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Coverings of the plane by self-avoiding curves

which satisfy the local isomorphism property
Francis OGER

Abstract. A self-avoiding plane-filling curve cannot be periodic, but we
show that it can satisfy the local isomorphism property. We investigate three
families of coverings of the plane by finite sets of nonoverlapping self-avoiding
curves which satisfy that property in a strong form. These curves are respec-
tively inductive limits of: 1) n-folding square curves such as the dragon curve,
obtained by folding n times a strip of paper in 2 and unfolding it with 7/2
angles; 2) n-folding triangular curves such as the terdragon curve, obtained
by folding n times a strip of paper in 3 and unfolding it with 7/3 angles; 3)
generalizations of Peano-Gosper curves. In each family, the coverings consist
of a small number of curves (at most 6), and in many examples only 1 curve.
We do not know presently if similar examples exist in R™ for n > 3.

2010 Mathematics Subject Classification. Primary 05B45; Secondary 52C20,
52C23.
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We denote by N* the set of strictly positive integers, and R™ the set of
positive real numbers.

For each n € N*, we consider R™ equipped with a norm  — ||z||. For any
x,y € R" we write d(x,y) = ||y — z||. For each x € R™ and each r € RT, we
denote by B(z,r) the closed ball of center x and radius r.

For any E,F C R", an isomorphism from E to F' is a translation 7
such that 7(E) = F. They are locally isomorphic if, for each x € R™ (resp.
y € R™) and each r € R, there exists y € R™ (resp. = € R™) such that
(B(z,r)NE,z) = (B(y,r) N F,y).

E C R” satisfies the local isomorphism property if, for each x € R™ and
each r € R*, there exist s € Rt such that each B(y, s) contains some z with
(B(z,7)NE,z) = (B(xz,r) N E,z). We say that E satisfies the strong local
isomorphism property if there exist s,t € RT such that, for each x € R"
and each r € R, each B(y,rs + t) contains some z with (B(z,r) N E, z) &
(B(z,7) N E,x). These definitions are similar to those for aperiodic tilings.

For n > 2, we say that a closed subset C' C R" is a self-avoiding curve
if there exists a bicontinuous map from a closed interval I C R to C. If
I = [a,b] with a,b € R (resp. I = [a,+oo[ with a € R, I = R), then C'is a
bounded curve (resp. a half curve, a complete curve).



We say that A C R"™ is space-filling if there exists o € R* such that
SUp,epn iNfyeq d(x,y) < a. It follows from the proposition below that a self-
avoiding space-filling complete curve cannot be invariant through a nontrivial
translation:

Proposition. For each integer n > 2, each self-avoiding complete curve
C C R™ and each w € R™ such that C' = w + C, there exists B C C' bounded
such that C' is the disjoint union of the subsets kw + B for k € Z.

Proof. Consider f : R — C bicontinuous. Then 7, : C - C 1y - w+y
and p : R - R: s — fHw+ f(s)) satisfy p = f~' o7, 0 f. The map
¢ is bicontinuous because f, 7, and f~! are bicontinuous. In particular, ¢
is strictly increasing or strictly decreasing. Actually, ¢ is strictly increasing
since we have ¢(s) # s for each s € R.

Now consider x € C and write t;, = f~!(kw+z) for each k € Z. The equal-
ities @(ty) = tgr1 with & < tgyq or tep1 < tg for k € Z imply o([tg, tri1]) =
[tha1, teae| and w + f([te, trs1]) = f([tks1, tere[) for each & € Z. Conse-
quently, C' is the union of the disjoint subsets kw + f([to, t1]) = f([t, ter1])
forkez. W

On the other hand, the results of the next three sections give various
examples of self-avoiding plane-filling complete curves which satisfy the strong
local isomorphism property.

In each of them, we start with a set B of self-avoiding bounded curves. We
consider the set C of complete curves obtained as inductive limits of curves
in B. We show that any curve in C can be extended into a generally unique
plane-filling set of at least 1 and at most 6 nonoverlapping such curves which
satisfies the local isomorphism property. In each case, the bounded self-
avoiding curves that we consider are described in B. Mandelbrot’s book [3].

We do not know presently if similar examples exist in R" for n > 3.

1. Dragons and other square folding curves

We consider a regular tiling of the plane by squares. For each n € N, an
n-folding curve is obtained by folding n times a strip of paper in two, each
time possibly to the left or to the right, then unfolding it with 7/2 angles so
that the support of each segment of the curve is a side of one of the squares.
If all the foldings are done in the same direction, then we obtain the dragon
curve of order n.

For each n-folding curve, each side of each square is the support of at most
1 segment, so that we make the curve self-avoiding by rounding the angles.

The complete folding curves are the complete curves obtained as inductive
limits of n-folding curves for n € N. We say that a set of such curves is a



covering of the plane if each side of each square is the support of exactly 1
segment of 1 curve. Then the curves are disjoint.
Here, we consider nonoriented curves. The following results were proved

in [4] and [5]:

Theorem 1.1. Each complete folding curve has a unique extension into a
covering of the plane by such curves which satisfies the local isomorphism
property, except in one case where there are 2 such extensions. Each covering
actually satisfies the strong local isomorphism property.

Theorem 1.2. Each such covering consists of 1, 2, 3, 4 or 6 curves.
Theorem 1.3. There exist 2* local isomorphism classes of such coverings.

We note that, for any such coverings C, D and any curves C' € C, D € D,
the coverings C, D are locally isomorphic if and only if, for each n € N, the
isomorphism classes of n-folding subcurves of C' and D are the same.

Theorem 1.4. Each local isomorphism class is the union of 2¥ isomorphism
classes, including one with a covering by 1 curve and one with a covering by
2 curves.

In [5], the local isomorphism classes which contain a covering, and actually
two nonisomorphic coverings, by 6 curves are characterized; an example is
given by Figure 1.1 below. Some examples of classes with coverings by 3
(resp. 4) curves are also given. It would be intersting to determine for each
local isomorphism class the number of isomorphism classes of coverings by 1,
2, 3 or 4 curves, especially since similar results are obtained in the two next
sections for triangular folding curves and for Peano-Gosper curves.

Figure 1.1



2. Terdragons and other triangular folding curves

For each n € N, we consider n-folding triangular curves such as the ter-
dragon curve, which are obtained by folding n times a strip of paper in 3,
each time possibly left then right or right then left, and unfolding it with 7/3
angles. We prove that they are self-avoiding.

The complete folding triangular curves are obtained as inductive limits of
n-folding triangular curves for n € N. We show that each nonoriented such
curve can be extended into a unique covering of the plane by disjoint such
curves and that this covering satisfies the strong local isomorphism property.
We also prove that there exist 2* local isomorphism classes of such coverings
and that each of them contains 2¢ (resp. 2¥; 2 or 5, 0) isomorphism classes
of coverings by 1 (resp. 2, 3, > 4) curves.

2.1. Definitions and main results.

Here, we consider a regular tiling P of the plane by equilateral triangles.
We define oriented triangular curves which we call t-curves. A bounded t-
curve (resp. half t-curve, complete t-curve) is a sequence (Ag)o<k<n (resp.
(Ax)ken, (Ag)rez) of segments which are oriented sides of triangles of P such
that, for any Ay, Agi1, the terminal point of Ay, is the initial point of A1 and
Ay, Agyq form a Fm/3 angle. We associate to each such curve the sequence
(ak)1<k<n (resp. (ar)ren+, (ar)rez) With ax = +1 (resp. ap = —1) for each k
such that we turn left (resp. right) when we pass from Ay_; to Ay.

We say that a t-curve C' is self-avoiding if each side of a triangle is the
support of at most one segment of C'. A set C of t-curves is a covering of the
plane if each side of a triangle is the support of exactly 1 segment of 1 curve of
C. We represent the curves with slightly rounded angles, so that they do not
pass through the vertices of triangles. Then each self-avoiding t-curve passes
at most once through each point of the plane and the curves in a covering are
disjoint.

We define by induction on n € N the sequences T),...,, for A\y,... A\, €
{=1,41}. We denote by T the empty sequence. For each n € N and any
/\17 ey )‘n-f—lv we write T>\1"'>\n+1 = (TA1~--)\n7 >\n+17 T)\l"'>\n’ _)‘n-f—lv T>\1...>\n).

For each n € N, an n-folding t-curve associated to T},...,, is realized as
follows: We successively fold n times in three a strip of paper. For each
k € {1,...,n}, the k-th folding is done left then right if A\,.1_, = +1 and
right then left if A, ;1 = —1. Then we unfold the strip, keeping a /3 angle
for each fold. The terdragon curve of order n, which was first considered in
[1], is the curve T}, ...\, with Ay =--- = X, = +1.

The oo-folding t-curves (resp. complete folding t-curves) are the half t-
curves (resp. complete t-curves) obtained as inductive limits of n-folding
t-curves C,, for n € N. We are going to see that, for each complete folding
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t-curve C, there exists a unique sequence A = (A\p)nen- € {—1,4+1}", not
depending on the orientation of C', such that each bounded subcurve of C' is
countained in a t-curve associated to some T}, ...5, .

In the second part of the present section, we show that folding t-curves
are self-avoiding.

We denote by (P) the following property of a set E of oriented sides of
triangles of P: If A, B € E are sides of the same triangle, then they define
the same direction of rotation around its center.

