using one more time the invariance by dilatations of RST(h), we get that
the event

V (h) :=

{
RST(h) admits two infinite paths towards z∞
bifurcating before the horizontal axis y = 1

}
has probability q′ > 0 (uniform on h).

In the next step, we need to control fluctuations of RST paths (see Proposition 3.3 below). Hence,
let Conez0(z, θ) be the cone with apex z0, direction z and opening angle θ. For any A, a, h ≥ 0, let
us set:

• Vois(A, h) := ConeO(h)(z∞, Ae
−h)\B(O(h), h);

• Vois′(A, a, h) :=
(
B(O(h), h+ a) ∩ ConeO(h)(z∞, Ae

−h)
)
\B(O(h), h);

• Vois′′(A, a, h) := ConeO(h)(z∞, Ae
−h−a)\B(O(h), h+ a).

When h is large, these three sets are included in some cylinders:

Lemma 3.2. For any A, a ≥ 0, the parameter h can be chosen large enough such that

• Vois(A, h) ⊂ Cyl(A) := BRd(0, A)×
(

0, 32

]
;

• Vois′(A, a, h) ⊂ Cyl′(A, a) := BRd(0, A)×
[
1
2e
−a, 32

]
;

• Vois′′(A, a, h) ⊂ Cyl′′(A, a) := BRd(0, Ae−a)×
(

0, 32e
−a
]
.

The sets Vois(A, h),Vois′(A, a, h),Vois′′(A, a, h) and Cyl(A),Cyl′(A, a),Cyl′′(A, a) are repre-
sented in Figure 4.
For A, a, h ≥ 0, let us introduce the event E(A, h) saying that each infinite backward path in

RST(h) converging to z∞ and restricted to Hd+1\B(O(h), h) is contained in Vois(A, h):

E(A, h) :=
{
∀z ∈ RST(h) ∩ (Hd+1\B(O(h), h), z∞ ∈ DRST(h)(z) =⇒ z ∈ Vois(A, h)

}
,

where DRST(h)(z) denotes the descendant subtree of z in RST(h). Let us also introduce a slight
modification of E(A, h). The event E′′(A, h, a) says that each infinite backward path in RST(h)
converging to z∞ and restricted to Hd+1\B(O(h), h+ a) is contained in Vois′′(A, a, h):

E′′(A, a, h) :=
{
∀z ∈ RST(h)∩(Hd+1\B(O(h), h+a)), z∞ ∈ DRST(h)(z) =⇒ z ∈ Vois′′(A, a, h)

}
.

Here is the announced control of RST paths, i.e. the events have probability tending to 1 uniformly
on h, a. Lemma 3.2 and Proposition 3.3 are proved at the end of the section.

Proposition 3.3. The following limits hold uniformly on parameters h, a > 0:

lim
A→∞

P[E(A, h)] = lim
A→∞

P[E′′(A, a, h)] = 1 .

Let a > 0. Recall that q′ denotes the probability of V (h), we first choose A large enough such
that P[E(A, h)] and P[E′′(A, a, h)] are both larger than 1− q′/4 (Proposition 3.3). Thus, applying
Proposition 3.1 to the compact set K := Cyl′(A, a), we choose h = h(a,A) large enough such that
the event

CO(A, a, h) :=
{
∀z ∈ N ∩ Cyl′(A, a), ARST(h)(z) = ADSF(z)

}
occurs with probability larger than 1− q′/4. As a consequence, the event Z(a) = Z(a, h) defined
by

Z(a) := V (h) ∩ E(A, h) ∩ E′′(A, a, h) ∩ CO(A, a, h)

satisfies P[Z(a)] ≥ q′/4. Let us add that, in the event Z(a) = Z(a, h), h can be chosen large enough
so that inclusions of Lemma 3.2 hold. Finally wet set

Z :=
⋂
a0>0

⋃
a≥a0

Z(a) .
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which has probability at least q′/4.
We need to add to the event Z an extra property concerning this time the DSF paths. Let

G(A,α) be the event that each DSF path crossing the cylinder C := BRd(0, A) × [e−α/2, 1] from
the bottom face to the top one while staying inside, admits at least one vertex inside C. Because
a large edge in the DSF implies a large region empty of Poisson points which is very unlikely, the
probability of G(A,α) tends to 1 as α → ∞. Henceforth we choose α0 large such that the event
Z ∩G0, with G0 := G(A,α0), has positive probability.

Now we are ready to get a contradiction on the event Z ∩ G0. We a.s. have an unbounded
and increasing sequence (an)n≥0 with a0 > α0 such that the events Z(an) ∩ G0’s occur. We
also denote by hn := h(A, an) the associated parameter to an in Z(an). So V (hn) gives us the
existence of two infinite paths in RST(hn), say πn,1 and πn,2, converging to z∞ and bifurcating
before the horizontal axis y = 1. Be careful that we work here with a sequence of different RST
trees, RST (hn), whose roots O(hn) tend to infinity, but defined on the same set of vertices N .
By E(A, hn)∩E′′(A, an, hn), these two paths are trapped inside Vois(A, hn) and Vois′′(A, an, hn),
then also inside Vois′(A, an, hn) ⊂ Cyl′(A, an) (by Lemma 3.2). Thus, CO(A, an, hn) indicates that
πn,1 and πn,2 respectively coincide in Vois′(A, an, hn) with two DSF paths, say π̂n,1 and π̂n,2. The
event G0 allows us to assume w.l.o.g. that both backward (and disjoint) DSF paths π̂n,1 and π̂n,2
start from two different Poisson points in C, say respectively zn,1 and zn,2. Since the PPP is locally
finite, we can assume w.l.o.g. that all the π̂n,1’s have the same starting Poisson point z1. Then,
combining the fact that π̂n,1 reaches the axis y = e−an/2 for any n, with the finite degree property
of the DSF (Proposition 2.10 of [14]), we can build from the collection {π̂n,1} an infinite backward
path starting at z1. Let us denote by π̂1 this path. Theorem 1.2, Item (ii) of [14] asserts that π̂1
a.s. converges towards the past to an element of ∂Hd+1 which necessarily is the deterministic point
z∞ thanks to the E′′(A, an, hn)’s. In the same way, from the collection {π̂n,2}, we can build an
infinite backward path π̂2 starting at some z2 6= z1. As previously, π̂2 a.s. converges towards the
past to z∞. In conclusion, we just have exhibited two different infinite backward paths converging
to the same deterministic point z∞: this is in contradiction with Theorem 1.2 Item (iv) of [14].
This achieves the proof.

Proof of Proposition 3.1. Given z ∈ Hd+1, let us first assume that

lim
h→∞

P
[
ARST(h)(z) 6= ADSF(z)

]
= 0 . (3.3)

The Campbell formula [13, Prop. 13.1.IV] and Lebesgue’s dominated convergence theorem then
allow to conclude. Let K ⊂ Hd+1 be a compact set:

P
[
∃z ∈ N ∩K, ARST(h)(z) 6= ADSF(z)

]
≤ E

[
#
{
z ∈ N ∩K, ARST(h)(z) 6= ADSF(z)

}]
= λ

∫
K

P
[
ARST(h)(z) 6= ADSF(z)

]
dVol(z)

which tends to 0 as h→∞ (where Vol denotes the hyperbolic volume).
It then remains to prove (3.3). Let z = (x, y) in Hd+1 and α > 0. Let us consider the set

∆h := B(z, hα) ∩
(
B(O(h), d(O(h), z)∆(Rd×(y,∞))

)
,

where ∆ denotes the symmetric difference, and we choose α small enough such that Vol(∆h)→ 0 as
h→∞. Now, the fact that ARST(h)(z) 6= ADSF(z) combined with N ∩∆h = ∅ imply in particular
that ADSF(z) is at distance at least hα from z. So,

P
[
ARST(h)(z) 6= ADSF(z)

]
≤ P

[
N ∩∆h 6= ∅

]
+ P

[
d(z,ADSF(z)) > hα

]
where both terms of the upperbound tend to 0 as h→∞.
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Figure 4: Representation of the sets Vois(A, h), Vois′(A, a, h), Vois′′(A, a, h) and Cyl(A),
Cyl′(A, a), Cyl′′(A, a). The backward paths of RST(h) converging to 0 (in blue) are
all contained in Vois′′(A, a, h) up to level h+ a and contained in Vois(A, a, h) up to level
h. In the dashed area (Cyl′(A, a)), the DSF and RST(h) coincide.

