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Abstract

We consider a Markov kernel on a measurable space, satisfying a minorization condi-
tion and a modulated drift condition. Then we show that there exists a solution to the
so-called Poisson equation whose norm can be bounded from above using the modulated
drift condition. This new bound is very simple and can be easily computed. This re-
sult is obtained using the submarkov residual kernel given by the minorization condition.
Such a bound allows us to provide new control on the weighted total variation norms
of the deviation between the invariant probability measure πθ0 of a Markov kernel Pθ0

and the invariant probability measure πθ of some perturbation Pθ of Pθ0 . From the stan-
dard connexion between Poisson’s equation and the central limit theorem, a simple and
computable bound on the asymptotic variance is also derived.

AMS subject classification :

Keywords : Poisson’s equation; Drift conditions; Invariant probability measure; Perturbed
Markov kernels; Asymptotic variance

Basic definitions used throughout the paper. Let (X,X ) be a measurable space, and
let M+ (resp. M+

∗ ) denote the set of finite nonnegative (resp. positive) measures on (X,X ).

� Any measurable function V : X→[1,+∞) is called a Lyapunov function. For every
measurable function g : X→R, we set ∥g∥V := supx∈X |g(x)|/V (x) ∈ [0,+∞], and we
define the space BV := {g : X→R,measurable such that ∥g∥V < ∞}.

� For any µ ∈ M+ and any µ-integrable function g : X→R, µ(g) denotes the integral∫
X gdµ. If (µ1, µ2) ∈ (M+)2 is such that µi(V ) < ∞, i = 1, 2 for some Lyapunov
function V , then the V -weighted total variation norm ∥µ1 − µ2∥V is defined by

∥µ1 − µ2∥V := sup
|g|≤V

∣∣µ1(g)− µ2(g)
∣∣. (1)

� A nonnegative kernel K(x, dy) ∈ M+, x ∈ X is said to be a Markov (respectively
submarkov) kernel if K(x,X) = 1 (respectively K(x,X) ≤ 1) for any x ∈ X. We denote
by K its functional action defined by

∀x ∈ X, (Kg)(x) :=

∫
X
g(y)K(x, dy),

*Univ Rennes, INSA Rennes, CNRS, IRMAR-UMR 6625, F-35000, France. Loic.Herve@insa-rennes.fr,
James.Ledoux@insa-rennes.fr

1



where g : X→R is any K(x, ·)−integrable function. For every n ≥ 1 the n−th iterate
kernel of K(x, dy) is denoted by Kn(x, dy), x ∈ X, and Kn stands for its functional
action. As usual K0 is the identity map I by convention.

1 Introduction

Let (V0, V1) be a couple of Lyapunov functions. For a Markov kernel P satisfying standard
minorization and V1−modulated drift conditions (see D(V0, V1) below), Glynn and Meyn
proved in [GM96, Th. 2.3] that there exists a P−invariant probability measure π such that
π(V1) <∞, and that there exists a positive constant c0 such that, for any g ∈ BV1 satisfying
π(g) = 0, the Poisson equation

(I − P )ĝ = g (2)

admits a solution ĝ ∈ BV0 such that π(ĝ) = 0 and

∥ĝ∥V0 ≤ c0 ∥g∥V1 . (3)

Also see [MT09, Th. 17.7.1]. Note that the function g is not assumed to be π−centred in
the original Glynn-Meyn’s statement. Throughout our paper, the condition π(g) = 0 will be
used to simplify the statements. Simply apply the results to function g − π(g)1X to restore
the general context. Under the aperiodicity condition, Glynn-Meyn’s theorem is related to
the pointwise convergence of the series

∑+∞
k=0 P

kg, see [MT09, Th. 14.0.1]. We point out that
the constant c0 in (3) is unknown in general. In Section 2, the following theorem is proved
(see Theorem 2.3).

Theorem 1 Assume that P satisfies the following minorization condition

∃S ∈ X , ∃ν ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x), (S)

and the following V1−modulated drift condition with respect to the set S in (S) and some
couple (V0, V1) of Lyapunov functions

∃b > 0, PV0 ≤ V0 − V1 + b1S . (D(V0, V1))

Then P admits an invariant probability measure π such that π(1S) > 0 and π(V1) < ∞.
Moreover let us introduce the submarkov residual kernel R := P − ν(·)1S. Then, for every
g ∈ BV1 such that π(g) = 0, the function g̃ :=

∑+∞
k=0R

kg belongs to BV0 and satisfies the
Poisson equation (2), that is (I − P )g̃ = g, with

∥g̃∥V0 ≤ a∥g∥V1 where a := 1 + max

(
0 ,

b− ν(V0)

ν(1X)

)
. (4)

Condition D(V0, V1) is the so-called V1-modulated drift condition (e.g. see [MT09, Chap. 14
and Condition (V3)]. Such a condition has been widely used to analyse the geometric or sub-
geometric rate of convergence in total variation norms of the Markov chain to its invariant
probability measure π (e.g. see [DMPS18, Chap. 16, 17 and the references therein] for an
overview and various examples, and [Del17] for an alternative operator-type approach). To
the best of our knowledge, an estimate of the constant c0 in (3) is only provided in [LL18,
Prop. 1] for a discrete state-space X and in [Mas19] for a continuous-time Markov chain with
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a general state-space X. In both [LL18] and [Mas19] the existence of an atom is assumed,
and standard regeneration approach is then applied under the V1−modulated drift condition
to obtain the existence and a bound of a π−centred solution to Poisson’s equation. Here, we
use a quite different approach that does not require the existence of an atom.

Let us comment the conclusions of Theorem 1. The P−invariant probability measure π
satisfying π(1S) > 0 is derived from a Nummelin-type representation (see [Num84, Th. 5.2,
Cor. 5.2]), that is: π = µ(1X)

−1µ with µ :=
∑+∞

k=0 νR
k ∈ M+

∗ . This representation is classical
under various hypotheses (see Appendix A for a direct proof under the sole minorization
condition (S)). The original trick in this work is that, under Assumption D(V0, V1), the
submarkov residual kernel R := P − ν(·)1S satisfies the following drift condition

RV0,c ≤ V0,c − V1 (5)

with V0,c := V0+d1X for some explicit positive constant d (see Lemma 2.2). Then the residual-
type drift condition (5) enables us to define the function g̃ and to prove the bound (4), while
the Nummelin-type representation of π is proved to be crucial here to obtain that g̃ is a
solution to the Poisson equation. The innovative point in Theorem 1 is that the bound (4) is
simple and explicit. Note that a similar bound can be obtained when Assumptions (S) and
D(V0, V1) are assumed to hold for P ℓ for some ℓ ≥ 2 (see Remark 2.4).