There are 2 opposite sets Ej, Fs which satisfy (P) and such that each
nonoriented side of a triangle of P is the support of 1 element of E; and 1
element of F,. The segments of any t-curve are all contained in Ey, or all
contained in Ej, and therefore satisty (P).

We say that a covering C of the plane by oriented complete t-curves satis-
fies (P) if the set of segments of curves of C satisfies (P), or equivalently if it
is equal to Fy or F5. Each covering by nonoriented complete t-curves induces
2 covering by oriented complete t-curves which satisfy (P) and have opposite
orientations.

Theorem 2.1. Each nonoriented (resp. oriented) complete folding t-curve
can be extended in a unique way into a covering of the plane by such curves
(resp. a covering of the plane by such curves which satisfies (P)). This cov-
ering satisfies the strong local isomorphism property and consists of curves
associated to the same sequence A.

Theorem 2.2. Two coverings of the plane by nonoriented complete folding
t-curves are locally isomorphic if and only if they are associated to the same
sequence A.

Theorem 2.3. For each covering of the plane by oriented complete folding t-
curves, the local isomorphism property implies (P) and (P) implies the strong
local isomorphism property. Any coverings with these properties are locally
isomorphic if and only if they are associated to the same sequence A and have
the same orientation.

Theorem 2.4. For cach A = (A\,)nen+ € {—1,+1}" | the class of coverings
of the plane by nonoriented complete folding t-curves associated to A is the
union of:

1) 2% isomorphism classes of coverings by 1 curve;

2) 2¢ isomorphism classes of coverings by 2 curves;

3) 2 isomorphism classes of coverings by 3 curves having 1 vertex in common,
where each of the 3 curves is the union of 2 oco-folding t-curves starting from
that vertex;



4) 3 isomorphism classes of coverings by 3 curves with 1 curve separating the
2 others, if there exists k € N* such that \,y; = —\, for each n > k (Figure
2.1 gives an example with £k = 1 and A\; = +1); no such class otherwise.

In 3) and in 4), all the coverings are equivalent up to isometry.
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2.2. Detailed results and proofs.

Unless otherwise specified, all the curves that we consider are oriented.
The property (P) and the sets Fy, Fy are defined as above.

For any t-curves C, D, if the terminal point of C' is the initial point of D
and if the terminal segment of C' and the initial segment of D form a Fr/3
angle, then we denote by C'D the t-curve obtained by connecting them.

For each n € N*, any Ay,..., A\, € {—1,+1} and each n-folding t-curve
C associated to Ty, ..»,, we consider the 3 (n — 1)-folding t-curves C', CM, CS
associated to Tj,..,_, such that C' = C'CMCS. Here, I, M, S can be viewed
as abbreviations for “inferior”, “middle”, “superior”.

Fork € Nand S = (ay,...,0p) € {—1,+1}", we write § = (—ap, ..., —aq).
The reverse of a curve associated to S is associated to S. For S = () nen+ €
{=1,+1}"", we write § = (—a_p)ne_n-.

For n € N and Ay,..., A\, € {—1,+1}, we have T),..\, = T),..n,. Con-
sequently, the reverse of a curve associated to T),.., is also associated to
T)\1~~~/\n'

For each A = (A\)gen- € {—1,+1}", we denote by Ty the inductive
limit of the sequences T}, ...\, with T}, ...y, initial segment of T),...,,, for each
n € N.



Proposition 2.5. Let C' be a complete t-curve associated to a sequence
S = (sp)nez € {—1, —l—l}Z. Then the properties 1), 2), 3) below are equivalent:
1) C is a complete folding t-curve.

2) For each k € N, there exists h € Z such that s, gk g6+1; = —Sp 38043641,
for any 1,5 € Z.

3) There exists a unique sequence A = (A )pen= € {—1,+1}" such that
exactly one of the two following properties is true:

a) S is equivalent to (T, +1,Ty) or (T, —1,Ty) modulo a translation of Z;
b) C' = UpenC, for a sequence (C),)nen such that, for each n € N, C,, is an
n-folding t-curve associated to T),...», and C,, € {C! ,,CM, CJ  }.

Proof. 1) or 3) implies 2) because we have sgr,ge+1; = —Sgea4gr+1; for each
n € N, each sequence ($3)1<p<sn—1 associated to an n-folding t-curve, each
k€{0,...,n— 1} and any integers 0 < i,j < 3""*=1 — 1. If the case a) of 3)
is realized, then, in 2), we can take the same h for each k € N.

Now we show that 2) implies 1) and 3). For each g € Z, we consider the
point z,4 of the plane which is associated to s, in the correspondance between
S and C. For ¢ € Z and n € N, we denote by «,(g) the largest integer
h < g such that s 36 ge+1; = —Sp 43604 36+1; for each £ € {0,...,n — 1} and
any i,j € Z. We have g < B,(g) for B,(9) = a,(g) + 3". The part C,(g)
of C' between z,,() and 2,4 is an n-folding t-curve. We have C,(g) €
{Crr1(9)", Crya (@)™, Cria(9)°}- .

There exists a unique sequence A = (A, )pen+ € {—1, —1—1}N such that, for
each n € N and each g € Z, C,(g) is associated to T),...\,. For any g,h € Z
such that g < h, we have C,,(g) = C,(h) for n large enough, or 3,(g) = a,(h)
for n large enough.

If there exists g € Z such that U,enCy(g) = C, then the case b) of 3) is
realized and C' is clearly a complete folding t-curve.

Otherwise, there exist m € N* and g, h € Z with g < h such that 5,(g) =
ay,(h) for each n > m. Then the case a) of 3) is realized. Moreover, for each
n>m, Co(g)MC,(9)°Cpn(h)! or C,(g)°Cr(h) C,(h)M is an n-folding t-curve
D,, contained in C'. We have D,, C D,,4; for each n > m and C = U,,>, D,,,
whence 1). B

Similarly to the case of folding curves in [4] and [5], and Peano-Gosper
curves in Section 3 below, we define a derivation A on folding t-curves.

For each n € N*, we divide each n-folding t-curve C' into sequences of
3 consecutive segments; A(C') is obtained by replacing each such sequence
with a unique segment whose initial and terminal points are the initial point
of the first segment and the terminal point of the third segment; if C' is
associated to a sequence (a;)1<i<gn_1 € {—1,+1}> ', then A(C) is associated
to (uzi)i<i<gn-1-1.



The definition of A naturally extends to oo-folding t-curves. Now we
extend it to complete folding t-curves.

Consider any such curve C' = (Ag) ez, and the associated sequence (s )kez €
{—1,+1}”. Then, by Proposition 2.5, there exist ¢ € {—1,+1} and h €
Z, whose remainder modulo 3 is completely determined by C', such that
Shisk+1 = € and Spy3p10 = —¢ for each k € Z. The curve A(C') is obtained by
replacing each Aj 3xApiskr1Anisrro with a unique segment; it is associated
to the sequence (Sp43k)kez-

If an co-folding or a complete folding t-curve C' is the inductive limit for
n € N of some n-folding t-curves C,, C C, then A(C) is the inductive limit
of the curves A(C,,) for n € N*.

For each £ € N* and each t-curve C which is n-folding for some n > k, oo-
folding or complete folding, A¥(C) is obtained in the same way by replacing
sequences of 3¥ consecutive segments with 1 segment.

Now we begin to show the self-avoiding and plane-filling properties of
folding t-curves. We denote by U the set of vertices of triangles of P and we
fix i € {1, 2}.

We prove by induction on n that, for each n € N, each A € {—1,+1}" and
each x € U, there exists a unique covering C(A, z) of the plane by n-folding
t-curves associated to T and with segments in E; such that z is an endpoint
of some of the curves.

If n = 0, then A is the empty sequence and we write C(A,z) = E;. It
remains to be proved that, if the property is true for an integer n, then it is
true for n + 1.

If X is the set of vertices of equilateral triangles which form a regular
tiling of the plane, then, for each x € X, there exists a unique partition
X =G(X,z)U H(X,x) such that:

1) H(X,x) is the set of vertices of hexagons which form a regular tiling of
the plane;

2) x € G(X,z) and the elements of G(X,x) are the centers of the hexagons.
Moreover, G(X,z) is also the set of vertices of equilateral triangles which
form a regular tiling of the plane.

For each # € U, we write Vo(z) = U and, for each k € N, Vi 11(z) =
G(Vi(x),x) and Wiy (x) = H(Vi(z), ).

For each A € {—1,+1}" and each A € {—1,+1}, supposing that C(A, )
is already defined, we define C((A, \),z) as follows: If A = 41 (resp. —1),
then, for each y € V,,,1(z) and each curve A € C(A,z) starting from y, we
put in C((A, A), z) the curve ABC, where:

1) B is the curve of C(A, ) starting from the endpoint of A and such that its
first segment is just at the left (resp. right) of the last segment of A;
2) C is the curve of C(A, z) starting from the endpoint of B and such that its
first segment is just at the right (resp. left) of the last segment of B.



The following properties are true for each n € N, each A € {—1,+1}" and
each « € U. For n > 2, they are proved by using A"~ !,

Each curve of C(A,z) connects a pair of points of V,(z) with minimal
distance. Each such pair (y, z) is connected by a unique curve of C(A,x). If
n > 1, then this curve contains the 2 points of W, (z) which are between y
and z.

