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Vibrational transitions of H 2 Cl + : potential energy surface and anharmonic computations

A new three-dimensional potential energy surface of the electronic ground state of the chloronium ion, H 2 Cl + , based on the explicitly correlated coupled cluster method with a triple zeta basis set adapted to this method has been expanded in an analytical representation. This potential energy surface is later incorporated into our home-made Fortran code to compute variationally the vibrational levels, zero-point ground average structural parameters and the rotational constants of the chloronium ion and several isotopologues. Our results show a good agreement with experimental data and that our results will help to detect H 2 Cl + isotopologues in the interstellar medium.

Introduction

Recently, the chloronium ion H 2 Cl + was detected for the first time in the interstellar medium (ISM) by the Herschel Space Observatory using the Heterodyne Instrument for the far-Infrared (HIFI) [START_REF] Lis | Herschel/HIFI discovery of interstellar chloronium H 2 Cl +[END_REF][START_REF] Pilbratt | Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy[END_REF]. The dominant ionization state of each element in diffuse interstellar gas clouds is determined by its ionization potential. Chlorine has a slightly lower ionization potential than that of a hydrogen molecule, and is therefore mostly ionized individually in the form of Cl + . The latter ion can react with the dominant constituent of the interstellar medium H 2 to form the ion HCl + [START_REF] Lis | Herschel/HIFI discovery of interstellar chloronium H 2 Cl +[END_REF] which, in turn, reacts with hydrogen to form the chloronium ion H 2 Cl + . Chemical modeling suggests that the chloronium ion could be very abundant around the diffuse ISM [START_REF] Neufeld | The chemistry of interstellar molecules containing the halogen elements[END_REF]. However, prior to the launch of Herschel, H 35 Cl and H 37 Cl were the only Cl-bearing molecules detected in and around the ISM [START_REF] Blake | Chlorine in dense interstellar clouds-the abundance of HCl in OMC-1[END_REF][START_REF] Zmuidzinas | HCl absorption toward sagittarius B2[END_REF][START_REF] Schilke | Hydrogen chloride in OMC-1[END_REF][START_REF] Salez | Hydrogen Chloride Detection in Orion A and Monoceros R2 and Derivation of the H 35 Cl/H 37 Cl Isotopic Ratio[END_REF]. This can be explained by the fact that the H 2 Cl + ion transforms into hydrogen chloride, HCl by dissociative recombination or by proton transfer to carbon monoxide CO. In addition to the detection by Herschel, another study reported by Neufeld et al [START_REF] Neufeld | Herschel observations of interstellar chloronium[END_REF], also detected absorption and emission of H 2 Cl + from two interstellar cloud sources. The chemical reactions that give rise to the deuterated forms HDCl + and D 2 Cl + are similar to those giving the chloronium ion, H 2 Cl + , with the same orders of magnitude of the reaction rate coefficient. It follows that, like the chloronium ion, its deuterated isotopologues should be abundant in the ISM. Surprisingly, to date, the existence of these deuterated isotopologues (HDCl + and D 2 Cl + ) has not been observed in the ISM.

The availability of accurate spectroscopic data on chloronium and its deuterated forms could greatly facilitate their identification in interstellar space. Despite their importance, very few spectroscopic data on this ion and even less on its deuterated forms HDCl + and D 2 Cl + are available in the literature. Experimentally, the first structural information on the chloronium ion was reported in 1986 by Kawaguchi and Hirota [START_REF] Kawaguchi | Magnetic field modulated infrared laser spectroscopy of the chloronium ClH 2 + ion ν 2 band[END_REF], who studied its ν 2 band with infrared diode laser spectroscopy. Saito et al. [START_REF] Saito | The microwave spectrum of the H 2 Cl + ion[END_REF] detected microwave spectral lines of H 2 35 Cl + in 1988. In the same year, Lee et al [START_REF] Lee | Difference-frequency laser spectroscopy of the ν 1 and ν 3 fundamental bands of H 2 Cl + : Determination of the equilibrium molecular structure[END_REF] worked on the difference-frequency laser spectroscopy of the chloronium. These latter authors have observed the gas phase of the ν 1 and ν 2 fundamental bands of H 2 Cl + and determined its equilibrium structure. The rotational spectra of H 2 Cl + and HDCl + were measured by Araki et al [START_REF] Araki | Submillimeter-wave spectra of H 2 Cl + and its isotopic species: Molecular structure[END_REF] using a submillimeter-wave spectrometer. Furthermore, theoretically, Botschwina [START_REF] Botschwina | Anharmonic potential-energy surfaces, vibrational frequencies and infrared intensities calculated from highly correlated wavefunctions[END_REF] computed a potential energy surface (PES) at coupled electron-pair approximation (CEPA) level and the vibrational frequencies for H 2 Cl + and its isotopologues HDCl + and D 2 Cl + . More recently, after the detection of the chloronium ion, Majumdar et al [START_REF] Majumdar | Formation of different isotopomers of chloronium in the interstellar medium[END_REF] explored the possibility of finding the isotopologues of H 2 Cl + in and around the ISM. These authors used Moller-Plesset perturbation theory (MP2) along with a quadruple-zeta correlation consistent (aug-cc-pVQZ) basis set to optimize the geometry of chloronium and computed the harmonic vibrational frequencies of H 2 Cl + and its two deuterated isotopologues HDCl + and D 2 Cl + . Within their chemical modeling, they found that HDCl + could be efficiently formed in the gas phase and that the emission line should be strong enough to be observed.

