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We develop mathematical methods which allow us to study asymptotic properties of solutions to the three dimensional Navier-Stokes system for incompressible fluid in the whole three dimensional space. We deal either with the Cauchy problem or with the stationary problem where solutions may be singular due to singular external forces which are either singular finite measures or more general tempered distributions with bounded Fourier transforms. We present results on asymptotic properties of such solutions either for large values of the space variables (so called the far-field asymptotics) or for large values of time.

Introduction

Singular solutions to the Navier-Stokes system. While a proof of a regularity of weak energy solutions to an initial-boundary value problem for the Navier-Stokes system seems to be still out of reach, several advances were made in the opposite direction of the study of singular (and sometimes exact) solutions for these equations. In fact, as observed by Heywood [START_REF] Heywood | Remarks on the possible global regularity of solutions of the three-dimensional Navier-Stokes equations[END_REF], "it is easy to construct a singular solution of the Navier-Stokes equations that is driven by a singular force. One simply constructs a solenoidal vector field u that begins smoothly and evolves to develop a singularity, and then defines the force to be the residual." Such singular solutions satisfy, usually in a distributional sense, the incompressible Navier-Stokes system (1.1)

u t + (u • ∇)u -∆u + ∇p = f, ∇ • u = 0, x ∈ R 3 , t > 0,
where an external force f = f (•, t) is singular for some values of time t. The purpose of this paper is to provide a systematic approach to the study of a large space and time behavior for such singular solutions. More precisely, we develop mathematical tools which allow us to study asymptotic properties of solutions corresponding to external forces which are either singular finite measures or more general tempered distributions with bounded Fourier transforms. The following three examples of singular solutions fall within the scope of this work.

The Slëzkin-Landau solutions U β (x), P β (x) β∈R 3 satisfy the stationary Navier-Stokes system with the singular external force

(1.2) -∆U β + U β • ∇ U β + ∇P β = βδ 0 , x ∈ R 3 ∇ • U β = 0,
where δ 0 stands for the Dirac measure supported at the origin and β ∈ R 3 is a constant vector. Such solutions satisfy the system in a weak sense and in a particular case of β = (β 1 , 0, 0), they are given by the following explicit formulas (1.3)

U β 1 (x) = 2 c|x| 2 -2x 1 |x| + cx 2 1 |x|(c|x| -x 1 ) 2 , U β 2 (x) = 2 x 2 (cx 1 -|x|) |x|(c|x| -x 1 ) 2 , U β 3 (x) = 2 x 3 (cx 1 -|x|) |x|(c|x| -x 1 ) 2 , P β (x) = 4 cx 1 -|x| |x|(c|x| -x 1 ) 2 ,
where |x| = x 2 1 + x 2 2 + x 2 3 . The parameter c in expressions (1.3) is an arbitrary constant such that |c| > 1 and is related to the parameter β 1 ∈ R by the formula (1.4)

β 1 = β 1 (c) = 8πc 3(c 2 -1) 2 + 6c 2 -3c(c 2 -1) log c + 1 c -1 .
Notice that the function β 1 = β 1 (c) is decreasing on (-∞, -1) and (1, +∞). Moreover,

lim c→1 β 1 (c) = +∞, lim c→-1 β 1 (c) = -∞ and lim |c|→∞ β 1 (c) = 0.
These explicit stationary solutions seem to be first calculated by Slëzkin [START_REF] Slëzkin | On a case of integrability of the complete differential equations of a viscous fluid[END_REF] (see Appendix in [START_REF] Galaktionov | On blow-up "twistors" for the Navier-Stokes equations in R 3 : a view from reaction-diffusion theory[END_REF] for a translation of this paper), rediscovered by Landau [START_REF] Landau | A new exact solution of Navier-Stokes equations[END_REF], and reported and discussed in other textbooks and papers, see e.g. [30, p. 82], [3, p. 206], [START_REF] Squire | The round laminar jet[END_REF][START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF][START_REF] Tian | One-point singular solutions to the Navier-Stokes equations[END_REF]. Here, we would like to note that the construction of the Slëzkin-Landau solutions from the work [START_REF] Tian | One-point singular solutions to the Navier-Stokes equations[END_REF] inspired the authors of [START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF] to write their paper. Recently, Šverák [START_REF] Šverák | On Landau's solutions of the Navier-Stokes equations[END_REF] proved that the Slëzkin-Landau solutions (1.3) are the only stationary solutions which are invariant under the natural scaling of the equations, namely under the scaling (1.5) u(x) → λu(λx) and p(x) → λ 2 p(λx) for λ > 0.

A time dependent version U γ = U γ (x, t) of the Slëzkin-Landau solutions (1.3) has been constructed in the paper [START_REF] Karch | Time-dependent singularities in the Navier-Stokes system[END_REF] by considering the Cauchy problem (1.6)

U γ t -∆U γ + (U γ • ∇)U γ + ∇P γ = βδ γ , x ∈ R 3 , t > 0, ∇ • U γ = 0, U γ (0) = 0 with constant β ∈ R 3 , the shifted Dirac delta measure δ γ(t) = δ(• -γ(t))
, and a Hölder continuous function γ : [0, ∞) → R 3 . It was shown in [START_REF] Karch | Time-dependent singularities in the Navier-Stokes system[END_REF] that the solutions U γ = U γ (x, t) and P γ = P γ (x, t) to problem (1.6) are locally bounded away from the graph of the curve Γ = {(γ(t), t) ∈ R 3 × [0, ∞) : t 0} and are singular along this curve, see Remark 2.7 below for more comments on these solutions. Moreover, it was proved in the recent paper [START_REF] Karch | Singularities of certain finite energy solutions to the Navier-Stokes system[END_REF] that singular solutions of problem (1.6) have finite energy, namely, axisymmetric, and they belong to the space C ∞ (R 3 \ {(x 1 , x 2 ) = 0}) with a possible singular ray {(x 1 , x 2 ) = 0}. It was shown in the recent preprint [START_REF] Li | Asymptotic stability of homogeneous solutions of incompressible stationary Navier-Stokes equations[END_REF] that such singular solutions satisfy, for a certain range of parameters, the stationary Navier-Stokes system

(1.7) -∆U + (U • ∇) U + ∇P = F, x ∈ R 3 , ∇ • U = 0,
where F is a tempered distribution defined by the formula

(1.8) F ϕ = 4πc ∞ -∞ log |x 3 |∂ x 3 ϕ(0, 0, x 3 ) dx 3 -bϕ(0) e 3
for every ϕ ∈ S(R 3 ). Here, c, b ∈ R are suitable constants and e 3 = (0, 0, 1). It is wellknown that the Fourier transform of the Dirac measure δ 0 ϕ = ϕ(0) is give by the constant (2π) -3/2 (with the Fourier transform defined as in (2.6)). It follows from Lemma 3.14 below that the Fourier transform of the distribution F defined in (1.8) is represented by the bounded function

F (ξ) = 4πc2 -3 2 π -1 2 i sgn ξ 3 -b(2π) -3 2 e 3 .
Cauchy problem in scaling invariant spaces. Before we present the results from this work, we recall related results on the existence of global-in-time solutions to the Cauchy problem (1.1) for the Navier-Stokes system in R 3 in scaling invariant spaces.