Using the derivations, we see that, if C' is a curve associated to some T},
then C' or its reverse belongs to C(A,z) = C(A,y), where z and y are the
endpoints of C'. It follows that C' is self-avoiding.

For each n € N*, we call an n-triangle any equilateral triangle such that
each side consists of n sides of triangles of P. We say that a set of curves C
covers an n-triangle 7T if, in each 1-triangle of P contained in 7T, each side is
the support of a segment of a curve of C.

Proposition 2.6. For each integer n > 2, each (2n)-folding t-curve covers a
(3"~ 4 3) /2-triangle.

vV

Proof. For each n > 2, we denote by k, the largest integer k such that each
(2n)-folding t-curve covers a k-triangle. We simultaneously prove that ko > 3
and k,, > 3k,_; — 3 for each n > 3.

For each (2n)-folding t-curve C, we consider the tiling Q of the plane by
equilateral triangles which is associated to A?(C). Each triangle of Q is the
union of 9 triangles of P.

For any segments Ay, Ay, A3 of A%(C), if their supports are the sides
of a 1-triangle 7 of Q, then their orientations define the same direction of
rotation around the center of 7 since A%(C) satisfies (P). Figure 2.2 above
shows two possible configurations for A™2(A;), A™%(A,), A™%(A3). Any other
configuration is equivalent to one of them up to isometry.

We see from Figure 2.2 that & = {A72(A;), A™%(Ay), A™2(A3)} necessar-
ily covers a 3-triangle of P. If n = 2, then C' covers a 3-triangle of P since
the 2-folding t-curve A?(C') has such segments A;, Ay, As.

We also see from Figure 2.2 that each side of a 1-triangle of P contained
in 7 is the support of a segment of £, except possibly if one of its endpoints
is a vertex of T.

Figure 2.2



In order to prove that k,, > 3k,_; — 3 for each n > 3, it suffices to show
that, for each integer k > 2, if A?(C) covers a k-triangle W of Q, then C
covers the (3k — 3)-triangle V of P contained in the interior of W.

This property is a consequence of the two following facts: First, by the
argument above, for each 1-triangle 7 of Q, if A?(C') covers T, then, in each
1-triangle of P contained in 7, each side is the support of a segment of C'
if neither of its endpoints is a vertex of 7. Second, for each vertex z of a
1-triangle of Q, if z belongs to V, then z is an endpoint of 6 segments of C'
since it is an endpoint of 6 segments of A?(C); as C is self-avoiding, it follows
that each side with endpoint z of a 1-triangle of P is the support of a segment
of C. N

Corollary 2.7. For each covering of the plane by complete folding t-curves,
the local isomorphism property implies (P).

Proof. Let C be such a covering. By Proposition 2.6, each C' € C covers
arbitrarily large triangles. The covering C satisfies (P) on any such triangle,
and therefore on the whole plane by the local isomorphism property. W

For each nontrivial t-curve C, we say that x € U belongs to C' and we
write x € C'if x is an endpoint of at least one segment of C'. For any z,y € U
with d(z,y) = 1, we say that the nonoriented segment [z, y] belongs to C' and
we write [z,y] € C'if [x,y] is the support of a segment of C.

For each folding t-curve C, we denote by Fi,(C) (resp. Fr(C')) the union
of the sides [z,y| of triangles of P such that z,y € C, such that C contains
exactly 1 of the 2 points which form equilateral triangles with x and y, and
such that the second point is at the left (resp. right) of C.

For each integer n > 1 and each n-folding t-curve C with initial point
u and terminal point v, there exists a unique sequence (y;)i1<;<p, C U with
Y1 =u, yp = v, d(yi—1,¥;) = 1 and [y;—1,y;] C FL(C) for 2 < ¢ < h. There
is also a unique sequence (2;)1<j<x C U with z; = u, 2, = v, d(2j_1,2;) =1
and [zj_1,2;] C Fr(C) for 2 < j <k.

We denote by FY(C) (resp. F%(C)) the union of the segments [y; 1, y;]
(resp. [zj-1,2;]). We have F{(C) N F{(C) = {u,v} and no point of C is
outside F (C) UF%(C).

It follows that C' starts at y;, then successively passes through ys, ..., yp_1
in that order, possibly once or twice for each of them, then ends at y,. The
same property is true for zy, ..., 2.

Now we show that C' contains the segments [wq, ws] with wy, ws € U and
d(wy,wy) = 1 which are inside F? (C)UF%(C). Tt follows Fr,(C) = FY (C) and
Fr(C) = FR(0).

For the proof, we use the existence of a covering C(A,u) of the plane
which contains C. If a segment [wy, ws] as above does not belong to C, then
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it belongs to a curve D € C(A,u) with D # C.

The segment [wy, ws] is between FY (C') and C, or between C' and F%(C).
We can suppose that the first case is true, since the second one can be treated
in the same way.

Then there exists ¢ such that [wy,ws] is inside the loop formed by C' be-
tween two occurrences of x;, or between an occurrence of x; and an occurrence
of ;1. We observe that, in the first case, no curve of C(A, u) crosses the limit
of the loop, and in the second case at most one curve of C(A, u) crosses that
limit and only once, since the part of the curve which crosses the limit must
contain [x;, Z;y1].

In both cases, it follows that at least one endpoint of D is inside the loop.
Then another curve of C(A, u) having that endpoint is completely inside the
loop, whence a contradiction since C' and the other curves of C(A,u) are
equivalent up to isometry.

The following properties are true since, if an oo-folding t-curve or a com-
plete folding t-curve C' is the inductive limit of some n-folding t-curves C,,,
then any segment [x,y] is contained in Fr(C) (resp. Fr(C)) if and only if it
is contained in Fr,(C},) (resp. Fr(C,)) for n large enough.

If C is an oo-folding t-curve with initial point z, then we have Fp(C) N
Fr(C) = {z} and FL(C), Fr(C) are half curves with endpoint z. If C' is a
complete folding t-curve, then Fr,(C), Fr(C) are disjoint and each of them is
a complete curve or empty.

For each folding t-curve C, we write F(C) = Fr(C') UFg(C). We denote
by Dom(C') the closed part of the plane limited by F(C) and containing C'.
The interior of Dom(C') is connected and C' contains the sides of triangles of
P which are in Dom(C') and not in F(C).

For any A, z, the sets Dom(C) for C' € C(A, z) are nonoverlapping and
cover the plane. If (C;);er is a covering of the plane by complete folding t-
curves, then the sets Dom(C;) are nonoverlapping and cover the plane, except
possibly the 1-triangles (u, v, w) such that [u,v], [u,w], [v, w] belong to three
different curves. We shall see later that, actually, no such triangle exists.

Now let n > 1 be an integer and let C' be an n-folding t-curve associated
to a sequence T),..,,. Consider the initial points w,z of C',CM and the
terminal points ¥, z of CM, CS.

If A, = +1 (resp. —1), then y € F,(C) and = € Fg(C) (resp. z € FL(C)
and y € Fr(C)). We denote by Fr;(C) the part of Fr,(C) between w and y
(resp. x), Frs(C) the part of Fi(C) between y (resp. z) and z, Fri(C) the
part of Fr(C') between w and = (resp. y), Frs(C) the part of Fg(C') between
x (resp. y) and z.

Now suppose n > 2. If \,, = +1, then we have Fp;(C) = Fr;(C" )FLS(CM)
Fis(C) = Fr(C®), Fri(C) = Fr(CY), Frs(C) = FRI(CM)FRS(C ). If A\,
—]_, then we have FLI(O) = FL<CI), FLs(O) = FLI(CM)FLs( ) FRI( ) =
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Fri(CHFrs(CM), Frs(C) = Fr(C9).

Lemma 2.8. Consider n € N* and Ay,...,\, € {—1,+1}. Let C be an
n-folding t-curve associated to T),..,,. Then there exist some sequences
(xi)o<i<on and (y;)o<i<on, With zg = yo initial point of C' and xon = yan
terminal point of C| such that:

1) each segment [x;, z;11] or [y;, yi+1] is a side of a triangle of P;

2) each angle x; 17;T;41 OF ¥;_1Y:is1 is equal to F2m/3;

3) FLI<O) = Uj<icon—1 [xi—l,iﬂi], FLS(C) = Ugn-141<i<on [xi—l,iﬂi], FRI(C) =
Ur<i<on—1 [Yio1, ¥i], Frs(C) = Uan—1p1<icon [Yio1, Yil;

4) for 0 < i < 2" and 1 < k < n, each point z;,y; belongs to Vi (C) if and
only if i is divisible by 2.

Now associate to C' the sequences (a;)1<;j<an—1 and (5;)1<i<an—1 With a; =
+1 (resp. —1) if ;w041 = +27/3 (resp. —27/3), and f; = +1 (resp. —1)
if y; 1Yy = +27/3 (vesp. —27/3). Then we have agn-1 = —1, Bon-1 = +1
and ok port1; = Bokyortt; = (—1) g for 0 < kK < n—2and 0 < 7 <
on—k-1 _ 1.

Proof. Lemma 2.8 is clearly true for n = 1. Now suppose that it is true
for an integer n > 1 and consider an (n + 1)-folding t-curve C' associated to
a sequence T),...\,,,. We can assume A\, = +1 since the case A\, = —1
is similar. We only show the results for F,(C') since the proof for Fg(C) is
similar.

