
HAL Id: hal-04258621
https://cnrs.hal.science/hal-04258621

Submitted on 25 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random genetic drift sets an upper limit on mRNA
splicing accuracy in metazoans

Florian Bénitière, Anamaria Necsulea, Laurent Duret

To cite this version:
Florian Bénitière, Anamaria Necsulea, Laurent Duret. Random genetic drift sets an upper limit on
mRNA splicing accuracy in metazoans. eLife, 2024, 13, pp.RP93629. �10.7554/eLife.93629.3�. �hal-
04258621�

https://cnrs.hal.science/hal-04258621
https://hal.archives-ouvertes.fr


Random genetic drift sets an upper limit on mRNA
splicing accuracy in metazoans

Florian Bénitière, Anamaria Necsulea, Laurent Duret
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Abstract

Most eukaryotic genes undergo alternative splicing (AS), but the overall functional significance
of this process remains a controversial issue. It has been noticed that the complexity of
organisms (assayed by the number of distinct cell types) correlates positively with their
genome-wide AS rate. This has been interpreted as evidence that AS plays an important
role in adaptive evolution by increasing the functional repertoires of genomes. However, this
observation also fits with a totally opposite interpretation: given that ‘complex’ organisms
tend to have small effective population sizes (N e), they are expected to be more affected by
genetic drift, and hence more prone to accumulate deleterious mutations that decrease splicing
accuracy. Thus, according to this “drift barrier” theory, the elevated AS rate in complex
organisms might simply result from a higher splicing error rate. To test this hypothesis, we
analyzed 3,496 transcriptome sequencing samples to quantify AS in 53 metazoan species
spanning a wide range of N e values. Our results show a negative correlation between N e

proxies and the genome-wide AS rates among species, consistent with the drift barrier
hypothesis. This pattern is dominated by low abundance isoforms, which represent the vast
majority of the splice variant repertoire. We show that these low abundance isoforms are
depleted in functional AS events, and most likely correspond to errors. Conversely, the AS
rate of abundant isoforms, which are relatively enriched in functional AS events, tends to be
lower in more complex species. All these observations are consistent with the hypothesis
that variation in AS rates across metazoans reflects the limits set by drift on the capacity of
selection to prevent gene expression errors.

Keywords Alternative splicing · Random genetic drift · Life history traits · Effective
population size · dN/dS · Splice variants · Non-adaptive models · N e
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Introduction

Eukaryotic protein-coding genes are interrupted by introns, which have to be excised from the primary
transcript to produce functional mRNAs that can be translated into proteins. The removal of introns from
primary transcripts can lead to the production of diverse mRNAs, via the differential use of splice sites. This
process of alternative splicing (AS) is widespread in eukaryotes (Chen et al., 2014), but its ’raison d’être’
(adaptive or not) remains elusive. Numerous studies have shown that some AS events are functional, i.e.
that they play a beneficial role for the fitness of organisms, either by allowing the production of distinct
protein isoforms (Graveley, 2001) or by regulating gene expression post-transcriptionally (McGlincy and
Smith, 2008; Hamid and Makeyev, 2014). However, other AS events are undoubtedly not functional. Like any
biological machinery, the spliceosome occasionally makes errors, leading to the production of aberrant mRNAs,
which represent a waste of resources and are therefore deleterious for the fitness of the organisms (Hsu and
Hertel, 2009; Gout et al., 2013). The splicing error rate at a given intron is expected to depend both on the
efficiency of the spliceosome and on the intrinsic quality of its splice signals. The information required in cis
for the removal of each intron resides in 20 to 40 nucleotide sites, located within the intron or its flanking
exons (Lynch, 2006). Besides the two splice sites that are essential for the splicing reaction (almost always
GT for the donor and AG for the acceptor), all other signals tolerate some sequence flexibility. Population
genetics principles state that the ability of selection to promote beneficial mutations or eliminate deleterious
mutations depends on the intensity of selection (s) relative to the power of random genetic drift (defined by
the effective population size, N e): if the selection coefficient is sufficiently weak relative to drift (|N es| < 1),
alleles behave as if they are effectively neutral. Thus, random drift sets an upper limit on the capacity of
selection to prevent the fixation of alleles that are sub-optimal (Kimura et al., 1963; Ohta, 1973). This
so-called “drift barrier” (Lynch, 2007) is expected to affect the efficiency of all cellular processes, including
splicing. Hence, species with low N e should be more prone to make splicing errors than species with high N e.

The extent to which AS events correspond to functional isoforms or to errors is a contentious issue (Bhuiyan
et al., 2018; Tress et al., 2017b; Blencowe, 2017; Tress et al., 2017a). In humans, the set of transcripts
produced by a given gene generally consists of one major transcript (the ‘major isoform‘), which encodes
a functional protein, and of multiple minor isoforms (splice variants), present in relatively low abundance,
and whose coding sequence is frequently interrupted by premature termination codons (PTCs) (Tress et al.,
2017a; Gonzàlez-Porta et al., 2013). Ultimately, less than 1% of human splice variants lead to the production
of a detectable amount of protein (Abascal et al., 2015). Furthermore, comparison with closely related
species showed that AS patterns evolve very rapidly (Barbosa-Morais et al., 2012; Merkin et al., 2012)
and that alternative splice sites present little evidence of selective constraints (Pickrell et al., 2010). All
these observations are consistent with the hypothesis that a vast majority of splice variants observed in
human transcriptomes simply correspond to erroneous transcripts (Pickrell et al., 2010). However, some
authors argue that a large fraction of AS events might in fact contribute to regulating gene expression.
Indeed, PTC-containing splice variants are recognized and degraded by the non-sense mediated decay (NMD)
machinery. Thus, AS can be coupled with NMD to modulate gene expression at the post-transcriptional
level (McGlincy and Smith, 2008; Hamid and Makeyev, 2014). This AS-NMD regulatory process does not
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involve the production of proteins and does not necessarily imply strong evolutionary constraints on splice
sites. Thus, based on these observations, it is difficult to firmly refute selectionist or non-adaptive models.

The analysis of transcriptomes from various eukaryotic species showed substantial variation in AS rates
across lineages, with the highest rate in primates (Barbosa-Morais et al., 2012; Chen et al., 2014; Mazin
et al., 2021). Interestingly, the genome-wide average AS level was found to correlate positively with the
complexity of organisms (approximated by the number of cell types) (Chen et al., 2014). This correlation
was considered as evidence that AS contributed to the evolution of complex organisms by increasing the
functional repertoire of their genomes (Chen et al., 2014). This pattern is often presented as an argument
supporting the importance of AS in adaptation (Verta and Jacobs, 2022; Singh and Ahi, 2022; Wright et al.,
2022). However, this correlation is also compatible with a totally opposite hypothesis. Indeed, eukaryotic
species with the highest level of complexity correspond to multi-cellular organisms with relatively large body
size, which tend to have small effective population sizes (N e) (Lynch and Conery, 2003; Figuet et al., 2016).
Thus, the higher AS rate observed in ‘complex’ organisms might simply reflect an increased rate of splicing
errors, resulting from the effect of the drift barrier on the quality of splice signals (Bush et al., 2017).

To assess this hypothesis and evaluate the impact of genetic drift on alternative splicing patterns, we quantified
AS rates in 53 metazoan species, covering a wide range of N e values, and for which high-depth transcriptome
sequencing data were available. We show that the genome-wide average AS rate correlates negatively with
N e, in agreement with the drift barrier hypothesis. This pattern is mainly driven by low abundance isoforms,
which represent the vast majority of splice variants and most likely correspond to errors. Conversely, the
AS rate of abundant splice variants, which are enriched in functional AS events, show the opposite trend.
These results support the hypothesis that the drift barrier sets an upper limit on the capacity of selection to
minimize splicing errors.

Results

Genomic and transcriptomic data collection

To analyze variation in AS rates across metazoans, we examined a collection of 69 species for which
transcriptome sequencing (RNA-seq) data, genome assemblies, and gene annotations were available in public
databases. We focused on vertebrates and insects, the two metazoan clades that were the best represented in
public databases when we initiated this project. To be able to compare average AS rates across species, we
needed to control for several possible sources of biases. First, given that AS rates vary across genes (Saudemont
et al., 2017), we had to analyze a common set of orthologous genes. For this purpose, we extracted from
the BUSCO database (Seppey et al., 2019) a reference set of single-copy orthologous genes shared across
metazoans (N=978 genes), and searched for their homologues in each species in our dataset. We retained for
further analyses those species for which at least 80% of the BUSCO metazoan gene set could be identified
(N=67 species; see Materials & Methods). Second, we had to ensure that RNA-seq read coverage was
sufficiently high in each species to detect splicing variants. Indeed, to be able to detect AS at a given intron, it
is necessary to analyze a minimal number of sequencing reads encompassing this intron (we used a threshold
of N=10 reads). To assess the impact of sequencing depth on AS detection, we conducted a pilot analysis

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2023. ; https://doi.org/10.1101/2022.12.09.519597doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519597
http://creativecommons.org/licenses/by-nd/4.0/


Random genetic drift sets an upper limit on mRNA splicing accuracy in metazoans

with two species (Homo sapiens and Drosophila melanogaster) for which hundreds of RNA-seq samples are
available. This analysis (detailed in Supplementary Fig. 1) revealed that AS rate estimates are very noisy
when sequencing depth is limited, but that they converge when sequencing is high enough. We therefore
kept for further analysis those species for which the median read coverage across exonic regions of BUSCO
genes was above 200 (Supplementary Fig. 1). Our final dataset thus consisted of 53 species (15 vertebrates
and 38 insects; Fig. 1A), and of 3,496 RNA-seq samples (66 per species on average). In these species, the
number of analyzable annotated introns (i.e. encompassed by at least 10 reads) among BUSCO genes ranges
from 2,032 to 10,981 (which represents 88.6% to 99.6% of their annotated introns; Supplementary Tab. 1). It
should be noted that analyzed samples originate from diverse sources; however, they are very homogenous
in terms of sequencing technology (99% of RNA-seq samples sequenced with Illumina platforms; refer to
Data10-supp.tab in the Zenodo data repository).