0 x ∈ Rd

y ∈ R

O(h)

Cyl′′(A, a)

Cyl′(A, a)
Cyl(A) Vois′(A, a, h)

Vois(A, h)

Vois′′(A, a, h)

S(O(h), h)

S(O(h), h+ a)

Proof of Proposition 3.3. Let n ∈ N and h ≥ 0. Recall that BS(h)(z∞, 2n+1e−h), with S(h) :=

S(O(h), h), denotes the sphere S(O(h), h) intersected with ConeO(h)(z∞, 2
n+1e−h). Let us define

the event

Fn(h) :=
{
∃z ∈ BS(h)(z∞, 2n+1e−h), MBD∞h (z) > 2ne−h

}
.

Let us first show that E(2n, h){ ⊂
⋃
m≥n Fm(h), which will imply:

P[E(2n, h)] ≥ 1−
∑
m≥n

P[Fm(h)] . (3.4)

If E(2n, h) does not occur, then there exists some z′ /∈ Vois(2n, h) such that z∞ ∈ DRST(h)(z′). Let
z be the ancestor of z′ on S(O(h), h). Either ̂zO(h)z∞ < 2n+1e−h and we setm = n, or there exists
m > n such that 2me−h ≤ ̂zO(h)z∞ < 2m+1e−h. Then z ∈ S(O(h), h) ∩ ConeO(h)(z∞, 2

m+1e−h).
If m = n, MBD∞h (z) ≥ ̂z′O(h)z∞ > 2ne−h and Fn(h) occurs. If m > n, MBD∞h (z) ≥ ̂zO(h)z∞ ≥
2me−h and Fm(h) occurs. This proves (3.4).
To conclude, we use Proposition 2.6 to upperbound P[Fm(h)]. On Fm(h), the following occurs:∑

z∈BS(h)(z∞,2n+1e−h)∩RST(h)

(
MBD∞h (z)

)p
> 2mpe−ph (3.5)

which by Markov inequality leads to

P [Fm(h)] ≤ 2−mpephE

 ∑
z∈BS(h)(z∞,2n+1e−h)∩RST(h)

(
MBD∞h (z)

)p ≤ Cfl2d2m(d−p)
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where we used Proposition 2.6 with r0 = h, A = 2m+1. The constant Cfl > 0 appearing in
Proposition 2.6 depends only on p. At this step, notice that the dependence in h of the previous
upperbound has disappeared, providing the announced uniformity on h. Thus, for some p > d,

P[E(2n, h)] ≥ 1− 2dCfl
2n(d−p)

1− 2d−p
.

The right hand side converges to 1 when n→∞ which proves the first part of Proposition 3.3. The
second part is treated exactly in the same way replacing the sphere S(O(h), h), the opening angle
2n+1e−h and MBD∞h (·) with resp. S(O(h), h+ a), the opening angle 2n+1e−h−a and MBD∞h+a(·),
leading to the searched limit uniformly in h and a.

Proof of Lemma 3.2. Let A, a ≥ 0 be fixed. For h ≥ 0, let z = (x, y) ∈ Vois(A, h). Considering the
totally geodesic plane containing z∞, z and O(h) (represented by a half-plane in H), it is possible
to suppose d = 1 without loss of generality. We apply the distance and angle formulas in (H, ds2)
(see e.g. [14, Proposition 2.1]).

Let z = (x, y) ∈ Vois(A, h). We recall that the angle ̂z∞O(h)z can be computed as a function
of x, y and h:

̂z∞O(h)z = arctan

∣∣∣∣ 2xeh

e2h − x2 − y2

∣∣∣∣ . (3.6)

This formula can be obtained by noticing that the Poincaré open-ball model is conform and by
using the fact that the application φ : H → I, sending the half-space model to the open-ball model,
and defined as:

(x, y) 7→ 1

x2 + (y + 1)2
(
x2 + y2 − 1,−2x

)
is an isometry sending (0, 1) on (0, 0). Then, the angle ̂zO(h)z∞ = ̂φ′(z)0φ′(z∞), where the second
angle is taken in the disc model. Since φ′(z∞) = (−1, 0), if y < eh then ̂z0(h)z∞ < π

2 and we can
establish (3.6).
On the one hand, ̂zO(h)z∞ ≤ Ae−h, so, taking h large enough such that Ae−h < π/2, we have

arctan

∣∣∣∣ 2xeh

e2h − x2 − y2

∣∣∣∣ ≤ Ae−h.
Thus, for h large enough,

|x|e−h ≤ arctan |2xe−h| ≤ arctan

∣∣∣∣ 2xeh

e2h − x2 − y2

∣∣∣∣ ≤ Ae−h,
so |x| ≤ A.
On the other hand, d(O(h), z) ≥ h. Recall that for z1 = (x1, y1) and z2 = (x2, y2) ∈ H,

d(z1, z2) = 2 tanh−1

(√
κ2 + (v − 1)2

κ2 + (v + 1)2

)
= 2 tanh−1

(√
1− 4v

κ2 + (v + 1)2

)
, (3.7)

where κ = ‖x1 − x2‖/y1 and v = y2/y1. Applying this formula for z = (x, y) and O(h) = (0, eh),

2 tanh−1

(√
1− 4yeh

A2 + (y + eh)2

)
|x|≤A
≥ 2 tanh−1

(√
1− 4ye−h

(xe−h)2 + (ye−h + 1)2

)
= d(O(h), z) ≥ h.
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This implies that √
1− 4ye−h

(xe−h)2 + (ye−h + 1)2
≥ tanh

(h
2

)
=
eh/2 − e−h/2

eh/2 + e−h/2
,

from which we deduce that:

eh ≤
1 +

√
1− 4yeh

A2+(y+eh)2

1−
√

1− 4yeh

A2+(y+eh)2

=
eh

y
+ o(eh) when h→∞,

for h large enough this implies y ≤ 3/2. The two other inclusions are shown by similar computa-
tions.

4. Proof of Proposition 2.5

4.1. Step 0: Preliminaries
Let r0 > 0, δ > 0 (small) and z ∈ S(r0) ∩ RST. In order to control MBDr0+δr0 (z), we use a block
control argument similar to [14, Section 4.3, Proof of Prop. 4.6]. For any A > 0 (large)– parameters
A, δ will be properly chosen later –, let us set

Ψ1(r0, z) := Cone(z, 3Ae−r0) ∩
(
B(r0 + δ)\B(r0)

)
and

Ψ2(r0, z) := Cone(z,Ae−r0) ∩
(
B(r0)\B(r0 − 1)

)
.

An element z ∈ S(r0) is said to be good if the event

G(r0, z) := {N ∩Ψ1(r0, z) = ∅ and N ∩Ψ2(r0, z) 6= ∅} (4.1)

occurs. See Fig. 5. Thus let us introduce the set χ̂(r0) ⊂ S(r0) of good points, i.e.

χ̂(r0) :=
{
z ∈ S(r0) : G(r0, z) occurs

}
and the subset of the annulus B(r0 + δ)\B(r0) that χ̂(r0) generates:

χ(r0) :=
{

(s;u) : r0 ≤ s ≤ r0 + δ and (r0;u) ∈ χ̂(r0)
}
.

The random set χ(r0) is called the controlled region in which the cumulative forward deviations
will be well controlled. This is the statement of Lemma 4.1, proved in Section 4.5.