In Section 3, Theorem 1 is proved to be relevant for perturbation issues. Indeed, when P
and P ′ are two Markov kernels on (X,X ) with respective invariant probability measures π
and π′, the following formula is of interest to control π′(g)− π(g):

π′(g)− π(g) = π′
(
(P ′ − P )ĝ

)
(6)

where ĝ is the solution to Poisson’s equation used in Glynn-Meyn’s theorem. This was first
observed in [Sch68] for finite irreducible stochastic matrices (see also [Sen93]). Formula (6)
may be subsequently used in any problem which can be thought of as a perturbation problem
of Markov kernels (e.g. see [GM96, LL18, and references therein] and [MT09, Sec. 17.7]).
Actually, from Theorem 1 Formula (6) still holds replacing ĝ with g̃ :=

∑+∞
k=0R

k(g−π(g)1X),
and the explicit bound (4) is then of great interest (recall that the bound in (3) is not
explicit). This perturbation issue is addressed in Section 3 for a general family {Pθ}θ∈Θ of
Markov kernels, each of them satisfying a minorization condition and a V1−modulated drift
condition w.r.t. some Lyapunov functions V0 and V1 (independent of θ). Thus, denoting by
πθ the Pθ−invariant probability measure provided by Theorem 1, and fixing some θ0 ∈ Θ, it
is proved in Theorem 3.2 that ∥πθ − πθ0∥V1 → 0 when θ→ θ0, provided that for every x ∈ X
we have ∆θ,V0(x) := ∥Pθ(x, ·)− Pθ0(x, ·)∥V0 → 0 when θ→ θ0 (see (1) for the definition of the
V -weighted total variation norm). Moreover a bound for ∥πθ−πθ0∥V1 is given in terms of the
quantity πθ(∆θ,V0). Here Pθ0 may be considered as the Markov kernel of interest, and the
Pθ’s for θ ̸= θ0 must be thought of some perturbed Markov kernels which are more tractable
than Pθ0 . In particular the term πθ(∆θ,V0) is expected to be known or at least computable
for θ ̸= θ0.

The general approach in Theorem 1, which is based on the residual-type drift condition
(5), is proved to be relevant under the V1−modulated drift condition D(V0, V1). To the best
of our knowledge, the bound (4) for solution to Poisson’s equation is new. Note that the proof
of Theorem 1 does not involve the splitting technique. Such a bound (4) allows us to specify
the constant c0 in the bound (3) of Glynn-Meyn theorem [GM96, Th. 2.3] (see Corollary 2.5).
Finally Property (4) provides a simple bound for the asymptotic variance in the central limit
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theorem (see Corollary 2.6). These results apply whenever explicit modulated drift conditions
are known: for such examples, e.g. see [FM00, FM03, DFM16] in the context of Metropolis
algorithm, [TT94, DFM16] for autoregressive models, [LH07, LH12] for queueing systems,
[JT02] for Markov chains associated with the mean of Dirichlet processes. The standard
geometric drift condition involved in the so-called V−geometrically ergodic Markov chains,
is a special case of modulated drift condition (see (15)). In this specific geometric case, the
bounds obtained in this paper for solutions to Poisson’s equation greatly improve those given
in [HL23a] (see Corollary 2.7). Classical instances of V−geometrically ergodic Markov chains
can be found in [MT09, RR04, DMPS18].

The perturbation theory for Markov chains has been widely developed in the last decades.
Recall that the strong continuity assumption introduced in [Kar86] is suitable when Pθ =
Pθ0 + θD, e.g. see [AANQ04, Mou21]. Note that neither the specific investigation of uni-
formly ergodic Markov chains (see [Mit05, MA10, AFEB16, JMMD]), nor that of reversible
transition kernels (e.g. see [MALR16, NR21, and the references therein]), are addressed here.
Recently Keller’s approach [Kel82] involving a weak continuity assumption (for perturbed
dynamical systems) has been adapted to V -geometrically ergodic Markov models, either us-
ing the Keller-Liverani perturbation theorem [KL99] (see [FHL13, HL14, HL23b]), or using
the elegant idea of [HM11] involving a suitable Wasserstein distance (see [RS18, MARS20,
and references therein], also see [SS00]). In the perturbation results of Section 3, Schweitzer’s
approach [Sch68] combined with the bound (4) is proved to be a relevant alternative method
to investigate the quantitative control of the deviation between the invariant probability
measures of Markov kernels. To the best of our knowledge, the results of Section 3 are new.
They can be compared in the specific context of V−geometrically ergodic Markov kernels,
see Example 3.7. In Example 3.8 an application to perturbed random walk on the half line
is addressed under polynomial drift conditions.

2 The drift conditions and Poisson’s equation

Recall that a Markov kernel P on (X,X ) satisfying the following minorization condition (S)
(e.g. see [MT09])

∃S ∈ X , ∃ν ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x) (S)

is said to have a small set. The positive measure ν in (S) is often written in the literature as
ν = εp for some probability measure p on (X,X ) and some ε ∈ (0, 1]. This formulation is not
used here (note that the number ν(1X) used in some bounds below equals to ε). Actually,
the main property derived from Condition (S) here is that the following so-called residual
kernel R is a submarkov kernel

∀x ∈ X, R(x, ·) := P (x, ·)− ν(·)1S(x). (7)

Assume that P satisfies Condition (S) and that V0 is a Lyapunov function such that the
function PV0 is everywhere finite (i.e. ∀x ∈ X, (PV0)(x) < ∞). Then we have ν(V0) ≤
(PV0)(x) <∞ for any x ∈ S from (S), so that the nonnegative function RV0 is well-defined.
Now, given another Lyapunov function V1, let us introduce the following residual-type drift
condition:

RV0 ≤ V0 − V1. (R(V0, V1))
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Note that this condition is a special case of Condition D(V0, V1) (i.e. b = ν(V0)), and that it
implies that V1 ≤ V0 since RV0 ≥ 0, and that PV0 ≤ (1 + ν(V0))V0, hence ∥PV0∥V0 <∞.

Assuming the residual-type drift condition (R(V0, V1)) and using a Nummelin-type rep-
resentation for the P−invariant probability measure π, the next Proposition 2.1 is our key
preliminary result. It states that, for any g ∈ BV1 the series

∑+∞
k=0R

kg pointwise converges
in X and defines a function g̃ in BV0 satisfying the nice bound ∥g̃∥V0 ≤ ∥g∥V1 . Moreover g̃ is
a solution to Poisson’s equation when π(g) = 0. Proposition 2.1 will be central for obtaining
the bound (13) for ∥g̃∥V0 under the general V1−modulated drift condition D(V0, V1) (see
Theorem 2.3).

Proposition 2.1 Assume that P satisfies the minorization Condition (S) and that V0 is
a Lyapunov function such that PV0 is everywhere finite. If the residual kernel R given in
(7) satisfies the drift condition R(V0, V1) with a Lyapunov function V1, then the following
assertions hold.

(i) For any g ∈ BV1, the function g̃ :=
∑+∞

k=0R
kg is well-defined on X and g̃ ∈ BV0 with

∥g̃∥V0 ≤ ∥g∥V1 . (8)

(ii) The positive measure µ :=
∑+∞

k=0 νR
k is such that µ(1X) ≤ µ(V1) ≤ ν(V0) < ∞, and

π ≡ πν,R := µ(1X)
−1µ defines a P−invariant probability measure satisfying π(1S) =

µ(1X)
−1 > 0 and π(V1) <∞.

(iii) For any g ∈ BV1 such that π(g) = 0, the function g̃ satisfies Poisson’s equation

(I − P )g̃ = g. (9)

Proof. Let x ∈ X. From R(V0, V1), we derive that V1 ≤ V0 −RV0 and we obtain

∀n ≥ 1,

n∑
k=0

(RkV1)(x) ≤ V0(x), (10)

so that
∑+∞

k=0(R
kV1)(x) ≤ V0(x). Now let g ∈ BV1 . Using |g| ≤ ∥g∥V1V1, it follows that

+∞∑
k=0

∣∣(Rkg)(x)
∣∣ ≤ ∥g∥V1 V0(x).