Proxies for the effective population size (N e)

Effective population sizes (N e) can in principle be inferred from levels of genetic polymorphism. However,
population genetics data are lacking for most of the species in our dataset. We therefore used two life history
traits that were previously proposed as proxies of N e in metazoans (Waples, 2016; Weyna and Romiguier,
2020; Figuet et al., 2016): body length and longevity (Materials & Methods; Supplementary Tab. 2). An
additional proxy for N e can be obtained by studying the intensity of purifying selection acting on protein
sequences, through the dN/dS ratio (Kryazhimskiy and Plotkin, 2008). To evaluate this ratio, we aligned
922 BUSCO genes, reconstructed the phylogenetic tree of the 53 species (Fig. 1A) and computed the dN/dS

ratio along each terminal branch (Materials & Methods).

We note that these three proxies provide ”inverse” estimates of N e, meaning that species with high longevity,
large body length and/or elevated dN/dS values tend to have low N e values. As expected, these different
proxies of N e are positively correlated with each other (p < 1x10−3, Fig. 1B,C). We note however that these
correlations are not very strong. It thus seems likely that none of these proxies provides a perfect estimate of
N e. To take phylogenetic inertia into account, all cross-species correlations presented here were computed
using Phylogenetic Generalized Least Squared (PGLS) regression (Freckleton et al., 2002).

Alternative splicing rates are negatively correlated with N e proxies

To quantify AS rates, we mapped RNA-seq data of each species on the corresponding reference genome
assembly. We detected sequencing reads indicative of a splicing event (hereafter termed ‘spliced reads’), and
inferred the corresponding intron boundaries. We were thus able to validate the coordinates of annotated
introns and to detect new introns, not present in the annotations. For each intron detected in RNA-seq data,
we counted the number of spliced reads matching with its two boundaries (Ns) or sharing only one of its
boundaries (Na), as well as the number of unspliced reads covering its boundaries (Nu) (Fig. 2A). We then
computed the relative abundance of this spliced isoform compared to other transcripts with alternative splice
boundaries (RAS = Ns

Ns + Na
) or compared to unspliced transcripts (RANS = Ns

Ns + Nu
2

).
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   Callorhinchus milii

   Gallus gallus
   Crocodylus porosus
   Monodelphis domestica
   Loxodonta africana

   Canis lupus
   Equus caballus
   Bos taurus
   Sus scrofa
   Macaca mulatta

   Homo sapiens
   Oryctolagus cuniculus
   Heterocephalus glaber
   Rattus norvegicus
   Mus musculus

   Acyrthosiphon pisum
   Cimex lectularius

   Halyomorpha halys
   Blattella germanica
   Zootermopsis nevadensis
   Cryptotermes secundus
   Onthophagus taurus
   Tribolium castaneum

   Dendroctonus ponderosae
   Leptinotarsa decemlineata
   Anoplophora glabripennis
   Bombyx mori
   Aedes aegypti
   Ceratitis capitata
   Lucilia cuprina
   Musca domestica

   Drosophila grimshawi
   Drosophila pseudoobscura
   Drosophila suzukii
   Drosophila melanogaster
   Athalia rosae

   Cephus cinctus
   Orussus abietinus

   Nasonia vitripennis
   Trichogramma pretiosum
   Polistes dominula
   Polistes canadensis

   Megachile rotundata
   Bombus terrestris

   Apis florea
   Apis mellifera
   Apis cerana
   Harpegnathos saltator
   Linepithema humile
   Camponotus floridanus
   Pogonomyrmex barbatus
   Acromyrmex echinatior
   Solenopsis invicta

A
B

C

Figure 1: Species phylogeny and N e proxies. A: Phylogenetic tree of the 53 studied species (15 vertebrates and
38 insects). B: Relationship between body length (cm, log scale) and longevity (days, log scale) of the organism. Each
dot represents one species (colored by clade, as in the species tree in panel A). C: Relationship between longevity
(days, log scale) and the dN/dS ratio on terminal branches of the phylogenetic tree (Materials & Methods). B,C:
PGLS stands for Phylogenetic Generalized Least Squared regression, which takes into account phylogenetic inertia
(Materials & Methods).

To limit measurement noise, we only considered introns for which both RAS and RANS could be computed
based on at least 10 reads (Materials & Methods). In all species, both RAS and RANS metrics show clearly
bimodal distributions (Fig. 2B,C): the first peak (mode < 5%) corresponds to ‘minor introns’, whose splicing
occurs only in a minority of transcripts of a given gene, whereas the second one (mode > 95%) corresponds
to the introns of major isoforms. It has been previously shown that in humans, for most genes, one single
transcript largely dominates over other isoforms (Tress et al., 2017a; Gonzàlez-Porta et al., 2013). Our
observations indicate that this pattern is generalized across metazoans. For the rest of our analyses, we
computed the rate of alternative splicing with respect to introns of the major isoform. We will hereafter use
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the term ‘splice variant’ (SV) to refer to those splicing events that are detected in a minority of transcripts
(i.e. with RAS ≤ 0.5 or RANS ≤ 0.5; see Fig. 2E for a definition of the main variables used in this study).

We focused our analyses on major introns interrupting protein-coding regions (i.e. we excluded introns
located within UTRs, Materials & Methods). In vertebrates, each BUSCO gene contains on average 8.4
major introns (Supplementary Tab. 1). The intron density is more variable among insect clades, ranging
from 2.8 major introns per BUSCO gene in Diptera to 6.1 in Blattodea. As expected, most major introns
have GT/AG splice sites (99.1% on average across species), and only a small fraction have non-canonical
boundaries (0.8% GC/AG and 0.1% AT/AC). The fraction of non-canonical splice sites is slightly higher
among minor introns (2.8% GC/AG and 0.3% AT/AC). This might reflect a true biological difference but
might also be caused by the presence of some false positives in the set of minor introns. In any case, the
difference in splice signal usage between minor and major introns is small, which indicates that the vast
majority of detected minor introns correspond to bona fide splicing events.

The proportion of major introns for which AS has been detected (i.e. with Na > 0) ranges from 16.8% to
95.7% depending on the species (Supplementary Tab. 1). This metric is however not very meaningful because
it directly reflects differences in sequencing depth across species (the higher the sequencing effort, the higher
the probability to detect a rare SV, Supplementary Fig. 2). To allow a comparison across taxa, we computed
the AS rate of introns, normalized by sequencing depth (AS = Nm

NM + Nm , Materials & Methods; Fig. 2D). The
average AS rate for BUSCO genes varies by a factor of 5 among species, from 0.8% in Drosophila grimshawi
(Diptera) to 3.8% in Megachile rotundata (Hymenoptera) (3.4% in humans). Interestingly, the average AS
rates of BUSCO gene introns are significantly correlated with the three proxies of N e: species longevity (Fig.
3A), body length and the dN/dS ratio (Supplementary Fig. 3A,B). These correlations are positive, which
implies that AS rates tend to increase when N e decreases. It is noteworthy that despite the fact that these
proxies are not strongly correlated with each other (Fig. 1B,C), they all show similar relationships with AS
rates. Thus, these observations are consistent with the hypothesis that N e has an impact on the evolution of
AS rate.

One limitation of our analyses is that we used heterogeneous sources of transcriptomic data. To obtain enough
sequencing depth, we combined for each species many RNA-seq samples, irrespective of their origin (whole
body, or specific tissues or organs, in adults or embryos, etc.). It is known that genome-wide average AS
rates vary according to tissues or developmental stages (Barbosa-Morais et al., 2012; Mazin et al., 2021), and
according to environmental conditions (John et al., 2021). To explore how this might have affected our results,
we repeated our analyses using a recently published dataset that aimed to compare transcriptomes across seven
organs, sampled at several developmental stages in seven species (six mammals, one bird) (Cardoso-Moreira
et al., 2019). In agreement with previous reports (Mazin et al., 2021), our analysis of BUSCO genes revealed
substantial differences in AS rates among organs, with consistent patterns of variation across species. For
instance, in all species, testes and brain tissues show higher AS rates than liver and kidney (Fig. 3B). However,
the variation in AS rate among organs in each species is limited compared to differences between species.
Specifically, in an ANOVA analysis performed on the average AS rate across BUSCO gene introns, with
the species and the organ of origin as explanatory variables, the species factor explained 89% of the total
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A

