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Coverings of the plane by self-avoiding curves
which satisfy the local isomorphism property

Francis OGER

Abstract. A self-avoiding plane-filling curve cannot be periodic, but we
show that it can satisfy the local isomorphism property. We investigate three
families of coverings of the plane by finite sets of nonoverlapping self-avoiding
curves which satisfy that property in a strong form. These curves are respec-
tively inductive limits of: 1) n-folding square curves such as the dragon curve,
obtained by folding n times a strip of paper in 2 and unfolding it with π/2
angles; 2) n-folding triangular curves such as the terdragon curve, obtained
by folding n times a strip of paper in 3 and unfolding it with π/3 angles; 3)
generalizations of Peano-Gosper curves. In each family, the coverings consist
of a small number of curves (at most 6), and in many examples only 1 curve.
We do not know presently if similar examples exist in Rn for n ≥ 3.

2010 Mathematics Subject Classification. Primary 05B45; Secondary 52C20,
52C23.
Key words and phrases. Paperfolding curve, dragon curve, terdragon curve,
Peano-Gosper curve, self-avoiding, covering, local isomorphism.

We denote by N∗ the set of strictly positive integers, and R+ the set of
positive real numbers.

For each n ∈ N∗, we consider Rn equipped with a norm x → ∥x∥. For any
x, y ∈ Rn, we write d(x, y) = ∥y − x∥. For each x ∈ Rn and each r ∈ R+, we
denote by B(x, r) the closed ball of center x and radius r.

For any E,F ⊂ Rn, an isomorphism from E to F is a translation τ
such that τ(E) = F . They are locally isomorphic if, for each x ∈ Rn (resp.
y ∈ Rn) and each r ∈ R+, there exists y ∈ Rn (resp. x ∈ Rn) such that
(B(x, r) ∩ E, x) ∼= (B(y, r) ∩ F, y).

E ⊂ Rn satisfies the local isomorphism property if, for each x ∈ Rn and
each r ∈ R+, there exist s ∈ R+ such that each B(y, s) contains some z with
(B(z, r) ∩ E, z) ∼= (B(x, r) ∩ E, x). We say that E satisfies the strong local
isomorphism property if there exist s, t ∈ R+ such that, for each x ∈ Rn

and each r ∈ R+, each B(y, rs + t) contains some z with (B(z, r) ∩ E, z) ∼=
(B(x, r) ∩ E, x). These definitions are similar to those for aperiodic tilings.

For n ≥ 2, we say that a closed subset C ⊂ Rn is a self-avoiding curve
if there exists a bicontinuous map from a closed interval I ⊂ R to C. If
I = [a, b] with a, b ∈ R (resp. I = [a,+∞[ with a ∈ R, I = R), then C is a
bounded curve (resp. a half curve, a complete curve).
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We say that A ⊂ Rn is space-filling if there exists α ∈ R+ such that
supx∈Rn infy∈A d(x, y) ≤ α. It follows from the proposition below that a self-
avoiding space-filling complete curve cannot be invariant through a nontrivial
translation:

Proposition. For each integer n ≥ 2, each self-avoiding complete curve
C ⊂ Rn and each w ∈ Rn such that C = w+C, there exists B ⊂ C bounded
such that C is the disjoint union of the subsets kw +B for k ∈ Z.

Proof. Consider f : R → C bicontinuous. Then τw : C → C : y → w + y
and φ : R → R : s → f−1(w + f(s)) satisfy φ = f−1 ◦ τw ◦ f . The map
φ is bicontinuous because f , τw and f−1 are bicontinuous. In particular, φ
is strictly increasing or strictly decreasing. Actually, φ is strictly increasing
since we have φ(s) ̸= s for each s ∈ R.

Now consider x ∈ C and write tk = f−1(kw+x) for each k ∈ Z. The equal-
ities φ(tk) = tk+1 with tk < tk+1 or tk+1 < tk for k ∈ Z imply φ([tk, tk+1[) =
[tk+1, tk+2[ and w + f([tk, tk+1[) = f([tk+1, tk+2[) for each k ∈ Z. Conse-
quently, C is the union of the disjoint subsets kw + f([t0, t1[) = f([tk, tk+1[)
for k ∈ Z. ■

On the other hand, the results of the next three sections give various
examples of self-avoiding plane-filling complete curves which satisfy the strong
local isomorphism property.

In each of them, we start with a set B of self-avoiding bounded curves. We
consider the set C of complete curves obtained as inductive limits of curves
in B. We show that any curve in C can be extended into a generally unique
plane-filling set of at least 1 and at most 6 nonoverlapping such curves which
satisfies the local isomorphism property. In each case, the bounded self-
avoiding curves that we consider are described in B. Mandelbrot’s book [3].

We do not know presently if similar examples exist in Rn for n ≥ 3.

1. Dragons and other square folding curves

We consider a regular tiling of the plane by squares. For each n ∈ N, an
n-folding curve is obtained by folding n times a strip of paper in two, each
time possibly to the left or to the right, then unfolding it with π/2 angles so
that the support of each segment of the curve is a side of one of the squares.
If all the foldings are done in the same direction, then we obtain the dragon
curve of order n.

For each n-folding curve, each side of each square is the support of at most
1 segment, so that we make the curve self-avoiding by rounding the angles.

The complete folding curves are the complete curves obtained as inductive
limits of n-folding curves for n ∈ N. We say that a set of such curves is a
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covering of the plane if each side of each square is the support of exactly 1
segment of 1 curve. Then the curves are disjoint.

Here, we consider nonoriented curves. The following results were proved
in [4] and [5]:

Theorem 1.1. Each complete folding curve has a unique extension into a
covering of the plane by such curves which satisfies the local isomorphism
property, except in one case where there are 2 such extensions. Each covering
actually satisfies the strong local isomorphism property.

Theorem 1.2. Each such covering consists of 1, 2, 3, 4 or 6 curves.

Theorem 1.3. There exist 2ω local isomorphism classes of such coverings.

We note that, for any such coverings C,D and any curves C ∈ C, D ∈ D,
the coverings C,D are locally isomorphic if and only if, for each n ∈ N, the
isomorphism classes of n-folding subcurves of C and D are the same.

Theorem 1.4. Each local isomorphism class is the union of 2ω isomorphism
classes, including one with a covering by 1 curve and one with a covering by
2 curves.

In [5], the local isomorphism classes which contain a covering, and actually
two nonisomorphic coverings, by 6 curves are characterized; an example is
given by Figure 1.1 below. Some examples of classes with coverings by 3
(resp. 4) curves are also given. It would be intersting to determine for each
local isomorphism class the number of isomorphism classes of coverings by 1,
2, 3 or 4 curves, especially since similar results are obtained in the two next
sections for triangular folding curves and for Peano-Gosper curves.

Figure 1.1
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2. Terdragons and other triangular folding curves

For each n ∈ N, we consider n-folding triangular curves such as the ter-
dragon curve, which are obtained by folding n times a strip of paper in 3,
each time possibly left then right or right then left, and unfolding it with π/3
angles. We prove that they are self-avoiding.

The complete folding triangular curves are obtained as inductive limits of
n-folding triangular curves for n ∈ N. We show that each nonoriented such
curve can be extended into a unique covering of the plane by disjoint such
curves and that this covering satisfies the strong local isomorphism property.
We also prove that there exist 2ω local isomorphism classes of such coverings
and that each of them contains 2ω (resp. 2ω, 2 or 5, 0) isomorphism classes
of coverings by 1 (resp. 2, 3, ≥ 4) curves.

2.1. Definitions and main results.

Here, we consider a regular tiling P of the plane by equilateral triangles.
We define oriented triangular curves which we call t-curves. A bounded t-
curve (resp. half t-curve, complete t-curve) is a sequence (Ak)0≤k≤n (resp.
(Ak)k∈N, (Ak)k∈Z) of segments which are oriented sides of triangles of P such
that, for any Ak, Ak+1, the terminal point of Ak is the initial point of Ak+1 and
Ak, Ak+1 form a ∓π/3 angle. We associate to each such curve the sequence
(ak)1≤k≤n (resp. (ak)k∈N∗ , (ak)k∈Z) with ak = +1 (resp. ak = −1) for each k
such that we turn left (resp. right) when we pass from Ak−1 to Ak.

We say that a t-curve C is self-avoiding if each side of a triangle is the
support of at most one segment of C. A set C of t-curves is a covering of the
plane if each side of a triangle is the support of exactly 1 segment of 1 curve of
C. We represent the curves with slightly rounded angles, so that they do not
pass through the vertices of triangles. Then each self-avoiding t-curve passes
at most once through each point of the plane and the curves in a covering are
disjoint.

We define by induction on n ∈ N the sequences Tλ1···λn for λ1, . . . , λn ∈
{−1,+1}. We denote by T the empty sequence. For each n ∈ N and any
λ1, . . . , λn+1, we write Tλ1···λn+1 = (Tλ1···λn , λn+1, Tλ1···λn ,−λn+1, Tλ1···λn).

For each n ∈ N, an n-folding t-curve associated to Tλ1···λn is realized as
follows: We successively fold n times in three a strip of paper. For each
k ∈ {1, . . . , n}, the k-th folding is done left then right if λn+1−k = +1 and
right then left if λn+1−k = −1. Then we unfold the strip, keeping a π/3 angle
for each fold. The terdragon curve of order n, which was first considered in
[1], is the curve Tλ1···λn with λ1 = · · · = λn = +1.

The ∞-folding t-curves (resp. complete folding t-curves) are the half t-
curves (resp. complete t-curves) obtained as inductive limits of n-folding
t-curves Cn for n ∈ N. We are going to see that, for each complete folding
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t-curve C, there exists a unique sequence Λ = (λn)n∈N∗ ∈ {−1,+1}N
∗
, not

depending on the orientation of C, such that each bounded subcurve of C is
countained in a t-curve associated to some Tλ1···λn .

In the second part of the present section, we show that folding t-curves
are self-avoiding.

We denote by (P) the following property of a set E of oriented sides of
triangles of P : If A,B ∈ E are sides of the same triangle, then they define
the same direction of rotation around its center.