Lemma 4.1. For any A > 2, δ > 0, r0 > 0, the following holds:

sup
s∈[r0,r0+δ]

sup
z∈Ls∩χ(r0)

CFDsr0(z) ≤ Ae−r0 .

Thus we need to cover the sphere S(r0) with caps of angular radius e−r0 such that the number
of caps overlapping a given point never exceeds some constant K.

Lemma 4.2. There exists an integer K = K(d) such that, for any radius r0 > 0, there exist an
integer N(r0) and a family of points z1, ..., zN(r0) ∈ S(r0) such that:

(a)
⋃

1≤i≤N(r0)
BS(r0)(zi, e

−r0) = S(r0);

(b) ∀z ∈ S(r0), #{1 ≤ i ≤ N(r0) : z ∈ BS(r0)(zi, e−r0)} ≤ K.

Moreover, there exists a constant Cball = Cball(K, d) > 0 such that for any r0 > 0, A ≥ 1,

sup
z∈S(r0)

#
{

1 ≤ i ≤ N(r0) : BS(r0)(zi, e
−r0) ∩BS(r0)(z,Ae

−r0) 6= ∅
}
≤ CballA

d . (4.2)
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S(r0 + δ)

Ae−r0

Ψ1(r0, z)

Ψ2(r0, z)

Figure 5: The element z is good ; the fluctuations of trajectories crossing the cap BS(r0)(z,Ae
−r0)

(depicted in blue) are well controlled.

The BS(r0)(zi, e
−r0)’s given by Lemma 4.2 will act as a discretization of the sphere S(r0). For

1 ≤ i ≤ N(r0), the cap BS(r0)(zi, e
−r0) (and by extension its center zi) is said inhibited if it

overlaps S(r0)\χ̂(r0). Let Ψ(r0) ⊂ S(r0) be the union of all inhibited spherical caps:

Ψ(r0) :=
⋃

i: zi inhibited

BS(r0)(zi, e
−r0) .

The random set Ψ(r0) is called the augmented uncontrolled region. While Lemma 4.1 allows to
bound the cumulative forward deviations starting at a point in the controlled region χ(r0), we also
need to control what happens in the augmented uncontrolled region Ψ(r0). Lemma 4.3 (below) is
a first step in this direction.
Let us introduce some notations. Let zi be an element given by Lemma 4.2 which is inhibited.

We denote by Ĉl(zi) its cluster in Ψ(r0) and we set

Rad(zi) := sup
z′∈Ĉl(zi)

ẑi0z′ . (4.3)

We extend this definition with setting Rad(zi) = 0 when zi is not inhibited. The next lemma,
proved in Section 4.5, asserts that the radii of the clusters of the augmented uncontrolled region
Ψ(r0) admit exponential tail decay:

Lemma 4.3. There exist A > 0 large enough, δ > 0 small enough and a constant cdec > 0 such
that, for any B > 0 large enough, for any r0 > 0 and any zi given by Lemma 4.2:

P
[
er0Rad(zi) > B

]
≤ e−cdecB .

Finally, a uniform bound for the moments of the r.v. #(Lr0 ∩BS(r0)(z, e−r0)) will be required:

Lemma 4.4. For any p ≥ 1, there exists a constant C = C(d, p) > 0 such that, for any r0 > 0,

sup
z∈S(r0)

E
[
#
(
Lr0 ∩BS(r0)(z, e

−r0)
)p] ≤ C .

The proof of Proposition 2.5 is now divided into three steps. Let us choose A and δ as in Lemma
4.3. We first state in Step 1 an a.s. upper-bound for the maximal backward deviations between the
radii r0 and r0 + δ, using Lemmas 4.1, 4.2 and 4.3. This is the heart of the proof. The conclusion
in Step 3 will follow from expectation considerations and Lemma 4.4.
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4.2. Step 1: an almost-sure upper-bound for MBDr0+δ
r0

(·)
Let zi be an element given by Lemma 4.2 and let z ∈ BS(r0)(zi, e−r0)∩RST. In this first step, we
aim to get an a.s. upperbound for the maximal backward deviations MBDr0+δr0 (z) that takes into
account all the paths starting at radius r0 + δ (or before) and ending at z. To do it let us consider
the set D[r0, δ, z] defined as the union of Dr0+δr0 (z) and Poisson points z′ = (r′; ·) in N ∩ Dr′r0(z)

with r0 < r′ < r0 + δ and A(−1)(z′) = ∅. Hence, a.s.

MBDr0+δr0 (z) = max
z′=(r′;·)∈D[r0,δ,z]

CFDr
′

r0(z′) . (4.4)

Let z′ = (r′; ·) ∈ D[r0, δ, z]. Two cases must be distinguished: either z′ belongs to the controlled
region χ(r0) or not. In the first case, it suffices to apply Lemma 4.1 to get that CFDr

′

r0(z′) is
smaller than Ae−r0 . The second case requires more work. Let us define z′′ = (r′′;u′′) as the
first element of the RST path from z′ to z hitting χ(r0). In other words, its radius satisfies
r′′ := sup{s ∈ [r0, r0 + δ] : Ar′s (z′) ∈ χ(r0)}. In the case where the whole RST path from z′ to z
avoids χ(r0), we set z′′ := z. Using Lemma 4.1, we then can write:

CFDr
′

r0(z′) ≤ CFDr
′′

r0 (z′′) + CFDr
′

r′′(z
′) ≤ Ae−r0 + CFDr

′

r′′(z
′) .

By construction the projection z̄′′ := (r0;u′′) of z′′ onto S(r0) belongs to the augmented uncon-
trolled region Ψ(r0), and then to some BS(r0)(zj , e

−r0) with zj one of the points introduced in
Lemma 4.2. Its cluster in Ψ(r0), i.e. Ĉl(zj) (see the definition before (4.3)), generates a subset of
the annulus B(r0 + δ)\B(r0), namely

Cl(zj) :=
{

(s; v) : r0 ≤ s ≤ r0 + δ and (r0; v) ∈ Ĉl(zj)
}
.

So, the RST path from z′ to z′′ remains inside Cl(zj) and visits at most

M(zj) := #
(
N ∩ Cl(zj)

)
Poisson points (if zj is not inhibited, we set M(zj) := 0). Moreover, between two consecutive such
visited Poisson points, the angular deviation is at most 2Rad(zj). It then follows that CFDr

′

r′′(z
′)

is smaller than 2Rad(zj)(M(zj) + 1). We then have stated that

CFDr
′

r0(z′) ≤ Ae−r0 + 2Rad(zj)(M(zj) + 1) . (4.5)

However the above upperbound still depends on z′ through the element zj . To overcome this
obstacle, let us consider the (deterministic) set

Ji :=
{
j ∈ {1, . . . , N(r0)} : BS(r0)(zj , e

−r0) ∩BS(r0)(zi, (A+ 1)e−r0) 6= ∅
}

and let us prove that the element zj = zj(z
′) occurring in (4.5) has necessarily its index j in Ji.

First,
ẑj0z̄′′ ≤ e−r0 and ẑ0zi ≤ e−r0

since z̄′′ ∈ BS(r0)(zj , e−r0) and z ∈ BS(r0)(zi, e−r0). Thus, by Lemma 4.1,

̂̄z′′0z = ẑ′′0z ≤ CFDr
′′

r0 (z′′) ≤ Ae−r0 .

We can conclude that j ∈ Jj since

ẑj0zi ≤ ẑj0z̄′′ + ̂̄z′′0z + ẑ0zi ≤ (A+ 2)e−r0 .