B C

D

E

Figure 2: Distinguishing major and minor introns and measuring the rate of alternative splicing. A:
Definition of the variables used to compute the relative abundance of a spliced isoform compared to other transcripts
with alternative splice boundaries (RAS) or compared to unspliced transcripts (RANS): Ns: number of spliced reads
corresponding to the precise excision of the focal intron; Na: number of reads corresponding to alternative splice
variants relative to this intron (i.e. sharing only one of the two intron boundaries); Nu: number of unspliced reads,
co-linear with the genomic sequence. B,C Histograms representing the distribution of RAS and RANS values (divided
into 5% bins), for protein-coding gene introns. Each line represents one species. Two representative species are colored:
Drosophila melanogaster (red), Homo sapiens (brown). D: Description of the variables used to compute the AS rate
of a given a major intron, and the ’minor intron relative abundance’ (MIRA) of each of its splice variants (SVs): NM:
number of spliced reads corresponding to the excision of the major intron; Nm

i : number of spliced reads corresponding
to the excision of a minor intron (i); Nm: total number of spliced reads corresponding to the excision of minor introns.
E: Definitions of the main variables used in this study.
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A B

Figure 3: The rate of alternative splicing correlates with life history traits across metazoans. A:
Relationship between the per intron average AS rate of an organism and its longevity (days, log scale). B: Variation in
average AS rate across seven organs (brain, cerebellum, heart, liver, kidney, testis and ovary) among seven vertebrate
species (RNA-seq data from Cardoso-Moreira et al. (2019)). AS rates are computed on major introns from BUSCO
genes (Materials & Methods).

variance, while the organ factor explained only 9%. Among insects, we found only one species (Dendroctonus
ponderosae) for which RNA-seq samples were available from multiple tissues. Here again, the variance in AS
rate among tissues was limited compared to inter-species variability (Supplementary Fig. 9). Thus, despite
the variability that can be introduced by the heterogeneity of RNA-seq samples, the relationship between AS
rate and longevity remains detectable among these seven species (Fig. 3B).

Functional vs. non-functional alternative splicing

The negative correlation observed between N e and alternative splicing rates is consistent with the hypothesis
that differences in AS rates across species are driven by variation in the rate of splicing errors (drift barrier
model). This does not exclude however that functional splicing variants might also contribute to AS rate
variation across species. To evaluate this point, we selected a subset of SVs that are enriched in functional
AS events. To do this, we reasoned that selective pressure against the waste of resources should maintain
splicing errors at a low rate (as low as permitted by the drift barrier), whereas functional SVs are expected to
represent a sizeable fraction of the transcripts expressed by a given gene, at least in some specific conditions
(cell type, developmental stage. . . ). Thus, functional SVs are expected to be enriched among abundant SVs
compared to rare SVs.

To assess this prediction, we analyzed the proportion of SVs that preserve the reading frame according
to their abundance relative to the major isoform. For this, we focused on minor introns that share a
boundary with one major intron and that have their other boundary at less than 30 bp from the major
splice site (either in the flanking exon or within the major intron). We determined whether the distance
between the minor intron boundary and the major intron boundary was a multiple of 3. We computed the
abundance of each minor isoform, relative to the corresponding major isoform, with the following formula:
Minor intron relative abundance MIRAi = Nm

i
NM + Nm (see Fig. 2D).
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We divided minor introns into 5% bins according to their MIRA and computed for each bin the proportion of
minor introns that maintain the reading frame of the major isoform (Fig. 4A). In all species, we observe
that this proportion varies according to the abundance of splice variants, with two distinct regimes (Fig.
4A). First, for MIRA values above 5%, the proportion of frame-preserving variants correlates positively with
MIRA, reaching up to 60%-70% for the most abundant isoforms. Second, for MIRA values below 1%, the
proportion of frame-preserving variants does not covary with MIRA, and fluctuates around 30 to 40%, close
to the random expectation (33%). The excess of frame-preserving variants among the most abundant isoforms
implies that a substantial fraction of them is under constraint to encode functional protein isoforms. This
fraction varies from 0% for MIRA values below 1%, to 50% for isoforms with the highest MIRA values. It
should be noted that these estimates correspond to a lower bound, since it is possible that some frame-shifting
splice variants are functional. Nevertheless, these observations clearly indicate that the subset of SVs with
MIRA values > 5% (hereafter referred to as ‘abundant SVs’) is strongly enriched in functional isoforms relative
to other SVs (MIRA ≤ 5%, hereafter referred to as ‘rare SVs’). Of note, the subset of rare SVs represents
the vast majority of the SV repertoire (from 62.4% to 96.9% depending on the species; Supplementary Tab.
1). Thus, the positive correlation between AS rate and longevity reported above (Fig. 3A) is mainly driven
by the set of introns with a low AS rate (Fig. 4C). Interestingly, introns with high AS rate (enriched in
functional SVs) show an opposite trend (Fig. 4D), and they display a lower proportion of frame-preserving
SVs in vertebrates than in dipterans (Fig. 4B). This is the opposite of what would have been expected if
functional SVs were more prevalent in complex organisms.

Investigating selective pressures on minor splice sites

A complementary approach to assess the functionality of AS events consists in investigating signatures of
selective constraints on splice sites. For this, we used polymorphism data from Drosophila melanogaster
and Homo sapiens to measure single-nucleotide polymorphism (SNP) density at major and minor splice
sites, considering separately rare and abundant SVs. We focused on the first two and last two bases of
each intron (consensus sequences GT, AG), which represent the most constrained sites within splice signals.
We studied minor introns that share one splice site with a major intron and we measured SNP density at
the corresponding major and minor splice sites. To account for constraints acting on coding regions, we
considered separately minor splice sites that were located in an exon or in an intron of the major isoform.
As negative controls, we selected AG or GT dinucleotides that were unlikely to correspond to alternative
splice sites (Fig. 5, Materials & Methods). Furthermore, for Homo sapiens we controlled for the presence of
hypermutable CpG dinucleotides (Tomso and Bell, 2003) (Supplementary Fig. 4, Materials & Methods).

For both species, the lowest SNP density is observed at major splice signals, which reflects the strong selective
constraints on these sites (Fig. 5). In Drosophila melanogaster, there is also a strong signature of selection on
minor splice signals of abundant SVs: both in introns and in exons, the SNP density at minor splice signals
of abundant SVs is much lower than in corresponding controls (from -37% to -74%, Fig. 5A) and than in
minor splice signals of rare SVs (from -38% to -71%, Fig. 5B). This observation confirms that abundant SVs
are strongly enriched in functional variants compared to rare SVs. In Homo sapiens, patterns of SNP density
showed little evidence of selective constraints on minor splice sites, irrespective of the abundance of SVs (Fig.

9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2023. ; https://doi.org/10.1101/2022.12.09.519597doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519597
http://creativecommons.org/licenses/by-nd/4.0/


Random genetic drift sets an upper limit on mRNA splicing accuracy in metazoans

A B

C D

Figure 4: Variation in AS rate across metazoans: distinguishing abundant splice variants (enriched
in functional variants) from rare splice variants. A: Frame-preserving isoforms are strongly enriched among
abundant splice variants (SVs). For each species, SVs were classified into 20 equal-size bins according to their
abundance relative to the major isoform (MIRA, see Materials & Methods), and the proportion of frame-preserving
SVs was computed for each bin. Each line represents one species. Three representative species are colored: red:
Drosophila melanogaster, brown: Homo sapiens, yellow: Apis mellifera. We used a threshold MIRA value of 5% to
define ‘abundant’ vs. ‘rare’ SVs. B: Proportion of frame-preserving SVs among abundant SVs across metazoans. Each
dot represents one species. All annotated protein-coding genes are used in the analysis. C,D: Relationship between
the average per intron AS rate of an organism and its longevity (days, log scale). Only BUSCO genes are used in the
analysis. C: Low-AS major introns (i.e. major introns that do not have any abundant SV), D: High-AS major introns
(i.e. major introns having at least one abundant SV).

5C,D): minor acceptor splice sites (AG) located within the major intron show a weak but significant SNP
deficit relative to corresponding control sites (p-value < 1x10−5), but other categories of minor splice sites do
not show any sign of selective constraints. The fact that the signature of selection on minor splice signals is
much weaker in humans compared to Drosophila is indicative of a lower prevalence of functional variants,
even among abundant SVs. This observation is therefore in total contradiction with the adaptive hypothesis
(more functional alternative splicing in complex organisms).
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Figure 5: Variation in selective constraints on alternative splice signals from rare and abundant SVs.
For each minor intron sharing one boundary with a major intron, we measured the SNP density at its minor splice
site (red), and at the corresponding major splice site (green). We distinguished minor splice sites that are located
in an exon or in an intron of the major isoform. As a control (blue), we selected AG or GT dinucleotides that are
unlikely to correspond to alternative splice sites, namely: AG dinucleotides located toward the end of the upstream
exon or the beginning of the intron (unlikely to correspond to a genuine acceptor site), and GT dinucleotides located
toward the beginning of the downstream exon or the end of the intron (unlikely to correspond to a donor site). To
increase the sample size, we analyzed data from all annotated protein-coding genes (and not only the BUSCO gene
set). The number of sites studied is shown at the top of each bar. Error bars represent the 95% confidence interval of
the proportion of polymorphic sites (proportion test). A,B: SNP density in Drosophila melanogaster (polymorphism
data from 205 inbred lines derived from natural populations, N=3,963,397 SNPs (Huang et al., 2014; Mackay et al.,
2012)). C,D: SNP density in Homo sapiens (polymorphism data from 2,504 individuals, N=80,868,061 SNPs (Auton
et al., 2015)). We excluded dinucleotides affected by CpG hypermutability (Materials & Methods, see Supplementary
Fig. 4 for CpG sites). A,C: Abundant SVs (MIRA > 5%). B,D: Rare SVs (MIRA ≤ 5%).