There are 2 opposite sets E1, E2 which satisfy (P) and such that each
nonoriented side of a triangle of P is the support of 1 element of E1 and 1
element of E2. The segments of any t-curve are all contained in E1, or all
contained in E2, and therefore satisfy (P).

We say that a covering C of the plane by oriented complete t-curves satis-
fies (P) if the set of segments of curves of C satisfies (P), or equivalently if it
is equal to E1 or E2. Each covering by nonoriented complete t-curves induces
2 covering by oriented complete t-curves which satisfy (P) and have opposite
orientations.

Theorem 2.1. Each nonoriented (resp. oriented) complete folding t-curve
can be extended in a unique way into a covering of the plane by such curves
(resp. a covering of the plane by such curves which satisfies (P)). This cov-
ering satisfies the strong local isomorphism property and consists of curves
associated to the same sequence Λ.

Theorem 2.2. Two coverings of the plane by nonoriented complete folding
t-curves are locally isomorphic if and only if they are associated to the same
sequence Λ.

Theorem 2.3. For each covering of the plane by oriented complete folding t-
curves, the local isomorphism property implies (P) and (P) implies the strong
local isomorphism property. Any coverings with these properties are locally
isomorphic if and only if they are associated to the same sequence Λ and have
the same orientation.

Theorem 2.4. For each Λ = (λn)n∈N∗ ∈ {−1,+1}N
∗
, the class of coverings

of the plane by nonoriented complete folding t-curves associated to Λ is the
union of:
1) 2ω isomorphism classes of coverings by 1 curve;
2) 2ω isomorphism classes of coverings by 2 curves;
3) 2 isomorphism classes of coverings by 3 curves having 1 vertex in common,
where each of the 3 curves is the union of 2 ∞-folding t-curves starting from
that vertex;
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4) 3 isomorphism classes of coverings by 3 curves with 1 curve separating the
2 others, if there exists k ∈ N∗ such that λn+1 = −λn for each n ≥ k (Figure
2.1 gives an example with k = 1 and λ1 = +1); no such class otherwise.
In 3) and in 4), all the coverings are equivalent up to isometry.

Figure 2.1

2.2. Detailed results and proofs.

Unless otherwise specified, all the curves that we consider are oriented.
The property (P) and the sets E1, E2 are defined as above.

For any t-curves C,D, if the terminal point of C is the initial point of D
and if the terminal segment of C and the initial segment of D form a ∓π/3
angle, then we denote by CD the t-curve obtained by connecting them.

For each n ∈ N∗, any λ1, . . . , λn ∈ {−1,+1} and each n-folding t-curve
C associated to Tλ1···λn , we consider the 3 (n− 1)-folding t-curves CI, CM, CS

associated to Tλ1···λn−1 such that C = CICMCS. Here, I,M, S can be viewed
as abbreviations for “inferior”, “middle”, “superior”.

For k ∈ N and S = (α1, . . . , αk) ∈ {−1,+1}k, we write S = (−αk, . . . ,−α1).
The reverse of a curve associated to S is associated to S. For S = (αn)n∈N∗ ∈
{−1,+1}N

∗
, we write S = (−α−n)n∈−N∗ .

For n ∈ N and λ1, . . . , λn ∈ {−1,+1}, we have Tλ1···λn = Tλ1···λn . Con-
sequently, the reverse of a curve associated to Tλ1···λn is also associated to
Tλ1···λn .

For each Λ = (λk)k∈N∗ ∈ {−1,+1}N
∗
, we denote by TΛ the inductive

limit of the sequences Tλ1···λn with Tλ1···λn initial segment of Tλ1···λn+1 for each
n ∈ N.
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Proposition 2.5. Let C be a complete t-curve associated to a sequence
S = (sh)h∈Z ∈ {−1,+1}Z. Then the properties 1), 2), 3) below are equivalent:
1) C is a complete folding t-curve.
2) For each k ∈ N, there exists h ∈ Z such that sh+3k+3k+1i = −sh+3k2+3k+1j

for any i, j ∈ Z.
3) There exists a unique sequence Λ = (λn)n∈N∗ ∈ {−1,+1}N

∗
such that

exactly one of the two following properties is true:
a) S is equivalent to (TΛ,+1, TΛ) or (TΛ,−1, TΛ) modulo a translation of Z;
b) C = ∪n∈NCn for a sequence (Cn)n∈N such that, for each n ∈ N, Cn is an
n-folding t-curve associated to Tλ1···λn and Cn ∈

{
CI

n+1, C
M
n+1, C

S
n+1

}
.

Proof. 1) or 3) implies 2) because we have s3k+3k+1i = −s3k2+3k+1j for each
n ∈ N, each sequence (sh)1≤h≤3n−1 associated to an n-folding t-curve, each
k ∈ {0, . . . , n− 1} and any integers 0 ≤ i, j ≤ 3n−k−1 − 1. If the case a) of 3)
is realized, then, in 2), we can take the same h for each k ∈ N.

Now we show that 2) implies 1) and 3). For each g ∈ Z, we consider the
point zg of the plane which is associated to sg in the correspondance between
S and C. For g ∈ Z and n ∈ N, we denote by αn(g) the largest integer
h ≤ g such that sh+3k+3k+1i = −sh+3k2+3k+1j for each k ∈ {0, . . . , n− 1} and
any i, j ∈ Z. We have g < βn(g) for βn(g) = αn(g) + 3n. The part Cn(g)
of C between zαn(g) and zβn(g) is an n-folding t-curve. We have Cn(g) ∈
{Cn+1(g)

I , Cn+1(g)
M , Cn+1(g)

S}.
There exists a unique sequence Λ = (λn)n∈N∗ ∈ {−1,+1}N

∗
such that, for

each n ∈ N and each g ∈ Z, Cn(g) is associated to Tλ1···λn . For any g, h ∈ Z
such that g < h, we have Cn(g) = Cn(h) for n large enough, or βn(g) = αn(h)
for n large enough.

If there exists g ∈ Z such that ∪n∈NCn(g) = C, then the case b) of 3) is
realized and C is clearly a complete folding t-curve.

Otherwise, there exist m ∈ N∗ and g, h ∈ Z with g < h such that βn(g) =
αn(h) for each n ≥ m. Then the case a) of 3) is realized. Moreover, for each
n ≥ m, Cn(g)

MCn(g)
SCn(h)

I or Cn(g)
SCn(h)

ICn(h)
M is an n-folding t-curve

Dn contained in C. We have Dn ⊂ Dn+1 for each n ≥ m and C = ∪n≥mDn,
whence 1). ■

Similarly to the case of folding curves in [4] and [5], and Peano-Gosper
curves in Section 3 below, we define a derivation ∆ on folding t-curves.

For each n ∈ N∗, we divide each n-folding t-curve C into sequences of
3 consecutive segments; ∆(C) is obtained by replacing each such sequence
with a unique segment whose initial and terminal points are the initial point
of the first segment and the terminal point of the third segment; if C is
associated to a sequence (αi)1≤i≤3n−1 ∈ {−1,+1}3

n−1, then ∆(C) is associated
to (α3i)1≤i≤3n−1−1.
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The definition of ∆ naturally extends to ∞-folding t-curves. Now we
extend it to complete folding t-curves.

Consider any such curve C = (Ak)k∈Z, and the associated sequence (sk)k∈Z ∈
{−1,+1}Z. Then, by Proposition 2.5, there exist ε ∈ {−1,+1} and h ∈
Z, whose remainder modulo 3 is completely determined by C, such that
sh+3k+1 = ε and sh+3k+2 = −ε for each k ∈ Z. The curve ∆(C) is obtained by
replacing each Ah+3kAh+3k+1Ah+3k+2 with a unique segment; it is associated
to the sequence (sh+3k)k∈Z.

If an ∞-folding or a complete folding t-curve C is the inductive limit for
n ∈ N of some n-folding t-curves Cn ⊂ C, then ∆(C) is the inductive limit
of the curves ∆(Cn) for n ∈ N∗.

For each k ∈ N∗ and each t-curve C which is n-folding for some n ≥ k, ∞-
folding or complete folding, ∆k(C) is obtained in the same way by replacing
sequences of 3k consecutive segments with 1 segment.

Now we begin to show the self-avoiding and plane-filling properties of
folding t-curves. We denote by U the set of vertices of triangles of P and we
fix i ∈ {1, 2}.

We prove by induction on n that, for each n ∈ N, each Λ ∈ {−1,+1}n and
each x ∈ U , there exists a unique covering C(Λ, x) of the plane by n-folding
t-curves associated to TΛ and with segments in Ei such that x is an endpoint
of some of the curves.

If n = 0, then Λ is the empty sequence and we write C(Λ, x) = Ei. It
remains to be proved that, if the property is true for an integer n, then it is
true for n+ 1.

If X is the set of vertices of equilateral triangles which form a regular
tiling of the plane, then, for each x ∈ X, there exists a unique partition
X = G(X, x) ∪H(X, x) such that:
1) H(X, x) is the set of vertices of hexagons which form a regular tiling of
the plane;
2) x ∈ G(X, x) and the elements of G(X, x) are the centers of the hexagons.
Moreover, G(X, x) is also the set of vertices of equilateral triangles which
form a regular tiling of the plane.

For each x ∈ U , we write V0(x) = U and, for each k ∈ N, Vk+1(x) =
G(Vk(x), x) and Wk+1(x) = H(Vk(x), x).

For each Λ ∈ {−1,+1}n and each λ ∈ {−1,+1}, supposing that C(Λ, x)
is already defined, we define C((Λ, λ), x) as follows: If λ = +1 (resp. −1),
then, for each y ∈ Vn+1(x) and each curve A ∈ C(Λ, x) starting from y, we
put in C((Λ, λ), x) the curve ABC, where:
1) B is the curve of C(Λ, x) starting from the endpoint of A and such that its
first segment is just at the left (resp. right) of the last segment of A;
2) C is the curve of C(Λ, x) starting from the endpoint of B and such that its
first segment is just at the right (resp. left) of the last segment of B.
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The following properties are true for each n ∈ N, each Λ ∈ {−1,+1}n and
each x ∈ U . For n ≥ 2, they are proved by using ∆n−1.

Each curve of C(Λ, x) connects a pair of points of Vn(x) with minimal
distance. Each such pair (y, z) is connected by a unique curve of C(Λ, x). If
n ≥ 1, then this curve contains the 2 points of Wn(x) which are between y
and z.