The curves C1,CM (C% are associated to Tj,..n,. We have Fr;(C) =
Fri(CHFLs(CM) and Frs(C) = Fr(C®) = Fri(C®%)FLs(C®). The sequences
associated to Fpi(C') and Fri(C®) are equal. The sequences associated to
Frs(CM) and Frg(C®) are also equal. We turn with a +2m/3 (resp. —27/3,
—27/3) angle when we pass from Fri(C") to Frs(CM) (resp. from Frg(CM)
to Fri(C®), from Fri(C%) to Frs(C%)) because C' passes twice (resp. once,
once) through the terminal point of Fri(C?) (resp. Frs(CM), Fri(C®)). The
results follow from these facts and from the induction hypothesis applied to

cLoM cS. m

Corollary 2.9. Let C be a complete folding t-curve such that Fp(C) is
nonempty. Consider the sequence (x,,)nez of endpoints of segments of Fr,(C)

and the sequence (a, )pez, with oy, = +1if 2, 72, 2Zp41 = +27/3 and o, = —1
if 2, 1TpTpy1 = —27/3. Then there exists a sequence (ny)ren- such that

Ty rori € Wi(C) and ay,, o1, = (—1)'ay, for each k € N* and each i € Z.
The same property is true for Fg(C) if it is nonempty.

Remark. If C is obtained from an oo-folding t-curve, then there exists a
unique n € Z — Upen+(ny + 2FZ); we have z,, € Npen=Vi(C). Otherwise, we
have Z = UkeN* (nk + QkZ)
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Lemma 2.10. Any set of disjoint complete folding t-curves is finite.

Proof. We assume that the sides of triangles of P have length 1 and we show
by induction on n € N* that d(z,y) < p, = [(V3)" ' (4 — V3) = 1] /(V3-1)
for any points z, y of an n-folding t-curve. We have p; = /3 and the property
is clearly true for n = 1.

We prove that, if the property is true for an integer n > 1, then it is
also true for n + 1. We consider an (n + 1)-folding t-curve C'. We represent
D = A(C) in such a way that C' and D have the same endpoints, which gives
the length V3 to the segments of D.

By the induction hypothesis, for D represented in that way, we have
d(z,y) < pnV/3 for any z,y € D. Moreover, for each z € C, there exists
y € D such that d(y,z) < 1/2. It follows that, for any v,w € C, we have
d(U, w) < pn\/§+ L= ppt1.

Now we see that, for z € R? and k € N large enough, there exists no
r € R™ such that B(z,r) contains points of k disjoint n-folding t-curves for
each n € N*. This follows since each n-folding t-curve contains 3" sides of
triangles of P, each such curve containing a point of B(z,r) is necessarily
contained in B(x,r + p,) and, for n large compared to 7, the number of sides
of triangles of P contained in B(x,r + p,) is smaller than 3"k for an integer
k not depending on n and r. W

Lemma 2.11. Let C be a covering of the plane by complete folding t-curves.
Then the sets Dom(C') for C' € C are nonoverlapping and cover the plane, we
have Vi, (C) = Vi (D) for each k € N* and any C, D € C, and all the curves of
C are associated to the same sequence (\,)nen-

Proof. We saw that the sets Dom(C') for C' € C are nonoverlapping and
cover the plane, except possibly the 1-triangles (u, v, w) such that [u, v], [u, w],
[v, w] belong to three different curves. Suppose that such a triangle exists and
consider the curves C, D € C such that [u,v] € C and [u,w] € D.

Then we have [u,v] C F(C') because w cannot belong to C' and [u,w] C
F(D) because v cannot belong to D. The value of the angle covered by
Dom(C') (resp. Dom(D)) in u is 27/3 if C' (resp. D) passes once through
u, and 47/3 if C' (resp. D) passes twice through w. If C' and D pass only
once through wu, then another curve E € C passes through u and the value
of the angle covered by Dom(F) in u is 27/3. In each case, we obtain a
contradiction since vuw and these angles are all nonoverlapping.

Now we prove the other parts of Lemma 2.11. For each covering C and
each C' € C, we consider the sequence A(C) = (A,(C))nen+ associated to
C. It suffices to show that Vi(C) = Vi(D) and A\ (C) = A\(D) for any
C, D € C, since these properties imply that {A(C) | C' € C} is also a covering
of the plane by complete folding t-curves. As C' is finite by Lemma 2.10, it is
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enough to prove these properties for the pairs (C, D) such that F(C) N F(D)
is unbounded.

For each such pair, we consider some consecutive segments [z, z1], . . ., [Zs, T
of F(C)NF(D), and the integers ay, ..., as € {—1,+1} associated to the ver-
tices x1,...,xs. According to Corollary 2.9, we have o = —a3 = a5 = —az
or ag = —y = g = —ag, but the 2 properties cannot be simultaneously true
since the first one implies ap = —ag or ay = —ag.

Let us suppose for instance that oy = —a3 = a5 = —ay7. Then we have
xg € V4(C) and zo € Vi(D), whence Vi(C) = Vi(D). It follows A\ (C) =
A1(D) because the 6 sequences of 3 segments of curves of C with endpoint z,
are necessarily equivalent up to rotation. W

Lemma 2.12. Here, for each n € N and each complete folding t-curve C,
we represent A"(C') with segments of length 1. For each z € R?, we denote
by A™(x) the image of x in this representation. Then, for each x € R?
any complete folding t-curves C, D and each n € N large enough, we have
d(A™(x), A™(C)) < 3/4 and d(A™(C), A" (D)) < 3/2.

Proof. For each complete folding t-curve C' and each n € N, we obtain
A"TH((C) from A™(C) by replacing each sequence of 3 consecutive segments
with 1 segment, then scaling down the curve by /3. Before the second
operation, for each x € A"(C), there exists y € A" (C) such that d(z,y) <
1/2.

Consequently, for each € R? and each n € N, we have
d(A™ (z), A"H(C)) < (d(A™(x), A™(C)) + 1/2)//3, and therefore
A(A™ 1 (z), A1(C)) < (5/3/9)d(A(2), AM(C)) if d(A™(z), A™(C)) > 3/4
It follows d(A™(z), A™(C')) < 3/4 for n large enough.

The statement for the curves C, D is an immediate consequence. Wl

Now we consider a sequence X = (z,)neny C U with z,41 € V() for
each n € N, a sequence A = (\,)pen+ € {—1,+1}N* and the sequences
A, = (A1,...,\y) for n € N. For each n € N, each curve of C(A, 41, Zp41) 18
obtained by concatenation of 3 curves of C(A,,x,). We denote by C(A, X)
the set of inductive limits of curves C,, € C(A,, x,).

If there exists € U such that N,enVi(x,) = {2z}, then C(A, X) contains
3 half curves starting at  and 3 reversed such curves ending at x. We
denote by CT(A, X)) (resp. C~(A, X)) the set of curves obtained from C(A, X)
by connecting each terminal segment of reversed half curve with the initial
segment of half curve just at its left (resp. right).

Otherwise, we have N,enV;(z,) = 0. Then we write C°(A, X) = C(A, X).
By Proposition 2.5, each C*(A, X)) is a covering of the plane by complete
folding t-curves.
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Now, for each y € U and each k € N*, we denote by H(y, k) the regular
hexagon of center y such that each of its sides is the union of k sides of
triangles of P, and H*(y, k) its interior.

Proposition 2.13. Consider a sequence A = (A )gen- € {—1,+1}" and
two sequences X = (2 )ken, Y = (Yr)ken such that xpyq € Vi(xg) and ygyq €
Vi(yx) for each k € N. Then, for any «, 8 € {0, —, 4} such that C*(A, X) and
CA(A,Y) exist, each n € N* and any z,y € U, there exists z € UN H(y, 5.3")
such that C*(A, X) | H*(x,3") =2 CP(A,Y) | H*(2,3").

Proof. There exists t € Vo, o(22,42) such that x € H(t,2.3"), and there-
fore H*(z,3") C H*(t,3"™). For each u € Vanyi2(Yania), the sets C*(A, X) |
H*(t,3""Y) and C#(A,Y) | H*(u,3""!) are isomorphic, except possibly con-
cerning the way to connect the 6 segments with endpoint ¢ and the 6 segments
with endpoint w.

There exist u,v,w € Va,12(yonte) which form a 3" !-triangle containing
y, which implies u,v,w € H(y,3" ™). One of these points, say w, belongs to
Von+3(Y2ns3), while the 2 others belong to Wa,,13(y2,13). Then the connexions
of the 6 segments of C°(A,Y) in u and v are different.

Suppose for instance that the connexions of C*(A, X) in t are the same
as the connexions of C°(A,Y") in u. Then we have C*(A, X) | H*(t,3"+!) &
CA(N,Y) | H*(u,3""t). Consequently, there exists z € U N H (u,2.3") such
that C*(A, X) | H*(x,3") = CP(A,Y) | H*(2,3"). We have z € U N
H(y,5.3"). &

Proof of Theorems 2.1, 2.2, 2.3. It suffices to prove the results for oriented
curves, since they imply the results for nonoriented curves.