The lack of availability of laboratory data, in particular in the case of reactive species (transition molecules, radicals, ions) which remain more difficult to study in the laboratory than their stable counterparts, is the main factor currently limiting astronomical molecular detection. In order to facilitate the detection of the chloronium isotopologues HDCl + and D 2 Cl + , in this work, we provide information on the spectroscopic properties of these isotopologues. We use the explicitly correlated F12, coupled-cluster method, CCSD(T)-F12b, approach to optimize the geometric parameters of the ion and to generate the 3D-potential energy surface. This allows the computation of vibrational energy levels of chloronium H 2 Cl + , its two isotopologues HDCl + and D 2 Cl + (with 35Cl and 37Cl chlorine isotopes), using the variational approach implemented in our home-made Fortran code. We compare our theoretical spectra with those available in the literature, experimental ones with Lee et al [START_REF] Lee | Difference-frequency laser spectroscopy of the ν 1 and ν 3 fundamental bands of H 2 Cl + : Determination of the equilibrium molecular structure[END_REF] and theoretical ones with Botschwina [START_REF] Botschwina | Anharmonic potential-energy surfaces, vibrational frequencies and infrared intensities calculated from highly correlated wavefunctions[END_REF]. Our results show good agreements with those of the literature.

The present paper is organized as follows. In Section 2, the methods for the determination of the kinetic energy operator, the electronic structure, the potential energy surface and the computational details are presented. The results are discussed and concluding remarks are given in Section 3. In the Appendix, the fitting procedure of PES is given.

Methods

Coordinates and kinetic energy operator

The vibrational motion of N atom molecular system, moving on a potential energy surface, V(q) can be described by n = 3N -6 internal coordinates, q = [q 1 , q 2 , . . . q n ]. Considering the body-fixed (BF) Cartesian coordinates expressed as functions of the internal coordinates, x = x (q), i.e x α = x α (q 1 , . . . , q n ), α = 1, . . . 3N, the standard expression of the deformation part of the kinetic energy operator (KEO) in terms of the contravariant components of the metric tensor G ij (q) and with the Euclidean volume element, dν E , reads as [START_REF] Nauts | Momentum, quasi-momentum and hamiltonian operators in terms of arbitrary curvilinear coordinates, with special emphasis on molecular hamiltonians[END_REF]:

TE de f (q, ∂ q ) = - h2 2 n,n ∑ i,j=1 J(q) -1 ∂ i J(q)G ij (q)∂ j , ∂ i ≡ ∂/∂q i , (1) 
where J(q) = det(g), [G ij (q)] = [g ij (q)] -1 . The covariant components of the metric tensor, g ij (q), are split in several contributions, g = S n×n C t n×3 C 3×n I 3×3 where S n×n , I 3×3 and C 3×n are the deformation part, the rotation part or the inertia tensor and the Coriolis part of the metric tensor, respectively. Furthermore, dν E de f = J(q)dq 1 • dq 2 • • • dq n is the deformation part of the Euclidean volume element. By expanding the kinetic energy operator (1) and changing the volume element, it can be rewritten in the form : Tρ