Using the derivations, we see that, if C is a curve associated to some TΛ,
then C or its reverse belongs to C(Λ, x) = C(Λ, y), where x and y are the
endpoints of C. It follows that C is self-avoiding.

For each n ∈ N∗, we call an n-triangle any equilateral triangle such that
each side consists of n sides of triangles of P . We say that a set of curves C
covers an n-triangle T if, in each 1-triangle of P contained in T , each side is
the support of a segment of a curve of C.

Proposition 2.6. For each integer n ≥ 2, each (2n)-folding t-curve covers a
(3n−1 + 3)/2-triangle.

Figure 2.2

Proof. For each n ≥ 2, we denote by kn the largest integer k such that each
(2n)-folding t-curve covers a k-triangle. We simultaneously prove that k2 ≥ 3
and kn ≥ 3kn−1 − 3 for each n ≥ 3.

For each (2n)-folding t-curve C, we consider the tiling Q of the plane by
equilateral triangles which is associated to ∆2(C). Each triangle of Q is the
union of 9 triangles of P .

For any segments A1, A2, A3 of ∆2(C), if their supports are the sides
of a 1-triangle T of Q, then their orientations define the same direction of
rotation around the center of T since ∆2(C) satisfies (P). Figure 2.2 above
shows two possible configurations for ∆−2(A1), ∆

−2(A2), ∆
−2(A3). Any other

configuration is equivalent to one of them up to isometry.
We see from Figure 2.2 that E = {∆−2(A1),∆

−2(A2),∆
−2(A3)} necessar-

ily covers a 3-triangle of P . If n = 2, then C covers a 3-triangle of P since
the 2-folding t-curve ∆2(C) has such segments A1, A2, A3.

We also see from Figure 2.2 that each side of a 1-triangle of P contained
in T is the support of a segment of E , except possibly if one of its endpoints
is a vertex of T .
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In order to prove that kn ≥ 3kn−1 − 3 for each n ≥ 3, it suffices to show
that, for each integer k ≥ 2, if ∆2(C) covers a k-triangle W of Q, then C
covers the (3k − 3)-triangle V of P contained in the interior of W .

This property is a consequence of the two following facts: First, by the
argument above, for each 1-triangle T of Q, if ∆2(C) covers T , then, in each
1-triangle of P contained in T , each side is the support of a segment of C
if neither of its endpoints is a vertex of T . Second, for each vertex z of a
1-triangle of Q, if z belongs to V , then z is an endpoint of 6 segments of C
since it is an endpoint of 6 segments of ∆2(C); as C is self-avoiding, it follows
that each side with endpoint z of a 1-triangle of P is the support of a segment
of C. ■

Corollary 2.7. For each covering of the plane by complete folding t-curves,
the local isomorphism property implies (P).

Proof. Let C be such a covering. By Proposition 2.6, each C ∈ C covers
arbitrarily large triangles. The covering C satisfies (P) on any such triangle,
and therefore on the whole plane by the local isomorphism property. ■

For each nontrivial t-curve C, we say that x ∈ U belongs to C and we
write x ∈ C if x is an endpoint of at least one segment of C. For any x, y ∈ U
with d(x, y) = 1, we say that the nonoriented segment [x, y] belongs to C and
we write [x, y] ∈ C if [x, y] is the support of a segment of C.

For each folding t-curve C, we denote by FL(C) (resp. FR(C)) the union
of the sides [x, y] of triangles of P such that x, y ∈ C, such that C contains
exactly 1 of the 2 points which form equilateral triangles with x and y, and
such that the second point is at the left (resp. right) of C.

For each integer n ≥ 1 and each n-folding t-curve C with initial point
u and terminal point v, there exists a unique sequence (yi)1≤i≤h ⊂ U with
y1 = u, yh = v, d(yi−1, yi) = 1 and [yi−1, yi] ⊂ FL(C) for 2 ≤ i ≤ h. There
is also a unique sequence (zj)1≤j≤k ⊂ U with z1 = u, zk = v, d(zj−1, zj) = 1
and [zj−1, zj] ⊂ FR(C) for 2 ≤ j ≤ k.

We denote by F0
L(C) (resp. F0

R(C)) the union of the segments [yi−1, yi]
(resp. [zj−1, zj]). We have F0

L(C) ∩ F0
R(C) = {u, v} and no point of C is

outside F0
L(C) ∪ F0

R(C).
It follows that C starts at y1, then successively passes through y2, . . . , yh−1

in that order, possibly once or twice for each of them, then ends at yh. The
same property is true for z1, . . . , zk.

Now we show that C contains the segments [w1, w2] with w1, w2 ∈ U and
d(w1, w2) = 1 which are inside F0

L(C)∪F0
R(C). It follows FL(C) = F0

L(C) and
FR(C) = F0

R(C).
For the proof, we use the existence of a covering C(Λ, u) of the plane

which contains C. If a segment [w1, w2] as above does not belong to C, then
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it belongs to a curve D ∈ C(Λ, u) with D ̸= C.
The segment [w1, w2] is between F0

L(C) and C, or between C and F0
R(C).

We can suppose that the first case is true, since the second one can be treated
in the same way.

Then there exists i such that [w1, w2] is inside the loop formed by C be-
tween two occurrences of xi, or between an occurrence of xi and an occurrence
of xi+1. We observe that, in the first case, no curve of C(Λ, u) crosses the limit
of the loop, and in the second case at most one curve of C(Λ, u) crosses that
limit and only once, since the part of the curve which crosses the limit must
contain [xi, xi+1].

In both cases, it follows that at least one endpoint of D is inside the loop.
Then another curve of C(Λ, u) having that endpoint is completely inside the
loop, whence a contradiction since C and the other curves of C(Λ, u) are
equivalent up to isometry.

The following properties are true since, if an ∞-folding t-curve or a com-
plete folding t-curve C is the inductive limit of some n-folding t-curves Cn,
then any segment [x, y] is contained in FL(C) (resp. FR(C)) if and only if it
is contained in FL(Cn) (resp. FR(Cn)) for n large enough.

If C is an ∞-folding t-curve with initial point x, then we have FL(C) ∩
FR(C) = {x} and FL(C), FR(C) are half curves with endpoint x. If C is a
complete folding t-curve, then FL(C), FR(C) are disjoint and each of them is
a complete curve or empty.

For each folding t-curve C, we write F(C) = FL(C) ∪ FR(C). We denote
by Dom(C) the closed part of the plane limited by F(C) and containing C.
The interior of Dom(C) is connected and C contains the sides of triangles of
P which are in Dom(C) and not in F(C).

For any Λ, x, the sets Dom(C) for C ∈ C(Λ, x) are nonoverlapping and
cover the plane. If (Ci)i∈I is a covering of the plane by complete folding t-
curves, then the sets Dom(Ci) are nonoverlapping and cover the plane, except
possibly the 1-triangles (u, v, w) such that [u, v], [u,w], [v, w] belong to three
different curves. We shall see later that, actually, no such triangle exists.

Now let n ≥ 1 be an integer and let C be an n-folding t-curve associated
to a sequence Tλ1···λn . Consider the initial points w, x of CI, CM and the
terminal points y, z of CM, CS.

If λn = +1 (resp. −1), then y ∈ FL(C) and x ∈ FR(C) (resp. x ∈ FL(C)
and y ∈ FR(C)). We denote by FLI(C) the part of FL(C) between w and y
(resp. x), FLS(C) the part of FL(C) between y (resp. x) and z, FRI(C) the
part of FR(C) between w and x (resp. y), FRS(C) the part of FR(C) between
x (resp. y) and z.

Now suppose n ≥ 2. If λn = +1, then we have FLI(C) = FLI(C
I)FLS(C

M),
FLS(C) = FL(C

S), FRI(C) = FR(C
I), FRS(C) = FRI(C

M)FRS(C
S). If λn =

−1, then we have FLI(C) = FL(C
I), FLS(C) = FLI(C

M)FLS(C
S), FRI(C) =

11



FRI(C
I)FRS(C

M), FRS(C) = FR(C
S).

Lemma 2.8. Consider n ∈ N∗ and λ1, . . . , λn ∈ {−1,+1}. Let C be an
n-folding t-curve associated to Tλ1···λn . Then there exist some sequences
(xi)0≤i≤2n and (yi)0≤i≤2n , with x0 = y0 initial point of C and x2n = y2n
terminal point of C, such that:
1) each segment [xi, xi+1] or [yi, yi+1] is a side of a triangle of P ;
2) each angle ̂xi−1xixi+1 or ̂yi−1yiyi+1 is equal to ∓2π/3;
3) FLI(C) = ∪1≤i≤2n−1 [xi−1, xi], FLS(C) = ∪2n−1+1≤i≤2n [xi−1, xi], FRI(C) =
∪1≤i≤2n−1 [yi−1, yi], FRS(C) = ∪2n−1+1≤i≤2n [yi−1, yi];
4) for 0 ≤ i ≤ 2n and 1 ≤ k ≤ n, each point xi, yi belongs to Vk(C) if and
only if i is divisible by 2k.

Now associate to C the sequences (αi)1≤i≤2n−1 and (βi)1≤i≤2n−1 with αi =
+1 (resp. −1) if ̂xi−1xixi+1 = +2π/3 (resp. −2π/3), and βi = +1 (resp. −1)
if ̂yi−1yiyi+1 = +2π/3 (resp. −2π/3). Then we have α2n−1 = −1, β2n−1 = +1
and α2k+2k+1i = β2k+2k+1i = (−1)iλk+2 for 0 ≤ k ≤ n − 2 and 0 ≤ i ≤
2n−k−1 − 1.

Proof. Lemma 2.8 is clearly true for n = 1. Now suppose that it is true
for an integer n ≥ 1 and consider an (n + 1)-folding t-curve C associated to
a sequence Tλ1···λn+1 . We can assume λn+1 = +1 since the case λn+1 = −1
is similar. We only show the results for FL(C) since the proof for FR(C) is
similar.