Here, a Banach space X is called scaling invariant if its norm satisfies v X = λv(λ•) X for all v ∈ X and all λ > 0. There is a rich literature about existence of global-in-time solutions with small initial data in scaling invariant spaces such as homogeneous Sobolev space Ḣ1/2 (R 3 ), the Lebesgues space L 3 (R 3 ), the Marcinkiewicz space L 3,∞ (R 3 ), and the Besov, Morrey, weak-Morrey, Fourier-Besov, weak-Herz, Fourier-Herz, Besov-Morrey, BMO -1 , ... spaces. We refer the reader to the review [START_REF] Cannone | Harmonic analysis tools for solving the incompressible Navier-Stokes equations[END_REF] and to the monograph [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF] for a discussion of those results and for references. Most of those existence results are proved by using the Kato approach [START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions[END_REF] that consists in applying the Banach fixed point argument in a suitable time-dependent space which norm is composed of two parts, where the usual norm of the persistence space L ∞ (0, ∞); X is supplemented the auxiliary time-weighted norm sup t>0 t α u(•, t) Y for another Banach space Y .

Navier-Stokes system with external forces. In order to apply the Kato approach to construct small global-in-time solutions to the Cauchy problem for system (1.1), one should consider a force f = f (x, t) from another Banach space with a norm invariant under the scaling (1.9)

f λ (x, t) = λ 3 f (λx, λ 2 t).
Such results are contained, for example, in the paper [START_REF] Cannone | On the non-stationary Navier-Stokes equations with an external force[END_REF], where f = divF with F ∈ L s (0, ∞), L q (R 3 ) for 2/s + 3/q = 2 with 2/3 < q < ∞. More recently, global-in-time solutions have been constructed to this problem in the case of external forces from the Lorentz space L s,∞ (0, ∞), L q,∞ (R 3 ) for 2/s + 3/q = 3 with 1 < q < ∞ ( [START_REF] Kozono | Navier-Stokes equations with external forces in Lorentz spaces and its application to the self-similar solutions[END_REF]), from timeweighted Besov spaces ( [START_REF] Kozono | Navier-Stokes equations with external forces in time-weighted Besov spaces[END_REF]), and from the homogeneous Besov space with both negative and positive differential orders ( [START_REF] Kozono | Characterization of initial data in the homogeneous Besov space for solutions in the Serrin class of the Navier-Stokes equations[END_REF]).

The Kato two-norm approach cannot be applied to solutions which do not decay as t → ∞, for example, in the case of the Navier-Stokes system (1.1) with a time independent external force. Here, global-in-time solutions corresponding to small initial conditions and small external forces should be constructed in a scaling invariant space L ∞ (0, ∞), X , where only one natural norm sup t>0 • X is involved. To the best of our knowledge, the Marcinkiewicz space L 3,∞ (R 3 ) ( [START_REF] Meyer | Wavelets, paraproducts, and Navier-Stokes equations[END_REF][START_REF] Yamazaki | The Navier-Stokes equations in the weak-L n space with time-dependent external force[END_REF]), the space PM 2 ([31, 10]), the Fourier-Besov space F Ḃ2-3 p p,∞ with p > 3 ( [START_REF] Konieczny | On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations[END_REF]), the weak-Herz spaces ( [START_REF] Tsutsui | The Navier-Stokes equations and weak Herz spaces[END_REF]), and the weak Morrey space M p,∞,3-p with p ∈ (2, 3] ( [START_REF] Lemarié-Rieusset | On some classes of time-periodic solutions for the Navier-Stokes equations in the whole space[END_REF]) are the only spaces where such an one norm approach is possible. In general, solutions obtained in this setting are only time-weakly continuous at t = 0 because of the lack of strong continuity at t = 0 of the heat semigroup {S(t)} t≥0 = {e t∆ } t≥0 in X.

In this work, we choose an approach from [START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF] where small solutions of the Cauchy problem for system (1.1) have been constructed in the space PM 2 . We are convinced, however, that our ideas presented in this work can be extended to solutions from above mentioned spaces, where one norm approach to construct global-in-time solutions is possible.

Stationary solutions. In this work, we deal also with stationary solutions satisfying the system

(w • ∇)w -∆w + ∇p = g, ∇ • w = 0, x ∈ R 3 ,
where the existence and stability of solutions have been studied in several works either in the case of bounded domains or exterior domains, see e.g. the monograph [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF]. Here, we contribute to the theory on the existence and the stability of solutions to this stationary system considered in the whole space R 3 and with a singular and sufficiently small (in a suitable sense) external force, see e.g. [START_REF] Secchi | On the stationary and nonstationary Navier-Stokes equations in R n[END_REF][START_REF] Kozono | The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation[END_REF][START_REF] Bjorland | L p -solutions of the steadystate Navier-Stokes equations with rough external forces[END_REF][START_REF] Bjorland | Existence and stability of steady-state solutions with finite energy for the Navier-Stokes equation in the whole space[END_REF][START_REF] Decaster | On the asymptotic behaviour of solutions of the stationary Navier-Stokes equations in dimension 3[END_REF][START_REF] Phan | Stationary Navier-Stokes equations with critically singular external forces: existence and stability results[END_REF] and references therein.

Summary of results from this work. As starting point in this work, we consider a solution u ∈ C w (0, ∞); PM 2 to the Cauchy problem for the three dimensional Navier-Stokes system (1.1) with a possibly singular external force f ∈ C w (0, ∞); PM 0 , see below for definitions of these spaces. Such solutions are constructed in Propositions 2.1 in the case of the Cauchy problem and in Proposition 2.8 in the case of stationary solutions which we recall from [START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF]. The use of these spaces allows us to simplify several calculations of this work and we can deal with external forces which are tempered distributions with bounded Fourier transforms. In Theorem 2.3, we show that every solution from C w (0, ∞); PM 2 behaves, for large values of |x| (which is measured by the Lebesgue norm L q (R 3 ) with q ∈ [2, 3)) as a solution to the heat equation. In Theorem 2.10, we consider stationary solutions and we show their stability in the norms of L q (R 3 ) with some q < 3. A general asymptotic stability result of solutions to the Cauchy problem for system (1.1) is presented in Theorem 2. [START_REF] Galaktionov | On blow-up "twistors" for the Navier-Stokes equations in R 3 : a view from reaction-diffusion theory[END_REF]. In remarks, we explain how our theorems are related to previous results and, especially, we emphasize how they can be applied to singular solutions discussed above.