For the proof of Theorem 2.1, it is enough to consider a curve C' with
segments in F;. Then it follows from Proposition 2.5 that C' belongs to a
covering C*(A, X). Lemma 2.11 implies that C*(A, X) is the only covering
of the plane by oriented complete folding t-curves which contains C' and
satisfies (P). It satisfies the strong local isomorphism property by Proposition
2.13. Conversely, by Corollary 2.7, for each covering of the plane by oriented
complete folding t-curves, the local isomorphism property implies (P).

If C is a covering of the plane by oriented complete folding t-curves which
satisfies (P), then, for any x,y € U, the orientation of the 6 segments with
endpoint x and the orientation of the 6 segments with endpoint y are equiv-
alent up to translation. Consequently, if two such coverings are locally iso-
morphic, then they have the same orientation. We see from 3) of Proposition
2.5 that they are associated to the same sequence A. Conversely, Proposition
2.13 implies that any two such coverings are locally isomorphic if they have
the same orientation and if they are associated to the same sequence A. W
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Proof of Theorem 2.4. Throughout the proof, we use the notations and
the properties introduced just before Lemma 2.8.

First we show that each covering C contains no more than 3 curves. By
Lemma 2.11, there exist o € {0, —,+} and X = (2,)neny C U such that C is
obtained from C*(A, X) by forgetting its orientation.

If NpenVi(z,) = {2} with € U, then CT(A, X) (resp. C(A, X)) only
contains the 3 curves (4, sy, C3 passing through z: For each n € N, all
the segments with points in the interior of B(A™(x),1) belong to the 6 1-
folding subcurves of A"(C}), A"(Cy), A™(C5) which have z as an endpoint.
It follows that any other curve D in CT(A,X) (resp. C (A, X)) satisfies
d(A™(x), A™(D)) > 1 for each n € N, contrary to Lemma 2.12.

If NpenVi(x,) = @ and if CO(A, X) contains more than 3 curves, then it
contains 4 curves C, D, | F with D separating C, ' and E separating D, F'.
For each n € N, A"(D) is separating A"(C), A"(E) and A"(FE) is separating
A™MD), A™(F). Tt follows d(A™(C), A™(F)) > +/3 since, for any consecutive
segments r,s,t € A"(C)U A™(D) U A™(E) U A™(F), if r € A"(C), then
s € A"(CYUA™(D), t € A"(CY)UA™(D)UA™(E), and therefore s,t ¢ A"™(F).
This contradicts Lemma 2.12 for n large.

Now we consider the coverings C associated to A which contain 3 curves.
For each such C, there exists C, D, E € C distinct such that F(C) N D # @&
and F(C)NE # @.

If F(C) consists of 1 complete curve, then there exists € F(C') which
belongs to C, D, E. We have x € N,enVi(C).

Conversely, 3) is realized by any covering C associated to A such that
there exists € NyuenV,(C). Then C contains 3 curves, the isomorphism class
of C does not depend on z and C is invariant through a rotation of center x
and angle 27/3. We obtain a representative of the other isomorphism class
of coverings of that type by changing the connections in x.

If F(C') consists of 2 complete curves, then we can orient C, D, F in such
a way that Fp(C) = Fr(D) and Fr(C) = Fg(FE). We consider 2 segments
s C Fr(C), t C Fr(C) of length 1, and 2 sequences (Cy)nen, (Pp)nen such
that C' = U,,enC), and such that, for each n € N, (), is an n-folding t-curve,
P, e {I,M,S}and C, = ij_l. There exists an integer h such that s C Fr,(C,,)
and t C Fgr(C,) for each n > h. We consider the sequences («,),>n and
(Bn)n>n such that o, B, € {I,S}, s C Fra, (C) and t C Frg, (C,,) for each n.

For n > h, the properties s C Frq, (Cy)Fra, ) (Cny1) and t C Frg, (Cr)N
Frg, ., (Cpy1) respectively imply Fr,, (C27)) = Fra, (Cn) C Fra,.,(Cnt1) and
Frp, (CF) = Frp, (Cn) C Frp,y1 (Cry1). Considering C,, 1, we see that one

of the 4 cases below is realized:

P, = I, (O‘n;ﬁn) € {(LD? (L S)v (SvI)}v (an+1>ﬁn+1> = (LI);
Pn - S, (amﬁn) € {(178)7 (871)7 <S7 S)}> (QN+175n+1) = (S,S),
Pn = M7 (anaﬂn) - (S,I), (an-l—laﬁn-l—l) - (I,S), )\n-i-l - +17
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P, =M, (anvﬁn) = (Iv S)v (O‘n-l-laﬁn-kl) = (SvDa Ang1 = —L.

It follows that there exists m > h such that one of the properties below

is true for each n > m:

a) P, =T and (a,, 5,) = (I,1);

b) P, =S and (ay, £,) = (S,S);

c) B, =M; (an,Bn) = (I,S) and A\, = +1 for n even; (an, 5,) = (S,I) and
A, = —1 for n odd;

d) P, = M; (an, 5,) = (I,S) and A\, = +1 for n odd; (av,, 8,)
A, = —1 for n even.

The cases a) and b) imply U,enC,, # C, contrary to our hypotheses.

On the other hand, each of the cases c¢), d), for each of the values of A
which realize it, gives a covering of the plane by complete folding t-curves,
with 1 curve separating 2 others. This covering is determined by A modulo
a positive isometry. We obtain representatives of the 2 other isomorphism
classes of coverings by applying a rotation of angle F2m/3.

It remains to be proved that there exist 2* isomorphism classes of cov-
erings of the plane by 1 (resp. 2) complete folding t-curves associated to A.
We consider the complete folding t-curves C for which there exists a pair
((Cp)nen, (Pn)nen) such that C' = U,enC,, and such that, for each n € N, C,
is an n-folding t-curve, P, € {I,M,S} and C,, = C%,. Then C is determined
modulo a positive isometry by (P,)nen and there are countably many choices
of (P,)nen which give C, since any 2 such sequences only differ by a finite
number of terms. Consequently, it suffices to show that 2 choices of (P, )nen
give coverings by 1 (resp. 2) complete folding t-curves.

In order to obtain a curve C' which covers the plane, it suffices to have
FL(C5n) N FL(C5n+2) = @ and FR<C5n+2) N FR<O5H+4) = & for each n € N.
The first property is realized for Ps, = S, Ps,y1 = [if A5,00 = +1, and
P, =1, Ps,uqy = S if Asp00 = —1. The second property is realized for
Pspio=1, P53 =Sif Agpyu = +1, and Ps,i0 =S, P53 =1if Agppq = —1.
For each n € N, P54 can be chosen arbitrarily. It follows that 2“ choices
give coverings by 1 curve.

Now we prove that 2¢ choices give coverings by 2 curves. As only count-
ably many choices give coverings by 3 curves, it suffices to show that 2¢
choices give a curve C' with Fr,(C) # @.

For each n € N*, we consider the sequences (Py,...,P,_1), (C1,...,Cp),
(a1, ...,0p), with C; an i-folding t-curve for 1 < i < n, C; = C’ﬁfl and
Fra,(Ci) C Fra,,,(Ciy1) for 1 <9 < n —1. We observe that, for any such
sequences, there are 2 different ways to choose P, so that the (n + 1)-folding
t-curve C,, ;1 defined by C,, = Cf_’;l satisfies Fr,, (Cy,) C FL(Cphy1), and there-
fore Fra, (Cr) C Fra,,,(Cni1) for the appropriate y,41. W

(S,1) and

Remark. Each covering of the plane by 3 nonoriented complete folding t-
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curves is invariant through a central symmetry.
3. Peano-Gosper curves

In the present section, we obtain a set € of coverings of R? by sets of dis-
joint self-avoiding nonoriented curves, generalizing the Peano-Gosper curves,
such that:

1) each C € Q satisfies the strong local isomorphism property; any set of
curves locally isomorphic to C belongs to 2;

2) Q is the union of 2¥ equivalence classes for the relation “C locally isomor-
phic to D”; each of them contains 2 (resp. 2, 1, 0) isomorphism classes of
coverings by 1 (resp. 2, 3, > 4) curves.

Each C € Q gives exactly 2 coverings of R? by sets of oriented curves which
satisfy the local isomorphism property. They have opposite orientations.

For each regular tiling P of R? by hexagons and each center z of a tile of
P, we construct some tilings P,y,...r, of R? by isomorphic tiles such that, for
each n € N and any \j,..., A\, € {—,+}, x is the center of a tile of P,y,...x,
and, for n > 1, each tile of P,y,...n, is the union of 7 nonoverlapping tiles of
Pirs-r,_, With one of them surrounded by the 6 others.

Figure 3.1

We write P, = P. We consider the tilings P, and P,_ respctively given
by the first and the second part of Figure 3.1. The points of R? which are
common to 3 tiles of P, (resp. P,_) determine a regular tiling by hexagons
Q.. (resp. O, ).

We denote by A, (resp. A,_) the bijection which associates to each tile
of Py (resp. P,_) the tile of Q,, (resp. Q,_ ) with the same center. We
see from Figure 3.1 that, for each tile Q of Q,, (resp. Q, ), A} (Q) (resp.
A;1(Q)) is obtained by replacing each side S of Q with three consecutive
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sides of tiles of P. The first side is at the right (resp. left) of S and the third
side is at its left (resp. right) for the direction given by anticlockwise rotation
around the center of Q.