Henceforth, we can write

MBDr0+δr0 (z) = max
z′=(r′;·)∈D[r0,δ,z]

CFDr
′

r0(z′) ≤ Ae−r0 + 2 max
j∈Ji

Rad(zj)(M(zj) + 1) ,

and notice that the upperbound does not longer depend on z′, nor on z, but only on zi. Also, for
any p ≥ 1, the previous inequality becomes(

MBDr0+δr0 (z)
)p ≤ 2p−1

(
Ape−pr0 + 2p max

j∈Ji
Rad(zj)

p(M(zj) + 1)p
)
. (4.6)
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4.3. Step 2: Moments of M(zj)

For j ≤ N(r0), recall that M(zj) = #(N ∩ Cl(zj))1zj inhibited. The goal of this second step is to
show that for any p ≥ 1 there exists C0 = C0(d, p) > 0 such that

E
[
M(zj)

4p
]
≤ C0 . (4.7)

Let us set, for R > 0, Reg(R) := Cone(zj , Re−r0)∩(B(r0+δ)\B(r0)). Either Rad(zj) > Re−r0/2
or Cl(zj) ⊂ Reg(R). In other words, for any integer m,

P
[
M(z) > m

]
≤ P

[
Rad(zj) > Re−r0/2

]
+ P

[
#
(
N ∩ Reg(R)

)
> m

]
. (4.8)

The first term in the upperbound in (4.8) is smaller than e−cdecR/2 by Lemma 4.3. Let us focus
now on the second term. The r.v. #(N ∩ Reg(R))) is distributed according to the Poisson law
with parameter

λVol(Reg(R)) = λν({u′ : û0u′ < Re−r0})Vol(B(r0 + δ)\B(r0)) ≤ CRd ,

for some constant C = C(d, λ) > 0. Hence, #(N ∩ Reg(R))) is stochastically dominated by the
Poisson distribution with parameter CRd. Then the Chernoff bound for the Poisson distribution
gives

P
[
#
(
N ∩ Reg(R)

)
≥ m

]
≤
(CeRd

m

)m
(4.9)

for any m ≥ CRd.
Let us choose R such that m = 2eCRd (larger than CRd). We then can use (4.9) which,

combined to (4.8), leads to

P
[
M(zj) > m

]
≤ e−(cdec/2)(m/2eC)1/d + 2−m ≤ e−cm

1/d

.

for a constant c > 0 small enough. At last, we obtain (4.7) as follows:

E
[
M(zj)

4p
]

=

∫ ∞
0

P
[
M(zj) > m1/(4p)

]
dm ≤

∫ ∞
0

e−cm
1/(4dp)

dm <∞ .

4.4. Step 3: conclusion
Our goal is to control the quantity

E
[ ∑
z∈BS(r0)(zi,e

−r0 )∩RST

(
MBDr0+δr0 (z)

)p] (4.10)

for any 1 ≤ i ≤ N(r0). Using the a.s. inequality (4.6), the expectation (4.10) is upperbounded by
the sum of the following terms

I := 2p−1Ape−pr0E
[
#
(
BS(r0)(zi, e

−r0) ∩ RST
)]

II := 22p−1E
[ ∑
z∈BS(r0)(zi,e

−r0 )∩RST

max
j∈Ji

Rad(zj)
p(M(zj) + 1)p

]
.

The first term is easily bounded using Lemma 4.4 applied with p = 1: I ≤ 2p−1CApe−pr0 . For the
second term, we first use the Cauchy-Schwarz inequality:

II = 22p−1E
[
#
(
BS(r0)(zi, e

−r0) ∩ RST
)

max
j∈Ji

Rad(zj)
p(M(zj) + 1)p

]
≤ 22p−1E

[
#
(
BS(r0)(zi, e

−r0) ∩ RST
)2] 1

2E
[

max
j∈Ji

Rad(zj)
2p(M(zj) + 1)2p

] 1
2

≤ 22p−1C
1
2

(∑
j∈Ji

E
[
Rad(zj)

4p
] 1

2E
[
(M(zj) + 1)4p

] 1
2

) 1
2

. (4.11)
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Using Step 2, we bound E[(M(zj) + 1)4p] by a constant C1. Moreover, using Lemma 4.3, we can
write:

E
[
Rad(zj)

4p
]

= e−4pr0
∫ ∞
0

P
[
er0Rad(zi) > B

1
4p
]
dB

≤ e−4pr0
∫ ∞
0

e−cdecB
1
4p
dB

= C2e
−4pr0

where C2 is a positive real number. Let us plug the previous upperbounds in (4.11), we get:

II ≤ 22p−1C
1
2 (C1C2)

1
4 e−pr0(#Ji)

1
2 .

Lemma 4.2 asserts that the set Ji counts at most Cball(A + 1)d elements. We finally obtain that
there exists a constant C = C(p, d) > 0 satisfying

E
[ ∑
z∈BS(r0)(zi,e

−r0 )∩RST

(
MBDr0+δr0 (z)

)p]
= I + II ≤ Ce−pr0 . (4.12)

The final step is to sum over all the indices i such that BS(r0)(zi, e
−r0) intersects BS(r0)(u, θ) for

some given u ∈ Sd and θ > 0. By Lemma 4.2, this sum concerns at most Cballe
dr0θd terms which

are all uniformly bounded according to (4.12). This achieves the proof of Proposition 2.5:

E
[ ∑
z∈BS(r0)(u,θ)∩RST

(
MBDr0+δr0 (z)

)p] ≤
∑

1≤i≤N(r0),

BS(r0)(zi,e
−r0 )

∩BS(r0)(u,θ) 6=∅

E
[ ∑
z∈BS(r0)(zi,e

−r0 )∩RST

(
MBDr0+δr0 (z)

)p]

≤ Ce(d−p)r0θd .

4.5. Proof of Lemmas 4.1, 4.2, 4.3, 4.4
Proof of Lemma 4.1. Let z = (s;u) ∈ χ(r0) ∩ L(s) with r0 ≤ s ≤ r0 + δ. Recall that the edge of
RST containing z is [z↑, z↓]

∗ with z↑ = A(z) the ancestor of z.
Let us first prove that z↑ belongs to B(r0). To do so, let us consider the elements z1 := (r0;u),

z2 := (r0 + δ;u) and R := inf{ρ > 0 : B(z2, ρ) ⊃ Ψ2(r0, z1)}. Whenever A > 2, the set
V := B(z2, R) ∩ (B(r0 + δ)\B(r0)) is included in Ψ1(r0, z1). Since z belongs to the controlled
region χ(r0), the event G(r0, z1) holds: Ψ1(r0, z1)– and so V – is empty of Poisson points while
Ψ2(r0, z1) is not. Consequently, the ancestor z↑ of z is necessarily in B(z2, R), but not in V . So,
it is in B(r0).
Henceforth, the points z↑, z3 := Asr0(z), z and z↓ are all on the edge [z↑, z↓]

∗ of RST, and in this
order when [z↑, z↓]

∗ is traveled from z↑ to z↓. Our goal consists now in proving that

CFDsr0(z) = ẑ0z3 ≤ Ae−r0 . (4.13)

Let us proceed by contradiction with assuming that (4.13) is false. On the one hand, we can write

ẑ↓0z3 = ẑ↓0z + ẑ0z3 > ẑ↓0z +Ae−r0

and on the other hand, denoting by z′ = (r′; ·) a Poisson point in Ψ2(r0, z1) (whose existence is
ensured by G(r0, z1))

ẑ↓0z′ ≤ ẑ↓0z + ẑ0z′ ≤ ẑ↓0z +Ae−r0 .

We then get
ẑ↓0z3 > ẑ↓0z′

which combined with r′ ≤ r0 implies(
1− cos(ẑ↓0z′)

)
sinh(r↓) sinh(r′) <

(
1− cos(ẑ↓0z3)

)
sinh(r↓) sinh(r0) .

20



Using the hyperbolic law of cosines, we finally obtain cosh(d(z↓, z
′)) < cosh(d(z↓, z3)), i.e. d(z↓, z

′) <
d(z↓, z3). We can now conclude. Recall that the distance to z↓ is increasing along the edge [z↓, z↑]

∗

by the construction (2.8). Hence,

d(z↓, z
′) < d(z↓, z3) ≤ d(z↓, z↑) .

In other words, z↓ is closer to the Poisson point z′ than to its ancestor z↑ = A(z). This contradicts
the construction of the RST.