The curves CI, CM, CS are associated to Tλ1···λn . We have FLI(C) =
FLI(C

I)FLS(C
M) and FLS(C) = FL(C

S) = FLI(C
S)FLS(C

S). The sequences
associated to FLI(C

I) and FLI(C
S) are equal. The sequences associated to

FLS(C
M) and FLS(C

S) are also equal. We turn with a +2π/3 (resp. −2π/3,
−2π/3) angle when we pass from FLI(C

I) to FLS(C
M) (resp. from FLS(C

M)
to FLI(C

S), from FLI(C
S) to FLS(C

S)) because C passes twice (resp. once,
once) through the terminal point of FLI(C

I) (resp. FLS(C
M), FLI(C

S)). The
results follow from these facts and from the induction hypothesis applied to
CI, CM, CS. ■

Corollary 2.9. Let C be a complete folding t-curve such that FL(C) is
nonempty. Consider the sequence (xn)n∈Z of endpoints of segments of FL(C)
and the sequence (αn)n∈Z, with αn = +1 if ̂xn−1xnxn+1 = +2π/3 and αn = −1
if ̂xn−1xnxn+1 = −2π/3. Then there exists a sequence (nk)k∈N∗ such that
xnk+2ki ∈ Wk(C) and αnk+2ki = (−1)iαnk

for each k ∈ N∗ and each i ∈ Z.
The same property is true for FR(C) if it is nonempty.

Remark. If C is obtained from an ∞-folding t-curve, then there exists a
unique n ∈ Z − ∪k∈N∗(nk + 2kZ); we have xn ∈ ∩k∈N∗Vk(C). Otherwise, we
have Z = ∪k∈N∗(nk + 2kZ).
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Lemma 2.10. Any set of disjoint complete folding t-curves is finite.

Proof. We assume that the sides of triangles of P have length 1 and we show
by induction on n ∈ N∗ that d(x, y) ≤ ρn =

[
(
√
3)n−1(4−

√
3)− 1

]
/(
√
3−1)

for any points x, y of an n-folding t-curve. We have ρ1 =
√
3 and the property

is clearly true for n = 1.
We prove that, if the property is true for an integer n ≥ 1, then it is

also true for n + 1. We consider an (n + 1)-folding t-curve C. We represent
D = ∆(C) in such a way that C and D have the same endpoints, which gives
the length

√
3 to the segments of D.

By the induction hypothesis, for D represented in that way, we have
d(x, y) ≤ ρn

√
3 for any x, y ∈ D. Moreover, for each z ∈ C, there exists

y ∈ D such that d(y, z) ≤ 1/2. It follows that, for any v, w ∈ C, we have
d(v, w) ≤ ρn

√
3 + 1 = ρn+1.

Now we see that, for x ∈ R2 and k ∈ N large enough, there exists no
r ∈ R+ such that B(x, r) contains points of k disjoint n-folding t-curves for
each n ∈ N∗. This follows since each n-folding t-curve contains 3n sides of
triangles of P , each such curve containing a point of B(x, r) is necessarily
contained in B(x, r+ ρn) and, for n large compared to r, the number of sides
of triangles of P contained in B(x, r + ρn) is smaller than 3nk for an integer
k not depending on n and r. ■

Lemma 2.11. Let C be a covering of the plane by complete folding t-curves.
Then the sets Dom(C) for C ∈ C are nonoverlapping and cover the plane, we
have Vk(C) = Vk(D) for each k ∈ N∗ and any C,D ∈ C, and all the curves of
C are associated to the same sequence (λn)n∈N∗ .

Proof. We saw that the sets Dom(C) for C ∈ C are nonoverlapping and
cover the plane, except possibly the 1-triangles (u, v, w) such that [u, v], [u,w],
[v, w] belong to three different curves. Suppose that such a triangle exists and
consider the curves C,D ∈ C such that [u, v] ∈ C and [u,w] ∈ D.

Then we have [u, v] ⊂ F (C) because w cannot belong to C and [u,w] ⊂
F (D) because v cannot belong to D. The value of the angle covered by
Dom(C) (resp. Dom(D)) in u is 2π/3 if C (resp. D) passes once through
u, and 4π/3 if C (resp. D) passes twice through u. If C and D pass only
once through u, then another curve E ∈ C passes through u and the value
of the angle covered by Dom(E) in u is 2π/3. In each case, we obtain a
contradiction since v̂uw and these angles are all nonoverlapping.

Now we prove the other parts of Lemma 2.11. For each covering C and
each C ∈ C, we consider the sequence Λ(C) = (λn(C))n∈N∗ associated to
C. It suffices to show that V1(C) = V1(D) and λ1(C) = λ1(D) for any
C,D ∈ C, since these properties imply that {∆(C) | C ∈ C} is also a covering
of the plane by complete folding t-curves. As C is finite by Lemma 2.10, it is
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enough to prove these properties for the pairs (C,D) such that F(C) ∩ F(D)
is unbounded.

For each such pair, we consider some consecutive segments [x0, x1] , . . . , [x8, x9]
of F(C)∩F(D), and the integers α1, . . . , α8 ∈ {−1,+1} associated to the ver-
tices x1, . . . , x8. According to Corollary 2.9, we have α1 = −α3 = α5 = −α7

or α2 = −α4 = α6 = −α8, but the 2 properties cannot be simultaneously true
since the first one implies α2 = −α6 or α4 = −α8.

Let us suppose for instance that α1 = −α3 = α5 = −α7. Then we have
x2 ∈ V1(C) and x2 ∈ V1(D), whence V1(C) = V1(D). It follows λ1(C) =
λ1(D) because the 6 sequences of 3 segments of curves of C with endpoint x2

are necessarily equivalent up to rotation. ■

Lemma 2.12. Here, for each n ∈ N and each complete folding t-curve C,
we represent ∆n(C) with segments of length 1. For each x ∈ R2, we denote
by ∆n(x) the image of x in this representation. Then, for each x ∈ R2,
any complete folding t-curves C,D and each n ∈ N large enough, we have
d(∆n(x),∆n(C)) < 3/4 and d(∆n(C),∆n(D)) < 3/2.

Proof. For each complete folding t-curve C and each n ∈ N, we obtain
∆n+1(C) from ∆n(C) by replacing each sequence of 3 consecutive segments
with 1 segment, then scaling down the curve by

√
3. Before the second

operation, for each x ∈ ∆n(C), there exists y ∈ ∆n+1(C) such that d(x, y) ≤
1/2.

Consequently, for each x ∈ R2 and each n ∈ N, we have
d(∆n+1(x),∆n+1(C)) ≤ (d(∆n(x),∆n(C)) + 1/2)/

√
3, and therefore

d(∆n+1(x),∆n+1(C)) ≤ (5
√
3/9)d(∆n(x),∆n(C)) if d(∆n(x),∆n(C)) ≥ 3/4.

It follows d(∆n(x),∆n(C)) < 3/4 for n large enough.
The statement for the curves C,D is an immediate consequence. ■

Now we consider a sequence X = (xn)n∈N ⊂ U with xn+1 ∈ Vn(xn) for
each n ∈ N, a sequence Λ = (λn)n∈N∗ ∈ {−1,+1}N

∗
and the sequences

Λn = (λ1, . . . , λn) for n ∈ N. For each n ∈ N, each curve of C(Λn+1, xn+1) is
obtained by concatenation of 3 curves of C(Λn, xn). We denote by C(Λ, X)
the set of inductive limits of curves Cn ∈ C(Λn, xn).

If there exists x ∈ U such that ∩n∈NVn(xn) = {x}, then C(Λ, X) contains
3 half curves starting at x and 3 reversed such curves ending at x. We
denote by C+(Λ, X) (resp. C−(Λ, X)) the set of curves obtained from C(Λ, X)
by connecting each terminal segment of reversed half curve with the initial
segment of half curve just at its left (resp. right).

Otherwise, we have ∩n∈NVn(xn) = ∅. Then we write C0(Λ, X) = C(Λ, X).
By Proposition 2.5, each Cα(Λ, X) is a covering of the plane by complete
folding t-curves.
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Now, for each y ∈ U and each k ∈ N∗, we denote by H(y, k) the regular
hexagon of center y such that each of its sides is the union of k sides of
triangles of P , and H∗(y, k) its interior.

Proposition 2.13. Consider a sequence Λ = (λk)k∈N∗ ∈ {−1,+1}N
∗
and

two sequences X = (xk)k∈N, Y = (yk)k∈N such that xk+1 ∈ Vk(xk) and yk+1 ∈
Vk(yk) for each k ∈ N. Then, for any α, β ∈ {0,−,+} such that Cα(Λ, X) and
Cβ(Λ, Y ) exist, each n ∈ N∗ and any x, y ∈ U , there exists z ∈ U ∩H(y, 5.3n)
such that Cα(Λ, X) ↾ H∗(x, 3n) ∼= Cβ(Λ, Y ) ↾ H∗(z, 3n).

Proof. There exists t ∈ V2n+2(x2n+2) such that x ∈ H(t, 2.3n), and there-
fore H∗(x, 3n) ⊂ H∗(t, 3n+1). For each u ∈ V2n+2(y2n+2), the sets Cα(Λ, X) ↾
H∗(t, 3n+1) and Cβ(Λ, Y ) ↾ H∗(u, 3n+1) are isomorphic, except possibly con-
cerning the way to connect the 6 segments with endpoint t and the 6 segments
with endpoint u.

There exist u, v, w ∈ V2n+2(y2n+2) which form a 3n+1-triangle containing
y, which implies u, v, w ∈ H(y, 3n+1). One of these points, say w, belongs to
V2n+3(y2n+3), while the 2 others belong toW2n+3(y2n+3). Then the connexions
of the 6 segments of Cβ(Λ, Y ) in u and v are different.

Suppose for instance that the connexions of Cα(Λ, X) in t are the same
as the connexions of Cβ(Λ, Y ) in u. Then we have Cα(Λ, X) ↾ H∗(t, 3n+1) ∼=
Cβ(Λ, Y ) ↾ H∗(u, 3n+1). Consequently, there exists z ∈ U ∩ H(u, 2.3n) such
that Cα(Λ, X) ↾ H∗(x, 3n) ∼= Cβ(Λ, Y ) ↾ H∗(z, 3n). We have z ∈ U ∩
H(y, 5.3n). ■

Proof of Theorems 2.1, 2.2, 2.3. It suffices to prove the results for oriented
curves, since they imply the results for nonoriented curves.