This proves Assertion (i). Next it follows from 1X ≤ V1 and
∑+∞

k=0R
kV1 ≤ V0 that

+∞∑
k=0

ν(Rk1X) ≤
+∞∑
k=0

ν(RkV1) ≤ ν(V0) <∞.

Hence the positive measure µ :=
∑+∞

k=0 νR
k is such that

0 < ν(1X) ≤ µ(1X) ≤ µ(V1) ≤ ν(V0) <∞.

Then the Nummelin-type formula π = µ(1X)
−1µ defines a P−invariant probability measure

satisfying π(1S) = µ(1X)
−1 > 0 (see Proposition A.1). Assertion (ii) is proved.
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Let g ∈ BV1 . Since π(V1) = µ(1X)
−1µ(V1) <∞, we have π(|g|) <∞. Now define

∀n ≥ 1, g̃n :=
n∑

k=0

Rkg.

Then, using P = R+ ν(·)1S and setting µn(g) := ν(g̃n) =
∑n

k=0 ν(R
kg) we have

(I − P )g̃n = g̃n −Rg̃n − µn(g)1S = g −Rn+1g − µn(g)1S . (11)

We know that limnR
n+1g = 0 (pointwise convergence) from the convergence of the series∑+∞

k=0R
kg. Moreover, using µ(V1) < ∞, we obtain that limn→+∞ µn(g) = µ(g). Finally,

for every x ∈ X, we have limn(P g̃n)(x) = (P g̃)(x) from Lebesgue’s theorem applied to the
sequence (g̃n)n w.r.t. the probability measure P (x, dy) since limn g̃n = g̃, |g̃n| ≤ ∥g∥V1V0 and
(PV0)(x) <∞. Taking the limit when n goes to infinity in (11), we obtain

(I − P )g̃ = g − µ(g)1S . (12)

Next, if we assume that π(g) = 0, then Equality (12) rewrites as Equality (9) since µ(g) =
π(g)/π(1S) = 0 from the representation of π. The proof of Proposition 2.1 is complete. □

Now let us assume that P satisfies (S) and the standard V1−modulated drift condition
for some couple (V0, V1) of Lyapunov functions

∃b > 0, PV0 ≤ V0 − V1 + b1S . (D(V0, V1))

This implies that the functions PV1 and PV0 are everywhere finite. Then we have ν(V0) <
∞ from (S). Thus the nonnegative function RV0 is well-defined where R is the residual
kernel defined in (7). If Condition D(V0, V1) holds with an atom S (i.e. ∀x ∈ S, P (x, ·) =
ν(·)), then b = ν(V0) may be chosen, so that Condition R(V0, V1) holds too. In the non-
atomic case, the drift condition D(V0, V1) on P may not directly provide the residual-type
condition R(V0, V1) since the constant b may be strictly larger than ν(V0). However, starting
from Assumption D(V0, V1), the next lemma shows that the slight change of the Lyapunov
function V0 into V0,c = V0 + d1X, with some suitable positive constant d, does provide the
residual-type drift condition R(V0,c, V1).

Lemma 2.2 Assume that P satisfies Conditions (S) and D(V0, V1) w.r.t. some couple (V0, V1)
of Lyapunov functions. Let c ≥ (b− ν(V0))/ν(1X). Then Condition R(V0,c, V1), with V0,c :=
V0 +max(0, c)1X ≥ V0, holds for the residual kernel R defined in (7).

Proof. We already know that the function RV0 is well-defined and is finite from Assump-
tions D(V0, V1) and (S). Set d := max(0, c) and V0,c = V0 + d1X. Note that ν(V0,c) =
ν(V0) + dν(1X) <∞ and that PV0,c = PV0 + d1X <∞. We have

RV0,c = PV0,c − ν(V0,c)1S = PV0 + d1X −
(
ν(V0) + d ν(1X)

)
1S

≤ V0 − V1 + b1S + d1X −
(
ν(V0) + d ν(1X)

)
1S

≤ V0,c − V1 +
(
b− ν(V0)− d ν(1X)

)
1S .

from the definitions of R and V0,c, and from Assumption D(V0, V1). Hence the expected
statement. □
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Under the standard V1-modulated drift condition D(V0, V1) on P , the following statement
is derived from Lemma 2.2 and Proposition 2.1. Theorem 2.3 below can be thought of as
an extension of [GM96, Th 2.3] (see also [MT09, Th 17.7.1]) in that it provides an explicit
and simple bound on the V0−norm of a solution to Poisson’s equation. To the best of our
knowledge, the joint use of Lemma 2.2 and Proposition 2.1, as well as the bound (13) below,
are new.

Theorem 2.3 Assume that P satisfies the minorization Condition (S) and the V1−modulated
drift condition D(V0, V1) w.r.t. some couple (V0, V1) of Lyapunov functions.

Then the conclusions stated in Assertions (i) − (iii) of Proposition 2.1 hold true with the
following bound in place of (8)

∀g ∈ BV1 , ∥g̃∥V0 ≤ a∥g∥V1 with a := 1 + max

(
0 ,

b− ν(V0)

ν(1X)

)
(13)

where ν ∈ M+
∗ is given in (S) and b is the positive constant given in D(V0, V1).

Let us mention that, when g ∈ BV1 is such that π(g) ̸= 0, the centred function g0 := g−π(g)1X
is such that g̃0 :=

∑+∞
k=0R

kg0 is solution in BV0 to Poisson’s equation (I − P )g̃0 = g0 =
g − π(g)1X. The bound (13) is similar to those in [LL18, Prop. 1] and [Mas19], which have
been obtained under V1-modulated drift conditions, but assuming the existence of an atom.
In this work, we do not assume the existence of an atom. Nor do we use the splitting method
for passing from the atomic to the general case. Actually the atomic case appears here as
a special case where the constant b in D(V0, V1) can be chosen equal to ν(V0), so that the
constant a in (13) is one. In other words, the atomic case is encompassed by the assumptions
of Proposition 2.1.

Proof. Let V0,c := V0+d1X where d := max(0, ĉ ) with ĉ := (b−ν(V0))/ν(1X) (see Lemma 2.2).
Note that V0 and V0,c are equivalent Lyapunov functions in the sense that V0 ≤ V0,c ≤
(1+ d)V0. Proposition 2.1 applied with the drift condition of Lemma 2.2 shows that, for any
g ∈ BV1 , the function g̃ :=

∑+∞
k=0R

kg belongs to BV0,c with

∥g̃∥V0,c ≤ ∥g∥V1 ,

and that g̃ satisfies (I−P )g̃ = g when π(g) = 0. Next (13) holds since ∥ · ∥V0 ≤ (1+d)∥ · ∥V0,c

from the inequality V0,c ≤ (1 + d)V0. □

Remark 2.4 Assume that Conditions (S) and D(V0, V1) are only satisfied for the Markov
kernel P ℓ with some ℓ ≥ 2. Moreover suppose that π is the unique invariant probability
measure for both P and P ℓ. Recall that M := ∥PV0∥V0 < ∞ from D(V0, V1). Set Rℓ :=
P ℓ − ν(·)1S. Then, for every g ∈ BV1 such that π(g) = 0, the function

g̃ :=

ℓ−1∑
k=0

P kg̃ℓ with g̃ℓ =

+∞∑
k=0

Rℓ
kg

belongs to BV0 and satisfies the Poisson equation (I − P )g̃ = g. Moreover we have

∥g̃∥V0 ≤
a
(
M ℓ − 1

)
M − 1

∥g∥V1 with a := 1 + max

(
0 ,

b− ν(V0)

ν(1X)

)
7



where ν ∈ M+
∗ and b are here given in Conditions (S)-D(V0, V1) related to P ℓ. Indeed

Theorem 2.3 applied to the Markov kernel P ℓ shows that, for every g ∈ BV1 such that π(g) = 0,
the function g̃ℓ ∈ BV0 and g̃ℓ satisfies (I − P ℓ)g̃ℓ = g, with moreover

∥g̃ℓ∥V0 ≤ a ∥g∥V1 .