Results and comments

We consider mild solutions to the Cauchy problem (2.1)

u t + (u • ∇)u -∆u + ∇p = f, (x, t) ∈ R 3 × R + , ∇ • u = 0, u(x, 0) = u 0 (x).
Namely, applying the Duhamel principle, we deal with the corresponding integral equation

(2.2) u(t) = S(t)u 0 -B(u, u)(t) + F (t)
with the heat semigroup

(2.3) S(t)u 0 (x) = R 3 1 (4πt) 3/2 exp - |x -y| 2 4t u 0 (y) dy, the bilinear form (2.4) B(u, v)(t) ≡ t 0 P∇S(t -τ ) • u(τ ) ⊗ v(τ ) dτ,
and the term obtained from the external force

(2.5) F (t) ≡ t 0 S(t -τ )Pf (τ ) dτ.
The Leray projector P in formulas (2.4) and (2.5) is defined as the Fourier multiplier with the matrix component symbol ( P(ξ)) j,k = δ jk -ξ j ξ k /|ξ| 2 satisfying the obvious inequalities |( P(ξ)) j,k | 1 for all ξ ∈ R 3 \ {0} and all j, k ∈ {1, 2, 3}. Moreover, for two vector fields u = (u 1 , u 2 , u 3 ) and v = (v 1 , v 2 , v 3 ), we introduce their tensor product u ⊗ v which is the

3 × 3 matrix whose (ℓ, k) entry is u ℓ v k .
Here and in what follows the Fourier transform of an integrable function f is given by

(2.6) f (ξ) = (2π) -3 2 R 3 e -ix•ξ f (x) dx.
The following functional spaces have been introduced in the work [START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF] and are systematically used in this paper

(2.7) PM a ≡ {u ∈ S ′ (R 3 ) : u ∈ L 1 loc (R 3 ), u PM a = ess sup ξ∈R 3 |ξ| a | u(ξ)| < ∞},
where a ∈ R is a given parameter. We also consider the counterparts of these spaces for time dependent tempered distributions

X a ≡ C w [0, ∞), PM a with the norm u X a = ess sup t∈[0,∞) u(•) PM a .
Here, the symbol C w denotes distributions u(•, t) weakly continuous in time which means that the mappings t → u(t), ϕ S ′ (R 3 ) are continuous for each ϕ ∈ S(R 3 ) (the usual Schwartz class of test functions). First, we recall a result on the existence of small solutions to the integral equation (2.2) in the space PM 2 .

Proposition 2.1 ([10, Thm. 4.1]).

There is ε > 0 such that if u 0 PM 2 < ε and f X 0 < ε then there exists a global-in-time mild solution u ∈ X 2 to the Cauchy problem for the Navier-Stokes system (2.1). Moreover, there exists a constant C > 0 such that this solution satisfies u

X 2 C u 0 PM 2 + f X 0 .
This proposition is obtained from the Banach contracted principle applied to the "quadratic" equation (2.2). We recall that reasoning in the beginning of Section 4.

Remark 2.2. Let us comment the functional spaces used in Proposition 2.1. We consider external forces f = f (•, t) which are time dependent tempered distributions satisfying

ess sup t>0,ξ∈R 3 | f (ξ, t)| < ∞ in order to obtain solutions in the space C w [0, ∞), PM 2 .
However, due to the embedding PM 2 ⊂ L 3,∞ (R 3 ) (see Lemma 3.1 below) as well as the the embedding into the homogeneous Besov space

PM 2 ⊂ Ḃ-1+3/p,∞ p (R 3 ) with p > 3.
(see [START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF]Lemma 7.1]), solutions from Proposition 2.1 agree with mild solutions of problem (2.1) constructed in other scaling invariant spaces and discussed in several works, see the review [START_REF] Cannone | Harmonic analysis tools for solving the incompressible Navier-Stokes equations[END_REF] and the monograph [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF] for other references.

Our first result of this work states that a behavior of mild solutions to problem (2.1) obtained in Proposition 2.1 is determined in the scale of L p -spaces by the quantity S(t)u 0 + F (t). Notice that we do not impose any smallness assumption in Theorem 2.3 below neither on initial data nor external forces.

Theorem 2.3. Every mild solution u ∈ X 2 of problem (2.1) corresponding to an initial datum u 0 ∈ PM 2 and an external force f ∈ X 0 satisfies u(t) -S(t)u 0 -F (t) ∈ L q (R 3 ) for each q ∈ [2, 3) and all t > 0. Moreover, for every q ∈ [2, 3) there exists a constant C = C(q) > 0 such that

(2.8) u(t) -S(t)u 0 -F (t) q Ct 3-q 2q u 2 X 2
for all t > 0.

Remark 2.4. In fact, in the proof of Theorem 2.3, we show the following more general estimate valid for each b ∈ [0, 2]:

(2.9) u(t) -S(t)u 0 -F (t) PM b Ct 2-b 2 u 2 X 2
for all t > 0.

Then, the L q -estimate (2.8) is obtained from inequality (2.9) with b ∈ {0, 2} combined with the interpolation inequality from Lemma 3.2 which requires q ≥ 2. On the other hand, inequality (2.9) with b ∈ [0, 1) may be considered as a counterpart of estimate (2.8) with q ∈ [1, 2).

Remark 2.5. We prove below in Corollary 3.12 that, for each f ∈ X 0 , we have F (t) ∈ L q (R 3 ) for all q ∈ [2, 3) and all t > 0. On the other hand, in general, S(t)u 0 / ∈ L q (R 3 ) for q ∈ [2, 3) if u 0 ∈ PM 2 is homogeneous of degree -1, see e.g. [START_REF] Brandolese | New asymptotic profiles of nonstationary solutions of the Navier-Stokes system[END_REF]. Thus, Theorem 2.3 states that a behavior of solutions of problem (2.1) with a singular initial datum from PM 2 and with a singular external force from X 0 is determined for large values of |x| only by S(t)u 0 at the first approximation, see e.g. [START_REF] Brandolese | On the instantaneous spreading for the Navier-Stokes system in the whole space[END_REF][START_REF] Brandolese | Fine properties of self-similar solutions of the Navier-Stokes equations[END_REF][START_REF] Brandolese | New asymptotic profiles of nonstationary solutions of the Navier-Stokes system[END_REF] for analogous results in the case of f = 0. The external force f = f (•, t) will appear in a higher order far field asymptotic expansion of solutions which was already observed in the work [START_REF] Bae | On the effect of external forces on incompressible fluid motions at large distances[END_REF][START_REF] Bae | Asymptotic behavior for the Navier-Stokes equations with nonzero external forces[END_REF] in the case of more regular initial conditions and external forces.