Proof of Lemma 4.2. Proving Items (a) and (b) of Lemma 4.2 is equivalent to show that there
exists an integer K such that, for any ε > 0, the Euclidean unit sphere Sd can be covered by balls
of radius ε such that the number of balls overlapping some given point is bounded by K. This is
a standard fact.
We move on to show the the existence of Cball > 0 such that, for any r0 > 0, z ∈ S(r0) and A ≥ 1,

the number of caps intersecting BS(r0)(z,Ae
−r0) is upper-bounded by CballA

d. Let u0 ∈ Sd be the
direction of z and A ≥ 1. For i ∈ {1, . . . , N(r0)}, the cap BS(r0)(zi, e−r0) overlaps BS(r0)(z,Ae

−r0)

if and only if ẑi0z ≤ (A + 1)e−r0 . Hence the union of caps BS(r0)(zi, e
−r0), for 1 ≤ i ≤ N(r0),

overlapping BS(r0)(z,Ae
−r0) is included in BS(r0)(z, (A+ 2)e−r0).

Recall that ν denotes the d-dimensional volume measure on Sd. We have that

ν{u : û0u0 ≤ (A+ 2)e−r0} ≤
(
(A+ 2)e−r0

)d
and

ν{u : û0u0 ≤ e−r0} ≥ ce−r0d

where the constant c > 0 is uniform on r0. Combining these previous facts, we can deduce that
the number of caps overlapping BS(r0)(z,Ae

−r0) is upper-bounded by:

K
ν{u : û0u0 ≤ (A+ 2)e−r0}

ν{u : û0u0 ≤ e−r0}
≤ K ((A+ 2)e−r0)

d

ce−r0d
≤ CballA

d

with Cball := (3dK)/c and the conclusion follows.

Proof of Lemma 4.3. Let us start with estimating the probability that any zi (given by Lemma
4.2) is inhibited. Recall that zi is said inhibited if the spherical cap BS(r0)(zi, e

−r0) overlaps
S(r0)\χ̂(r0). Let us introduce the following events:

E(i) :=
{
N ∩ Cone(zi, (3A+ 1)e−r0) ∩ (B(r0 + δ)\B(r0)) = ∅

}
,

F (i) :=
{
N ∩ Cone(zi, (A− 1)e−r0) ∩ (B(r0)\B((r0 − 1) ∧ 0)) 6= ∅

}
.

For any z ∈ BS(r0)(zi, e−r0), the inclusions

Ψ1(r0, z) ⊂ Cone(zi, (3A+ 1)e−r0) ∩ (B(r0 + δ)\B(r0))

and
Ψ2(r0, z) ⊃ Cone(zi, (A− 1)e−r0) ∩ (B(r0 + δ)\B(r0))

hold by triangular inequality which means that, on the event E(i) ∩ F (i), the event G(r0, z)
occurs. Consequently, the cap BS(r0)(zi, e

−r0) is included in the controlled region χ̂(r0), i.e. zi is
not inhibited. We then have proved that P[zi inhibited] ≤ P[E(i){] + P[F (i){].
With zi = (r0;ui), let us write

Vol
(
Cone(zi, (3A+ 1)e−r0) ∩ (B(r0 + δ)\B(r0))

)
=

∫ r0+δ

r0

ν{u : ûi0u ≤ (3A+ 1)e−r0} sinh(r)d dr

≤ CδAd ,

for some C = C(d) > 0 not depending on A, r0, δ. So, P[E(i){] ≤ 1 − e−λCδA
d

. A similar
computation for the event F (i) leads to P[F (i){] ≤ e−λcA

d

where c = c(d) > 0 does not depend
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on A, r0, δ. Thenceforward we choose A large enough, thus δ > 0 small enough so that the upper-
bounds e−λcA

d

and 1− e−λCδAd are both smaller than (3Cball(6A+ 4)d)−1. It then follows:

P[zi inhibited] ≤ 1− e−λcδA
d

+ e−λcA
d

≤ 2

3
C−1ball(6A+ 4)−d . (4.14)

Let k > 0 be an integer. Let us pick some zi and assume that Rad(zi) ≥ k(6A + 4)e−r0 . This
traduces the fact that zi is inhibited, i.e. the corresponding cap BS(r0)(zi, e

−r0) belongs to the
augmented uncontrolled region Ψ(r0), and its cluster Ĉl(zi) in Ψ(r0) is quite large. Precisely, there
exists a sequence zi0 = zi, zi1 , . . . , zik among the zj ’s such that:

1. For any 0 ≤ j < k, BS(r0)(zij+1 , e
−r0) overlaps BS(r0)(zij , (6A+ 4)e−r0);

2. For any 0 ≤ j, j′ ≤ k, BS(r0)(zij , (3A+ 1)e−r0) and BS(r0)(zij′ , (3A+ 1)e−r0) do not overlap;

3. zi0 , . . . , zik are inhibited.

If we denote by Ek the set of such sequences (zi0 = zi, zi1 , . . . , zik) satisfying the first two items,
then

P[Rad(zi) ≥ k(6A+ 4)e−r0 ] ≤
∑

(zi0 ,...,zik )∈Ek

P[zi0 , . . . , zik are inhibited] . (4.15)

Let (zi0 , . . . , zik) ∈ Ek. For 0 ≤ j ≤ k, the event {zij is inhibited} only depends on the PPP
N inside Cone(zij , (3A + 1)e−r0). So by Item 2. the events {zij is inhibited}’s are mutually
independent. Using (4.14), we obtain

P[zi0 , . . . , zik are inhibited] = P[zi is inhibited]k+1 ≤
(2

3

)k+1

C
−(k+1)
ball (6A+ 4)−d(k+1) .

Furthermore, by Lemma 4.2, the number of BS(r0)(zj , e
−r0)’s overlapping BS(r0)(z, θ) is upper-

bounded by Cballe
dr0θd. This implies that #Ek is smaller than Ck+1

ball (6A+ 4)d(k+1).
Finally, with (4.15), we prove that

P[Rad(zi) ≥ Be−r0 ] = P[Rad(zi) ≥ k(6A+ 4)e−r0 ] ≤
(2

3

)k+1

≤ e−cdecB

with B = k(6A+ 4) and cdec = − ln(2/3)/(6A+ 4).

Proof of Lemma 4.4. Let r0,M > 0 and z ∈ S(r0). Let h ≥ 0 that will be fixed later. We divide
the set L = {z′ ∈ N : [z′, A(z′)]∗ ∩ BS(r0)(z, e−r0) 6= ∅} into two subsets L≤h and L>h according
to the length of [z′, A(z′)]∗:

L≤h := {z′ ∈ L : d(z′, z) ≤ h} and L>h := {z′ ∈ L : d(z′, z) > h} . (4.16)

Thus L = L≤h ∪ L>h and

P [#L ≥M ] ≤ P [#L≤h ≥M ] + P [L>h 6= ∅] . (4.17)

We first upperbound P [#L≤h ≥M ]. Since L≤h ⊂ B(z, h),

P [#L≤h ≥M ] ≤ P [# (N ∩B(z, h)) ≥M ] .

By (2.5), Vol(B(z, h)) ≤ Cedh, for some C > 0 independent of r0. So the r.v. #(N ∩ B(z, h)) is
stochastically dominated by a Poisson law with parameter Cλedh thus, by the Chernoff bound for
the Poisson distribution [21],

P [#L≤h ≥M ] ≤ e−Cλe
dh

(Cλedh+1)M

MM
. (4.18)
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The second step is to upperbound P [L>h 6= ∅]. Recall that Pz′ denotes the Palm distribution of
N conditionally on having a point at z′ ∈ Hd+1, and that any z′ ∈ L is necessarily outside B(r0).
By Campbell formula [13]:

P [L>h 6= ∅] ≤ E [#L>h] = E
[ ∑
z′∈N

1z′∈L>h

]
≤ λ

∫
B(r0){

Pz′ [z′ ∈ L>h] dz′ . (4.19)

Let n be an integer. We will control the integrand in (4.19) on each of the following annuli
centred at z:

Cn :=
(
B(z, n+ 1) \B(z, n)

)
∩B(r0){ .