The claimed statements then follow from (I − P )g̃ = (I − P ℓ)g̃ℓ = g and from the inequality
∥g̃∥V0 ≤ ∥g̃ℓ∥V0(M

ℓ − 1)/(M − 1).

Note that the invariant probability measure π ≡ πν,R involved in Proposition 2.1 and
Theorem 2.3 only satisfies the moment condition π(V1) < ∞, and there is no guarantee
that π(V0) < ∞. For Markov kernels satisfying a modulated drift condition, the existence
and uniqueness of the P−invariant probability measure is investigated in many works under
various hypothesis, e.g. see [MT09, DMPS18], and [FM03, Th. 1]. For instance, if P is
ψ−irreducible for some positive measure ψ on (X,X ) and satisfies Condition D(V0, V1), then
P has a unique invariant probability measure, e.g. see [Mey22, Th 6.12].

In Corollary 2.5 below, we prove that, if the invariant probability measure π ≡ πν,R of
Theorem 2.3 is such that π(V0) <∞, then it is the unique one integrating V0. This statement
is suitable to the perturbation results of the next Section 3, in which the moment condition
π(V0) <∞ is involved.

Corollary 2.5 Let P satisfying the assumptions of Theorem 2.3. Assume that the invariant
probability measure π ≡ πν,R is such that π(V0) <∞. Then

1. π is the unique P−invariant probability measure which integrates V0.

2. For any g ∈ BV1 such that π(g) = 0, let g̃ :=
∑+∞

k=0R
kg. Then the function ĝ =

g̃−π(g̃)1X is a π−centered solution on BV0 to Poisson’s equation (I−P )ĝ = g. Moreover
we have

∥ĝ∥V0 ≤ a
(
1 + π(V0) ∥1X∥V0

)
∥g∥V1 (14)

where the positive constant a is given in (13).

Note that, when Poisson’s equation has a unique solution up to an additive constant, In-
equality (14) gives a bound for the norm of the solution in Glynn-Meyn’s theorem.

Proof. Let g ∈ BV1 . We know from Theorem 2.3 and Equality (12) that the associated
function g̃ :=

∑+∞
k=0R

kg is in BV0 and satisfies Equation (I − P )g̃ = g − µ(g)1S with µ :=∑+∞
k=0 νR

k ∈ M+
∗ . Recall that π = µ(1X)

−1µ. Consequently, if η is a P−invariant positive
measure on X such that η(V0) <∞, then we have η((I − P )g̃) = 0 = η(g)− µ(g)η(1S), thus
η = η(1S)µ = η(1S)µ(1X)π. This proves the first assertion of Corollary 2.5.

To prove the second one, first note that ĝ ∈ BV0 and the property π(ĝ) = 0 (under π(V0) <
∞) are obvious. Moreover, if g is such that π(g) = 0, then we have (I − P )ĝ = (I − P )g̃ = g
from Theorem 2.3 and (I − P )1X = 0. Finally we have

∥ĝ∥V0 ≤
(
1 + π(V0) ∥1X∥V0

)
∥g̃∥V0 ≤ a

(
1 + π(V0) ∥1X∥V0

)
∥g∥V1

using the definition of ĝ, the triangular inequality and |g̃| ≤ ∥g̃∥V0V0 for the first inequality,
the bound (13) applied to g̃ for the second one. □
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For a Markov model satisfying Assumption D(V0, V1), it is worth noticing that the condi-
tion π(V0) <∞ holds provided that P satisfies any preliminary V0−modulated drift condition,
that is: PW ≤W−V0+b1S for some Lyapunov functionW (apply Theorem 2.3 to the couple
(W,V0)). Recall that such nested modulated drift conditions D(W,V0) and D(V0, V1) occur
in most of the analysis of polynomial or subgeometric convergence rate of Markov models,
e.g. see [JR02, FM03, AFV15], in particular see [JR02, Lem. 3.5]) in the polynomial case and
[DFMS04, DMPS18] in the subgeometric case.

The next proposition provides a computable bound for the so-called asymptotic variance
involved in the central limit theorem for Markov chains (e.g. see [MT09, Chap. 17], [DMPS18,
Chap. 21] and [Jon04]). To the best of our knowledge, this bound is new, and this is achieved
thanks to the nice bound (13) of Theorem 2.3, since the asymptotic variance is known to be
closely related to Poisson’s equation.

Corollary 2.6 Assume that P satisfies Condition (S) and D(V0, V1) with the additional
condition π(V 2

0 ) < ∞. For any g ∈ BV1 such that π(g) = 0, set γ2g = π((g̃)2 − (P g̃)2) where
g̃ is the solution to Poisson’s equation (I − P )g̃ = g provided by Theorem 2.3. Then we have

γ2g ≤ 2 a2 π(V 2
0 ) ∥g∥2V1

where a is the positive constant given in (13).

Proof. From Theorem 2.3, we obtain that

γ2g ≤ π(g̃2) + π((P g̃)2) ≤ a2∥g∥2V1

(
π(V 2

0 ) + π((PV0)
2)
)

≤ 2 a2π(V 2
0 ) ∥g∥2V1

using successively |g̃| ≤ a∥g∥V1V0 from (13), the Cauchy-Schwarz inequality (PV0)
2 ≤ PV 2

0

and finally the P−invariance of π. □

To conclude this section let us apply the previous statements in the case when P satisfies
Condition (S) and the following so-called V−geometric drift condition

∃δ ∈ (0, 1), ∃K ∈ (0,+∞), PV ≤ δV +K1S (G(δ, V ))

for some Lyapunov function V , where S ∈ X is the set in (S). Then rewriting Condi-
tion G(δ, V ) as PV ≤ V − (1 − δ)V +K1S , we obtain that P satisfies the following Condi-
tion D(V0, V )

PV0 ≤ V0 − V + b1S with V0 :=
V

1− δ
and b :=

K

1− δ
. (15)

For the sake of simplicity, in addition to Conditions (S) and G(δ, V ), we also suppose that
ν(1S) > 0 for P to be V−geometrically ergodic (e.g. see [Bax05]). In particular we know
that π(V ) < ∞ and that two solutions to Poisson’s equation in BV differ from a constant.
Observing that ∥·∥V0 = (1−δ)∥·∥V and that π(V0) ∥1X∥V0 = π(V ) ∥1X∥V , the next statements
are easily deduced from Theorem 2.3, Corollary 2.5 and Corollary 2.6.