Remark 2.6. Recall that S(t)u 0 ∈ C [0, ∞), L 2 (R 3 ) 3 for each u 0 ∈ L 2 (R 3 ) 3 . Thus, Theorem 2.3 implies that in the case of arbitrary u 0 ∈ L 2 (R 3 ) 3 ∩ PM 2 and possibly singular f ∈ X 0 , the corresponding solution has a finite energy, namely, u(t) ∈ L 2 (R 3 ) 3 for each t 0. Such a finite energy result was recently obtained in [START_REF] Karch | Singularities of certain finite energy solutions to the Navier-Stokes system[END_REF] in the particular case of singular solutions to problem (1.6).

Remark 2.7. By methods from this work, it is also possible to study asymptotic properties of solutions of problem (2.1) in the L q -spaces with q > 3. Here, however, we obtain an asymptotic profile of a solution around its singular points as, for example, in the work [START_REF] Karch | Time-dependent singularities in the Navier-Stokes system[END_REF] where singularities of solutions to problem (1.6) have been studied. Assuming γ to be Hölder continuous with exponent α ∈ ( 1 2 , 1], the paper [START_REF] Karch | Time-dependent singularities in the Navier-Stokes system[END_REF] compares the solution (U γ , P γ ) of problem (1.6) to the Slëzkin-Landau solutions made time dependent by translating the origin to γ(t) proving that for all t > 0,

U γ (t) -U c (• -γ(t)) ∈ L q (R 3 ) for 3 < q < 3 2(1 -α) and P γ (t) -P c (• -γ(t)) ∈ L q (R 3 ) for 3 2 < q < 3 3 -2α .
An analogous result describing singularities of very weak stationary solutions of the Navier-Stokes system was obtained in [START_REF] Miura | Point singularities of 3D stationary Navier-Stokes flows[END_REF]. We study this case in Theorem 2.10 below devoted to the stationary Navier-Stokes system.

Next, we present a counterpart of Theorem 2.3 in the case of a solution w = w(x) to the stationary Navier-Stokes system (2.10)

(w • ∇)w -∆w + ∇p = g, ∇ • w = 0, x ∈ R 3
with a given external force g = g(x). In Section 3, we define (via the Fourier transform) the bilinear operator 

(2.11) B E (w, v) ≡ t -∞ P∇S(t -τ ) • w ⊗ v
w = -B E (w, w) + G.
As in the case of the Cauchy problem (2.1), we study properties of solutions to integral equation (2.13) which we also call as mild solutions to system (2.10). The following result recalled from [START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF] gives an existence of mild stationary solutions in the space PM 2 .

Proposition 2.8 ([10, Thm. 6.1]). There exists ε > 0 such that, for every g ∈ PM 0 , if g PM 0 < ε then system (2.10) has a solution w ∈ PM 2 . Moreover, there exists a constant C > 0 such that this solution satisfies the inequality w PM 2 C g PM 0 .

Remark 2.9. Let us quote other related works where small solutions to the stationary Navier-Stokes system (2.10) have been constructed for sufficiently small and possibly rough external forces. In [START_REF] Kozono | The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation[END_REF], an external force belongs to M -2 3,r , r ∈ (2, 3], which is the Sobolev-type space based on the Morrey space. In [START_REF] Bjorland | L p -solutions of the steadystate Navier-Stokes equations with rough external forces[END_REF], ∆ -1 Pg ∈ L 3,∞ (R 3 ). In the work [START_REF] Phan | Stationary Navier-Stokes equations with critically singular external forces: existence and stability results[END_REF], ∆ -1 g ∈ V 1,2 -a suitable capacity space which can be embedded into the homogeneous Morrey space M 2,2 . The authors of [START_REF] Decaster | On the asymptotic behaviour of solutions of the stationary Navier-Stokes equations in dimension 3[END_REF] deal with g = φg 0 + g 1 , where g 0 is homogeneous of degree -3, g 1 is bounded and decays sufficiently fast at infinity and φ is a smooth cut-off function such that φ(x) = 0 if |x| 1/2.

Our next goal is show a certain kind of stability of stationary solutions from Proposition 2.8 in the class of stationary solutions.

Theorem 2.10. Let ε > 0 be as in Proposition 2.8 and consider solutions w i ∈ PM 2 with i ∈ {1, 2} to stationary system (2.10) corresponding to external forces 3 3-b . In both case, the following inequality holds true

g i ∈ PM 0 satisfying g i PM 0 < ε. Assume that g 1 -g 2 ∈ PM b-2 for some b ∈ (1, 3). There exists ε ∈ (0, ε] such that if g i PM 0 ε then w 1 -w 2 ∈ PM b . Moreover, ( 1 
) if b ∈ (1, 2), then w 1 -w 2 ∈ L q (R 3 ) for each q ∈ 3 3-b , 3 such that q 2; (2) if b ∈ (2, 3), then w 1 -w 2 ∈ L q (R 3 ) for each q ∈ 3,
(2.14) w 1 -w 2 q C g 1 -g 2 1-q-3 q(b-2) PM 0 g 1 -g 2 q-3 q(b-2) PM b-2
for a constant C > 0. 

g 1 ∈ L 1 (R 3 ) 3 ⊂ PM 0 satisfying R 3 |x| 2-b |g 1 (x)| dx < ∞
for some b ∈ (1, 2) and

g 2 = βδ 0 with β = R 3 g 1 (x) dx ∈ R 3 .
More generally, we can choose g 1 as a finite measure on R 3 with a finite moment of order 2 -b. For these two external forces, assumption g 1 -g 2 ∈ PM b-2 is satisfied by Proposition 3.5, below. Thus, by Theorem 2.10, under a suitable smallness assumption, the corresponding solutions w 1 and w 2 of the stationary system (2.10) satisfy inequality (2.14). In the particular case of β = (β 1 , 0, 0), the solution w 2 agrees with the explicit Slëzkin-Landau solution (1.3) which is not integrable with the power q 3 for large values of |x|. Hence, Theorem 2.10 states that a far field asymptotic behavior of stationary solutions corresponding to integrable external forces satisfying (2.15) is described by the corresponding Slëzkin-Landau solutions. Similar results have been already obtained for stationary solutions to the Navier-Stokes system on an exterior domain in [START_REF] Korolev | On the large-distance asymptotics of steady state solutions of the Navier-Stokes equations in 3D exterior domains[END_REF][START_REF] Kang | Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data[END_REF] and on the whole space R 3 in [START_REF] Decaster | On the asymptotic behaviour of solutions of the stationary Navier-Stokes equations in dimension 3[END_REF]. In Theorem 2.10, we generalize all those results by showing that assumption g 1 -g 2 ∈ PM b-2 for some b ∈ (1, 2) determines when two external forces from the space of pseudomeasure PM 0 (i.e. tempered distributions with bounded Fourier transforms) lead to stationary solutions with the same asymptotic behavior as |x| → ∞ .