Forn >2and \y,..., N\, € {—,+} we write Ppy,..n, = A;/\ll((le)m,\Q...An).
Each P,y,...n, consists of isomorphic tiles with connected interior and con-
nected exterior. It is regular and invariant through a rotation of center x and
angle 7/3.

In each Py, ...\, each tile P has nonempty frontiers with 6 others. We
call sides of P these frontiers, which are unions of 3" sides of tiles of P. The
vertices of P are the endpoints of its sides.

For each n € N, any Ay,..., A, € {—,+} and any centers z,y of tiles of
P, each tile of Pyy,..n,— and each tile of Pyy,...\,,+ are isomorphic.

For any integers n > m > 1, we define some derivations Agy,...n,, on the
sets Pra.-n,- We use the definitions of A, and A,_ given above and we
write Agxa, (P) = Agr,, (- (Apr, (P)) -+ +) for any Aq,..., A\, € {—,+} and
each P € P.y,...n,. We have
AI)\r“)\m(Px)\l“-)\n) = (Ax)\r“)\m(thm)\m))x)\mﬂ-“)\n'

Remark. For each n € N, denote by P, the tile of center x in P,y,...,, with
A =+ =\, =+, and @, the tile with the same vertices as F, which
is the image of P, under a similarity. Then the limit of the tiles @, is the
Peano-Gosper island considered in [3, p. 46]. It is the union of 7 isomorphic
nonoverlapping tiles which are similar to it, with one of them surrounded by
the 6 others.

Now, for each A = (A )nen+ € {—,+}" , we consider the sequences X =
(n)nen of centers of tiles of P with x,,,1 = x, or z,,, ,,41 centers of adjacent
tiles of Py, z,..., for each n € N. For each such X and each n € N, we write
Py = Pror-n, and we denote by Py, the tile of P%, which contains z,,.
For n € N, we have P%, C Pyi' and each tile of Pii! is the union of 7
nonoverlapping tiles of P%,. We write Pxp = UpenPi,-

For each center u of a tile of P, there exists a unique sequence S, = (U )nen
with the properties above such that wyg = w and Pg,p = Pxa. We write
RuXA = UnENP,g’LuA'

We call a region of Px, any minimal nonempty closed subset R C R?
such that any tile of Px, is completely inside R or completely outside. Each
R, xn is a region of Pxa and each region of Px, is obtained in that way.

For each n € N and any centers u, v of tiles of P, P¢ ) and Pg , are dis-
joint, or they have one common side, or they are equal. If the third possibility
is realized for some n, then we have R,xn = R,xa. Otherwise, the second
possibility is realized for n large enough and R,x, R,xa are adjacent.

For any centers u, v, w of tiles of P, if Pg ., Pg x, P§ , are distinct for each
n € N, then, for n large enough, they have 1 common point and any 2 of them
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have a common side containing that point. Consequently, R,xa, Roxa, Ruwxa
are the three regions of Px,.

It follows that one of the three following properties is true for each Pxp:
1) There is 1 region.
2) There are 2 regions; their frontier is a complete curve which consists of
sides of hexagons of P.
3) There are 3 regions with 1 common point which is a vertex of tiles of P%
for each n € N; the frontier of 2 regions is a half curve starting from that
point which consists of sides of hexagons of P.

Proposition 3.1. For each A, the isomorphism classes of sets Px, are
countable; there exist 2 classes of sets with 1 region, 2“ classes of sets with
2 regions, and 2 classes of sets with 3 regions, obtained from each other by a
rotation of angle /3.

Proof. For each sequence X = (z,)nen such that Px, exists, we write
Rxx = Ry,xa. For any such sequences X, Y, we write X ~1 Y if Pxp = Pya,
X ~o Y if PXA = PYA) and X ~3 Y if P)(A = PYA and RXA = RYA~

Each ~j3-class is countable since any two sequences in such a class are
ultimately equal. As each Px, only has finitely many regions, each ~y-class
is also countable.

For any sequences X,Y such that X ~; Y there exist a sequence Z and
a translation 7 such that X ~y Z and 7(Z) = Y; we have 7(P) = P. As only
countably many translations satisfy that property, each ~-class is the union
of countably many ~»-classes, and therefore countable.

Now we prove the second part of the proposition.

First we consider a vertex w of a tile of P and the sequences Y such that w
is a vertex of P}, for each n € N. This property is true for exactly 6 sequences
Yy,...,Ys with Ry, Ry,a, Ry,a distinct regions of Py;p = Py,a = Pyia,
Ry,ANRy,sNRy,p» = {w} and Yy, Vs, Y5 obtained from Y7, Ys, Y3 by a rotation
of center w and angle 7/3.

The statement concerning the classes of sets with 3 regions follows since,
for each sequence X, if Px has 3 regions with the common point w, then X
is ultimately equal to some Y;.

Now, it suffices to prove that there exist 2 sequences X = (z,,)nen such
that Pxa has 1 region and 2“ sequences with 2 or 3 regions.

In order to obtain a sequence X with 1 region, it suffices to choose suc-
cessively the elements x; so that P! is contained in the interior of P&, for
each k even. Consequently, there are 2 such sequences.

For each side S of a tile of P, in order to obtain a sequence X with 2
or 3 regions, it suffices to choose successively the elements x; so that S is
contained in a side of P¥,. There are 3 possible choices for each k > 1, and
therefore 2¢ such sequences. W
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Now we define the curves associated to P. The set V of vertices of
hexagons of P is the disjoint union of 2 subsets which contain no consec-
utive vertices of an hexagon. We choose one of them and we denote it by
Ww.

An oriented bounded curve (resp. half curve, complete curve) is a sequence
C = (Ak)o<k<n (resp. (Ag)ken, (Ak)rez) of consecutive oriented segments,
each of them joining 2 vertices of an hexagon of P which belong to W, such
that each hexagon contains at most 1 segment and each endpoint of C| if it
exists, only belongs to 1 segment. With this definition, C' is self-avoiding.

For each oriented bounded curve (Ao, ..., A,), we consider the sequence
(aq,...,a,) with each aj equal to +2,+1,0, —1, —2 if the angle between A;_;
and Ay is +27/3,47/3,0,—m/3, =27 /3. For each sequence S = (ay,...,a,),
we write S = (—ay,...,—a;). We have S = S. The curves associated to S
are obtained by changing the orientation of the curves associated to S.

For each n € N, any Ay,..., A\, € {—, +}, each center w of a tile of P and
each P € Py, ...\,, we say that a curve C'is a covering of P if it is contained
in P and if, for each m € {0,...,n} and each @ € Pyy,..n,, contained in
P, the segments of C' contained in () form a subcurve whose endpoints are
vertices of Q).

For any integers n > m > 1 and each covering C' of P € Pyy,..n,, We
obtain a covering Ay, ..x,, (C) of Ay, ..a,, (P) by replacing each C' | @ for
Q € Punr,..n, contained in P with the segment from its initial point to its
terminal point. We have Ay, .5, (C) = Ay, (- (A, (C)) - ).

Now we define by induction on n € N* some sequences
Sypen, € {—=2,—1,0,+1, 42} " for Ay, ..., A € {—, +}. We write
Sy =8=(+1,42,—-1,-2,0,-1), S_ = =585,

S.y =(S,+1,5,+1,8,—-1,8,—1,8,+1,8,—1,5), S_._ = -S4,

S, =(S,-1,8,-1,8,+1,5,+1,5,-1,5,+1,5), S_, = —S,_.

For n > 3, S),..», is obtained from Sy,..n, = (a1,...,am-1_1) by replacing
each subsequence (argy1,. .., arps6) equal to Sy, (resp. Sh,) with Sy,», (vesp.
S)\l/\Z)'

The first (resp. second) part of Figure 3.2 below shows a covering of a tile
of Py (resp. P,_) by a curve associated to Sy (resp. S_).
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Figure 3.2

The first (resp. second) part of Figure 3.3 below shows a covering of a tile
of Pyiy (resp. Py,i_) by a curve associated to S,y (resp. Sy_).

Figure 3.3

Proposition 3.2. Consider w € R?, n € N* \q,..., A € {—,+} and
P € Pyx,..n,- Then P has 6 coverings by oriented curves, each of them
determined by its initial and terminal points. Each covering of P is associated
to Si,.a, OF Sy, ..a,- The 3 coverings associated to Sj,...,, are obtained from
one of them by rotations of angles 2k7 /3, and the 3 others by changing their
orientations. For n > 2 if C' is a covering of P associated to Sy,..., (resp.
Sxi-a,), then Ay, (C) is a covering of Ay, (C) associated to Sh,...n, (resp.
Sgedy )
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Proof. We see from Figure 3.2 that Proposition 3.2 is true for n = 1. Now
we show that it is true for n > 2 if it is true for n — 1.

By the induction hypothesis, there exists a covering D of Ay, (P) as-
sociated to Sy,...,. Each segment A of D is a covering of an hexagon
Hy € Ayx,(Puwa,--n,) which is contained in Ay, (P). We obtain a cover-
ing C of P with A, (C) = D by replacing each such A with a covering of
A;}\l (H ) which has the corresponding initial and terminal points.