Corollary 2.7 Assume that P satisfies the minorization Condition (S) with ν(1S) > 0 and
the V−geometric drift condition G(δ, V ) w.r.t. some Lyapunov function V . Then
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1. The conclusions stated in Assertions (i) − (iii) of Proposition 2.1 hold true with the
following bound in place of (8):

∀g ∈ BV , ∥g̃∥V0 ≤ a∥g∥V with here a := 1 + max

(
0 ,

K − ν(V )

ν(1X)(1− δ

)
so that

∀g ∈ BV , ∥g̃∥V ≤ a

1− δ
∥g∥V . (16)

where ν ∈ M+
∗ is given in (S) and δ,K are the constants given in G(δ, V ).

2. For every g ∈ BV such that π(g) = 0, the function ĝ =
∑+∞

k=0 P
kg is the unique

π−centered function in BV solution to Poisson’s equation (I − P )ĝ = g, with

∥ĝ∥V ≤
a
(
1 + π(V ) ∥1X∥V

)
1− δ

∥g∥V . (17)

3. If π(V 2) < ∞ then, for any g ∈ BV such that π(g) = 0, the asymptotic variance
γ2g = π((g̃)2 − (P g̃)2) with g̃ :=

∑+∞
k= Rkg solution of Poisson’s equation (I − P )g̃ = g,

satisfies

γ2g ≤ 2 a2π(V 2)

(1− δ)2
∥g∥2V .

In this geometric ergodicity context, bounds similar to (16) and (17) have been obtained in
[HL23a, Eqs. (35) and (36a)] for the norm ∥ · ∥V α0 for some α0 ∈ (0, 1]. Actually the method
in [HL23a] consists in converting the V−geometric drift condition G(δ, V ) into the following
residual-type geometric drift condition RV α0 ≤ δα0 V α0 . When the positive constant K in
G(δ, V ) is such that K ≤ ν(V ) (in particular in atomic case), the previous residual-type drift
condition holds with α0 = 1, but otherwise we have α0 < 1. In practice α0 may be close to
zero (i.e. δα0 is close to one), so that the bounds in [HL23a, Eqs. (35) and (36a)] degrade
since they depend on (1− δα0)−1. By contrast, even in this geometric ergodicity context, the
joint use of Lemma 2.2 and Proposition 2.1 simply involving here the V−modulated drift
condition (15) is proved to provide the relevant bounds (16) and (17) for the norm ∥ · ∥V of
solutions to Poisson’s equation.

3 General perturbation results

In this section we deal with the quantitative control of the deviation between the invariant
probability measures of Markov kernels. Let us first present a preliminary statement based
on Theorem 2.3.

Proposition 3.1 Assume that P satisfies Conditions (S)-D(V0, V1), and let π ≡ πν,R be the
P−invariant probability measure of Theorem 2.3. Let P ′ be another Markov kernel on (X,X )
with invariant probability measure π′ such that ∥P ′V0∥V0 <∞ and π′(V0) <∞. Then

∥π′ − π∥V1 ≤ a
(
1 + π(V1)∥1X∥V1

)
π′(∆V0) (18)

where the positive constant a is defined in (13) and where the function ∆V0 is defined by

∀x ∈ X, ∆V0(x) := ∥P (x, ·)− P ′(x, ·)∥V0 .

10



Proof. Recall that ∥PV0∥V0 < ∞ from D(V0, V1), so that ∆V0 and π′(∆V0) are well-defined
under the assumptions of Proposition 3.1.

Let g ∈ BV1 such that ∥g∥V1 ≤ 1. Since π(V1) <∞ from Theorem 2.3, π(g) is well-defined.
Define g0 = g−π(g)1X and g̃0 :=

∑+∞
k=0R

kg0 with the residual kernel R := P − ν(·)1S . Then
we have

π′
(
(P ′ − P

)
g̃0) = π′(g̃0)− π′(g̃0 − g0) = π′(g0) = π′(g)− π(g) (19)

using the P ′−invariance of π′, the Poisson equation (I − P )g̃0 = g0 from Theorem 2.3, and
finally the definition of g0. It follows from the definition of ∆V0 that

|π′(g)− π(g)| ≤
∫
X

∣∣(P ′g̃0)(x)− (P g̃0)(x)
∣∣ dπ′(x) ≤ ∥g̃0∥V0

∫
X
∆V0(x) dπ

′(x).

Finally we know from Theorem 2.3 that ∥g̃∥V0 ≤ a∥g0∥V1 with a defined in (13), so that

∥g̃0∥V0 ≤ a ∥g − π(g)1X∥V1 ≤ a
(
1 + π(V1)∥1X∥V1

)
from which we deduce (18). □

Now let {Pθ}θ∈Θ denote a family of transition kernels on (X,X ), where Θ is an open
subset of some metric space. Let us introduce the following minorization and modulated
drift conditions w.r.t. this family {Pθ}θ∈Θ:

∀θ ∈ Θ, ∃Sθ ∈ X , ∃νθ ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , Pθ(x,A) ≥ νθ(1A) 1Sθ

(x), (SΘ)

and there exists a couple (V0, V1) of Lyapunov functions such that

∀θ ∈ Θ, ∃bθ > 0, PθV0 ≤ V0 − V1 + bθ1Sθ
. (DΘ(V0, V1))

Let us fix some θ0 ∈ Θ. The family {Pθ, θ ∈ Θ \ {θ0}} must be thought of as a family of
transition kernels which are perturbations of Pθ0 and converge (in a certain sense) to Pθ0

when θ→ θ0. To that effect, under the Conditions (SΘ)-DΘ(V0, V1) we define

∀θ ∈ Θ, ∀x ∈ X, ∆θ,V0(x) := ∥Pθ(x, ·)− Pθ0(x, ·)∥V0 . (20)

Finally, under the additional conditions supθ∈Θ bθ <∞ and infθ∈Θ νθ(1X) > 0, we define the
following positive constant

a := 1 + max
(
0, c

)
with c := sup

θ∈Θ

bθ − νθ(V0)

νθ(1X)
. (21)

In Theorem 3.2 and Corollary 3.3 below, each Markov kernel Pθ is assumed to satisfy the
assumptions of Theorem 2.3. Accordingly, the Pθ−invariant probability measure denoted
by πθ in these two statements is πθ ≡ πθ,ν,R (see the definition of π in Assertion (ii) of
Proposition 2.1 with ν = νθ and Rθ := Pθ − νθ(·)1Sθ

). Since πθ is assumed below to satisfy
πθ(V0) < ∞, we know from the first assertion of Corollary 2.5 that there is no ambiguity
about what πθ is in Theorem 3.2 and Corollary 3.3.

Theorem 3.2 Assume that the family {Pθ}θ∈Θ satisfies Conditions (SΘ)-DΘ(V0, V1) with
b := supθ∈Θ bθ < ∞ and infθ∈Θ νθ(1X) > 0. Moreover suppose that, for every θ ∈ Θ, the
Pθ−invariant probability measure πθ ≡ πθ,ν,R of Theorem 2.3 satisfies πθ(V0) <∞.
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Then we have
∥πθ − πθ0∥V1 ≤ amin

{
cθ0 πθ(∆θ,V0) , cθ πθ0(∆θ,V0)

}
(22)

with a defined in (21) and with

∀θ ∈ Θ, cθ := 1 + πθ(V1)∥1X∥V1 ≤ 1 + b ∥1X∥V1 . (23)

If the following additional assumption holds

∀x ∈ X, lim
θ→ θ0

∆θ,V0(x) = 0, (∆V0)

then we have
lim

θ→ θ0
∥πθ − πθ0∥V1 = 0.