Remark 2.12. On the other hand, Theorem 2.10 for b ∈ (2, 3) allows us to study local singularities of stationary solutions. As an example, we consider again the the Slëzkin-Landau solution U β with a singularity at the origin which is not integrable with every exponent q > 3. By Theorem 2.10, every solution w 2 with a small external force g 2 ∈ PM 0 such that (2.16) ess sup

ξ∈R 3 |ξ| b-2 β(2π) -3/2 -g 2 (ξ) < ∞
has a singularity at the origin which asymptotically resembles the singularity of U β and this is measured by the L q -norm with some q > 3. Note that, since b ∈ (2, 3), the assumption (2.16) requires from the bounded function g 2 (ξ) to be close to the constant vector β(2π) -3/2 = β δ 0 for large values of |ξ|.

Finally, using the framework introduced above, we study an asymptotic stability of solutions to the Cauchy problem (2.1) corresponding to singular external forces. Theorem 2.13. Let u i with i ∈ {1, 2} be solutions to the Cauchy problem (2.1) with initial data u 0i ∈ PM 2 and external forces f i ∈ X 0 such that u 0i PM 2 < ε and f i X 0 < ε, where ε > 0 is provided by Proposition 2.1. Suppose that there exists δ ∈ (0, 1) such that (2.17)

sup t>0 t δ 2 f 1 (t) -f 2 (t) PM δ < ∞.
Then, for every q ∈ 3, 3 1-δ there exists a constant C = C(q) > 0 such that (2.18)

u 1 (•, t) -u 2 (•, t) q Ct -1 2 + 3 2q
for all t > 0.

If, moreover,

(2.19) lim t→∞ f 1 (t) -f 2 (t) PM 0 = 0 and lim t→∞ S(t) u 01 -u 02 PM 2 = 0 then (2.20) lim t→∞ t 1 2 -3 2q u 1 (•, t) -u 2 (•, t) q = 0.
Remark 2.14. In the particular case of a (sufficiently small) time independent external force f (•, t) = g ∈ L 1 (R 3 ) 3 , Theorem 2.13 states that each solution u = u(x, t) of the Cauchy problem (2.1) with an (sufficiently small) initial datum u 0 ∈ PM 2 converges as t → ∞ towards a stationary solution satisfying system (2.10) and this convergence holds true in the L q -norm for each q ∈ (3, ∞) (notice that condition (2.17) is fulfiled for each

δ ∈ (0, 1) if f 1 = f 2 )
. Such an asymptotic stability result for Leray stationary solutions was obtained in [START_REF] Bjorland | Existence and stability of steady-state solutions with finite energy for the Navier-Stokes equation in the whole space[END_REF]. We do not require from solutions to have a finite energy and our approach resembles the one used in [START_REF] Galdi | On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest[END_REF].

Remark 2.15. One should be careful with using the stability result from Theorem 2.13 in the case of singular external forces. Indeed, if u 0 ∈ PM 2 is homogeneous of degree -2 and f ∈ X 0 is invariant under the scaling (1.9), then the corresponding solution is self-similar [10, Corollary 4.1]: u(x, t) = t -1/2 u xt -1/2 , 1 for all t > 0. Thus, if moreover,

u(•, 1) ∈ L q (R 3 ) then u(•, t) q = t -1 2 + 3 2q u(•, 1) q for all t > 0.
In such a case, inequality (2.18) does not say anything about the asymptotic behavior of solutions. However, in the particular case of f = β 1 e 1 δ 0 the corresponding stationary solution U β is explicit (1.3), homogeneous of degree -1 and self-similar. Moreover, U β / ∈ L q (R 3 ) for each q ∈ [1, ∞]. In this case, inequality (2.18) states that each solution u = u(x, t) of the Cauchy problem (2.1) with an (sufficiently small) initial datum u 0 ∈ PM 2 and with the external force f = β 1 e 1 δ 0 has a singularity at zero of the same shape as the Slëzkin-Landau solution U β 1 . This approach was used in [START_REF] Karch | Time-dependent singularities in the Navier-Stokes system[END_REF] in the study of singularities of solutions to problem (1.6). Thus, additional assumptions (2.19) are needed in the study of a large time behavior of singular solutions.

Remark 2.16. Asymptotic results in Theorem 2.13 cannot be true for any q < 3 due to the estimates in Theorem 2.3.

Review of estimates in PM a -spaces

First, we gather estimates which involve PM a -norms and which play a crucial role in the proofs of results from Section 2. Some of the following results can be found in the previous works [START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF][START_REF] Karch | Time-dependent singularities in the Navier-Stokes system[END_REF][START_REF] Karch | Singularities of certain finite energy solutions to the Navier-Stokes system[END_REF]. For a completeness of the exposition, we recall them in a form, which will be convenient in the proofs of results from this paper.

3.1. Embedding theorems. The following three lemmas state that tempered distributions from the space PM a for a certain range of the exponent a > 0, are in fact locally integrable functions.

Lemma 3.1. The following embedding holds true

PM a ⊂ L 3 3-a ,∞ (R 3 ),
for each a ∈ 3 2 , 3 , where L 3 3-a ,∞ (R 3 ) is the weak L p -space (the Marcinkiewicz space).

Proof. Let w ∈ PM a for some a ∈ 3 2 , 3 and let ϕ ∈ C ∞ c (R 3 ) be an arbitrary function. Properties of the Fourier transform combined with the Hölder inequality in the Lorentz spaces (see e.g. [START_REF] Neil | Convolution operators and L(p, q) spaces[END_REF]) yield

R 3 wϕ dx = R 3 w(ξ) ϕ(ξ) dξ w PM a R 3 |ξ| -a ϕ(ξ) dξ w PM a | • | -a L 3 a ,∞ ϕ L 3 3-a ,1
. Now, it suffices to apply the Hausdorff-Young inequality in the Lorentz spaces [START_REF] Kolyada | Estimates of Fourier transforms in Sobolev spaces[END_REF] ϕ L p ′ ,r C ϕ L p,r , where 1 < p < 2, 1 r < ∞, and

1 p ′ + 1 p = 1, to obtain R 3 wϕ dx C w PM a ϕ L 3 a ,1 for all ϕ ∈ C ∞ c (R 3
) and, by a density argument, for all ϕ ∈ L 3 a ,1 (R 3 ). Hence, the distribution w defines a continuous linear functional on L 3 a ,1 (R 3 ), consequently, w ∈ L Lemma 3.2. For each b ∈ [0, 2) and q ∈ 3 3-b , 3 such that q 2, the following embedding holds true PM 2 ∩ PM b ⊂ L q (R 3 ). Moreover, there exists a constant C = C(b, q) such that

(3.1) w L q C w 1-q-3 q(b-2) PM 2 w q-3 q(b-2) PM b .
Proof. For each couple (q, r) of positive numbers satisfying

1 q + 1 r = 1 with q 2 and q ∈ 3 3 -b , 3 ,
we obtain the inequalities 2r > 3 and br < 3. Thus, by the classical Hausdorff-Young inequality with these exponents, we obtain

w r L q C w r L r =C R 3 | w(ξ)| r dξ =C |ξ| K | w(ξ)| r dξ + C |ξ| K | w(ξ)| r dξ C w r PM b |ξ| K |ξ| -br dξ + C w r PM 2 |ξ| K |ξ| -2r dξ C w r PM b K 3-br + C w r PM 2 K 3-2r . (3.2) 
Now, we choose

K = w PM b w PM 2 1 b-2
and r = q q -1 to obtain inequality (3.1).