The splicing rate of rare SVs is negatively correlated with gene expression levels

The above analyses are consistent with the hypothesis that the vast majority of rare SVs correspond to
erroneous transcripts, and that changes in N e contribute to variation in AS rate across taxa by shifting the
selection-mutation-drift balance. If true, then this model predicts that the erroneous AS rate should also vary
among genes, according to their expression level. Indeed, it has been shown that the selective pressure on
splicing accuracy is stronger on highly expressed genes (Saudemont et al., 2017). This reflects the fact that for
a given splicing error rate, the waste of resources (both in terms of metabolic cost and of futile mobilization
of cellular machineries) increases with gene expression level (Saudemont et al., 2017; Xiong et al., 2017).
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Figure 6: Relationship between AS rate and gene expression level. For each species, we selected major
introns with a sufficient sequencing depth to have a precise measure of their AS rate (Ns + Na ≥ 100). We divided
major introns into 5% bins according to their gene expression level and computed the correlation between the average
AS rate and median expression level across the 20 bins. To increase sample size, these analyses were based on
all annotated protein-coding genes (and not only the BUSCO gene set). A: Distribution of Pearson correlation
coefficients (R) between the AS rate and expression level observed in the 53 metazoans. The vertical dashed lines
indicates the thresholds under and above which correlations are significant (i.e. p-value < 0.05). B: Distribution of
Pearson correlation coefficients computed on the subsets of low-AS major introns (i.e. after excluding major introns
with abundant SVs). C,D: Two representative species illustrating the negative relation between the average AS
rate of low-AS major introns and the expression level of their gene. Error bars represent the standard error of the
mean. C: N=127,599 low-AS major introns from Homo sapiens, D: N=31,357 low-AS major introns from Drosophila
melanogaster.

Thus, the selection-mutation-drift balance should lead to a negative correlation between gene expression level
and the rate of splicing errors. To test this prediction, we focused on low-AS major introns, i.e. introns
that are unlikely to have functional SVs. For each species, we considered all major introns with a sufficient
sequencing depth to have a precise measure of their AS rate (Ns + Na ≥ 100). The selected subset represents
38.1% to 86.7% of major introns of each species (median=70.9%). Introns were then divided into 20 bins of
equal size, according to the expression level of the corresponding genes. For each species, we computed the
Pearson correlation between the average AS rate and the average expression level across bins. We observed a
negative correlation between AS rates and gene expression levels in 52 out of the 53 species (significant with
p < 0.05, in 48/53 species; Fig. 6A; two representative examples are shown in Fig. 6C and 6D). This pattern
indicates that in almost all metazoan species, genes with a higher expression level have a lower AS rate,
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consistent with the hypothesis the rate of splicing errors is shaped by the selection-mutation-drift balance. It
should be noted that this negative correlation between AS rate and gene expression level is not expected for
functional SVs (there is a priori no reason why the AS rate of functional SVs should be higher in weakly
expressed genes than in highly expressed genes). Interestingly, when we performed this analysis on all introns
(including those with abundant SVs, which are enriched in functional variants), then most species (31/53)
still showed a negative correlation between AS rate and gene expression level (Fig. 6B), but some species,
such as Drosophila melanogaster showed the opposite pattern (Supplementary Fig. 5). This probably reflects
that fact that, in those species, functional AS events make a significant contribution to the genome-wide
average AS rate.

Discussion

To investigate the factors that drive variation in AS rates across species, we analyzed publicly available
RNA-seq data across a large set of 53 species, from diverse metazoan clades, covering a wide range of N e values.
To facilitate comparisons across species, we sought to limit the impact of the among-gene variance in AS rates.
For this, we primarily based our analyses on a common set of nearly 1,000 orthologous protein-coding genes
(BUSCO gene set). We focused our study on introns located within protein-coding regions, because introns
from UTRs or lncRNAs are expected to be subject to different functional constraints. We measured AS rates
on introns corresponding to a major isoform. When sequencing depth is limited, the set of introns for which
AS can be quantified is biased toward the most highly expressed genes. To avoid this bias, we restricted our
study to species for which the median sequencing depth of BUSCO exons was above 200. With this setting,
on average 96.9% of BUSCO annotated introns could be analyzed in each species (Supplementary Tab. 1).

We observed a 5-fold variation in the average AS rate of BUSCO introns across species from 0.8% in Drosophila
grimshawi (Diptera) to 3.8% in Megachile rotundata (Hymenoptera)(Fig. 3A). In agreement with previous
work, we observed that AS rates tend to be high in vertebrates (average=2.3%), and notably in primates
(average=3.1%) (Barbosa-Morais et al., 2012; Chen et al., 2014; Mazin et al., 2021). This observation was
previously interpreted as an evidence that AS played an important role in the diversification of the functional
repertoire necessary for the development of more complex organisms (Chen et al., 2014). However, this
pattern is also compatible with the hypothesis that variation in AS rates across species result from differences
in splicing error rates, which are expected to be higher in species with low N e (Bush et al., 2017). Indeed,
consistent with this drift barrier hypothesis, we observed significant correlations between AS rates and proxies
of N e (Fig. 3B, Supplementary Fig. 3A,B).

In their original study, Chen et al. (2014) investigated the hypothesis that variation in AS rates across taxa
might be driven by variation in N e. For this, they focused on 12 species, for which they had measured levels
of polymorphism at silent sites (π). They found that the correlation between AS rate and the number of
cell types (proxy for organismal complexity) remained significant after controlling for π. They therefore
concluded that the association between the cellular diversity and alternative splicing was not a by-product of
reduced effective population sizes among more complex species. This conclusion was however based on a
very small sample of species. More importantly, it assumed that π could be taken as a proxy for N e. At
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Figure 7: Impact of the drift-barrier on the genome-wide AS rate: model predictions. To illustrate the
impact of the drift barrier, we sketched a simple model, with three hypothetical species of different N e. In this model,
the repertoire of SVs consists of a mixture of functional variants and splicing errors. We assumed that in all species,
only a small fraction of major introns (5%) produce functional SVs, but that these variants have a relatively high AS
rate (average=25%, standard deviation=5%; see Materials & Methods for details on model settings). Splicing error
rates were assumed to be gamma-distributed, with a low mean value. Owing to the drift barrier effect, the mean error
rate was set to vary from 0.2% in species of high N e to 1.2% in species of low N e (these parameters were chosen to
match approximately the AS rates observed in empirical data for rare SVs). A Genome-wide distribution of AS rates
in each species (high N e, medium N e and low N e). Each distribution corresponds to a mixture of functional SVs
(green) and splicing errors (red). B: Zoom on the y-axis to better visualize the contribution of functional SVs to the
whole distribution: rare SVs (AS ≤ 5%) essentially correspond to splicing errors, while abundant SVs (AS > 5%)
correspond to a mixture of functional and spurious variants, whose relative proportion depend on N e. The following
panels show how these different distributions, induced by differences in N e, impact genome-wide AS patterns. C:
Relationship between the average AS rate per major intron and N e. D: Fraction of frame-preserving splice variants
among introns with high AS rates vs N e. Relationship between the average AS rate per intron and N e, for ‘low-AS’
major introns (MIRA ≤ 5%) (E), and for ‘high-AS’ major introns (MIRA > 5%) (F).

mutation-drift equilibrium, π is expected to be proportional to N eu (where u is the mutation rate per bp
per generation). Thus, if u is constant across taxa, π can be used to estimate variation in N e. However, the
dataset analyzed by Chen et al. (2014) included very diverse eukaryotic species, with mutation rates ranging
from 1.7x1010 mutation per bp per generation in budding yeast, to 1.1x108 mutation per bp per generation
in humans (Lynch et al., 2016). Hence, at this evolutionary scale, variation in N e cannot be directly inferred
from π without accounting for variation in u. Moreover, the drift barrier hypothesis states that the AS rate
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of a species should reflect the genome-wide burden of slightly deleterious substitutions, which is expected to
depend on the intensity of drift over long evolutionary times (i.e. long-term N e). Conversely, π reflects N e

over a short period of time (of the order of N e generations), and can be strongly affected by recent population
bottlenecks (too recent to have substantially impacted the genome-wide deleterious substitution load). The
drift barrier hypothesis therefore predicts that the splicing error rate should correlate more strongly with
proxies of long-term N e (such as dN/dS, life history traits, or organismal complexity) than with π. The fact
that AS rates remained significantly correlated to cellular diversity after controlling for π (Chen et al., 2014)
is therefore not a conclusive argument against the drift barrier hypothesis.

To contrast the two models (drift barrier vs diversification of the functional repertoire in complex organisms),
we sought to distinguish functional splice isoforms from erroneous splicing events. Based on the assumption
that splicing errors should occur at a low frequency, we split major introns into two categories, those with
abundant SVs (MIRA > 5%), and those without (MIRA ≤ 5%). Rare SVs represent the vast majority of
the repertoire of splicing isoforms detected in a given transcriptome (from 62.4% to 96.9% according to the
species; Supplementary Tab. 1). Two lines of evidence indicate that the small subset of abundant isoforms is
strongly enriched in functional transcripts relative to other SVs. First, we observed that in all species, the
proportion of SVs that preserve the reading frame is much higher among abundant SVs than among rare
SVs (Fig. 4A). Second, the analysis of polymorphism data in Drosophila indicates that the average level of
purifying selection on alternative splice sites is much stronger for abundant than rare SVs (Fig. 5A,B).