Proof. Let θ ∈ Θ. We have PθV0 ≤ (1 + b)V0 from DΘ(V0, V1) and the definition of the
positive constant b. Thus Proposition 3.1 can be applied to (P, P ′) := (Pθ0 , Pθ) and to
(P, P ′) := (Pθ, Pθ0), which provide Inequality (22). Also observe that the bound in (23)
follows from the inequality πθ(V1) ≤ bθ ≤ b which is easily deduced from DΘ(V0, V1) using
πθ(PθV0) = πθ(V0) (recall that πθ(V0) <∞ by hypothesis). Next we have

lim
θ→ θ0

πθ0(∆θ,V0) = lim
θ→ θ0

∫
X
∆θ,V0(x)dπθ0(x) = 0 (24)

from Lebesgue’s theorem using ∆θ,V0 ≤ 2(1 + b)V0, πθ0(V0) < ∞ and Assumption (∆V0).
Then we obtain that limθ→ θ0 ∥πθ − πθ0∥V1 = 0 from the second bound in (22) and from the
inequality (23). □

When Condition DΘ(V0, V1) is satisfied, so is Condition D(V0, 1X) since V1 ≥ 1X. Thus,
when Theorem 3.2 applies, then it also applies with V1 := 1X and then provides the control
of the total variation error since ∥πθ −πθ0∥TV = ∥πθ −πθ0∥1X . Using πθ(1X) = 1, ∥1X∥1X = 1,
so that we have here cθ := 1 + πθ(1X)∥1X∥1X = 2, we obtain the following estimate for
∥πθ − πθ0∥TV .

Corollary 3.3 Under the assumptions of Theorem 3.2 we have

∥πθ − πθ0∥TV ≤ 2 a min
{
πθ(∆θ,V0) , πθ0(∆θ,V0)

}
(25)

with a defined in (21). If moreover {Pθ}θ∈Θ satisfies Assumption (∆V0), then we have
limθ→ θ0 ∥πθ − πθ0∥TV = 0.

The convergence of πθ0(∆θ,V0) to 0 when θ→ θ0 in (24) is of theoretical interest: it is
used to prove that limθ→ θ0 ∥πθ − πθ0∥V1 = 0 in Theorem 3.2. However it is worth noticing
that this term πθ0(∆θ,V0) in the bounds (22) and (25) is not computable in practice since
the probability measure πθ0 may be considered as unknown in our perturbation context. By
contrast, the value of πθ(∆θ,V0) in bounds (22) and (25) is expected to be known or at least
computable for θ ̸= θ0, so that the bounds of interest in (22) and (25) are

∥πθ − πθ0∥V1 ≤ a cθ0 πθ(∆θ,V0) and ∥πθ − πθ0∥TV ≤ 2 a πθ(∆θ,V0) (26)

with cθ0 given in (23). However the bounds in (26) are relevant only if limθ→ θ0 πθ(∆θ,V0) = 0,
which is not guaranteed under the conditions of Theorem 3.2. For this purpose note that, in
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the proof of Theorem 3.2, the conditions (SΘ) and DΘ(V0, V1) for Pθ with θ ̸= θ0 are only
used for obtaining the inequality ∥πθ − πθ0∥V1 ≤ acθ πθ0(∆θ,V0) of (22). Consequently, if we
are only interested in the two bounds in (26), then the assumptions of Theorem 3.2 can be
relaxed as follows.

Proposition 3.4 Assume that the (unperturbed) Markov kernel P := Pθ0 satisfies Condi-
tions (S) and D(V0, V1), and that, for every θ ∈ Θ \ {θ0}, we have ∥PθV0∥V0 <∞. Moreover
suppose that, for every θ ∈ Θ \ {θ0}, there exist a Pθ−invariant probability measure πθ on
(X,X ) such that πθ(V0) <∞. Finally assume that the Pθ0−invariant probability measure πθ0
of Theorem 2.3 satisfies πθ0(V0) <∞. Then the two bounds in (26) hold.

Indeed, under the assumptions of Proposition 3.4, the first bound in (26) directly follows
from Proposition 3.1 applied to (P, P ′) := (Pθ0 , Pθ) with θ ̸= θ0. The second bound in (26)
is obtained by replacing V1 with 1X. In Proposition 3.4, the existence of a Pθ−invariant
probability measure πθ must be assumed when θ ̸= θ0 since we do suppose that Pθ satisfies
minorization and modulated drift condition for θ ̸= θ0. Actually, πθ may be any Pθ−invariant
probability measure when θ ̸= θ0, while πθ0 is the Pθ0−invariant probability measure of
Theorem 2.3. In any case the assumption πθ(V0) < ∞ is required for every θ ∈ Θ. Finally
let’s stress once again that the bounds in (26) are of interest only when the term πθ(∆θ,V0)
is computable and can be proved to converge to 0 when θ→ θ0.

Remark 3.5 (Stability issue) In some classical perturbation schemes, as the standard
truncations of infinite stochastic matrices or the state space discretization procedure of non-
discrete models, the whole family {Pθ}θ∈Θ satisfies Condition (SΘ)-DΘ(V0, V1) provided that
the unperturbed Markov kernel P := Pθ0 satisfies Conditions (S)-D(V0, V1). Moreover the set
S and the constant b involved for P := Pθ0 in (S)-D(V0, V1) can often be used for the perturbed
Markov kernels Pθ. In this case the conditions b := supθ∈Θ bθ < ∞ and infθ∈Θ νθ(1X) > 0 of
Theorem 3.2 and Corollary 3.3 are straightforward. In the context of geometric drift condi-
tions, the previous facts are proved to hold in many papers for truncatures of infinite stochastic
matrices (e.g. see [LL18, HL14, and references therein]), and in [HL21] for the state space
discretization procedure. The case of Markov models satisfying modulated drift conditions can
be addressed similarly.

Remark 3.6 If Pθ is replaced with iterate P ℓ
θ for some ℓ ≥ 2 in Conditions (SΘ)-DΘ(V0, V1)

and if for every θ ∈ Θ both Pθ and P ℓ
θ admit a unique invariant probability measure πθ, then

all the previous perturbation results still hold replacing πθ(∆θ,V0) with πθ(∆ℓ,θ,V0), where

∀x ∈ X, ∆ℓ,θ,V0(x) := ∥P ℓ
θ (x, ·)− P ℓ

θ0(x, ·)∥V0 .

Indeed, under the previous assumptions, Theorem 3.2 and Corollary 3.3 obviously apply to
the family {P ℓ

θ }θ∈Θ. The same remark is valid in Proposition 3.4 when P ℓ
θ0

satisfies Condi-
tions (S) and D(V0, V1) for some ℓ ≥ 2.

Our perturbation results are discussed through the two following examples.