As P is invariant through a rotation of angle 27/3, it has 3 coverings
obtained from C by rotations of angles 0, 27/3, 47/3, and 3 others obtained by
changing their orientations. These coverings are associated to the 6 possible
pairs of initial and terminal points.

Any other covering B of P has the same initial and terminal points as one
of the 6 coverings above, say C’. Then A, (B) and Ay, (C’) are coverings
of Ay, (P) with the same initial and terminal points. By the induction
hypothesis, we have A, (B) = Ay, (C). Consequently, for each @ € Py,
contained in P, B | @ and C’ | @) are coverings of () with the same initial
and terminal points, which implies B [ Q = C' | Q. It follows B = C".

Now it suffices to show that C is associated to S),..n,. We see from
Figure 3.3 that it is true for n = 2. For n > 3, we write C' = (C})o<p<rn—1
and D = (Dy)o<p<n—1-1. We consider the associated sequences
(Ch)1§h§7"71 € {—2, —1, 0, —|—1, +2}7n_1 and
(dn)repern-i_1 € {—2,—1,0,+1,+2}"" L.

For 0 < k < T2 — 1, we write U, = (Ch)4gk+1§hg4gk+4g and V, =
(dn)7k+1<n<7it6. There exists Q. € Puya,n, contained in P such that Uy is
associated to C' | Q and V}, is associated to D | Ay, (Qr) = Auwxr, (C | Q).
Consequently, we have Uy = Sy,», (resp. Sy,»,) if and only if V, = S, (resp.
Shy)-

It remains to be proved that cagr, = d7; for 1 < k <7 2—1. AsU,_,,U; €
{Sxrs Sain, > there exists T € {Sy,, Sy, } such that Uy_; is ending with T
and Uy, is beginning with T'. It follows that the angle between Cyg, and Ciopi1
is equal to the angle between D7, and D71, which implies cyor = d7. B

Example. The Peano-Gosper curves considered in [3, p. 46] and [2, p. 63]
are associated to the sequences 7, = S),.., with \y = --- =\, = +. The
case n = 2 is shown in the first part of Figure 3.3. We have

Tpir = (T, +1,T,,,+1,T,,, —1,T,,, =1, T}, +1, T}, —1,T},)

for each n € N*. In [2] and several papers mentioned among its references,
W. Kuhirun, D.H. Werner and P.LL. Werner prove that an antenna with the
shape of a Peano-Gosper curve has particular electromagnetic properties. We
can suppose that similar properties exist for the other values of \1,..., A,.

Corollary 3.3. For each w € R? each n € N, any Ay,..., \py1 € {—, +}
(resp. A1y .., Ans2 € {—,+}) and each P € Pyy,...n,, each covering of some
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Q € Purranss (1eSP. Puirianse) by a nonoriented (resp. oriented) curve con-
tains copies of the 3 (resp. 6) coverings of P by nonoriented (resp. oriented)
curves.

Proof. By Proposition 3.2, it suffices to show that each covering of some @) €
Purr-anps (16SD. Purian,e) by a nonoriented (resp. oriented) curve contains
3 (resp. 6) nonisomorphic coverings of tiles P € P,,y,..., by nonoriented (resp.
oriented) curves. We see from Figure 3.2 (resp. 3.3) that the statement for
nonoriented (resp. oriented) curves is true for n = 0.

For each n > 1 and each covering C' of some @ € Py .., (resp.
Puwrr-ans2) by @ nonoriented (resp. oriented) curve, we consider some hexag-
onal tiles Qq, @2, Q3 (resp. Q1,...,Qg) contained in Ay, ...\, (Q) such that
the nonoriented (resp. oriented) segments Ay, ..\, (C) [ @; are nonisomor-
phic. Then the nonoriented (resp. oriented) curves C' | A;il_n)\n(Qi) =
At (Duwria, (C) | Q;) are nonisomorphic. W

Lemma 3.4. Here the curves are nonoriented. Consider w € R?, n € N,
AMyoooy Apat1 € {—, +}, P e Pw)\lu.)\n“, Q1. .., Q7 € Pyx,..a, such that P =
Q1U---UQ7, and Q € {Q1,...,Q7}. If Q contains the center of P, then each
of the 3 coverings of () extends into a covering of P. Otherwise, denote by x;
(resp. xs, x3) the vertex of @) belonging to W which is a vertex of 1 (resp. 2,
3) tiles Q;. If xy is not a vertex of P, then the covering of () which joins x9
and z3 extends into 3 coverings of P and the 2 other coverings of ) do not
extend. If x1 is a vertex of P, then the covering of ) which joins x; and z»
(resp. o and x3, x; and x3) extends into 2 (resp. 1, 0) coverings of P.

Proof. We see from Figure 3.2 that Lemma 3.4 is true for n = 0. Then, as
in the proof of Corollary 3.3, we use the derivations A, y,...\, to show that it
is also true forn >1. A

For each Px,, we say that a curve C'is a covering of a region R of Px, if
C C R and if C' contains a covering of each P € Px, contained in R. We say
that a set C of disjoint complete curves is a covering of Px, if each P € Pxy
has a covering by a subcurve of a curve of C. Then each region of Px, also
has a covering by a subcurve of a curve of C.

Proposition 3.5. We consider nonoriented curves. Any region R of some
Pxa has a covering by a complete curve. This covering is unique if R ¢ R?. If
R is the union of an increasing sequence of tiles with 1 common vertex y € W,
then R also has a unique covering by a half curve and y is the endpoint of
that curve. Otherwise, no such covering exists.

Proof. We have R = U, en P, for an increasing sequence (P, )nen € XpnenPia-
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For each m € N, consider the nonempty set FE,, which consists of the
coverings of P,, with endpoints different from the common vertex of the tiles
P, if it exists. Then, for m < n, each element of E, gives by restriction
an element of F,,. By Konig’s lemma, there exists an increasing sequence
(C)nen € XnenEn; UnenC,y, is a covering of R by a complete curve.

Now we can suppose R & R? for the remainder of the proof. Then there
exists h € N such that, for each n > h, P, does not contain the center of
P,.1. For n > h, denote by y> (resp. y2, y3) the vertex of P, belonging to
W which is a vertex of 1 (resp. 2, 3) tiles of P%, contained in P, ;.

If R is the union of an increasing sequence of tiles with a common vertex
belonging to W, then there exists k¥ > h such that y! = y} for each n > k.
For n > k, denote by F,, the nonempty set which consists of the coverings
of P, with endpoint y;. Then, for k¥ < m < n, each element of F,, gives by
restriction an element of F,,,. By Konig’s lemma, there exists an increasing
sequence (Dy,)n>k € Xp>pFn; UnenD,, is a covering of R by a half curve with
endpoint y;.

Conversely, suppose that R has 2 coverings C, D. For each n € N, write
C,=C]|P,and D, =D | P,. Consider k > h such that Cy # Dj.

For n > k, we have C,, # D,,. As C,, = Cp,.1 | P, and D, = D1 | Py,
it follows from Lemma 3.4 applied to P, and P, that y,lL is a vertex of P,
and that one of the curves C,, D, connects y. and y2, while the other one
connects y2 and 3.

Consequently, we have y! = yl for n > k, one of the curves C,D is a
complete curve, the other one is a half curve with endpoint y;. and there is
only one possibility for each of them. W

Now we state and prove our main results. As above, we only consider
curves with segments in W.

Theorem 3.6. For each A, we consider the coverings of the sets Pxa by sets
of nonoriented complete curves:

1) Suppose that Pxp has 1 region. Then each covering of Px, consists of
1 curve. If X is ultimately constant, then Px, has 3 coverings, obtained
from one another by rotations of angles +27/3. Otherwise, Px, has 1 or 2
coverings, and each case is realized for 2¥ values of X.

2) If Pxa has 2 regions, then Px, has 1 covering. It consists of 2 curves.
This case is realized for 2 values of X.

3) If Pxa has 3 regions and if their common point y does not belong to W,
then Pxa has 1 covering. It consists of 3 curves obtained from one another
by rotations of center y and angles +27/3.

4) If Pxa has 3 regions and if their common point y belongs to W, then Px
has 3 coverings obtained from one another by rotations of center y and angles
+27/3. Each covering of Px, consists of 2 curves. One of them is a covering
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of a region. The other one is the union of 2 half curves with endpoint y, which
are equivalent modulo a rotation of center y and angle 27/3; each half curve
is a covering of a region.

Theorem 3.6 will be proved after the remarks and the example below,
which concern nonoriented curves:

Remark. It follows from Theorem 3.6 that, for each region R ¢ R? of some
Pxa, the covering of R by a complete curve can be extended into 1 covering
of Pxa. The covering of R by a half curve, if it exists, can be extended into 2
coverings of Px, by complete curves, which are equivalent modulo a rotation
of angle 27/3.

Remark. For each A, as each Px, has finitely many coverings, Proposition
3.1 implies that each isomorphism class of coverings of sets Px, is count-
able. Consequently, it follows from Theorem 3.6 that we have 2* isomorphism
classes of coverings for case 2) and 2“ classes for case 1) with X not ultimately
constant. On the other hand, Proposition 3.1 and Theorem 3.6 imply that
we have 1 isomorphism class for case 3), 3 classes for case 4) and 3 classes for
case 1) with X ultimately constant.