If variation in AS rate across species had been driven by a higher prevalence of functional SVs in more complex
organisms, one would have expected the proportion of frame-preserving SVs to be stronger in vertebrates
than in insects, in particular for the set of introns with high AS rate (i.e. enriched in functional SVs). On
the contrary, the highest proportion of frame-preserving SVs is observed in dipterans (Fig. 4B). In fact, the
overall higher AS rate of vertebrates (Fig. 3A) is driven by the set of introns with a low AS rate (Fig. 4C),
i.e. the set of introns in which the prevalence of functional SVs is the lowest. On the contrary, among the set
of introns with high AS rate, vertebrates have lower AS rates than insects (Fig. 4D).

These observations are difficult to reconcile with the hypothesis that the higher AS rate in vertebrates results
from a higher rate of functional AS. Conversely, these observations fit very well with a model where variation
in AS rate across species is entirely driven by variation in the efficacy of selection against splicing errors. To
illustrate this model, let us consider three hypothetical species with different N e, in which a small fraction of
major introns (say 5%) is subject to functional alternative splicing. Let us consider that the distribution of
AS rates of functional splicing variants is the same for all species (i.e. independent of N e), with a mean of
25% (and a standard deviation of 5%). In addition, we assume that all major introns are potentially affected
by splicing errors, with a mean error rate ranging from 0.2% in species of high N e to 1.2% in species of
low N e, owing to the drift barrier effect (these parameters were set to match approximately the AS rates
observed in empirical data for rare SVs). The distributions of AS rate given by this model are presented
in Fig. 7A: rare SVs (MIRA ≤ 5%) essentially correspond to splicing errors, while abundant SVs (MIRA
> 5%) correspond to a mixture of functional and spurious variants, whose relative proportion depend on
N e (Fig. 7B). This simple model makes predictions that match with our observations: we noted a positive
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correlation between AS rate and longevity (i.e. a negative correlation with N e) for the set of low-AS major
introns (Fig. 4C), but an opposite trend for high-AS major introns (Fig. 4D), as predicted by the model
(Fig. 7D,E). Given that high-AS major introns represent only a small fraction of major introns, this model
predicts that, overall, AS rates correlate negatively with N e (Fig. 7), as observed in empirical data (Fig. 3A,
Supplementary Fig. 3).

It should be noted that the BUSCO dataset corresponds to genes that are strongly conserved across species,
often highly expressed, and hence might not be representative of the entire genome. Notably, AS rates are on
average lower in the BUSCO gene set than in other genes, even after accounting for their expression level
(Supplementary Fig. 5). However, results remained qualitatively unchanged when we repeated our analyses
on the whole set of annotated protein-coding genes for each species: correlations between AS rates and N e

proxies are slightly weaker than on the BUSCO subset, but remain significant (Supplementary Fig. 6).

The model also predicts that the proportion of functional SVs among high-AS major introns should vary with
N e (Fig. 7C). To assess this point, we measured in each species the enrichment in reading frame-preserving
events among abundant SVs compared to rare SVs. As predicted, this estimate of the prevalence of functional
SVs tends to decrease with decreasing N e proxies (e.g. Fig. 4B, where N e is approximated by longevity).
However, these correlations are weak, marginally significant after accounting for phylogenetic inertia with
only two of the three N e proxies, and not robust to multiple testing issues (Supplementary Fig. 7). Thus, N e

does not appear to be a strong predictor of the prevalence of functional SVs among high-AS major introns.

According to the drift-barrier model, the level of splicing errors is expected to decrease with increasing
selective pressure. In all above analyses, we considered AS rates measured per intron, and not per gene. Yet,
the trait under selection is the per-gene error rate, which depends not only on the error rate per intron,
but also on the number of introns per gene. Given that intron density varies widely across clades (from 2.8
introns per gene in diptera to 8.4 introns per gene in vertebrates; Supplementary Tab. 1), the correlations
reported above between AS rates and N e may undervalue the predictive power of the drift-barrier model. The
RNA-seq datasets that we analyzed consist of short-read sequences, which do not allow a direct quantification
of the per-gene AS rate. We therefore indirectly estimated the per-gene AS rate in each species, based on the
per-intron AS rate and on the number of introns per gene (Materials & Methods). Interestingly, as predicted
by the drift-barrier model, N e proxies correlate more strongly with this estimate of the per-gene AS than
with the per-intron AS rates (Supplementary Fig. 8).

One other important prediction of the drift barrier model is that splicing error rate should vary not only
across species according to N e, but also among genes, according to their expression level. Indeed, for a given
splicing error rate, the waste of resources (and hence the fitness cost) is expected to increase with the level of
transcription. Thus, the selective pressure for optimal splice signals is expected to be higher, and hence the
error rate to be lower, in highly expressed genes. Consistent with that prediction, we observed a negative
correlation between gene expression level and AS rate in low-AS major introns in all but one species (Fig.
6C).

It should be noted that our analyses suffer from several important limitations. First, the proxies that we
considered for N e are quite noisy (Fig. 1). Second, to maximize the number of species in our analyses, we
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had to use very heterogeneous sources of RNA (whole-body, specific tissues, or organs, at different life stages,
in different sexes, different environmental conditions, etc.). Third, we used short-read sequencing data, which
allow the quantification of AS rates for individual introns, but do not provide a direct measure of AS rates
per gene. Hopefully progress of long-read sequencing technologies will soon allow the comparative analysis of
AS rates on full-length transcripts (e.g. see Leung et al. (2021)). But presently, publicly available long-read
transcriptomic data are restricted to a narrow set of model organisms, and their sequencing depth is still too
limited to quantify rare splicing events. The fact that we detected significant correlations between AS rate
and the three N e proxies, despite these uncontrolled sources of variability, suggests that we underestimate
the effect of N e on AS rates.

Thus, overall, all observations fit qualitatively well with the predictions of the drift barrier model, according
to which most of the variation in AS rate across species reflects differences in splicing error rates. Of course,
this model is not in contradiction with the fact, well established, that some AS events play an essential role
in various processes. Different criteria can be used to distinguish functional SVs from spurious splicing events.
Notably, AS events that are strongly tissue-specific or developmentally dynamic tend to be more conserved
across species, which indicates that a substantial fraction of them are evolutionary constrained, and hence
functional (Mudge et al., 2011; Barbosa-Morais et al., 2012; Merkin et al., 2012; Reyes et al., 2013). The
abundance of a SV is also an important predictor of its functionality. In particular, we observed that in all
species, the proportion of frame-preserving events is much higher among abundant SVs than among rare SVs
(Fig. 4A). We note however that the threshold that we used to define abundant SVs is somewhat arbitrary.
In fact, according to our model, this class of SVs corresponds to a mixture of functional and spurious events,
whose relative proportion is expected to depend on N e (Fig. 7C). Thus, in low-N e species, even the subset of
abundant SVs includes a substantial fraction of errors. This probably explains why, contrarily to Drosophila,
we do not detect any signature of purifying selection on alternative splice signals in humans, even for abundant
SVs (Fig. 5).

In conclusion, all observations fit with the hypothesis that random genetic drift sets an upper limit on the
capacity of selection to prevent splicing errors. It should be noted that this limit on the optimization of genetic
systems is expected to affect not only splicing, but all aspects of gene expression. Notably, there is a growing
body of evidence that the complexity of transcripts produced by eukaryotic genes (resulting from alternative
transcription initiation, polyadenylation, splicing or back-splicing, RNA editing) often does not correspond
to fine-tuned adaptations but simply to the accumulation of errors (Pickrell et al., 2010; Saudemont et al.,
2017; Xu et al., 2019; Xu and Zhang, 2018; Liu and Zhang, 2018b,a; Xu and Zhang, 2014, 2020; Gout et al.,
2013; Zhang and Xu, 2022). It should be noted however that the relationship between the genome-wide error
rate and N e is not expected to be monotonic. Indeed, models predict that in species with very high N e,
selection on each individual gene should favor genotypes that are robust to errors of the gene expression
machinery, which in turn, reduces the constraints on the global level of gene expression errors (Rajon and
Masel, 2011; Xiong et al., 2017). Thus, paradoxically, species with very large N e are expected to have gene
expression machineries that are more error-prone than species with very small N e (Rajon and Masel, 2011).
This argument was developed by Xiong et al. (2017) to account for the fact that transcription error rates
had been found to be about 10 times higher in bacteria than in eukaryotes (Traverse and Ochman, 2016;
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Gout et al., 2013). More recent work indicates that bacterial transcription error rates had been largely
overestimated, presumably owing to RNA damages during the preparation of sequencing libraries (Li and
Lynch, 2020). Given these uncertainties in the measures of transcription error rates, it seems for now difficult
to interpret the differences reported across species. But in any case, it is important to note that it is in
principle possible that the drift barrier affects differently the different steps of the gene expression process.
It would therefore be important to investigate to which extent each step of gene expression responds (or
not) to variation in N e. As illustrated here by the relationship observed between alternative splicing and
N e, it appears essential to consider the contribution of non-adaptive evolutionary processes when trying to
understand the origin of eukaryotic gene expression complexity.

Materials & Methods

Genomic and transcriptomic data collection

To analyze AS rate variation across metazoans, three types of information are required: transcriptome
sequencing (RNA-seq) datasets, genome assemblies, and gene annotations. To obtain this data, we first
queried the Short Read Archive database (Leinonen et al., 2011) to extract publicly available RNA-seq datasets.
We also queried the NCBI Genomes database (NCBI Resource Coordinators, 2018) to retrieve genomic
sequences and annotations. When this project was initiated, the vast majority of metazoans represented in
this database corresponded to vertebrates or insects. We therefore decided to focus our analyses on these two
clades (N=69 species).