Example 3.7 (Geometric drift conditions) In the perturbation context, under Condi-
tion (SΘ), the standard geometric drift conditions for some Lyapunov function V are the
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following ones:

∀θ ∈ Θ, Kθ := sup
x∈Sθ

(PθV )(x) <∞ and δθ := sup
x∈Sc

θ

(PθV )(x)

V (x)
∈ (0, 1). (27)

In addition to Assumptions (SΘ) and (27), we assume that, for every θ ∈ Θ, we have
νθ(1Sθ

) > 0 where (Sθ, νθ) ∈ X ×M+
∗ is given in (SΘ), so that each Pθ is V−geometrically

ergodic, with unique Pθ−invariant probability denoted by πθ satisfying πθ(V ) < ∞ (e.g. see
[Bax05]). Moreover suppose that K := supθ∈ΘKθ <∞ and δ := supθ∈Θ δθ < 1. Then

∀θ ∈ Θ, PθV ≤ δV +K1Sθ
≤ V − (1− δ)V +K1Sθ

.

Note that the second inequality reads as the Condition D(V0, V ), PθV0 ≤ V0 − V + b1S, with
V0 = V/(1 − δ), V1 = V and b = K/(1 − δ), so that Theorem 3.2 could be applied here to
control ∥πθ−πθ0∥V . Mention that the bound of Theorem 3.2 then provides a generalization of
the bounds [LL18, (10) in Th. 2] to the truncation of a transition kernel defined on a general
state-space X without assuming the existence of an atom. Similarly the bound of Theorem 3.2
extends that in [LL18, (16) in Th. 3 with m = 1] to a general state-space X without assuming
that the residual kernel is a contraction on BV , i.e. RV ≤ βV for some β < 1.

The focus here is on the comparison of our results with [HL14, Prop. 2.1] and [RS18,
Eq. (3.19)], Thus we only apply Corollary 3.3 in order to control the total variation norm
∥πθ − πθ0∥TV . Hence, we only use the following Condition D(V0, 1X) derived from D(V0, V )
using V ≥ 1X:

∀θ ∈ Θ, PθV0 ≤ V0 − 1X + b 1Sθ
with V0 =

V

1− δ
and b :=

K

1− δ
.

Therefore, if m := infθ∈Θ νθ(1X) > 0, then {Pθ}θ∈Θ satisfies the assumptions of Theorem 3.2
and we have from Corollary 3.3

∥πθ − πθ0∥TV ≤ 2 a

1− δ
min

{
πθ(∆θ,V ) , πθ0(∆θ,V )

}
with a = 1 +max

(
0,
b

m

)
(28)

using the fact that ∆θ,V0(x) = ∆θ,V (x)/(1−δ). Moreover we have limθ→ θ0 ∥πθ−πθ0∥TV = 0,
provided that Condition (∆V0) is satisfied here with V0 := V (see Corollary 3.3). Recall that,
if the term πθ(∆θ,V ) can be computed and is proved to converge to 0 when θ→ θ0, then the
bound of interest in (28) is

∥πθ − πθ0∥TV ≤ 2 a

1− δ
πθ(∆θ,V ) (29)

and that (29) can be obtained under less restrictive assumptions focussing on Pθ0 by using
Proposition 3.4 (see also Remark 3.5).

Now, let us compare Inequality (29) with the bound obtained in [HL14, Prop. 2.1] and
[RS18, Eq. (3.19)] (see also [HL23b] for the iterated function systems), that is

∥πθ − πθ0∥TV ≤ C γθ
∣∣ ln γθ∣∣ with γθ := sup

x∈X

∆θ,1X(x)

V (x)
(30)

where the positive constant C depends on the above constants δ,K and on the V−geometric
rate of convergence of the iterates P n

θ to the invariant distribution πθ.
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� The interest of the bound (30) is that it uses ∆θ,1X(x) rather than ∆θ,V (x) in (29). Note
that the supremum bound over x ∈ X in the definition of γθ only requires to consider
this supremum on a level set {x ∈ X : V (x) ≤ c}, observing that the supremum on the
complementary set is arbitrarily small when c is large enough (use ∆θ,1X(x)/V (x) ≤ 2/c
when V (x) > c).

� The drawback of (30) is that it involves a logarithm term, but above all that the constant
C in (30) depends on the V−geometric rate of convergence of P n

θ to πθ, which is
unknown in general (or badly estimated).

In conclusion, to prove that limθ→ θ0 ∥πθ − πθ0∥TV = 0, it is more relevant to use the results
[HL14, RS18]. However, if the term πθ(∆θ,V ) can be computed for θ ̸= θ0 and if πθ(∆θ,V )
converges to 0 when θ→ θ0, then the bound (29) is much more relevant than (30) since the
multiplicative constant in (29) is simple and easily computable, in contrast to that in (30).

Example 3.8 (Random walk on the half line) For θ belonging to some open metric space

Θ, let us consider the random walk {X(θ)
n }n∈N on the half line X := [0,+∞) given by

X
(θ)
0 ∈ X and ∀n ≥ 1, X(θ)

n := max
(
0, X

(θ)
n−1 +W (θ)

n

)
(31)

where, for every θ ∈ Θ, {W (θ)
n }n≥1 is a sequence of R-valued i.i.d. random variables as-

sumed to be independent of X
(θ)
0 , and to have a common parametric probability density func-

tion w.r.t. the Lebesgue measure on R which is denoted by pθ. Assume that

β := sup
θ∈Θ

E[W (θ)
1 ] < 0 and M := sup

θ∈Θ
E
[
(max(0,W

(θ)
1 ))m

]
<∞ (32)

for some integer number m ≥ 2. The transition kernel associated with {Xn}n∈N is given by

∀x ∈ X, ∀A ∈ X , Pθ(x,A) = 1A(0)

∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
1A(x+ y) pθ(y) dy. (33)

Next define the following Lyapunov functions on X:

∀x ∈ X, V (x) = (1 + x)m, V ′
0(x) = (1 + x)m−1 and V1(x) = (1 + x)m−2.

Applying to Pθ the modulated drift inequality [JR02, Eq. (59)] and using [JR02, Lem. 3.5],
we obtain that there exist a finite interval S = [0, s0] for some s0 > 0 and positive constants
a, b′, c, c′ such that the following nested modulated drift conditions hold

∀θ ∈ Θ, PθV ≤ V − c V ′
0 + a1S and PθV

′
0 ≤ V ′

0 − c′ V1 + b′1S . (34)

Note that these constants a, b′, c, c′ may be chosen independently of θ from the computations
in [JR02] and the uniform conditions in (32). Moreover c′ in the second drift condition may
be chosen such that c′ ∈ (0, 1], so that the following Condition DΘ(V0, V1) holds

∀θ ∈ Θ, PθV0 ≤ V0 − V1 + b1S with V0 :=
V ′
0

c′
and b :=

b′

c′
. (35)

Next assume that the following function

∀y ∈ R, h(y) := inf
θ∈Θ

inf
x∈S

pθ(y − x)
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is positive on some open interval of R. Then the family {Pθ}θ∈Θ satisfies Condition (SΘ)
with Sθ := S and νθ := ν, where ν is the positive measure on R defined by

∀A ∈ X , ν(1A) :=

∫
X
1A(y)h(y) dy.