Figure 3.4

Example. For each n € N*, denote by ), the Peano-Gosper curve associated
to the sequence T,,. Consider the inductive limit B (resp. C, D), defined up
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to rotation, of the curves C,, with each C), embedded in C,,; by identifying
T,, with its fourth (resp. third, first) copy in

Tpir = (T, +1,T,,+1, T, —1,T,,, —1, T, +1, T, —1,T,,).

Then there exist: 1) a covering of R? by 3 copies of the complete curve B; 2)
a covering of R? by a copy of the complete curve C, and 2 copies of the half
curve D which form a complete curve (see Figure 3.4 above).

Proof of Theorem 3.6. We write X = (z,),en. For each n € N, we
consider the tile P, € P¥, which contains z,,.

Proof of 1). We have R? = U,enP,. Each covering of Px, consists of 1
complete curve by Proposition 3.5.

First we suppose that there exists h such that z,, = xj; for each n > h.
Then, by Proposition 3.2, for m > h, the 3 coverings of P,, are obtained from
one of them by rotations of center z;, and angles 2k7/3, and they are the
restrictions of the 3 coverings of P, for each n > m. It follows that Px, has
exactly 3 coverings, which are the inductive limits of the coverings of the tiles
P, for n > h, and therefore obtained from one of them by rotations of center
xp, and angles 2k /3.

From now on, we suppose X not ultimately constant. First we observe
that Pxa cannot have 3 coverings. Otherwise, for n large enough, these 3
coverings would give by restriction 3 distinct coverings of P,, which is not
possible when x,.; # z, since, by Lemma 3.4, at most 2 coverings of P,
extend into coverings of P,1.

By Lemma 3.4, for each n € N and any coverings A # B of P,, we have
2 coverings of P,,; which extend A and B in 2 cases: first if P, contains
the center of P,.q, second if P, does not contain the center of P, q, if the
common endpoint of A and B belongs to exactly 2 tiles of P%, contained in
P, .1, and if the other endpoint of A or the other endpoint of B is a vertex of
P, 1. The first case is realized for x,,.1 = x,, and the second one for another
choice of z,1.

It follows that, for any coverings C' # D of some P € P and each K C N
with K and N — K infinite, we can choose X = (z,)nen, With 2 center of
P and z,,; = z, if and only if n € K, so that there exist some increasing
sequences (C)nen, (Dp)nen with Cy = C, Dy = D and C,,, D,, coverings of
P, for each n € N. For each n € N— K, supposing that x,,, C,,, D,, are already
defined, we choose x,,1 in such a way that the second case above is realized
for A =C, and B = D,,. Then Px, only has 1 region and U,enCh, UpenD,
are the only coverings of Pxn.

By Lemma 3.4, for each n € N, if z,,,1 # x,, and if the point of P, which
is a vertex of P,;; does not belong to W, then the 3 coverings of P, give
by restriction the same covering of P,, so that only 1 covering of P, is the
restriction of a covering of Px,. There are 2¢ different ways to choose X so
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that this property is true for infinitely many integers n, and so that x,,.; = x,
is also true for infinitely many integers n. Then Px, only has 1 covering and
1 region.
Proof of 2), 3), 4). Suppose that Px, has 2 or 3 regions. Write R =
UnenPr-

If R is not the union of an increasing sequence of tiles with 1 common ver-
tex, then Px, has 2 regions and the second region satisfies the same property.
By Proposition 3.5, each region has a unique covering and it is a complete
curve. The union of these coverings is the unique covering of Px,.

This case is realized if:

a) there exists a sequence (X, ),eny with X, side of P, and ¥, C X,,4; for each
n € N;
b) there is no common vertex of the tiles P, for n large.

For each n € N and each choice of z1, ..., x, compatible with a), there are
3 choices of x,.; compatible with a). Consequently, there are 2* sequences X
which satisfy a), and also 2¥ sequences which satisfy a) and b) since countably
many sequences do not satisfy b).

If R is the union of an increasing sequence of tiles with one common vertex
y, then Px, has 3 regions Ry, Ry, R3 obtained from R by rotations of center
y and angles 2k /3.

If y does not belong to W, then, by Proposition 3.5, each R; has a unique
covering. These coverings are complete curves obtained from one of them by
rotations of center y and angles 2k7 /3. Their union is the unique covering of
Pxa.

If y belongs to W, then, by Proposition 3.5, each R; has 1 covering by a
complete curve and 1 covering by a half curve with endpoint y. Each of the
3 coverings of Px, is obtained by taking a covering by a complete curve for
1 region and 2 coverings by half curves for the 2 other regions. The 2 half
curves are equivalent modulo a rotation of center y and angle 27/3. They
form a complete curve since y is their common endpoint. W

Now, for each set C of oriented curves, we consider the following property:
(P) If 2 segments of curves of C are opposite sides of a rhombus, then they
have opposite orientations.

We observe that (P) is satisfied if C consists of 1 complete curve or 1 curve
which is a covering of a tile of some Pxy.

Theorem 3.7. The local isomorphism property implies (P) for coverings by
sets of oriented curves. The strong local isomorphism property is true for
the coverings of sets Px, by sets of nonoriented curves or by sets of oriented
curves which satisfy (P).

Remark. Theorem 3.7 implies that each covering of some Px, by a set of
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oriented curves satisfies the local isomorphism property or can be transformed
into a covering which satisfies that property by changing the orientation of
one of the curves.

Theorem 3.8. For each A and any X,Y, any coverings of Px, and Py, by
sets of nonoriented curves are locally isomorphic. Any coverings of Px, and
Py by sets of oriented curves are locally isomorphic if they satisfy (P).

Remark. It follows from Theorem 3.6 that each local isomorphism class of
coverings by sets of nonoriented curves associated to a sequence A contains
2% (resp. 2, 1, 0) isomorphism classes of coverings by 1 (resp. 2, 3, > 4)
curves.

Proof of Theorem 3.7 and Theorem 3.8. It suffices to prove the results
for oriented curves since they imply the results for nonoriented curves.

First suppose that a covering C of some Py, satisfies the local isomorphism
property. Consider 2 segments of curves of C which are opposite sides of a
rhombus A. Then there exist a translation 7 and a tile T' of Px, such that
7(A) is contained in T" and 7(ANC) = 7(A) N C, where C is the curve of
C which contains a coverig of T. The 2 segments have opposite orientations
because their images through 7, which belong to the same curve, necessarily
have opposite orientations.

Now, for each X such that Px, exists, each n € N and each x € R?, we
consider the tile P¢, € P¥%, with center z if it exists, and the union @Y%,
of the 3 tiles with common vertex x belonging to P%, if they exist. We are
going to prove the following property, which implies the other statements of
Theorem 3.7 and Theorem 3.8:

For any sets X, Y such that Pxa, Pya exist, for any coverings C, D of Pxa, Pya
by sets of curves which satisfy (P), for each n € N and for each x € R? such
that Q% exists, each Pﬁf contains some @y, with D | Qy, = C | Q%,.-

By Corollary 3.3, for any y, z € R? such that Py} and P exist, each
covering of P*I* contains copies of the 6 coverings of PQJQ. Consequently,
it suffices to show that, for each z € R? such that Q%, exists, each P{}f
contains some )y, such that C [ %, and D [ @}, are equivalent modulo a
rotation of angle 2k7/3 and/or changing the orientation of all the curves.

We write A = (Mp)gens, X = (Zk)reny and Y = (yr)gen. We have
Axn)\l...,\n(c> r Al“n)\l'"/\n(P) = Amn/\l...)\n(c r P) for each P € P?(A and
Ayn)\l"')\n(,D) r Ayn>\l"')\n<P) = Ayn)\l"')\n<,D r P) for each P € ,P}@'A

For any z,y € R?, C | Q%, and D | (¥, are equivalent modulo a transla-
tion, or a rotation of angle 2k7 /3, or changing the orientation of the curves,
or a combination of these operations, if and only if the same property is
true for Axn/\l...)\n(C) r Amn)\l"')\n(Q§x) and Ayn/\l...)\n(D) r Ayn)\l'"/\n(Q@y)'
Consequently, it suffices to prove the statement for n = 0.
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Figure 3.5 below shows representatives of the 9 equivalence classes of
possible configurations for C | Q%,, modulo the operations mentioned just
above. We see from Figure 3.3 that, for each Curve C' which is a covering of
some Py, each of these classes is realized by C' | Q5. for some Q5., C P, B

BREY
N

Figure 3.5

References

[1] D. Chandler and D.E. Knuth, Number Representations and Dragon Curves
I and IT | Journal of Recreational Mathematics, volume 3, number 2, April
1970, pages 66-81, and number 3, July 1970, pages 133-149.

[2] W. Kuhirun, Simple procedure for evaluating the impedence matrix of
fractal and fractile arrays, Progress in Electromagnetics Research 14 (2010),
61-70.

[3] B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Com-
pany, New York, 1983.

[4] F. Oger, Paperfolding sequences, paperfolding curves and local isomor-
phism, Hiroshima Math. Journal 42 (2012), 37-75.

[5] F. Oger, The number of paperfolding curves in a covering of the plane,
Hiroshima Math. Journal 47 (2017), 1-14.

Francis OGER

UFR de Mathématiques, Université Paris 7
Batiment Sophie Germain

8 place Aurélie Nemours

75013 Paris

France

E-mail: oger@math.univ-paris-diderot.fr

30