Consider z′ ∈ L>h ∩Cn. Let us first show that h can be chosen large enough so that d(z′, A(z′)) >
n/2. To do so, let us consider the intersection point between [z′, A(z′)]∗ and S(r0), say z∗. The
hyperbolic law of cosines (2.6) says

d(z∗, z) = arcosh
(

cosh(r0)2 − cos(ẑ∗0z) sinh(r0)2
)

≤ arcosh
(

cosh(r0)2 − cos(e−r0) sinh(r0)2
)

= arcosh
(
1 +

(
1− cos(e−r0)

)
sinh(r0)2

)
which is smaller than some constant Cdis > 0 independent of r0. Because distances grow along
edges– see (2.8) –, we get

d(z′, A(z′)) ≥ d(z′, z∗) ≥ d(z, z′)− d(z, z∗) ≥ n− Cdis .

Besides z′ ∈ L>h ∩ Cn also means h < d(z′, z) < n + 1 and in particular n ≥ h. So h > 2Cdis
implies that d(z′, A(z′)) > n/2. Notice that this later inequality forces z′ to be outside B(n/2).
These geometric considerations combined with (4.19) give

P [L>h 6= ∅] ≤ λ

+∞∑
n=0

∫
Cn

Pz′ [z′ ∈ L>h] dz′

≤ λ
∑
n≥h

∫
Cn∩B(n/2){

Pz′
[
B+(z′, n/2) ∩N = ∅

]
dz′

≤ λ
∑
n≥h

∫
Cn∩B(n/2){

e−λVol(B+(z′,n/2)) dz′ .

The estimate (A.1) for the volume of balls with r′ (the radius of z′) larger than n/2 allows us to
write:

P [L>h 6= ∅] ≤ λ
+∞∑
n=h

e−λce
dn/4

Vol
(
Cn
)
≤ λ

+∞∑
n=h

e−λce
dn/4+d(n+1) ≤ Ce−ch (4.20)

for suitable positive constants c, C and h large enough.
Let us conclude with choosing h = (K/c) ln(M) where c is the constant appearing in (4.20) and

K is any large integer. Hence the upperbound in (4.20) becomes M−K while the one in (4.18) is
negligible w.r.t. M−K . So, by (4.17), P[#L ≥ M ] is smaller than M−K , for any K. This proves
Lemma 4.4.

5. Proof of Propositions 2.6 and 2.7
We first prove Proposition 2.6.
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Step 1: Let us fix p > 3d/2. For any r0 > 0, n ∈ N, let us define

Sn(A, r0) :=
∑

z∈BS(r0)(u,Ae
−r0 )∩RST

(
MBDr0+nδr0 (z)

)2p
.

The strategy of the proof is to construct a family of non-negative random variables
(YMn (A, r0))r0,A,M≥0,n∈N and (YM (A, r0))r0,A,M≥0 such that

(1) almost surely, YMn (A, r0) ↑ YM (A, r0) when n→∞ for any M,A, r0 ≥ 0;

(2) supA,r0 P
[
YM (A, r0) ≥M

]
= O

(
M−2/3

)
when M →∞;

(3) the following implication holds almost surely:

Sn(A, r0) ≤ (M ∧ YMn (A, r0))Ade−2r0p =⇒ Sn+1(A, r0) ≤ YMn+1(A, r0)Ade−2r0p.

Let us suppose for the moment that such random variables YMn (A, r0) and YM (A, r0) exist.
Let A, r0 ≥ 0 and M ≥ 0. On the event {YM (A, r0) ≤ M}, it can be shown by induction that
Sn(A, r0) ≤ MAde−2r0p for any n ≥ 0. Indeed, S0 = 0, and if Sn(A, r0) ≤ MAde−2r0p, then, by
(3),

Sn+1(A, r0) ≤YMn+1(A, r0)Ade−2r0p ≤ YM (A, r0)Ade−2r0p ≤MAde−2r0p,

since we are on the event {YM (A, r0) ≤M}. This achieves the induction.
Thus, for any A, r0,M ≥ 0,

P[Sn(A, r0) ≥MAde−2r0p] ≤ P[YM (A, r0) ≥M ] ≤ CM−2/3 by item (2) above, (5.1)

for M large enough and some constant C > 0 independent of A, r0,M . It follows that

C ′ : = sup
A,r0

E
[
Sn(A, r0)A−de2r0p

]
= sup
A,r0

∫ ∞
0

P[Sn(A, r0) ≥MAde−2r0p] dM

(5.1)

≤
∫ ∞
0

CM−2/3 dM <∞. (5.2)

Recall the notation in (2.10). Let us apply Cauchy-Schwarz with the inner product defined by
〈X,Y 〉 = E [

∑
iXiYi],

E

 ∑
z∈BS(r0)(u,Ae

−r0 )∩RST

(
MBDr0+nδr0 (z)

)p
≤ E

 ∑
z∈BS(r0)(u,Ae

−r0 )∩RST

(
MBDr0+nδr0 (z)

)2p1/2

E
[
#BS(r0)(u,Ae

−r0)
]1/2

= E [Sn(A, r0)]
1/2 E

[
#BS(r0)(u,Ae

−r0)
]1/2

(5.2)

≤
√
C ′Ad/2e−r0pE

[
#BS(r0)(u,Ae

−r0) ∩ RST
]1/2

. (5.3)

Let us show that E
[
#BS(r0)(u,Ae

−r0) ∩ RST
]
≤ CAd for some C > 0 independent of A, r0. We

use the covering of S(r0) by balls of radius e−r0 introduced by Lemma 4.2 in Section 4. For any
1 ≤ i ≤ N(r0), by Proposition 4.4 applied with p = 1, E[#RST ∩ BS(r0)(zi, e−r0)] ≤ C for C
independent of r0, zi. By Lemma 4.2, the number of balls intersecting BS(r0)(u,Ae

−r0) is bounded
by CballA

d. It follows that E
[
#BS(r0)(u,Ae

−r0) ∩ RST
]
≤ CAd.

Thus, resuming to (5.3),

E

 ∑
z∈BS(r0)(u,Ae

−r0 )∩RST

(
MBDr0+nδr0 (z)

)p ≤ Ce−r0p. (5.4)
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Since r 7→ MBDrr0(z) is non-decreasing for any z ∈ S(r),∑
z∈BS(r0)(u,Ae

−r0 )∩RST

(
MBD∞r0 (z)

)p
= lim
n→∞

↑
∑

z∈BS(r0)(u,Ae
−r0 )∩RST

(
MBDr0+nδr0 (z)

)p
. (5.5)

Proposition 2.6 follows by (5.4) and by monotone convergence theorem.

Step 2: We build the random variables YMn (A, r0) and YM (A, r0), as presented in the beginning
of Step 1. Let us define

Zn(A, r0) :=
∑

z′∈BS(r0+nδ)(u,Ae
−r0 (Md/(2p)+1))∩RST

(
MBDr0+(n+1)δ

r0+nδ
(z′)
)2p

. (5.6)

We will show that the following choice works: we set YM0 (A, r0) := 0, and for any n ≥ 0,

YMn+1(A, r0) :=

(
1− 1

n2

)1−2p

YMn (A, r0) + n4p−2A−de2r0pZn(A, r0). (5.7)

Let us also define YM (A, r0) := limn→∞ ↑ YMn (A, r0) (this is well-defined since n→ YMn (A, r0) is
non-decreasing).