Identification of orthologous gene families

To be able to compare average AS rates across species, given that AS rates vary among genes (Saudemont
et al., 2017), it is necessary to analyze a common set of orthologous genes. We searched for homologues of
the BUSCOv3 (Benchmarking Universal Single Copy Orthologs, (Seppey et al., 2019)) metazoan gene subset
(N=978 genes) in each of the 69 genomes. To do this, we used the software BUSCO v.3.1.0 to associate
BUSCO genes to annotated protein sequences. For each species, BUSCO genes were removed from the
analysis if they were associated to more than one annotated gene or to an annotated gene that was associated
to more than one BUSCO gene.

RNA-seq data processing and intron identification

We aligned the RNA-seq reads on the corresponding reference genomes with HISAT2 v.2.1.0 (Kim et al.,
2019). We built the genome indexes using annotated introns and exons coordinates in addition to genome
sequences, to improve splice junction detection sensitivity. The maximum allowed intron length was fixed to
2,000,000 bp. We then extracted intron coordinates from HISAT2 alignments using an in-house perl script
that scanned for CIGAR strings containing N, which indicate regions that are skipped from the reference
sequence. For intron detection and quantification we used only uniquely mapping reads that had a maximum
mismatch ratio of 0.02. We required a minimum anchor length (that is, the number of bases that align on
each flanking exon) of 8 bp for intron detection, and of 5 bp for intron quantification. We kept only those
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predicted introns that had GT-AG, GC-AG or AT-AC splice signals, and we predicted the strand of the
introns based on the splice signal.

We assigned an intron to a gene if at least one of the intron boundaries fell within 1 bp of the annotated
exon coordinates of the gene, combined across all annotated isoforms. We excluded introns that could not
be unambiguously assigned to a single gene. We distinguish annotated introns (which appear as such in
the reference genome annotations) and un-annotated introns, which were detected with RNA-seq data and
assigned to previously annotated genes.

We further restricted our analyses to introns located within protein-coding regions. To do this, for each
protein-coding gene, we extracted the start codons and the stop codons for all annotated isoforms. We then
identified the minimum start codon and the maximum end codon positions and we excluded introns that
were upstream or downstream of these extreme coordinates.

The alignment process, which is the most time-consuming step in the pipeline (see Supplementary Fig. 10),
can take up to one week when using 16 cores per RNA-seq for larger genomes, such as mammals. Additionally,
the processed compressed files generated during this process can exceed 7 terabytes in size.

Alternative splicing rate definition

For each intron we noted Ns the number of reads corresponding to the precise excision of this intron (spliced
reads), and Na the number of alternatively spliced reads (i.e. spliced variant sharing only one of the two intron
boundaries). Finally, we note Nu the number of unspliced reads, co-linear with the genomic sequence, and
which overlap with at least 10 bp on each side of an exon-intron boundary. These definitions are illustrated in
Fig. 2. We then defined the relative abundance of the focal intron compared to introns with one alternative
splice boundary (RAS = Ns

Ns + Na
), as well as relative to unspliced reads (RANS = Ns

Ns + Nu
2

).

To compute these ratios we required a minimal number of 10 reads at the denominator. We thus calculated
the RAS only if (Ns + Na) ≥ 10 and the RANS only if (Ns + Nu

2 ) ≥ 10 (We divided Nu by 2 because retention
is quantified at two sites, which increases the detection power by a factor of 2). If the criteria were not
met, the values were labeled as not available (NA). We computed these ratios using reads from all available
RNA-seq samples, unless otherwise specified (for example, in sub-sampling analyses). Based on these ratios
we defined three categories of introns: major introns, defined as those introns that have RANS > 0.5 and
RAS > 0.5; minor introns, defined as those introns that have RANS ≤ 0.5 or RAS ≤ 0.5; unclassified introns,
which do not satisfy the above conditions.

We determined the alternative splicing (AS) rate of major introns using the following formula: AS = Nm

NM + Nm ,
where NM is the number of spliced reads corresponding to the excision of the major intron and Nm is the
total number of spliced reads corresponding to the excision of minor introns sharing a boundary with a major
intron (see Fig. 2)

For minor introns sharing a boundary with a major intron, we computed the relative abundance
of the minor intron (i) with respect to the corresponding major intron, with the following formula:
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Minor intron relative abundance MIRAi = Nm
i

NM + Nm , where Nm
i is the number of spliced reads corresponding

to the excision of a minor intron (i) (see Fig. 2).

We defined the per-gene AS rate as the probability to observe at least one alternative splicing event across all
the major introns of a gene. To estimate the per-gene AS rate of a given gene, we assumed that the AS rate is
uniform across its major introns, and that AS events occur independently at each intron. We calculated the
AS rate for each gene as the number of spliced reads corresponding to the excision of major introns, divided
by the number of spliced reads corresponding to minor and major introns (

∑
Nm∑

NM + Nm ). The probability for

a given gene to produce no splice variant across all its major introns is thus p0=(1 −
∑

Nm∑
NM + Nm )Ni , where

Ni is the number of major introns of the gene. The per-gene AS rate (ASg), i.e. the probability to have at
least one AS event, is therefore the complement of p0: ASg=1-p0.

Identification of reading frame-preserving splice variants

To determine the proportion of open reading frame-preserving splice variants, we first identified minor introns
that had their minor splice site within a maximum distance of 30 bp from the major splice site (either in
the flanking exon or within the major intron). We chose this length threshold because it is shorter than the
size of the smallest introns in metazoans, so that to avoid the possibility of having a skipped exon between
the minor and the major splice site (which could induce some ambiguities in the assessment of the reading
frame). Among these introns, we considered that frame-preserving variants are those introns for which the
distance between the minor intron boundary and the major intron boundary was a multiple of 3.

Gene expression level

Gene expression levels were calculated with Cufflinks v2.2.1 (Roberts et al., 2011) based on the read alignments
obtained with HISAT2, for each RNA-seq sample individually. We estimated FPKM levels (fragments per
kilobase of exon per million mapped reads) for each gene.

The overall gene expression of a gene was computed as the average FPKM across samples, weighted by the
sequencing depth of each sample. The sequencing depth of a sample is the median per-base read coverage
across BUSCO genes.

Phylogenetic tree reconstruction

For each of the 978 BUSCO gene families we collected the longest corresponding proteins identified in each
species. We removed proteins for which the amino acid sequence provided with the annotations did not
perfectly correspond to the translation of the corresponding coding sequences. We then aligned the resulting
sets of protein-coding sequences for each BUSCO gene, using the codon alignment option in PRANK v.170427
(Löytynoja and Goldman, 2008). We translated the codon alignments into protein alignments using the R
package seqinr (Charif and Lobry, 2007). To infer the phylogenetic tree rapidly, we sub-sampled the resulting
multiple alignments (N=461), selecting alignments with the highest number of species (ranging from 49 to
53 species per alignment). We then concatenated these alignments and kept sites that were aligned in at
least 30 species. We used RAxML-NG v.0.9.0 (Kozlov et al., 2019) to infer the species phylogeny with a final
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alignment of 53 taxa and 165,648 sites (amino acids). RAxML was set to perform one model per gene with
fixed empirical substitution matrix (LG), empirical amino acid frequencies from alignment (F) and 8 discrete
GAMMA categories (G8), specified in a partition file with one line per multiple alignment. The analysis
generated 10 starting trees, 5 starting from a random topology and 5 starting from a tree generated by the
parsimony-based randomized stepwise addition algorithm. The best-scoring topology was kept as the final
ML tree and 10 bootstrap replicates have been generated.

dN/dS computation

We estimated dN/dS ratios for the BUSCO gene families that were present in at least 45 species (N=922 genes),
using the codon alignments obtained with PRANK (see above). We divided the 922 sequence alignments into
18 groups, based on their average GC3 content across species, and concatenated the alignments within each
group. We thus obtained concatenated alignments that were 209 kb long on average. We used bio++ v.3.0.0
libraries (Guéguen et al., 2013; Dutheil and Boussau, 2008; Boĺıvar et al., 2019) to estimate the dN/dS on
terminal branches of the phylogenetic tree, for each concatenated alignment. We attributed the dN/dS of
the terminal branches to the species that corresponds.

In a first step, we used an homogeneous codon model implemented in bppml to infer the most likely branch
lengths, codon frequencies at the root, and substitution model parameters. We used YN98 (F3X4) (Yang
and Nielsen, 1998) substitution model, which allows for different nucleotide content dynamics across codon
positions. In a second step, we used the MapNH substitution mapping method (Guéguen and Duret, 2018)
to count synonymous and non-synonymous substitutions (Dutheil et al., 2012). We defined dN as the total
number of non-synonymous substitutions divided by the total number of non-synonymous opportunities, both
summed across concatenated alignments, for each branch of the phylogenetic tree. Likewise, we defined dS as
the total number of synonymous substitutions divided by the total number of synonymous opportunities,
both summed across concatenated alignments. The per-species dN/dS corresponds to the ratio between dN
and dS, on the terminal branches of the phylogenetic tree.