For the proof of Theorem 2.1, it is enough to consider a curve C with
segments in Ei. Then it follows from Proposition 2.5 that C belongs to a
covering Cα(Λ, X). Lemma 2.11 implies that Cα(Λ, X) is the only covering
of the plane by oriented complete folding t-curves which contains C and
satisfies (P). It satisfies the strong local isomorphism property by Proposition
2.13. Conversely, by Corollary 2.7, for each covering of the plane by oriented
complete folding t-curves, the local isomorphism property implies (P).

If C is a covering of the plane by oriented complete folding t-curves which
satisfies (P), then, for any x, y ∈ U , the orientation of the 6 segments with
endpoint x and the orientation of the 6 segments with endpoint y are equiv-
alent up to translation. Consequently, if two such coverings are locally iso-
morphic, then they have the same orientation. We see from 3) of Proposition
2.5 that they are associated to the same sequence Λ. Conversely, Proposition
2.13 implies that any two such coverings are locally isomorphic if they have
the same orientation and if they are associated to the same sequence Λ. ■
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Proof of Theorem 2.4. Throughout the proof, we use the notations and
the properties introduced just before Lemma 2.8.

First we show that each covering C contains no more than 3 curves. By
Lemma 2.11, there exist α ∈ {0,−,+} and X = (xn)n∈N ⊂ U such that C is
obtained from Cα(Λ, X) by forgetting its orientation.

If ∩n∈NVn(xn) = {x} with x ∈ U , then C+(Λ, X) (resp. C−(Λ, X)) only
contains the 3 curves C1, C2, C3 passing through x: For each n ∈ N, all
the segments with points in the interior of B(∆n(x), 1) belong to the 6 1-
folding subcurves of ∆n(C1), ∆

n(C2), ∆
n(C3) which have x as an endpoint.

It follows that any other curve D in C+(Λ, X) (resp. C−(Λ, X)) satisfies
d(∆n(x),∆n(D)) ≥ 1 for each n ∈ N, contrary to Lemma 2.12.

If ∩n∈NVn(xn) = ∅ and if C0(Λ, X) contains more than 3 curves, then it
contains 4 curves C,D,E, F with D separating C,E and E separating D,F .
For each n ∈ N, ∆n(D) is separating ∆n(C), ∆n(E) and ∆n(E) is separating
∆n(D), ∆n(F ). It follows d(∆n(C),∆n(F )) ≥

√
3 since, for any consecutive

segments r, s, t ∈ ∆n(C) ∪ ∆n(D) ∪ ∆n(E) ∪ ∆n(F ), if r ∈ ∆n(C), then
s ∈ ∆n(C)∪∆n(D), t ∈ ∆n(C)∪∆n(D)∪∆n(E), and therefore s, t /∈ ∆n(F ).
This contradicts Lemma 2.12 for n large.

Now we consider the coverings C associated to Λ which contain 3 curves.
For each such C, there exists C,D,E ∈ C distinct such that F (C) ∩ D ̸= ∅
and F (C) ∩ E ̸= ∅.

If F (C) consists of 1 complete curve, then there exists x ∈ F (C) which
belongs to C,D,E. We have x ∈ ∩n∈NVn(C).

Conversely, 3) is realized by any covering C associated to Λ such that
there exists x ∈ ∩n∈NVn(C). Then C contains 3 curves, the isomorphism class
of C does not depend on x and C is invariant through a rotation of center x
and angle 2π/3. We obtain a representative of the other isomorphism class
of coverings of that type by changing the connections in x.

If F (C) consists of 2 complete curves, then we can orient C,D,E in such
a way that FL(C) = FL(D) and FR(C) = FR(E). We consider 2 segments
s ⊂ FL(C), t ⊂ FR(C) of length 1, and 2 sequences (Cn)n∈N, (Pn)n∈N such
that C = ∪n∈NCn and such that, for each n ∈ N, Cn is an n-folding t-curve,
Pn ∈ {I,M, S} and Cn = CPn

n+1. There exists an integer h such that s ⊂ FL(Cn)
and t ⊂ FR(Cn) for each n ≥ h. We consider the sequences (αn)n≥h and
(βn)n≥h such that αn, βn ∈ {I, S}, s ⊂ FLαn(Cn) and t ⊂ FRβn(Cn) for each n.

For n ≥ h, the properties s ⊂ FLαn(Cn)∩FLαn+1(Cn+1) and t ⊂ FRβn(Cn)∩
FRβn+1(Cn+1) respectively imply FLαn(C

Pn
n+1) = FLαn(Cn) ⊂ FLαn+1(Cn+1) and

FRβn(C
Pn
n+1) = FRβn(Cn) ⊂ FRβn+1(Cn+1). Considering Cn+1, we see that one

of the 4 cases below is realized:
Pn = I, (αn, βn) ∈ {(I, I), (I, S), (S, I)}, (αn+1, βn+1) = (I, I);
Pn = S, (αn, βn) ∈ {(I, S), (S, I), (S, S)}, (αn+1, βn+1) = (S, S);
Pn = M, (αn, βn) = (S, I), (αn+1, βn+1) = (I, S), λn+1 = +1;
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Pn = M, (αn, βn) = (I, S), (αn+1, βn+1) = (S, I), λn+1 = −1.
It follows that there exists m ≥ h such that one of the properties below

is true for each n ≥ m:
a) Pn = I and (αn, βn) = (I, I);
b) Pn = S and (αn, βn) = (S, S);
c) Pn = M; (αn, βn) = (I, S) and λn = +1 for n even; (αn, βn) = (S, I) and
λn = −1 for n odd;
d) Pn = M; (αn, βn) = (I, S) and λn = +1 for n odd; (αn, βn) = (S, I) and
λn = −1 for n even.

The cases a) and b) imply ∪n∈NCn ̸= C, contrary to our hypotheses.
On the other hand, each of the cases c), d), for each of the values of Λ

which realize it, gives a covering of the plane by complete folding t-curves,
with 1 curve separating 2 others. This covering is determined by Λ modulo
a positive isometry. We obtain representatives of the 2 other isomorphism
classes of coverings by applying a rotation of angle ∓2π/3.

It remains to be proved that there exist 2ω isomorphism classes of cov-
erings of the plane by 1 (resp. 2) complete folding t-curves associated to Λ.
We consider the complete folding t-curves C for which there exists a pair
((Cn)n∈N, (Pn)n∈N) such that C = ∪n∈NCn and such that, for each n ∈ N, Cn

is an n-folding t-curve, Pn ∈ {I,M, S} and Cn = CPn
n+1. Then C is determined

modulo a positive isometry by (Pn)n∈N and there are countably many choices
of (Pn)n∈N which give C, since any 2 such sequences only differ by a finite
number of terms. Consequently, it suffices to show that 2ω choices of (Pn)n∈N
give coverings by 1 (resp. 2) complete folding t-curves.

In order to obtain a curve C which covers the plane, it suffices to have
FL(C5n) ∩ FL(C5n+2) = ∅ and FR(C5n+2) ∩ FR(C5n+4) = ∅ for each n ∈ N.
The first property is realized for P5n = S, P5n+1 = I if λ5n+2 = +1, and
P5n = I, P5n+1 = S if λ5n+2 = −1. The second property is realized for
P5n+2 = I, P5n+3 = S if λ5n+4 = +1, and P5n+2 = S, P5n+3 = I if λ5n+4 = −1.
For each n ∈ N, P5n+4 can be chosen arbitrarily. It follows that 2ω choices
give coverings by 1 curve.

Now we prove that 2ω choices give coverings by 2 curves. As only count-
ably many choices give coverings by 3 curves, it suffices to show that 2ω

choices give a curve C with FL(C) ̸= ∅.
For each n ∈ N∗, we consider the sequences (P1, . . . , Pn−1), (C1, . . . , Cn),

(α1, . . . , αn), with Ci an i-folding t-curve for 1 ≤ i ≤ n, Ci = CPi
i+1 and

FLαi
(Ci) ⊂ FLαi+1

(Ci+1) for 1 ≤ i ≤ n − 1. We observe that, for any such
sequences, there are 2 different ways to choose Pn so that the (n+ 1)-folding
t-curve Cn+1 defined by Cn = CPn

n+1 satisfies FLαn(Cn) ⊂ FL(Cn+1), and there-
fore FLαn(Cn) ⊂ FLαn+1(Cn+1) for the appropriate αn+1. ■

Remark. Each covering of the plane by 3 nonoriented complete folding t-
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curves is invariant through a central symmetry.

3. Peano-Gosper curves

In the present section, we obtain a set Ω of coverings of R2 by sets of dis-
joint self-avoiding nonoriented curves, generalizing the Peano-Gosper curves,
such that:
1) each C ∈ Ω satisfies the strong local isomorphism property; any set of
curves locally isomorphic to C belongs to Ω;
2) Ω is the union of 2ω equivalence classes for the relation “C locally isomor-
phic to D”; each of them contains 2ω (resp. 2ω, 1, 0) isomorphism classes of
coverings by 1 (resp. 2, 3, ≥ 4) curves.
Each C ∈ Ω gives exactly 2 coverings of R2 by sets of oriented curves which
satisfy the local isomorphism property. They have opposite orientations.

For each regular tiling P of R2 by hexagons and each center x of a tile of
P , we construct some tilings Pxλ1···λn of R2 by isomorphic tiles such that, for
each n ∈ N and any λ1, . . . , λn ∈ {−,+}, x is the center of a tile of Pxλ1···λn

and, for n ≥ 1, each tile of Pxλ1···λn is the union of 7 nonoverlapping tiles of
Pxλ1···λn−1 with one of them surrounded by the 6 others.

Figure 3.1

We write Px = P . We consider the tilings Px+ and Px− respctively given
by the first and the second part of Figure 3.1. The points of R2 which are
common to 3 tiles of Px+ (resp. Px−) determine a regular tiling by hexagons
Qx+ (resp. Qx−).

We denote by ∆x+ (resp. ∆x−) the bijection which associates to each tile
of Px+ (resp. Px−) the tile of Qx+ (resp. Qx−) with the same center. We
see from Figure 3.1 that, for each tile Q of Qx+ (resp. Qx−), ∆

−1
x+(Q) (resp.