To understand the choice of (5.6) and (5.7), let us establish a formula where Sn+1(A, r0) is upper
bounded by Sn(A, r0) and Zn(A, r0).
Let A, r0 > 0, let n ∈ N. Fix z ∈ BS(r0)(u,Ae−r0). The quantity MBDr0+nδr0 takes into account
finite backward paths that stop before level r0 + nδ and those (potentially infinite) that continue
after level r0+nδ. Let us define the random set Stop(z) as the set of ending points (in the backward
direction) of finite paths from z stopping before level r0 + nδ:

Stop(z) := {z′ = (r′;u′) ∈ N ∩ D(z), r0 ≤ r′ ≤ r0 + nδ, A−1(z′) = ∅} ⊂ N .

By definition of MBDr0+nδr0 (z) (resp. MBDr0+(n+1)δ
r0 (z)),

MBDr0+nδr0 (z) = max
z′=(r′;u′)∈Stop(z)

CFDr
′

r0(z′) ∨ max
z′∈Dr0+nδ

r0
(z)

CFDr0+nδr0 (z′) (5.8)

and

MBDr0+(n+1)δ
r0 (z) (5.9)

= max
z′=(r′;u′)∈Stop(z)

CFDr
′

r0(z′) ∨ max
z′∈Dr0+nδ

r0
(z)

(
CFDr0+nδr0 (z′) + MBDr0+(n+1)δ

r0+nδ
(z′)
)
.

For any p ≥ 1, a, b ≥ 0 and t ∈ [0, 1], Jensen inequality gives,

(a+ b)p =

(
t
a

t
+ (1− t) b

1− t

)p
≤ t
(a
t

)p
+ (1− t)

(
b

1− t

)p
= t1−pap + (1− t)1−p bp. (5.10)

Applying (5.10) with t = 1/n2 leads to:(
MBDr0+(n+1)δ

r0 (z)
)2p

(5.9)
= max

z′=(r′;u′)∈Stop(z)
CFDr

′

r0(z′)2p ∨ max
z′∈Dr0+nδ

r0
(z)

(
CFDr0+nδr0 (z′) + MBDr0+(n+1)δ

r0+nδ
(z′)
)2p

≤ max
z′=(r′;u′)∈Stop(z)

CFDr
′

r0(z′)2p ∨

max
z′∈Dr0+nδ

r0
(z)

[(
1− 1

n2

)1−2p (
CFDr0+nδr0 (z′)

)2p
+ n4p−2

(
MBDr0+(n+1)δ

r0+nδ
(z′)
)2p]

.

25



To simplify future expressions, set

p(n) :=

(
1− 1

n2

)1−2p

. (5.11)

Since 1− 2p < 0 and 1− 1/n2 ∈ (0, 1), p(n) > 1 and

(
MBDr0+(n+1)δ

r0 (z)
)2p ≤p(n)

[
max

z′=(r′;u′)∈Stop(z)

(
CFDr

′

r0(z′)
)2p ∨ max

z′∈Dr0+nδ
r0

(z)

(
CFDr0+nδr0 (z′)

)2p]
+ n4p−2 max

z′∈Dr0+nδ
r0

(z)

(
MBDr0+(n+1)δ

r0+nδ
(z′)
)2p

(5.8)
= p(n)

(
MBDr0+nδr0 (z)

)2p
+ n4p−2 max

z′∈Dr0+nδ
r0

(z)

(
MBDr0+(n+1)δ

r0+nδ
(z′)
)2p

. (5.12)

Summing (5.12) over all z ∈ BS(r0)(u,Ae−r0) leads to:

Sn+1(A, r0) ≤ p(n)Sn(A, r0) + n4p−2
∑

z∈BS(r0)(u,Ae
−r0 )

z′∈Dr0+nδ
r0

(z)

(
MBDr0+(n+1)δ

r0+nδ
(z′)
)2p

. (5.13)

Let us condition on the event {Sn(A, r0) ≤MAde−2r0p}. Then, for any z ∈ BS(r0)(u,Ae−r0),(
MBDr0+nδr0 (z)

)2p ≤ Sn(A, r0) ≤MAde−2r0p,

so, for any z′ ∈ Dr0+nδr0 (z), ẑ′0z ≤ M1/2pAd/(2p)e−r0 . Denoting by z∞ ∈ ∂Hd+1 the point of
direction u, we have

ẑ′0z∞ ≤ ẑ′0z + ẑ0z∞

≤M
d
2pA

d
2p e−r0 +Ae−r0 , since z ∈ BS(r0)(u,Ae

−r0)

≤ Ae−r0
(
M

d
2p + 1

)
, since

d

2p
≤ 1.

Therefore, for any z ∈ BS(r0)(u,Ae−r0),

Dr0+nδr0 (z) ⊂ BS(r0+nδ)
(
u,Ae−r0

(
M

d
2p + 1

))
. (5.14)

By (5.6) and (5.14), ∑
z∈BS(r0)(u,Ae

−r0 )

z′∈Dr0+nδ
r0

(z)

(
MBDr0+(n+1)δ

r0+nδ
(z′)
)2p ≤ Zn(A, r0), (5.15)

thus, combining (5.13) and (5.15), on the event {Sn ≤MAde−2r0p},

Sn+1(A, r0) ≤ p(n) Sn(A, r0) + n4p−2Zn(A, r0). (5.16)

This upper-bound of Sn+1(A, r0) suggests the definition of the random variables YMn (A, r0) given
in (5.7).

Step 3: We now show that the random variables YMn (A, r0) verify the items (1)-(3) of Step 1.
Let us start with item (3): for n ∈ N, on the event {Sn(A, r0) ≤ (M ∧ YMn (A, r0))Ade−2r0p}, by
(5.16),

Sn+1(A, r0) ≤ p(n) Sn(A, r0) + n4p−2Zn(A, r0)

≤ p(n) YMn (A, r0)Ade−2r0p + n4p−2Zn(A, r0)

= Ade−2r0p
[
p(n) YMn (A, r0) + n4p−2A−de2r0pZn(A, r0)

]
= Ade−2r0pYMn+1(A, r0).
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Thus the random variables YMn (A, r0) verify (3).

We move on to show that (YMn (A, r0))n,M,A,r0 and (YM (A, r0))M,A,r0 also verify (2) of Step 1.
To proceed, we upper-bound E[YMn (A, r0)] by induction on n.

For any M,A, r0, n, Proposition 2.5 applied for θ = Ae−r0
(
Md/(2p) + 1

)
gives,

E[Zn(A, r0)] ≤ C
(
Ae−r0

(
M

d
2p + 1

))d
e(d−2p)(r0+nδ)

= CAd
(
M

d
2p + 1

)d
e−2pr0+n(d−2p)δ. (5.17)

Let us define, for any n ∈ N,

q(n) := n4p−2en(d−2p)δ, and P (n) := Πn−1
k=0p(k), Q(n) :=

n−1∑
k=0

q(k), (5.18)

with the convention P (0) = 1 and Q(0) = 0. It can be noticed that

lim
n→∞

P (n) <∞, lim
n→∞

Q(n) <∞ since d− 2p < 0. (5.19)

Let us show by induction on n that E[YMn (A, r0)] ≤ C(Md/(2p) + 1)dP (n)Q(n) for any n ∈ N. The
assertion is clear for n = 0 and, for n ≥ 0,

E[YMn+1(A, r0)] = p(n) E
[
YMn (A, r0)

]
+ n4p−2A−de2r0pE [Zn(A, r0)]

= p(n)E[YMn (A, r0)] +A−de2r0p−n(d−2p)δq(n)E [Zn(A, r0)]

(5.17)

≤ p(n)E[YMn (A, r0)] + C
(
M

d
2p + 1

)d
q(n)

≤ C
(
M

d
2p + 1

)d
[p(n)P (n)Q(n) + q(n)] by induction hypothesis

= C
(
M

d
2p + 1

)d
[P (n+ 1)Q(n) + q(n)]

≤ C
(
M

d
2p + 1

)d
P (n+ 1)Q(n+ 1) since P (n+ 1) ≤ 1, (5.20)

which achieves the induction. Thus, by (5.19), there exists some constant C > 0 such that, for any
M,A, r0 ≥ 0, for any n ∈ N, E

[
YMn (A, r0)

]
≤ C

(
Md/(2p) + 1

)d
. By monotone convergence,

E
[
YM (A, r0)

]
≤ C

(
M1/(2p) + 1

)d
.