Life history traits

We used various life history traits to approximate the effective population size of each species. For vertebrates
species we considered the maximum lifespan (i.e. from birth to death) and body length referenced. For insects
we took the maximum lifespan and body length of the imago. For eusocial insects and the eusocial mammal
Heterocephalus glaber, the selected values correspond to the queens. The sources from which the lifespan and
the body length information was taken are listed in data/Data9-supp.pdf in the Zenodo repository (see
Data and code availability).

Analyses of sequence polymorphism

We analyzed the distribution of single nucleotide polymorphisms (SNPs) around splice sites in Drosophila
melanogaster and Homo sapiens.
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For Drosophila melanogaster we used polymorphism data from the Drosophila Genetic Reference Panel
(DGRP) (Huang et al., 2014; Mackay et al., 2012), from which we extracted 3,963,397 SNPs that were
identified from comparisons across 205 inbred lines. We converted the SNP coordinates from the dm3 genome
assembly to the dm6 assembly with the liftOver utility (Hinrichs et al., 2006) of the UCSC genome browser,
using a whole genome alignment between the two assemblies downloaded from https://hgdownload.soe.

ucsc.edu/goldenPath/dm3/liftOver/dm3ToDm6.over.chain.gz.

For Homo sapiens we used polymorphism data from the 1000 Genomes project, phase 3 release (Auton et al.,
2015). This dataset included 80,868,061 SNPs that were genotyped in 2,504 individuals.

For each minor intron sharing one boundary with a major intron, we computed the number of SNPs that
occur at their respective splice sites: at their shared boundary, and at the major intron and minor introns
specific boundaries.

We focused our study on minor introns that have their specific boundary folding in the exons adjacent to the
major intron or in the major intron. As a control, for each minor intron, we searched for one GT and one AG
dinucleotides in the interval between 20 and 60 bp with respect to the major splice site, in the neighboring
exon and in the major intron, and computed the number of SNPs that occur on these sites. We searched for
control AG dinucleotides in the vicinity of the donor splice site of the major intron and for GT dinucleotides
in the vicinity of its acceptor splice site, to avoid studying sites that might correspond to unidentified minor
splice sites. For Homo sapiens, we further divided the splice sites and the control dinucleotides into two
groups, depending on whether they were subject to CpG hypermutability or not.

Impact of the drift-barrier on genome-wide AS rates: sketched model

To illustrate the impact of the drift barrier, we sketched a simple model, with three hypothetical species of
different Ne (low, medium and high Ne). In each species, the repertoire of SVs consists of two categories:
functional variants and spurious variants (which result from errors of the splicing machinery). The rate of
splicing error was assumed to be low and to depend on Ne, owing to the drift barrier effect. We considered
that in all species, only a small fraction of major introns (5%) produce functional SVs, but that these variants
have a relatively high AS rate. The AS rates of functional SVs were modeled by a normal distribution,
with a mean of 25% and a standard deviation of 5% (same parameters for the three species). We modeled
the distribution of error rates by a gamma distribution, with shape parameter = 1, and with mean values
of 0.2%, 0.6% and 1.2% respectively in species of high, medium or low Ne (these parameters were set to
match approximately the AS rates observed in empirical data for rare SVs). We then combined the two
distributions (functional SVs and splicing errors) to compute the genome-wide average AS rates in each
species. We also computed the average AS rate on the subsets of low-AS or high-AS major introns (i.e. with
AS rates respectively below or above the threshold AS rate of 5%). Finally, we computed the proportion
of frame-preserving SVs among high-AS major introns, assuming that two thirds of splicing errors induce
frameshifts and that all functional SVs preserve the reading frame.
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Supplementary Table 1: Description of the main features of the samples analyzed in this study.

Clade Number of
RNA-seq samples

Sequencing depth
(per-base read)a

Number of
annotated introns

Number of
analyzable intronsb

Average number of introns
per BUSCO gene

Fraction of major introns
alternatively splicedc

Average AS rate
among BUSCO introns

Fraction of
rare SVsd

Vertebrates
Callorhinchus milii Chondrichthyes 11 1068 7700 7467 8.0 0.491 1.47 % 0.831
Gallus gallus Aves 217 9657 8741 8621 8.4 0.854 1.59 % 0.958
Crocodylus porosus Crocodylia 12 1819 7867 7668 8.5 0.817 3.02 % 0.908
Monodelphis domestica Mammalia 269 11371 8538 8407 8.5 0.915 1.91 % 0.957
Heterocephalus glaber Mammalia 54 2072 9409 9324 8.6 0.803 2.69 % 0.914
Macaca mulatta Mammalia 177 5571 9328 9261 8.6 0.908 2.84 % 0.948
Oryctolagus cuniculus Mammalia 338 15503 8036 7885 8.4 0.950 1.97 % 0.969
Rattus norvegicus Mammalia 362 16611 8469 8196 8.5 0.953 1.89 % 0.965
Mus musculus Mammalia 317 12245 9327 9080 8.4 0.937 1.87 % 0.958
Bos taurus Mammalia 26 710 9046 8926 8.5 0.511 1.63 % 0.856
Loxodonta africana Mammalia 23 3667 9000 8652 8.3 0.896 3.55 % 0.938
Sus scrofa Mammalia 55 910 8982 8798 8.5 0.644 1.95 % 0.886
Canis lupus Mammalia 5 348 9279 8628 8.2 0.436 2.18 % 0.764
Homo sapiens Mammalia 313 10269 11122 10981 8.4 0.957 3.38 % 0.949
Equus caballus Mammalia 19 998 9190 9072 8.5 0.658 2.16 % 0.884

Insects
Bombyx mori Lepidoptera 14 459 5001 4681 5.3 0.393 1.12 % 0.835
Athalia rosae Hymenoptera 6 359 4772 4701 4.8 0.348 1.6 % 0.782
Cephus cinctus Hymenoptera 17 2566 5035 5016 4.7 0.744 2.4 % 0.907
Orussus abietinus Hymenoptera 2 197 4801 4664 4.7 0.370 2.03 % 0.763
Nasonia vitripennis Hymenoptera 114 4871 4273 4158 4.5 0.648 1.21 % 0.913
Trichogramma pretiosum Hymenoptera 4 350 3794 3734 4.4 0.268 0.98 % 0.782
Harpegnathos saltator Hymenoptera 166 1888 4745 4711 4.7 0.565 2.02 % 0.886
Linepithema humile Hymenoptera 23 1476 4726 4615 4.8 0.570 1.45 % 0.882
Camponotus floridanus Hymenoptera 37 449 4596 4546 4.7 0.358 1.52 % 0.761
Pogonomyrmex barbatus Hymenoptera 39 1388 4678 4440 4.5 0.579 1.91 % 0.866
Polistes canadensis Hymenoptera 14 440 4665 4562 4.8 0.424 1.88 % 0.834
Polistes dominula Hymenoptera 12 218 4698 4161 4.3 0.180 1.63 % 0.624
Solenopsis invicta Hymenoptera 23 436 4516 4394 4.6 0.430 1.71 % 0.807
Acromyrmex echinatior Hymenoptera 42 1470 4716 4638 4.7 0.529 2.15 % 0.835
Megachile rotundata Hymenoptera 108 3400 5120 5086 4.8 0.898 3.81 % 0.927
Apis mellifera Hymenoptera 40 1777 4939 4897 4.9 0.673 2.3 % 0.892
Apis florea Hymenoptera 4 503 4881 4332 4.4 0.318 1.85 % 0.711
Apis cerana Hymenoptera 12 1401 4508 4439 4.6 0.578 2.36 % 0.839
Bombus terrestris Hymenoptera 33 2648 4857 4683 4.7 0.763 2.33 % 0.922
Acyrthosiphon pisum Hemiptera 35 3163 4918 4844 6.0 0.709 1.09 % 0.933
Cimex lectularius Hemiptera 10 462 5640 5588 6.3 0.431 1.61 % 0.838
Halyomorpha halys Hemiptera 6 1460 5715 5676 6.5 0.591 1.73 % 0.885
Aedes aegypti Diptera 27 2469 2369 2290 2.6 0.514 1.35 % 0.870
Drosophila grimshawi Diptera 30 256 2190 2032 2.7 0.168 0.8 % 0.726
Drosophila pseudoobscura Diptera 32 3628 2312 2244 2.6 0.433 1.32 % 0.871
Drosophila melanogaster Diptera 129 4542 2414 2390 2.7 0.551 1.22 % 0.909
Drosophila suzukii Diptera 23 1979 2187 2052 2.6 0.287 1.17 % 0.810
Ceratitis capitata Diptera 29 1168 3067 3015 3.3 0.418 1.45 % 0.860
Lucilia cuprina Diptera 23 2446 2566 2405 2.8 0.268 0.85 % 0.823
Musca domestica Diptera 12 1056 2545 2401 2.9 0.254 0.98 % 0.795
Onthophagus taurus Coleoptera 53 644 2836 2753 3.2 0.377 1.34 % 0.810
Tribolium castaneum Coleoptera 14 2618 3333 3225 3.6 0.556 1.15 % 0.881
Dendroctonus ponderosae Coleoptera 30 2262 4370 4269 4.9 0.505 1.26 % 0.882
Anoplophora glabripennis Coleoptera 20 325 3764 3567 4.1 0.299 1.13 % 0.781
Leptinotarsa decemlineata Coleoptera 21 2071 3372 3132 3.8 0.512 1.21 % 0.883
Blattella germanica Blattodea 30 943 4911 4454 5.4 0.423 1.26 % 0.827
Cryptotermes secundus Blattodea 11 481 6471 6391 6.4 0.573 2.32 % 0.832
Zootermopsis nevadensis Blattodea 53 3944 6727 6613 6.4 0.802 2.36 % 0.927

a Median per-base read coverage computed on BUSCO gene exons
b Number of analyzable introns (i.e. with Ns + Na ≥ 10) among BUSCO genes
c Proportion of major introns for which alternative splicing has been detected (i.e. with Na > 0) among BUSCO genes
d Fraction of rare spliced variants introns (i.e. with MIRA ≤ 5%) among all protein-coding genes

1Table S1
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Supplementary Table 2: Longevity and body lenth across the 53 metazoans studied.