Remark 3.3. Notice that if b ∈ [0, 3/2) and q ∈ 3 3-b , 2 , the proof of Lemma 3.2 implies only that each w ∈ PM 2 ∩ PM b satisfies w ∈ L q q-1 (R 3 ). Lemma 3.4. For each δ ∈ (0, 1) and q ∈ 3, 3 1-δ , the following embedding holds true PM 2 ∩ PM 2+δ ⊂ L q (R 3 ). Moreover, there exists a constant C = C(δ, q) such that

(3.3) w L q C w 1-q-3 δq PM 2 w q-3 δq PM 2+δ .
Proof. Here, one should proceed analogously as in the proof of Lemma 3.2 and the only difference consists in a suitable modification of exponents in inequality (3.2); see also [START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF]Lemma 7.4] and [START_REF] Karch | Time-dependent singularities in the Navier-Stokes system[END_REF]Lemma 3.6] for analogous calculations.

Proposition 3.5. Let b ∈ (1, 2). For every g ∈ L 1 (R 3 ) such that R 3 |x| 2-b |g(x)| dx < ∞ and for β = R 3 g(x) dx we have the estimate sup ξ∈R 3 |ξ| b-2 g(ξ) -β C(b) R 3 |x| 2-b |g(x)| dx with a constant C(b) > 0 independent of g.
Proof. The estimate is immediate in the case b = 1. Indeed, since β = g(0), by the mean value theorem and properties of the Fourier transform, we obtain

|ξ| -1 | g(ξ) -g(0)| ∇ g ∞ (2π) -3 2 R 3 |x||g(x)| dx.
In a more general case, we use the well-known formula (see e.g. [46, Ch.V, Lemma 2])

1 |ξ| 2-b = C(b) R 3 e -ix•ξ 1 |x| 1+b dx valid for every b ∈ (-1, 2) and a constant C(b) > 0. Thus |ξ| b-2 g(ξ) -β = C(b) R 3 e -ix•ξ R 3 1 |x -y| 1+b - 1 |x| 1+b g(y) dy dx C(b) R 3 R 3 1 |x -y| 1+b - 1 |x| 1+b dx|g(y)| dy.
Note that the integral with respect to x is finite for every y ∈ R 3 because its integrand |x -y| -1-b -|x| -1-b is locally integrable and behaves like |x| -2-b when |x| → ∞ (here, the assumption b ∈ (1, 2) is crucial). Hence, by the change of variables x = ω|y|, it follows that

R 3 1 |x -y| 1+b - 1 |x| 1+b dx = |y| 2-b R 3 1 |ω -y/|y|| 1+b - 1 |ω| 1+b dω. Finally, for b ∈ (1, 2), we have got sup y∈R 3 R 3 |ω -y/|y|| -1-b -|ω| -1-b dω < ∞ which completes the proof of the proposition.

3.2.

Estimates of the heat semigroup. First, we recall properties of the heat semigroup (2.3) which satisfies the well-known formula (3.4) S(t)u 0 (ξ) = e -t|ξ| 2 u 0 (ξ).

Lemma 3.6. For each δ 0 and for every u 0 ∈ PM 2 there exists a constant C = C(δ) > 0 such that the following estimate holds true

(3.5) S(t)u 0 PM 2+δ Ct -δ 2 u 0 PM 2 for all t > 0.
Proof. It follows from equation (3.4) that

S(t)u 0 PM 2+δ = ess sup ξ∈R 3 |ξ| 2+δ e -t|ξ| 2 | u 0 (ξ)| u 0 PM 2 t -δ 2 ess sup ξ∈R 3 | √ tξ| δ e -| √ tξ| 2 = C(δ)t -δ 2 u 0 PM 2 since the function | √ tξ| δ e -|
√ tξ| 2 is bounded for each δ 0 with respect to ξ ∈ R 3 and t 0.

3.3.

Estimates of bilinear forms. Next, we gather estimates of the bilinear forms B(•, •) from (2.4) and B E (•, •) defined in (2.11), where both quantities should be defined via the Fourier transform as follows. For time dependent tempered distributions u(•, t) and v(•, t) we put

(3.6) B(u, v)(ξ, t) = t 0 e -(t-τ )|ξ| 2 iξ P(ξ) R 3 u(η, τ ) ⊗ v(ξ -η, τ ) dη dτ.
and for time independent w and z, we set

B E (w, z)(ξ) = t -∞ e -(t-τ )|ξ| 2 iξ P(ξ) R 3 w(η) ⊗ z(ξ -η) dη dτ = iξ |ξ| 2 P(ξ) R 3 w(η) ⊗ z(ξ -η) dη, (3.7) 
where we use the simple formula

t -∞ e -(t-s)|ξ| 2 ds = 1 |ξ| 2 for each ξ ∈ R 3 \ {0}
to obtain the second equality in (3.7). Below, we estimate both bilinear forms in the norms of PM a -spaces using the equation (see e.g [46, Ch. V, Sec. 1])

(3.8)

R 3 1 |η| 2 1 |ξ -η| b dη = C(b) |ξ| b-1
for all ξ ∈ R 3 \ {0} which holds true for every b ∈ (1, 3) and a constant C(b) > 0 independent of ξ.

Lemma 3.7. There exist constants η > 0 and η E > 0 such that for all u, v ∈ X 2 and w, z ∈ PM 2

(3.9) for all t > 0.

B(u, v) X 2 η u X 2 v X 2 and (3.10) B E (w, z) PM 2 η E w PM 2 z PM 2
Proof. By equation (3.8), we have got the following estimate

R 3 u(η, τ ) ⊗ u(ξ -η, τ ) dη u 2 X 2 R 3 1 |η| 2 1 |ξ -η| 2 dη = C |ξ| u 2 X 2 (3.12)
which by formula (3.6) implies

B(u, u)(t) PM b C u 2 X 2 sup ξ∈R 3 |ξ| b t 0 e -(t-τ )|ξ| 2 dτ = C u 2 X 2 sup ξ∈R 3 1 -e -t|ξ| 2 |ξ| 2-b = Ct 2-b 2 u 2 X 2
for all t > 0.