∆−1
x−(Q)) is obtained by replacing each side S of Q with three consecutive
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sides of tiles of P . The first side is at the right (resp. left) of S and the third
side is at its left (resp. right) for the direction given by anticlockwise rotation
around the center of Q.

For n ≥ 2 and λ1, . . . , λn ∈ {−,+} we write Pxλ1···λn = ∆−1
xλ1

((Qxλ1)xλ2···λn).
Each Pxλ1···λn consists of isomorphic tiles with connected interior and con-
nected exterior. It is regular and invariant through a rotation of center x and
angle π/3.

In each Pxλ1···λn , each tile P has nonempty frontiers with 6 others. We
call sides of P these frontiers, which are unions of 3n sides of tiles of P . The
vertices of P are the endpoints of its sides.

For each n ∈ N, any λ1, . . . , λn ∈ {−,+} and any centers x, y of tiles of
P , each tile of Pxλ1···λn− and each tile of Pyλ1···λn+ are isomorphic.

For any integers n ≥ m ≥ 1, we define some derivations ∆xλ1···λm on the
sets Pxλ1···λn . We use the definitions of ∆x+ and ∆x− given above and we
write ∆xλ1···λm(P ) = ∆xλm(· · · (∆xλ1(P )) · · ·) for any λ1, . . . , λn ∈ {−,+} and
each P ∈ Pxλ1···λn . We have
∆xλ1···λm(Pxλ1···λn) = (∆xλ1···λm(Pxλ1···λm))xλm+1···λn .

Remark. For each n ∈ N, denote by Pn the tile of center x in Pxλ1···λn with
λ1 = · · · = λn = +, and Qn the tile with the same vertices as P0 which
is the image of Pn under a similarity. Then the limit of the tiles Qn is the
Peano-Gosper island considered in [3, p. 46]. It is the union of 7 isomorphic
nonoverlapping tiles which are similar to it, with one of them surrounded by
the 6 others.

Now, for each Λ = (λn)n∈N∗ ∈ {−,+}N
∗
, we consider the sequences X =

(xn)n∈N of centers of tiles of P with xn+1 = xn or xn, xn+1 centers of adjacent
tiles of Pxnλ1···λn for each n ∈ N. For each such X and each n ∈ N, we write
Pn

XΛ = Pxnλ1···λn and we denote by P n
XΛ the tile of Pn

XΛ which contains xn.
For n ∈ N, we have P n

XΛ ⊂ P n+1
XΛ and each tile of Pn+1

XΛ is the union of 7
nonoverlapping tiles of Pn

XΛ. We write PXΛ = ∪n∈NPn
XΛ.

For each center u of a tile of P , there exists a unique sequence Su = (un)n∈N
with the properties above such that u0 = u and PSuΛ = PXΛ. We write
RuXΛ = ∪n∈NP

n
SuΛ

.
We call a region of PXΛ any minimal nonempty closed subset R ⊂ R2

such that any tile of PXΛ is completely inside R or completely outside. Each
RuXΛ is a region of PXΛ and each region of PXΛ is obtained in that way.

For each n ∈ N and any centers u, v of tiles of P , P n
SuΛ

and P n
SvΛ

are dis-
joint, or they have one common side, or they are equal. If the third possibility
is realized for some n, then we have RuXΛ = RvXΛ. Otherwise, the second
possibility is realized for n large enough and RuXΛ, RvXΛ are adjacent.

For any centers u, v, w of tiles of P , if P n
SuΛ

, P n
SvΛ

, P n
SwΛ are distinct for each

n ∈ N, then, for n large enough, they have 1 common point and any 2 of them
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have a common side containing that point. Consequently, RuXΛ, RvXΛ, RwXΛ

are the three regions of PXΛ.
It follows that one of the three following properties is true for each PXΛ:

1) There is 1 region.
2) There are 2 regions; their frontier is a complete curve which consists of
sides of hexagons of P .
3) There are 3 regions with 1 common point which is a vertex of tiles of Pn

XΛ

for each n ∈ N; the frontier of 2 regions is a half curve starting from that
point which consists of sides of hexagons of P .

Proposition 3.1. For each Λ, the isomorphism classes of sets PXΛ are
countable; there exist 2ω classes of sets with 1 region, 2ω classes of sets with
2 regions, and 2 classes of sets with 3 regions, obtained from each other by a
rotation of angle π/3.

Proof. For each sequence X = (xn)n∈N such that PXΛ exists, we write
RXΛ = Rx0XΛ. For any such sequences X, Y , we write X ∼1 Y if PXΛ

∼= PY Λ,
X ∼2 Y if PXΛ = PY Λ, and X ∼3 Y if PXΛ = PY Λ and RXΛ = RY Λ.

Each ∼3-class is countable since any two sequences in such a class are
ultimately equal. As each PXΛ only has finitely many regions, each ∼2-class
is also countable.

For any sequences X, Y such that X ∼1 Y , there exist a sequence Z and
a translation τ such that X ∼2 Z and τ(Z) = Y ; we have τ(P) = P . As only
countably many translations satisfy that property, each ∼1-class is the union
of countably many ∼2-classes, and therefore countable.

Now we prove the second part of the proposition.
First we consider a vertex w of a tile of P and the sequences Y such that w

is a vertex of P n
Y Λ for each n ∈ N. This property is true for exactly 6 sequences

Y1, . . . , Y6 with RY1Λ, RY2Λ, RY3Λ distinct regions of PY1Λ = PY2Λ = PY3Λ,
RY1Λ∩RY2Λ∩RY3Λ = {w} and Y4, Y5, Y6 obtained from Y1, Y2, Y3 by a rotation
of center w and angle π/3.

The statement concerning the classes of sets with 3 regions follows since,
for each sequence X, if PXΛ has 3 regions with the common point w, then X
is ultimately equal to some Yi.

Now, it suffices to prove that there exist 2ω sequences X = (xn)n∈N such
that PXΛ has 1 region and 2ω sequences with 2 or 3 regions.

In order to obtain a sequence X with 1 region, it suffices to choose suc-
cessively the elements xk so that P k−1

XΛ is contained in the interior of P k
XΛ for

each k even. Consequently, there are 2ω such sequences.
For each side S of a tile of P , in order to obtain a sequence X with 2

or 3 regions, it suffices to choose successively the elements xk so that S is
contained in a side of P k

XΛ. There are 3 possible choices for each k ≥ 1, and
therefore 2ω such sequences. ■
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Now we define the curves associated to P . The set V of vertices of
hexagons of P is the disjoint union of 2 subsets which contain no consec-
utive vertices of an hexagon. We choose one of them and we denote it by
W .

An oriented bounded curve (resp. half curve, complete curve) is a sequence
C = (Ak)0≤k≤n (resp. (Ak)k∈N, (Ak)k∈Z) of consecutive oriented segments,
each of them joining 2 vertices of an hexagon of P which belong to W , such
that each hexagon contains at most 1 segment and each endpoint of C, if it
exists, only belongs to 1 segment. With this definition, C is self-avoiding.

For each oriented bounded curve (A0, . . . , An), we consider the sequence
(a1, . . . , an) with each ak equal to +2,+1, 0,−1,−2 if the angle between Ak−1

and Ak is +2π/3,+π/3, 0,−π/3,−2π/3. For each sequence S = (a1, . . . , an),

we write S = (−an, . . . ,−a1). We have S = S. The curves associated to S
are obtained by changing the orientation of the curves associated to S.

For each n ∈ N, any λ1, . . . , λn ∈ {−,+}, each center w of a tile of P and
each P ∈ Pwλ1···λn , we say that a curve C is a covering of P if it is contained
in P and if, for each m ∈ {0, . . . , n} and each Q ∈ Pwλ1···λm contained in
P , the segments of C contained in Q form a subcurve whose endpoints are
vertices of Q.

For any integers n ≥ m ≥ 1 and each covering C of P ∈ Pwλ1···λn , we
obtain a covering ∆wλ1···λm(C) of ∆wλ1···λm(P ) by replacing each C ↾ Q for
Q ∈ Pwλ1···λm contained in P with the segment from its initial point to its
terminal point. We have ∆wλ1···λm(C) = ∆wλm(· · · (∆wλ1(C)) · · ·).

Now we define by induction on n ∈ N∗ some sequences
Sλ1···λn ∈ {−2,−1, 0,+1,+2}7

n−1 for λ1, . . . , λn ∈ {−,+}. We write
S+ = S = (+1,+2,−1,−2, 0,−1), S− = −S,
S++ = (S,+1, S,+1, S,−1, S,−1, S,+1, S,−1, S), S−− = −S++,
S+− = (S,−1, S,−1, S,+1, S,+1, S,−1, S,+1, S), S−+ = −S+−.
For n ≥ 3, Sλ1···λn is obtained from Sλ2···λn = (a1, . . . , a7n−1−1) by replacing
each subsequence (a7k+1, . . . , a7k+6) equal to Sλ2 (resp. Sλ2) with Sλ1λ2 (resp.
Sλ1λ2).

The first (resp. second) part of Figure 3.2 below shows a covering of a tile
of Pw+ (resp. Pw−) by a curve associated to S+ (resp. S−).
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Figure 3.2

The first (resp. second) part of Figure 3.3 below shows a covering of a tile
of Pw++ (resp. Pw+−) by a curve associated to S++ (resp. S+−).

Figure 3.3

Proposition 3.2. Consider w ∈ R2, n ∈ N∗, λ1, . . . , λn ∈ {−,+} and
P ∈ Pwλ1···λn . Then P has 6 coverings by oriented curves, each of them
determined by its initial and terminal points. Each covering of P is associated
to Sλ1···λn or Sλ1···λn . The 3 coverings associated to Sλ1···λn are obtained from
one of them by rotations of angles 2kπ/3, and the 3 others by changing their
orientations. For n ≥ 2, if C is a covering of P associated to Sλ1···λn (resp.
Sλ1···λn), then ∆wλ1(C) is a covering of ∆wλ1(C) associated to Sλ2···λn (resp.
Sλ2···λn).
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Proof. We see from Figure 3.2 that Proposition 3.2 is true for n = 1. Now
we show that it is true for n ≥ 2 if it is true for n− 1.