Clade Longevity
(Days)

Body length
(cm)

Vertebrates
Callorhinchus milii Chondrichthyes 2190 120.00
Gallus gallus Aves 10950 70.00
Crocodylus porosus Crocodylia 20805 600.00
Homo sapiens Mammalia 36500 175.00
Loxodonta africana Mammalia 23725 400.00
Equus caballus Mammalia 20805 280.00
Macaca mulatta Mammalia 14600 64.00
Heterocephalus glaber Mammalia 10950 16.50
Sus scrofa Mammalia 9855 240.00
Canis lupus Mammalia 7519 117.00
Bos taurus Mammalia 7300 245.00
Oryctolagus cuniculus Mammalia 3285 50.00
Monodelphis domestica Mammalia 1862 20.00
Mus musculus Mammalia 1460 9.50
Rattus norvegicus Mammalia 1387 40.00

Insects
Bombyx mori Lepidoptera 50 1.90
Pogonomyrmex barbatus Hymenoptera 10220 1.10
Acromyrmex echinatior Hymenoptera 5475 1.40
Camponotus floridanus Hymenoptera 3650 1.90
Solenopsis invicta Hymenoptera 2482 0.70
Apis mellifera Hymenoptera 1095 2.00
Apis florea Hymenoptera 1095 2.00
Apis cerana Hymenoptera 1095 2.00
Harpegnathos saltator Hymenoptera 653 1.70
Polistes canadensis Hymenoptera 506 2.00
Polistes dominula Hymenoptera 506 2.00
Linepithema humile Hymenoptera 365 0.50
Bombus terrestris Hymenoptera 150 2.50
Megachile rotundata Hymenoptera 56 1.90
Nasonia vitripennis Hymenoptera 25 0.30
Athalia rosae Hymenoptera 12 0.73
Trichogramma pretiosum Hymenoptera 10 0.04
Cephus cinctus Hymenoptera 7 0.86
Orussus abietinus Hymenoptera 7 1.00
Cimex lectularius Hemiptera 572 0.50
Halyomorpha halys Hemiptera 112 1.44
Acyrthosiphon pisum Hemiptera 30 0.25
Drosophila pseudoobscura Diptera 90 0.20
Musca domestica Diptera 60 0.70
Drosophila grimshawi Diptera 50 0.50
Ceratitis capitata Diptera 50 0.50
Drosophila suzukii Diptera 38 0.33
Drosophila melanogaster Diptera 36 0.30
Lucilia cuprina Diptera 21 0.80
Aedes aegypti Diptera 14 0.38
Leptinotarsa decemlineata Coleoptera 365 1.00
Tribolium castaneum Coleoptera 170 0.50
Onthophagus taurus Coleoptera 160 1.00
Anoplophora glabripennis Coleoptera 66 3.50
Dendroctonus ponderosae Coleoptera 30 0.75
Cryptotermes secundus Blattodea 4745 0.60
Zootermopsis nevadensis Blattodea 2300 1.00
Blattella germanica Blattodea 200 1.59

* The sources from which the lifespan and the body length information was
taken are listed in Data9supp.pdf in the Zenodo data repository (see Data
and code availability).

1Table S2
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A B

C D

Supplementary Figure 1: Transcriptome sequencing depth affects intron detection power and AS rate
estimates. To assess the impact of sequencing depth on AS detection, we conducted a pilot analysis with two
species (A,C: Homo sapiens and B,D: Drosophila melanogaster) for which hundreds of RNA-seq samples are available
(Supplementary Tab. 1; refer to Data10-supp.tab in the Zenodo data repository). We randomly drew 1 to 20 RNA-seq
samples and, for each draw, we computed the median read coverage across BUSCO gene exons (to get a measure of
transcriptome sequencing depth that is comparable across species). We also computed for each draw the average AS
rate and the fraction of introns supported by at least 10 RNA-seq reads, out of all introns annotated for BUSCO
genes (Materials & Methods). We repeated this procedure 30 times. As expected, the fraction of BUSCO introns that
are supported by at least 10 reads (i.e. Ns + Na ≥ 10) increases with sequencing depth (A,B). More importantly,
we observed that when sequencing depth is limited, the mean AS rate of BUSCO introns is very variable across
draws (C,D). However, AS rate estimates converge when sequencing depth exceeds 200. We therefore kept for further
analysis those species for which the median read coverage across exonic regions of BUSCO genes was above this
threshold.
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Supplementary Figure 2: The power to detect AS events is positively correlated with transcriptome
sequencing depth. Relationship between the proportion of major introns that have at least one read corresponding
to splice variants (i.e. Na > 0; see Fig. 2), and the median per-base read coverage computed on BUSCO gene exons,
across metazoans. Each dot represents one species, colored by taxonomic clade.
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Supplementary Figure 3: Relationship between AS rates and other N e proxies. A,B: Correlation between the
average AS rate per intron and the body length of each species (cm, log scale) (A) or the dN/dS ratio on terminal
branches of the phylogenetic tree (B). C,D,E,F: Relationship between the average AS rate per intron and the body
length (cm, log scale) (C,E) or the dN/dS ratio (D,F). C,D: Low-AS major introns (i.e. major introns that do not
have any abundant SV). E,F: High-AS major introns (i.e. major introns having at least one abundant SV). Only
BUSCO genes were used in the analysis.
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B

Supplementary Figure 4: SNP density in human splice signals, for dinucleotides affected by CpG hyper-
mutability. Density of SNPs on splice signals for major introns and for SVs that have their minor splice site within
the adjacent exon or in the major intron. The number of introns studied is shown at the top of each bar. A,B:
SNP data from the human 1000 Genomes project (Auton et al., 2015). We included only dinucleotides affected by
CpG hypermutability (Materials & Methods). Error bars represent the 95% confidence interval of the proportion of
polymorphic sites (proportion test). A: Abundant SVs (MIRA > 5%). B: Rare SVs (MIRA ≤ 5%). green: major
splice sites; red: minor splice sites; blue: control dinucleotides.
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A

B

Supplementary Figure 5: Correlations between gene expression levels and AS rates differ among species.
A,B: Relationship between the average AS rate of major introns (with Ns + Na ≥ 100, see Fig. 2) and the expression
levels of the corresponding genes (FPKM, log scale). We divided major introns into 5% bins according to the expression
level of the corresponding genes and computed for each bin the average AS rate and the median expression level.
Error bars represent the standard error of the mean. A: Homo sapiens, B: Drosophila melanogaster. This analysis
was performed on all protein-coding genes (blue) and BUSCO genes (light blue). Pearson correlation presented here
was computed on protein-coding genes.
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Supplementary Figure 6: Relationship between AS rates and N e proxies, for all major introns, low-AS
major introns (i.e. major introns that do not have any abundant spliced variants) and high-AS major
introns (i.e. major introns having at least one abundant spliced variants). Relationship between the
average AS rate of all major introns (A,B,C) or low-AS major introns (D,E,F) or high-AS major introns (G,H,I)
and longevity (days, log scale) (A,D,G) or body length (cm, log scale) (B,E,H) or the dN/dS ratio (C,F,I).
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Supplementary Figure 7: Relationship between the proportion of frame-preserving SVs and N e proxies.
A,B: Relationship between the proportion of frame-preserving SVs among abundant SVs, and the body length (cm,
log scale) of the organism (A) or the dN/dS ratio (B). Each dot represents one species. All protein-coding genes were
used in the analysis.
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Supplementary Figure 8: The per-gene AS rate is negatively correlated with N e. Relationship between
per-gene average AS rates and N e proxies. We use as inverse N e proxies the longevity (days, log scale) (A,D) or the
body length (cm, log scale) (B,E) or the dN/dS ratio (C,F). The analysis was done on BUSCO genes (A,B,C) and
on all protein-coding genes (D,E,F).
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Supplementary Figure 9: The variation in AS rates between species is not explained by organ differences.
Variation in average AS rate across seven organs (brain, cerebellum, heart, liver, kidney, testis, and ovary) among
seven vertebrate species (RNA-seq data from Cardoso-Moreira et al. (2019)) and across three organs (ovary, testis,
and head) for one insect (Dendroctonus ponderosae, Coleoptera). AS rates were computed for the major introns from
BUSCO genes (Materials & Methods).
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Supplementary Figure 10: Description of the bioinformatic analyses pipeline. First, we retrieved genomic
sequences and annotations from the NCBI Genomes database. We aligned RNA-seq reads with HISAT2 on the
corresponding reference genomes, to analyze various variables (see Fig. 2), to compute the AS rate, and to estimate
gene expression using Cufflinks. To compute dN/dS, we first identified BUSCO genes with BUSCOv3 and aligned their
coding sequences (CDS) using PRANK (codon model). We reconstructed a phylogenetic tree using RAxML-NG with
461 multiple alignments. Using bio++, we estimated dN/dS along the phylogenetic tree on concatenated alignments.
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