Thus, the family {Pθ}θ∈Θ satisfies Assumptions (SΘ)-DΘ(V0, V1) w.r.t. the Lyapunov func-
tions V0(x) = (1 + x)m−1/c′ and V1(x) = (1 + x)m−2, with moreover supθ∈Θ bθ = b < ∞
and infθ∈Θ νθ(1X) = ν(1X) > 0. The Pθ−invariant probability measure πθ provided by The-
orem 2.3 applied to P := Pθ under D(V, V ′

0) in the first drift inequality in (34), satisfies
πθ(V

′
0) < ∞. This gives πθ(V0) < ∞, so that Theorem 3.2 and Corollary 3.3 apply. How-

ever, for these statements to be relevant, we have to investigate the function ∆θ,V0(x) and the
quantity πθ(∆θ,V0). To that effect, fixing some θ0 ∈ Θ, define

∀θ ∈ Θ, ∀y ∈ R, δθ(y) := |pθ(y)− pθ0(y)|

and ∀θ ∈ Θ, εθ :=

∫
R
δθ(y) dy and εθ,m :=

∫
R
|y|m−1 δθ(y) dy.

Note that εθ ≤ 2 and that εθ,m < ∞ since PθV
′
0 is everywhere finite. Let g ∈ BV0 such that

|g| ≤ V0. Then we have

∀x ∈ X,
∣∣(Pθg)(x)− (Pθ0g)(x)

∣∣ ≤ V0(0)

∫ −x

−∞
δθ(y) dy +

∫ +∞

−x
V0(x+ y) δθ(y) dy

≤ εθ
c′

+
cm
c′

∫
R

(
1 + xm−1 + |y|m−1

)
δθ(y) dy

≤ εθ
c′

+
dm εθ
c′

V0(x) +
cm εθ,m
c′

with some positive constants cm, dm only depending on the function t 7→ (1+ t)m−1 for t ≥ 0.
Thus

∀x ∈ X, ∆θ,V0(x) ≤
εθ + dm εθV0(x) + cm εθ,m

c′
.

Therefore Assumption (∆V0) of Theorem 3.2 holds provided that

lim
θ→ θ0

(
εθ + εθ,m

)
= 0.

Thus, such a condition ensures that limθ→ θ0 ∥πθ − πθ0∥V1 = 0.

Finally we have

∀θ ∈ Θ, πθ(∆θ,V0) ≤
εθ + dm πθ(V0) εθ + cm εθ,m

c′
.

Hence the following bounds (see (26))

∥πθ − πθ0∥V1 ≤ a cθ0 πθ(∆θ,V0) and ∥πθ − πθ0∥TV ≤ 2 a πθ(∆θ,V0) (36)

with a := 1 + max

(
0,
b− ν(V0)

ν(1X)

)
and cθ0 = 1 + b

are of interest, provided that the quantities εθ, εθ,m and πθ(V0) are computable for θ ̸= θ0 and
that both εθ and εθ,m converge to 0 when θ→ θ0.
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Note that, for this specific model, it follows from [JT03, Prop. 3.5] that

∀γ ∈ [2,+∞), E
[
(max(0,W

(θ)
1 ))γ

]
<∞ ⇐⇒

∫
R
|x|γ−1 dπθ(x) <∞.

Therefore, under Conditions (32), the Lyapunov function V0 in the modulated drift condition
(35) is the greatest possible one providing Condition DΘ(V0, V1) with πθ(V0) <∞ for any θ ∈
Θ. Accordingly V1 is the greatest possible Lyapunov function for which a bound can be obtained
for ∥πθ − πθ0∥V1 via Theorem 3.2. Finally note that the property limθ→ θ0 ∥πθ − πθ0∥TV = 0
and the second bound in (36) hold when the moment condition in (32) is satisfied with m = 2.

A Existence of an P−invariant probability measure under the
minorization Condition (S)

Let P be a Markov kernel on (X,X ) satisfying Condition (S). The next proposition provides,
under Condition (S), a simple characterization for P to have an invariant probability measure
π such that π(1S) > 0. Note that the Nummelin-type representation (37) of π is well-known
under various recurrence assumptions on the underlying Markov chain {Xn}n∈N. The reader
can consult [Num84, Th. 5.2, Cor. 5.2]), [MT09, Chap. 10]) where comments on the story
of such kind of results are provided. An analytic proof of Proposition A.1 is provided below.
Note that we do not need to introduce the concepts of irreducibility, recurrence, atom or
splitted chain associated with {Xn}n∈N.

Proposition A.1 If P satisfies the minorization condition (S), then the following assertions
are equivalent.

(i) There exists an P−invariant probability measure π on (X,X ) such that π(1S) > 0.

(ii)
+∞∑
k=1

ν(Rk−11X) <∞ with R := P − ν(·)1S.

Under any of these two conditions

π := µ(1X)
−1 µ with µ :=

+∞∑
k=1

νRk−1 ∈ M+
∗ (37)

is an P−invariant probability measure on (X,X ) with µ(1S) = 1 and π(1S) = µ(1X)
−1 > 0.

Proof. Let P satisfying Condition (S) and T be the following kernel

∀x ∈ X, ∀A ∈ X , T (x,A) := ν(1A) 1S(x)

so that R = P − T . Note that, for every k ≥ 1, we have ν Rk−1 ∈ M+. Recall that for
two nonnegative kernels K1 and K2, the inequality K1 ≤ K2 means that for any measurable
nonnegative function g, K1(g) ≤ K2(g). Set T0 := 0 and Tn := Pn −Rn for n ≥ 1. Then

∀n ≥ 1, 0 ≤ Tn ≤ Pn, Tn − Tn−1P = (Pn−1 − Tn−1)T and Tn =
n∑

k=1

ν(Rk−1·)Pn−k1S . (38)
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The first property follows from 0 ≤ R ≤ P . The second one is deduced from Pn − Tn =
(Pn−1 − Tn−1)(P − T ). Finally, the last one is clear for n = 1 and it holds for n ≥ 2 by an
easy induction based on Tn = Pn−1T + Tn−1R.

Now, let us prove Proposition A.1. Assume that Assertion (i) holds. We deduce from (38)
that 0 ≤ π

(
(Pn−Tn)1X

)
= 1−π(Tn1X) = 1−π(1S)

∑n
k=1 ν(R

k−11X) from which it follows that∑+∞
k=1 ν(R

k−11X) ≤ π(1S)
−1 < ∞ since π(1S) > 0 by hypothesis. This gives Assertion (ii).

Conversely, if Assertion (ii) holds, then µ :=
∑+∞

k=1 νR
k−1 ∈ M+

∗ since µ(1X) ≥ ν(1X) > 0.
Moreover we have

∀A ∈ X , µ(P1A) =
+∞∑
k=1

ν
(
P k1A − Tk−1P1A

)
from Rk−1 = P k−1 − Tk−1

=

+∞∑
k=1

ν
(
P k1A − Tk1A

)
+

+∞∑
k=1

ν
(
P k−1T1A − Tk−1T1A

)
from (38)

= µ(1A) + µ(T1A)− ν(1A)

= µ(1A) + ν(1A)µ(1S)− ν(1A) from the definition of T .

With A = X we obtain that 0 = ν(1X)µ(1S) − ν(1X), thus µ(1S) = 1 since ν(1X) > 0.
Consequently µ is P−invariant, so that π := µ(1X)

−1 µ is an P−invariant distribution such
that π(1S) = µ(1X)

−1 > 0. □

References

[AANQ04] E. Altman, K. E. Avrachenkov, and R. Núñez-Queija. Perturbation analysis for
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