By the induction hypothesis, there exists a covering D of ∆wλ1(P ) as-
sociated to Sλ2···λn . Each segment A of D is a covering of an hexagon
HA ∈ ∆wλ1(Pwλ1···λn) which is contained in ∆wλ1(P ). We obtain a cover-
ing C of P with ∆wλ1(C) = D by replacing each such A with a covering of
∆−1

wλ1
(HA) which has the corresponding initial and terminal points.

As P is invariant through a rotation of angle 2π/3, it has 3 coverings
obtained from C by rotations of angles 0, 2π/3, 4π/3, and 3 others obtained by
changing their orientations. These coverings are associated to the 6 possible
pairs of initial and terminal points.

Any other covering B of P has the same initial and terminal points as one
of the 6 coverings above, say C ′. Then ∆wλ1(B) and ∆wλ1(C

′) are coverings
of ∆wλ1(P ) with the same initial and terminal points. By the induction
hypothesis, we have ∆wλ1(B) = ∆wλ1(C

′). Consequently, for each Q ∈ Pwλ1

contained in P , B ↾ Q and C ′ ↾ Q are coverings of Q with the same initial
and terminal points, which implies B ↾ Q = C ′ ↾ Q. It follows B = C ′.

Now it suffices to show that C is associated to Sλ1···λn . We see from
Figure 3.3 that it is true for n = 2. For n ≥ 3, we write C = (Ch)0≤h≤7n−1

and D = (Dh)0≤h≤7n−1−1. We consider the associated sequences

(ch)1≤h≤7n−1 ∈ {−2,−1, 0,+1,+2}7
n−1 and

(dh)1≤h≤7n−1−1 ∈ {−2,−1, 0,+1,+2}7
n−1−1.

For 0 ≤ k ≤ 7n−2 − 1, we write Uk = (ch)49k+1≤h≤49k+48 and Vk =
(dh)7k+1≤h≤7k+6. There exists Qk ∈ Pwλ1λ2 contained in P such that Uk is
associated to C ↾ Qk and Vk is associated to D ↾ ∆wλ1(Qk) = ∆wλ1(C ↾ Qk).
Consequently, we have Uk = Sλ1λ2 (resp. Sλ1λ2) if and only if Vk = Sλ2 (resp.
Sλ2).

It remains to be proved that c49k = d7k for 1 ≤ k ≤ 7n−2−1. As Uk−1, Uk ∈
{Sλ1λ2 , Sλ1λ2}, there exists T ∈ {Sλ1 , Sλ1} such that Uk−1 is ending with T
and Uk is beginning with T . It follows that the angle between C49k and C49k+1

is equal to the angle between D7k and D7k+1, which implies c49k = d7k. ■

Example. The Peano-Gosper curves considered in [3, p. 46] and [2, p. 63]
are associated to the sequences Tn = Sλ1···λn with λ1 = · · · = λn = +. The
case n = 2 is shown in the first part of Figure 3.3. We have
Tn+1 = (Tn,+1, Tn,+1, Tn,−1, Tn,−1, Tn,+1, Tn,−1, Tn)
for each n ∈ N∗. In [2] and several papers mentioned among its references,
W. Kuhirun, D.H. Werner and P.L. Werner prove that an antenna with the
shape of a Peano-Gosper curve has particular electromagnetic properties. We
can suppose that similar properties exist for the other values of λ1, . . . , λn.

Corollary 3.3. For each w ∈ R2, each n ∈ N, any λ1, . . . , λn+1 ∈ {−,+}
(resp. λ1, . . . , λn+2 ∈ {−,+}) and each P ∈ Pwλ1···λn , each covering of some
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Q ∈ Pwλ1···λn+1 (resp. Pwλ1···λn+2) by a nonoriented (resp. oriented) curve con-
tains copies of the 3 (resp. 6) coverings of P by nonoriented (resp. oriented)
curves.

Proof. By Proposition 3.2, it suffices to show that each covering of some Q ∈
Pwλ1···λn+1 (resp. Pwλ1···λn+2) by a nonoriented (resp. oriented) curve contains
3 (resp. 6) nonisomorphic coverings of tiles P ∈ Pwλ1···λn by nonoriented (resp.
oriented) curves. We see from Figure 3.2 (resp. 3.3) that the statement for
nonoriented (resp. oriented) curves is true for n = 0.

For each n ≥ 1 and each covering C of some Q ∈ Pwλ1···λn+1 (resp.
Pwλ1···λn+2) by a nonoriented (resp. oriented) curve, we consider some hexag-
onal tiles Q1, Q2, Q3 (resp. Q1, . . . , Q6) contained in ∆wλ1···λn(Q) such that
the nonoriented (resp. oriented) segments ∆wλ1···λn(C) ↾ Qi are nonisomor-
phic. Then the nonoriented (resp. oriented) curves C ↾ ∆−1

wλ1···λn
(Qi) =

∆−1
wλ1···λn

(∆wλ1···λn(C) ↾ Qi) are nonisomorphic. ■

Lemma 3.4. Here the curves are nonoriented. Consider w ∈ R2, n ∈ N,
λ1, . . . , λn+1 ∈ {−,+}, P ∈ Pwλ1···λn+1 , Q1, . . . , Q7 ∈ Pwλ1···λn such that P =
Q1∪· · ·∪Q7, and Q ∈ {Q1, . . . , Q7}. If Q contains the center of P , then each
of the 3 coverings of Q extends into a covering of P . Otherwise, denote by x1

(resp. x2, x3) the vertex of Q belonging to W which is a vertex of 1 (resp. 2,
3) tiles Qi. If x1 is not a vertex of P , then the covering of Q which joins x2

and x3 extends into 3 coverings of P and the 2 other coverings of Q do not
extend. If x1 is a vertex of P , then the covering of Q which joins x1 and x2

(resp. x2 and x3, x1 and x3) extends into 2 (resp. 1, 0) coverings of P .

Proof. We see from Figure 3.2 that Lemma 3.4 is true for n = 0. Then, as
in the proof of Corollary 3.3, we use the derivations ∆wλ1···λn to show that it
is also true for n ≥ 1. ■

For each PXΛ, we say that a curve C is a covering of a region R of PXΛ if
C ⊂ R and if C contains a covering of each P ∈ PXΛ contained in R. We say
that a set C of disjoint complete curves is a covering of PXΛ if each P ∈ PXΛ

has a covering by a subcurve of a curve of C. Then each region of PXΛ also
has a covering by a subcurve of a curve of C.

Proposition 3.5. We consider nonoriented curves. Any region R of some
PXΛ has a covering by a complete curve. This covering is unique if R ⊊ R2. If
R is the union of an increasing sequence of tiles with 1 common vertex y ∈ W ,
then R also has a unique covering by a half curve and y is the endpoint of
that curve. Otherwise, no such covering exists.

Proof. We have R = ∪n∈NPn for an increasing sequence (Pn)n∈N ∈ ×n∈NPn
XΛ.
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For each m ∈ N, consider the nonempty set Em which consists of the
coverings of Pm with endpoints different from the common vertex of the tiles
Pn if it exists. Then, for m < n, each element of En gives by restriction
an element of Em. By König’s lemma, there exists an increasing sequence
(Cn)n∈N ∈ ×n∈NEn; ∪n∈NCn is a covering of R by a complete curve.

Now we can suppose R ⊊ R2 for the remainder of the proof. Then there
exists h ∈ N such that, for each n ≥ h, Pn does not contain the center of
Pn+1. For n ≥ h, denote by y1n (resp. y2n, y

3
n) the vertex of Pn belonging to

W which is a vertex of 1 (resp. 2, 3) tiles of Pn
XΛ contained in Pn+1.

If R is the union of an increasing sequence of tiles with a common vertex
belonging to W , then there exists k ≥ h such that y1n = y1k for each n ≥ k.
For n ≥ k, denote by Fn the nonempty set which consists of the coverings
of Pn with endpoint y1k. Then, for k ≤ m ≤ n, each element of Fn gives by
restriction an element of Fm. By König’s lemma, there exists an increasing
sequence (Dn)n≥k ∈ ×n≥kFn; ∪n∈NDn is a covering of R by a half curve with
endpoint y1k.

Conversely, suppose that R has 2 coverings C,D. For each n ∈ N, write
Cn = C ↾ Pn and Dn = D ↾ Pn. Consider k ≥ h such that Ck ̸= Dk.

For n ≥ k, we have Cn ̸= Dn. As Cn = Cn+1 ↾ Pn and Dn = Dn+1 ↾ Pn,
it follows from Lemma 3.4 applied to Pn and Pn+1 that y

1
n is a vertex of Pn+1

and that one of the curves Cn, Dn connects y1n and y2n, while the other one
connects y2n and y3n.

Consequently, we have y1n = y1k for n ≥ k, one of the curves C,D is a
complete curve, the other one is a half curve with endpoint y1k and there is
only one possibility for each of them. ■

Now we state and prove our main results. As above, we only consider
curves with segments in W .

Theorem 3.6. For each Λ, we consider the coverings of the sets PXΛ by sets
of nonoriented complete curves:
1) Suppose that PXΛ has 1 region. Then each covering of PXΛ consists of
1 curve. If X is ultimately constant, then PXΛ has 3 coverings, obtained
from one another by rotations of angles ±2π/3. Otherwise, PXΛ has 1 or 2
coverings, and each case is realized for 2ω values of X.
2) If PXΛ has 2 regions, then PXΛ has 1 covering. It consists of 2 curves.
This case is realized for 2ω values of X.
3) If PXΛ has 3 regions and if their common point y does not belong to W ,
then PXΛ has 1 covering. It consists of 3 curves obtained from one another
by rotations of center y and angles ±2π/3.
4) If PXΛ has 3 regions and if their common point y belongs to W , then PXΛ

has 3 coverings obtained from one another by rotations of center y and angles
±2π/3. Each covering of PXΛ consists of 2 curves. One of them is a covering
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of a region. The other one is the union of 2 half curves with endpoint y, which
are equivalent modulo a rotation of center y and angle 2π/3; each half curve
is a covering of a region.