Lemma 3.9. For each b ∈ (1, 3) there exists a constant C = C(b) > 0 such that for all w ∈ PM 2 and z ∈ PM b we have got the inequality

(3.13) B E (w, z) PM b C(b) w PM 2 z PM b .
Proof. By equation (3.8), we obtain the inequality

R 3 w(η, τ ) ⊗ z(ξ -η, τ ) dη w PM 2 z PM b R 3 1 |η| 2 1 |ξ -η| b dη = C |ξ| b-1 w PM 2 z PM b
which, by the formula on the right hand side of equation (3.7), leads to inequality (3.13).

Lemma 3.10. For each δ ∈ [0, 1) there exists a constant C = C(δ) > 0 such that for all u ∈ X 2 and v(t) ∈ PM 2+δ such that sup t>0 t δ 2 v(t) PM 2+δ < ∞, we have got

sup t>0 t δ 2 B(u, v) PM 2+δ C u X 2 sup t>0 t δ 2 v(t) PM 2+δ .
Proof. By equation (3.8) with 2 + δ, we have got the following estimate

R 3 u(η, τ ) ⊗ v(ξ -η, τ ) dη u(τ ) PM 2 v(τ ) PM 2+δ R 3 1 |η| 2 1 |ξ -η| 2+δ dη C |ξ| 1+δ u(τ ) PM 2 v(τ ) PM 2+δ which, by formula (3.6), implies t δ 2 B(u, v) PM 2+δ Ct δ 2 u X 2 sup t>0 t δ 2 v(t) PM 2+δ sup ξ∈R 3 t 0 |ξ| 2 e -(t-τ )|ξ| 2 τ -δ 2 dτ
for all t > 0. To complete the proof, we show that the quantity

t δ 2 t 0 |ξ| 2 e -(t-τ )|ξ| 2 τ -δ 2 dτ
is bounded by a constant independent of ξ and t. Indeed, we split the integral with respect to τ into two parts and we begin with

I 1 = t δ 2 |ξ| 2 t 2 0 e -(t-τ )|ξ| 2 τ -δ 2 dτ t δ 2 |ξ| 2 e -t|ξ| 2 2 t 2 0 τ -δ 2 dτ = C(δ) √ tξ 2 e -| √ tξ| 2 2
, where the function on the right-hand side is bounded for ξ ∈ R 3 and t > 0.

Next, we deal with

I 2 = t δ 2 t t 2 |ξ| 2 e -(t-τ )|ξ| 2 τ -δ 2 dτ C(δ) t t 2 |ξ| 2 e -(t-τ )|ξ| 2 dτ = C(δ) 1 -e -t|ξ| 2 2 C(δ)
which completes the proof.

3.4.

Estimates of external forces. Next, we are going to estimated the quantities which depend on external forces: the term F = F (x, t) defined in (2.5) and the term G = G(x, t) given by formula (2.12). Here, again, we define these formulas by the Fourier transform as follows 

F (t) PM b C(b)t 2-b 2 f X 0 for all t > 0.
Proof. The reasoning is analogous to that in the proof of Lemma 3.8. Using the definition of F (t) in (3.14) and of the norm in PM b in (2.7) we obtain

F (t) PM b ess sup ξ∈R 3 |ξ| b t 0 e -(t-τ )|ξ| 2 | P(ξ)|| f (ξ, τ )| dτ 2 f X 0 sup ξ∈R 3 1 -e -t|ξ| 2 |ξ| 2-b = C(b)t 2-b 2 f X 0 .
Corollary 3.12. For each q ∈ [2, 3) there exists a constant C > 0 such that for each f ∈ X 0 the following inequality holds true

(3.17) F (t) L q Ct 3-q 2q
f X 0 for all t > 0.

Proof. We combine estimate (3.16) for b = 2 and for b = 0 with the interpolation inequality from Lemma 3.2 in order to obtain the following estimate for each q ∈ [2, 3)

F (t) L q C F (t) 1-3-q 2q PM 2 F (t) 3-q 2q PM 0 Ct 3-q 2q f X 0
for all t > 0.

Lemma 3.13. For each δ ∈ [0, 1) there exists a constant C(δ) > 0 such that for every

f = f (•, t) satisfying sup t>0 t δ 2 f (t) PM δ < ∞ we obtain sup t>0 t δ 2 t 0 S(t -τ )Pf (τ ) dτ PM 2+δ C(δ) sup t>0 t δ 2 f (t) PM δ .
Proof. By the definition of the PM δ+2 -norm, we have got the inequality

t δ 2 t 0 S(t -τ )Pf (τ ) dτ PM 2+δ 2 sup t>0 t δ 2 f (τ ) PM δ × sup ξ∈R 3 ,t>0 t δ 2 |ξ| 2 t 0 e -(t-τ )|ξ| 2 τ -δ 2 dτ,
where the second factor on the right-hand side is finite by the same argument as the one used in the proof of Lemma 3.10.

Lemma 3.14. For every ϕ ∈ S(R 3 ) we define

(3.18) T ϕ = ∞ -∞ log |x 3 |∂ x 3 ϕ(0, 0, x 3 ) dx 3 .
Then T ∈ S ′ (R 3 ) and

(3.19) T (ξ) = 2 -3 2 π -1 2 i sgn ξ 3 .
Proof. We repeat the well-known calculations from the study of the principal value distribution (see e.g. [START_REF] Lighthill | Introduction to Fourier analysis and generalised functions[END_REF]Ch.3]). First, we show that T defined by formula (3.18) is a tempered distribution. Indeed, for ϕ ∈ S(R 3 ) integrating by parts, we have

|T ϕ| = lim ε→0 |x 3 |>ε log |x 3 |∂ x 3 ϕ(0, 0, x 3 ) dx 3 = lim ε→0 |x 3 |>ε 1 x 3 ϕ(0, 0, x 3 ) dx 3 + lim ε→0 log |ε| (ϕ(0, 0, -ε) -ϕ(0, 0, ε)) = lim ε→0 ε<|x 3 |<1 1 x 3 ϕ(0, 0, x 3 ) dx 3 + |x 3 | 1 1 x 3 ϕ(0, 0, x 3 ) dx 3 ϕ ′ ∞ + |x 3 | 1 1 |x 3 | |ϕ(0, 0, x 3 )| dx 3 < ∞,
because the boundary term, which result from integration by parts, tends to zero as ε goes to zero. Since iπ sgn ξ 3 is a Fourier transform of the one-dimensional principal value distribution -1 x 3 (see e.g. [START_REF] Lighthill | Introduction to Fourier analysis and generalised functions[END_REF]Ch.3]) applying the three-dimensional definition of the Fourier transform, we obtain

T ϕ = -lim ε→0 |x 3 |>ε 1 x 3 ϕ(0, 0, x 3 ) dx 3 = -(2π) -3 2 lim ε→0 R 3 |x 3 |>ε 1 x 3 e -ix•ξ ϕ(ξ 1 , ξ 2 , ξ 3 ) dx 3 dξ = (2π) -3 2 R 3 iπ sgn ξ 3 ϕ(ξ 1 , ξ 2 , ξ 3 ) dξ.
This proves formula (3.19).