Thus, for any M,A, r0 ≥ 0, Markov inequality gives,

P
[
YM (A, r0) ≥M

]
≤
C
(
M1/(2p) + 1

)d
M

= O(M−2/3)

since 2p > 3d. Thus the family of random variables YM (A, r0) verifies (2). This achieves the proof.

Proof of Proposition 2.7. This is a direct consequence of Proposition 2.6. Let ε > 0 and let us
choose p such that d/p < ε. Applying Proposition 2.6 with A = πer0 gives that, for any r0 ≥ 0,

E

 ∑
z∈S(r0)∩RST

(
MBD∞r0 (z)

)p ≤ Cer0(d−p). (5.21)

Thus:

E

[∑
n∈N

(
max
z∈Ln

MBD∞n (z) e(1−ε)n
)p]

≤
∑
n∈N

Cen((d−p)+(1−ε)p) <∞
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since ε > d/p. Therefore, a.s.,

lim
n→∞

e(1−ε)n max
z∈Ln

MBD∞n (z)→ 0 as n→∞.

Moreover, r0 7→ maxz∈Lr0 MBD∞r0 is non-increasing, so for any n ≤ r0 < n+ 1,

e(1−ε)r0 max
z∈Lr0

MBD∞r0 (z) ≤ max
z∈Ln

MBD∞n (z) e(1−ε)r0 ≤ e1−ε max
z∈Ln

MBD∞n (z) e(1−ε)n, (5.22)

thus

lim
r0→∞

e(1−ε)r0 max
z∈Lr0

MBD∞r0 (z)→ 0 as r0 →∞.

Define R0 such that, for any r0 ≥ R0, e(1−ε)r0 maxz∈Lr0 MBD∞r0 (z) ≤ 1/2. For any r0 ≥ R0,
z ∈ Lr0 , z1, z2 ∈ D(z), defining r1 := d(0, z1) and r2 := d(0, z2),

ẑ10z2 ≤ ẑ10z + ẑ0z2 ≤ CFDr1r0(z1) + CFDr2r0(z2) ≤ MBDr1r0(z) + MBDr2r0(z)

≤ 2MBD∞r0 (z) ≤ 2 max
z′∈Lr0

MBD∞r0 (z′) ≤ e−(1−ε)r0 . (5.23)

This achieves the proof of Proposition 2.7.

A. Proof of Proposition 2.2
We first show that the RST is a tree. If the RST contains some loop z0, · · · , zn, then the furthest
vertex to the origin in the loop, say zi, must have two parents, which contradicts the definition
of the RST. Moreover, for some given vertex z ∈ N , the sequence

(
d
(
A(k)(z), 0

))
k
is decreas-

ing. In addition, since N ∩ B(r) is finite for any r ≥ 0, there is no infinite decreasing sequence(
d
(
A(k)(z), 0

))
k
. Thus A(k)(z) = 0 for some finite k ≥ 0. Therefore, the RST is a connected

graph, so it is a tree.

We move on to show that the RST is locally finite. Let us assume for the moment that, for any
z = (r;u) ∈ Hd+1 and ρ > 0,

Vol(B+(z, ρ)) ≥ ced(ρ∧r)/2. (A.1)

for some c independent of z, ρ.
For z0 = (r0;u0) ∈ N ∪ {0}, z = (r;u) ∈ Hd, let us define

a(z, z0) = 1r>r01B+(z,d(z,z0))∩N=∅.

For any z ∈ N , z0 = A(z) if and only if a(z, z0) = 1. By Campbell formula [13],

E
[
#{z0 ∈ N , #A(−1)(z0) =∞}

]
= E

[ ∑
z0∈N

1∑
z∈N a(z,z0)=∞

]

= λ

∫
Hd+1

Pz0

[∑
z∈N

a(z, z0) =∞

]
dVol(z0),

where we recall that Pz0 is the Palm measure conditioned on having an atom at z0. Thus it suffices
to show that Pz0

[∑
z∈N a(z, z0) =∞

]
= 0 for any z0 ∈ Hd+1. Let z0 = (r0;u0) ∈ Hd+1. Note

that, if d(z, z0) ≥ r0, then 0 ∈ B+(z, d(z, z0)) so a(z, z0) = 0. Thus,

E
[∑

z∈N a(z, z0)
]

= λ

∫
Hd+1

E [a(z, z0)] dVol(z) ≤ λ
∫
Hd+1

1d(z,z0)<r0P[B+(z, d(z, z0)) ∩N = ∅] dVol(z)

= λ

∫
Hd+1

1d(z,z0)<r0 exp(−λVol(B+(z, d(z, z0))) dVol(z)

(A.1)

≤ λ

∫
Hd+1

exp(−λce−d/2 (d(z,z0)∧d(0,z))) dVol(z)

(2.4)
= λν(Sd)

∫ ∞
0

exp(−λce−rd/2) sinh(r)d dr < +∞,
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where ν(Sd) is the surface area of the Euclidean unit ball Sd. Thus P
[∑

z∈N a(z, z0) =∞
]

= 0.

It remains to show (A.1). Recall that z = (r;u) and that ρ ≥ 0. Let us introduce z′ = (r−r∧ρ;u)
and z′′ = (r − r∧ρ

2 ;u). The latter point is the center of the geodesic [z′, z] (which is here also the
segment [z′, z] as these points are aligned with 0). We have that

B(z′′,
r ∧ ρ

2
) ⊂ B+(z, r ∧ ρ) ⊂ B+(z, ρ). (A.2)

The second inclusion is obvious as r∧ρ ≤ ρ. For the first inclusion, let us consider x ∈ B(z′′, r∧ρ2 ).
Since

d′(x, z) ≤ d(x, z′′) + d(z′′, z) ≤ r ∧ ρ
2

+
r ∧ ρ

2
= r ∧ ρ,

we have B(z′′, r∧ρ2 ) ⊂ B(z, r ∧ ρ). Moreover,

d(x, 0) ≤ d(x, z′′) + d(z′′, 0) ≤ r ∧ ρ
2

+
(
r − r ∧ ρ

2

)
= r,

so B(z′′, r∧ρ2 ) ⊂ B(r). From these two inclusions, we deduce the first inclusion in (A.2).
As a consequence,

Vol
(
B+(z, ρ)

)
≥Vol

(
B
(
z′′,

r ∧ ρ
2

))
= Vol

(
B
(r ∧ ρ

2

))
= ν(Sd)

∫ r∧ρ
2

0

sinhd(t) dt ≥ c(d)ed
r∧ρ
2 ,

where the last inequality holds when r and ρ are sufficiently far from 0.
It remains to show that the geodesics [z,A(z)] for z ∈ N do not cross a.s. in the bi-dimensional

case (d = 1). Let us suppose that there are no two points z1, z2 with d(0, z1) = d(0, z2) (this
happens with probability 0). Let z1 = (r1;u1), z2 = (r2;u2) ∈ N and let us set A(z1) := (r′1;u′1),
A(z2) := (r′2;u′2). Suppose that [z1, A(z1)] and [z2, A(z2)] meet at some point Phyp := (rhyp;uhyp).
We have r′1 < rhyp < r2, thus by definition of the parent, d(z2, A(z2)) < d(z2, A(z1)). Then

d(z2, Phyp) + d(Phyp, A(z2)) = d(z2, A(z2)) < d(z2, A(z1))

≤ d(z2, Phyp) + d(Phyp, A(z1)), (A.3)

so d(Phyp, A(z2)) < d(Phyp, A(z1)). On the other hand, interchanging z1 and z2 in the previous
calculation leads to d(Phyp, A(z1)) < d(Phyp, A(z2)). This is a contradiction. Therefore [z1, A(z1)]∩
[z2, A(z2)] = ∅. This achieves the proof of Proposition 2.2.
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