Theorem 3.6 will be proved after the remarks and the example below,
which concern nonoriented curves:

Remark. It follows from Theorem 3.6 that, for each region R ⊊ R2 of some
PXΛ, the covering of R by a complete curve can be extended into 1 covering
of PXΛ. The covering of R by a half curve, if it exists, can be extended into 2
coverings of PXΛ by complete curves, which are equivalent modulo a rotation
of angle 2π/3.

Remark. For each Λ, as each PXΛ has finitely many coverings, Proposition
3.1 implies that each isomorphism class of coverings of sets PXΛ is count-
able. Consequently, it follows from Theorem 3.6 that we have 2ω isomorphism
classes of coverings for case 2) and 2ω classes for case 1) with X not ultimately
constant. On the other hand, Proposition 3.1 and Theorem 3.6 imply that
we have 1 isomorphism class for case 3), 3 classes for case 4) and 3 classes for
case 1) with X ultimately constant.

Figure 3.4

Example. For each n ∈ N∗, denote by Cn the Peano-Gosper curve associated
to the sequence Tn. Consider the inductive limit B (resp. C,D), defined up
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to rotation, of the curves Cn with each Cn embedded in Cn+1 by identifying
Tn with its fourth (resp. third, first) copy in
Tn+1 = (Tn,+1, Tn,+1, Tn,−1, Tn,−1, Tn,+1, Tn,−1, Tn).
Then there exist: 1) a covering of R2 by 3 copies of the complete curve B; 2)
a covering of R2 by a copy of the complete curve C, and 2 copies of the half
curve D which form a complete curve (see Figure 3.4 above).

Proof of Theorem 3.6. We write X = (xn)n∈N. For each n ∈ N, we
consider the tile Pn ∈ Pn

XΛ which contains xn.
Proof of 1). We have R2 = ∪n∈NPn. Each covering of PXΛ consists of 1
complete curve by Proposition 3.5.

First we suppose that there exists h such that xn = xh for each n ≥ h.
Then, by Proposition 3.2, for m ≥ h, the 3 coverings of Pm are obtained from
one of them by rotations of center xh and angles 2kπ/3, and they are the
restrictions of the 3 coverings of Pn for each n ≥ m. It follows that PXΛ has
exactly 3 coverings, which are the inductive limits of the coverings of the tiles
Pn for n ≥ h, and therefore obtained from one of them by rotations of center
xh and angles 2kπ/3.

From now on, we suppose X not ultimately constant. First we observe
that PXΛ cannot have 3 coverings. Otherwise, for n large enough, these 3
coverings would give by restriction 3 distinct coverings of Pn, which is not
possible when xn+1 ̸= xn since, by Lemma 3.4, at most 2 coverings of Pn

extend into coverings of Pn+1.
By Lemma 3.4, for each n ∈ N and any coverings A ̸= B of Pn, we have

2 coverings of Pn+1 which extend A and B in 2 cases: first if Pn contains
the center of Pn+1, second if Pn does not contain the center of Pn+1, if the
common endpoint of A and B belongs to exactly 2 tiles of Pn

XΛ contained in
Pn+1, and if the other endpoint of A or the other endpoint of B is a vertex of
Pn+1. The first case is realized for xn+1 = xn and the second one for another
choice of xn+1.

It follows that, for any coverings C ̸= D of some P ∈ P and each K ⊂ N
with K and N − K infinite, we can choose X = (xn)n∈N, with x0 center of
P and xn+1 = xn if and only if n ∈ K, so that there exist some increasing
sequences (Cn)n∈N, (Dn)n∈N with C0 = C, D0 = D and Cn, Dn coverings of
Pn for each n ∈ N. For each n ∈ N−K, supposing that xn, Cn, Dn are already
defined, we choose xn+1 in such a way that the second case above is realized
for A = Cn and B = Dn. Then PXΛ only has 1 region and ∪n∈NCn, ∪n∈NDn

are the only coverings of PXΛ.
By Lemma 3.4, for each n ∈ N, if xn+1 ̸= xn and if the point of Pn which

is a vertex of Pn+1 does not belong to W , then the 3 coverings of Pn+1 give
by restriction the same covering of Pn, so that only 1 covering of Pn is the
restriction of a covering of PXΛ. There are 2ω different ways to choose X so
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that this property is true for infinitely many integers n, and so that xn+1 = xn

is also true for infinitely many integers n. Then PXΛ only has 1 covering and
1 region.
Proof of 2), 3), 4). Suppose that PXΛ has 2 or 3 regions. Write R =
∪n∈NPn.

If R is not the union of an increasing sequence of tiles with 1 common ver-
tex, then PXΛ has 2 regions and the second region satisfies the same property.
By Proposition 3.5, each region has a unique covering and it is a complete
curve. The union of these coverings is the unique covering of PXΛ.

This case is realized if:
a) there exists a sequence (Σn)n∈N with Σn side of Pn and Σn ⊂ Σn+1 for each
n ∈ N;
b) there is no common vertex of the tiles Pn for n large.

For each n ∈ N and each choice of x1, . . . , xn compatible with a), there are
3 choices of xn+1 compatible with a). Consequently, there are 2ω sequences X
which satisfy a), and also 2ω sequences which satisfy a) and b) since countably
many sequences do not satisfy b).

If R is the union of an increasing sequence of tiles with one common vertex
y, then PXΛ has 3 regions R1, R2, R3 obtained from R by rotations of center
y and angles 2kπ/3.

If y does not belong to W , then, by Proposition 3.5, each Ri has a unique
covering. These coverings are complete curves obtained from one of them by
rotations of center y and angles 2kπ/3. Their union is the unique covering of
PXΛ.

If y belongs to W , then, by Proposition 3.5, each Ri has 1 covering by a
complete curve and 1 covering by a half curve with endpoint y. Each of the
3 coverings of PXΛ is obtained by taking a covering by a complete curve for
1 region and 2 coverings by half curves for the 2 other regions. The 2 half
curves are equivalent modulo a rotation of center y and angle 2π/3. They
form a complete curve since y is their common endpoint. ■

Now, for each set C of oriented curves, we consider the following property:
(P) If 2 segments of curves of C are opposite sides of a rhombus, then they
have opposite orientations.
We observe that (P) is satisfied if C consists of 1 complete curve or 1 curve
which is a covering of a tile of some PXΛ.

Theorem 3.7. The local isomorphism property implies (P) for coverings by
sets of oriented curves. The strong local isomorphism property is true for
the coverings of sets PXΛ by sets of nonoriented curves or by sets of oriented
curves which satisfy (P).

Remark. Theorem 3.7 implies that each covering of some PXΛ by a set of
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oriented curves satisfies the local isomorphism property or can be transformed
into a covering which satisfies that property by changing the orientation of
one of the curves.

Theorem 3.8. For each Λ and any X, Y , any coverings of PXΛ and PY Λ by
sets of nonoriented curves are locally isomorphic. Any coverings of PXΛ and
PY Λ by sets of oriented curves are locally isomorphic if they satisfy (P).

Remark. It follows from Theorem 3.6 that each local isomorphism class of
coverings by sets of nonoriented curves associated to a sequence Λ contains
2ω (resp. 2ω, 1, 0) isomorphism classes of coverings by 1 (resp. 2, 3, ≥ 4)
curves.

Proof of Theorem 3.7 and Theorem 3.8. It suffices to prove the results
for oriented curves since they imply the results for nonoriented curves.

First suppose that a covering C of some PXΛ satisfies the local isomorphism
property. Consider 2 segments of curves of C which are opposite sides of a
rhombus A. Then there exist a translation τ and a tile T of PXΛ such that
τ(A) is contained in T and τ(A ∩ C) = τ(A) ∩ C, where C is the curve of
C which contains a coverig of T . The 2 segments have opposite orientations
because their images through τ , which belong to the same curve, necessarily
have opposite orientations.

Now, for each X such that PXΛ exists, each n ∈ N and each x ∈ R2, we
consider the tile P n

Xx ∈ Pn
XΛ with center x if it exists, and the union Qn

Xx

of the 3 tiles with common vertex x belonging to Pn
XΛ if they exist. We are

going to prove the following property, which implies the other statements of
Theorem 3.7 and Theorem 3.8:
For any setsX, Y such that PXΛ,PY Λ exist, for any coverings C,D of PXΛ,PY Λ

by sets of curves which satisfy (P), for each n ∈ N and for each x ∈ R2 such
that Qn

Xx exists, each P n+4
Y y contains some Qn

Y z with D ↾ Qn
Y z

∼= C ↾ Qn
Xx.

By Corollary 3.3, for any y, z ∈ R2 such that P n+2
Y y and P n+4

Y z exist, each

covering of P n+4
Y z contains copies of the 6 coverings of P n+2

Y y . Consequently,

it suffices to show that, for each x ∈ R2 such that Qn
Xx exists, each P n+2

Y y

contains some Qn
Y z such that C ↾ Qn

Xx and D ↾ Qn
Y z are equivalent modulo a

rotation of angle 2kπ/3 and/or changing the orientation of all the curves.
We write Λ = (λk)k∈N∗ , X = (xk)k∈N and Y = (yk)k∈N. We have

∆xnλ1···λn(C) ↾ ∆xnλ1···λn(P ) = ∆xnλ1···λn(C ↾ P ) for each P ∈ Pn
XΛ and

∆ynλ1···λn(D) ↾ ∆ynλ1···λn(P ) = ∆ynλ1···λn(D ↾ P ) for each P ∈ Pn
Y Λ.

For any x, y ∈ R2, C ↾ Qn
Xx and D ↾ Qn

Y y are equivalent modulo a transla-
tion, or a rotation of angle 2kπ/3, or changing the orientation of the curves,
or a combination of these operations, if and only if the same property is
true for ∆xnλ1···λn(C) ↾ ∆xnλ1···λn(Q

n
Xx) and ∆ynλ1···λn(D) ↾ ∆ynλ1···λn(Q

n
Y y).

Consequently, it suffices to prove the statement for n = 0.
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Figure 3.5 below shows representatives of the 9 equivalence classes of
possible configurations for C ↾ Q0

Xx, modulo the operations mentioned just
above. We see from Figure 3.3 that, for each curve C which is a covering of
some P 2

Y y, each of these classes is realized by C ↾ Q0
Y z for some Q0

Y z ⊂ P 2
Y y. ■

Figure 3.5
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