Proofs of results from Section 2

Solutions to integral equations (2.2) and (2.13) are obtained from the Banach fixed point theorem which, in the case of "quadratic" equations, is often reformulated as in the following lemma. We skip its elementary proof. Lemma 4.1. Let (X, • ) be a Banach space, L : X → X be a linear bounded operator such that for a constant λ ∈ [0, 1), we have L(x) λ x for all x ∈ X, and B : X × X → X be a bilinear mapping such that B(x 1 , x 2 ) η x 1 x 2 for every x 1 , x 2 ∈ X for some constant η > 0. Then, for every y ∈ X satisfying 4η y < (1 -λ) 2 , the equation 1-λ , and it is the only one among all solutions satisfying x < 1-λ 2η . Results from Section 2 are obtained immediately from estimates in Section 3.

Proof of Proposition 2.1. It follows from Lemma 3.6 that S(•)u 0 X 2 u 0 PM 2 for each u 0 ∈ PM 2 . Moreover, by Lemma 3.11 with b = 2, we obtain F X 2 2 f X 0 . Thus, in order to construct a solution to equation (2.2), it suffices to apply Lemma 4.1 together with estimate (3.9). for each b ∈ [0, 2] and for all t > 0. Next, we combine the interpolation inequality from Lemma 3.2 with the exponents b = 0 and q ∈ [2, 3) together with estimate (4.2) for b = 2 and for b = 0 in order to obtain u(t) -S(t)u 0 -F (t) q C u(t) -S(t)u 0 -F (t)

1-3-q 2q PM 2 u(t) -S(t)u 0 -F (t)

3-q 2q

PM 0 Ct 3-q 2q u 2

X 2 for all t > 0.

Proof of Proposition 2.8. Here, it suffices to proceed analogously as in the proof of Proposition 2.1 using the estimate of the bilinear form B E from (3.10).

Proof of Theorem 2.10. We recall that, by Proposition 2.8, both solutions to integral equation (2.13): the vector fields w i = w i (x) corresponding to the external forces g i ∈ PM 0 with i ∈ {1, 2} satisfy the inequalities Indeed, using integral equations (2.13) for both stationary solutions w 1 and w 2 we obtain that the difference W = w 1 -w 2 satisfies the equation

W + B E (w 1 , W )(t) + B E (W, w 2 )(t) = t -∞
S(t -τ )P g 1 -g 2 dτ.

Applying Lemma 3.9 and expression (3.15) we get the estimate

W PM b C ( w 1 PM 2 + w 2 PM 2 ) W PM b + 2 ess sup ξ∈R 3 |ξ| b-2 g 1 (ξ) -g 2 (ξ)
which together with inequalities (4.3) with sufficiently small ε > 0, completes the proof of inequality (4.4). Finally, in order to estimate the L q -norms of w 1 -w 2 , it suffices to combine the estimates of the PM-norms from (4.4) with the interpolation inequalities from Lemma 3. Proof of Theorem 2.13. This theorem is, in fact, a minor extension of [START_REF] Cannone | Smooth or singular solutions to the Navier-Stokes system?[END_REF]Thm. 7.2]. Using integral formula (2.2) we obtain that the difference V (t) = u 1 (t) -u 2 (t) satisfies

Remark 2 . 11 .

 211 Let us illustrate how to use Theorem 2.10 in the case of b ∈ (1, 2) to study a far field asymptotic behavior of stationary solutions. Consider (2.15)

Proof.Lemma 3 . 8 .

 38 Both inequalities are an immediate consequence of equation (3.8) with b = 2 and a slightly more general reasoning is used in the next proof below. For each b ∈ [0, 2] there exists a constant C = C(b) > 0 such that the following inequality holds true for all u ∈ X 2 (3.11) B(u, u)(t) PM b Ct

  t-τ )|ξ| 2 P(ξ) f (ξ, τ ) dτ and (3.15) G(ξ) = t -∞e -(t-τ )|ξ| 2 P(ξ) g(ξ) dτ = 1 |ξ| 2 P(ξ) g(ξ).

Lemma 3 . 11 .

 311 For each b ∈ [0, 2] there exists a constant C = C(b) > 0 such that for each f ∈ X 0 the following inequality holds true(3.16) 

(4. 1 )

 1 x = y + L(x) + B(x, x)has a solution x ∈ X. In particular, this solution satisfies x 2 y

Proof of Theorem 2 . 3 .

 23 First we show that every solution u ∈ X 2 of problem (2.1) corresponding to an initial datum u 0 ∈ PM 2 and an external force f ∈ X 0 satisfiesu(t) -S(t)u 0 -F (t) ∈ PM b for each t > 0 and b ∈ [0, 2] . Indeed, applying Lemma 3.8 to integral equation (2.2) we have got u(t) -S(t)u 0 -F (t) PM b B(u, u)(t) PM b Ct

(4. 3 ) w i PM 2 <

 32 Cε with i ∈ {1, 2}.

First, we are

  going to use these inequalities in order to show that w 1 -w 2 ∈ PM b for every b ∈ (1, 3) together with the estimate (4.4)w 1 -w 2 PM b C ess sup ξ∈R 3 |ξ| b-2 g 1 (ξ) -g 2 (ξ) = C g 1 -g 2 PM b-2 .

  2 if b ∈ (1, 2) and from Lemma 3.4 with δ = b -2 if b ∈ (2, 3).

3-a ,∞ (R 3 ) (see e.g.[START_REF] Grafakos | Classical Fourier analysis[END_REF] Thm. 1.4.17]).
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the following equation

We compute the PM 2+δ -norm with δ ∈ [0, 1) of this equation applying the estimates from Lemmas 3.6, 3.10 and 3.13 in order to obtain

Multiplying the both sides of this estimate by t -δ 2 and using the inequalities (4.5)

from Proposition 2.1 with sufficiently small ε > 0, we complete the proof of the estimate

for all t > 0 with a number C > 0 depending on u 0i PM 2 and f i X 0 but independent of t. Now, in order to complete the proof, it suffices to combine this inequality (which holds true for every δ ∈ [0, 1)) with the interpolation inequality (3.3).

In order to show the faster convergence in (2.20) under assumptions (2.19), it suffices to use the interpolation inequality (3.3) together with estimate (4.6) and with the relation