de f (q, ∂ q ) = ∑ i≤j f ij 2 (q)∂ 2 ij + ∑ i f i 1 (q)∂ i + V e (q), ∂ 2 ij ≡ ∂ 2 /∂q i ∂q j , (2) 
where V e (q) is the extrapotential term [START_REF] Lauvergnat | Exact numerical computation of a kinetic energy operator in curvilinear coordinates[END_REF][START_REF] Mátyus | Toward black-box-type full-and reduced-dimensional variational (ro) vibrational computations[END_REF][START_REF] Chapuisat | N-body quantum-mechanical hamiltonians: Extrapotential terms[END_REF] resulting from the use of a non-Euclidean volume element dν ρ = ρ(q)dq 1 dq 2 . . . dq n . ρ(q) is a real positive function which has to be adapted so that the basis set be orthonormal. The quantities f ij 2 (q), f i 1 (q) and V e (q) in eq. ( 2) are expressed as follows:

f ii 2 (q) = - h2 2 G ii (q), (3) 
f ij 2 (q) = -h 2 G ij (q) (i ̸ = j), (4) 
f i 1 (q) = - h2 2 ∑ j G ij ∂ j ln ρ(q) + ∂ j ln G ij (q) , (5) 
V e (q) = J(q) ρ(q)

TE de f (q, ∂ q ) ρ(q) J(q) . ( 6 
)
The formalism of the derivation of the kinetic energy operator (KEO) Eq. ( 1) is well known [START_REF] Nauts | Momentum, quasi-momentum and hamiltonian operators in terms of arbitrary curvilinear coordinates, with special emphasis on molecular hamiltonians[END_REF][START_REF] Meyer | General internal motion of molecules, classical and quantum-mechanical hamiltonian[END_REF][START_REF] Wilson | Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra[END_REF][START_REF] Brocks | Quantum dynamics of non-rigid systems comprising two polyatomic fragments[END_REF]. The first numerical implementation of the KEO operator dates back to the work of Laane et al. [START_REF] Laane | Vector representation of large-amplitude vibrations for the determination of kinetic energy functions[END_REF][START_REF] Harthcock | Calculation of kinetic energy terms for the vibrational hamiltonian: Application to large-amplitude vibrations using one-, two-, and three-dimensional models[END_REF]. Later, other groups proposed numerical approaches to determine the kinetic energy operator in the context of quantum dynamics [START_REF] Smeyers | Ab initio theoretical study of the methyl and phosphine torsion modes in ethylphosphine[END_REF][START_REF] Senent | Determination of the kinetic energy parameters of non-rigid molecules[END_REF][START_REF] Rush | Ab initio CBS-QCI calculations of the inversion mode of ammonia[END_REF]. M. Ndong and coworkers [START_REF] Ndong | Automatic computer procedure for generating exact and analytical kinetic energy operators based on the polyspherical approach: General formulation and removal of singularities[END_REF][START_REF] Lauvergnat | Tnum-Tana: a Fortran code to deal with curvilinear coordinates and kinetic energy operator[END_REF] developed the Fortran program TANA which provides an automatic computation of the kinetic energy operator in analytical form for polyspherical coordinates for any number of atoms. In this approach, the expression of the metric tensor is obtained analytically and it can be used in Eq. ( 1) or in Eq. ( 2). Furthermore, these expressions can be exported in several formats (MCTDH, [START_REF] Richter | Anharmonic Vibrational Treatment Exclusively in Curvilinear Valence Coordinates: The Case of Formamide[END_REF][START_REF] Schröder | The coupling of the hydrated proton to its first solvation shell[END_REF] MidasCpp, [START_REF] Klinting | Vibrational Coupled Cluster Computations in Polyspherical Coordinates with the Exact Analytical Kinetic Energy Operator[END_REF] Fortran). The 3D-vibrational motion of the chloronium ion can be described in terms of the three valence coordinates q = {q 1 , q 2 , q 3 } ≡ {R 1 , R 2 , θ}, where R 1 and R 2 are the distances between the chlorine atom and the two hydrogen atoms and θ is the angle between the two Cl -H bonds. The application of the general KEO formula Eqs. [START_REF] Pilbratt | Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy[END_REF][START_REF] Salez | Hydrogen Chloride Detection in Orion A and Monoceros R2 and Derivation of the H 35 Cl/H 37 Cl Isotopic Ratio[END_REF][START_REF] Neufeld | Herschel observations of interstellar chloronium[END_REF] with the Wilson normalization convention, ρ(q) = 1, (dν 1 = dR 1 • dR 2 • dθ) yields the following KEOs of the H 2 Cl + and its isotopologues:

T(R 1 , R 2 , θ) =F 11 2 ∂ 2 ∂R 2 1 + F 22 2 ∂ 2 ∂R 2 2 + F 33 2 ∂ 2 ∂θ 2 + F 12 2 ∂ 2 ∂R 1 ∂R 2 + F 13 2 ∂ 2 ∂R 1 ∂θ + F 23 2 ∂ 2 ∂R 2 ∂θ + F 1 1 ∂ ∂R 1 + F 2 1 ∂ ∂R 2 + F 3 1 ∂ ∂θ + V ep , (7) 
where the functions, F ij 2 , F i 1 and V ep , are given below:

F 11 2 = - h2 2µ R 1 , F 22 2 = - h2 2µ R 2 , F 12 2 = -h 2 cos(θ) m Cl , F 33 2 = - h2 2 1 µ R 1 • R 1 2 + 1 µ R 2 • R 2 2 - 2 cos(θ) m Cl • R 1 • R 2 , F 13 2 = h2 2 1 m Cl • R 2 sin(θ) + 1 sin(θ) - cos 2 (θ) sin(θ) , F 23 2 = h2 2 1 m Cl • R 1 sin(θ) + 1 sin(θ) - cos 2 (θ) sin(θ) , F 1 1 = h2 4 1 m Cl • R 2 3 cos(θ) - cos(θ) sin 2 (θ) - cos 3 (θ) sin 2 (θ) , F 2 1 = h2 4 1 m Cl • R 1 3 cos(θ) - cos(θ) sin 2 (θ) - cos 3 (θ) sin 2 (θ) , F 3 1 =h 2 1 m Cl • R 1 • R 2 cos 2 (θ) sin(θ) - 1 sin(θ) , (8) 
V e (q) = -h2 4

1 m Cl • R 1 • R 2 2 cos(θ) + cos 3 (θ) sin 2 (θ) -2 cos(θ) sin 2 (θ) - h2 8 1 µ R 1 • R 1 2 2 + cos 2 (θ) sin 2 (θ) - h2 8 1 µ R 2 • R 2 2 2 + cos 2 (θ) sin 2 (θ) , (9) 
where µ R 1 and µ R 2 are reduced masses :

1 µ R 1 = 1 m Cl + 1 m H 1 and 1 µ R 2 = 1 m Cl + 1 m H 2 .
Furthermore, m Cl , m H 1 and m H 2 are, respectively, the isotopic masses of the chlorine, the first hydrogen and the second hydrogen atoms. It is worth noting, that the TANA code has been used to obtain the analytical expression and the Fortran subroutines of the KEO. Furthermore, some simplifications are possible in the previous expressions (Eq. (8-9)).

For example, sin(θ) + 1 sin(θ) -cos 2 (θ) sin(θ) can be simplified in (2 sin(θ)). However, we prefer to present the unsimplified expressions, which are used in our quantum dynamics code and come directly from the TANA code [START_REF] Ndong | Automatic computer procedure for generating exact and analytical kinetic energy operators based on the polyspherical approach: General formulation and removal of singularities[END_REF]. The present triatomic KEO has been published in the past by several group [START_REF] Carney | Variational approaches to vibration-rotation spectroscopy for polyatomic molecules[END_REF][START_REF] Carter | A variational method for the calculation of vibrational levels of any triatomic molecule[END_REF][START_REF] Sutcliffe | A comment on a recent proposal for the calculation of vibrational energies in the general triatomic molecule[END_REF]. Isotope masses (g.mol -1 ) masses (au) 35 

Electronic structure and potential energy surface

The electronic structure has been carried out with the explicitly correlated, F12, coupled cluster method, CCSD(T)-F12b [START_REF] Adler | A simple and efficient CCSD(T)-F12 approximation[END_REF], with the F12 adapted triple zeta basis set [START_REF] Peterson | Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B-Ne, and Al-Ar[END_REF], cc-pVTZ-F12 (CCSD(T)-F12b/VTZ-F12) using molpro2010 code [START_REF] Werner | A package of ab initio programs[END_REF]. As noted in several studies, this level of computation provides a good compromise between quality and computational efficiency [START_REF] Martin | Assessment of CCSD(T)-F12 Approximations and Basis Sets for Harmonic Vibrational Frequencies[END_REF]. Cl + isotopologues) [START_REF] Lee | Difference-frequency laser spectroscopy of the ν 1 and ν 3 fundamental bands of H 2 Cl + : Determination of the equilibrium molecular structure[END_REF].

The H 2 Cl + potential energy surface (PES), V(Q), was obtained by fitting 145 ab initio points at CCSD(T)-F12b/VTZ-F12 level using symmetrized coordinate displacements (θθ eq , 1/2(R 1 + R 2 ) -R eq and 1/2(R 1 -R 2 )). Along these displacements, the grid ranges in bohr are [-0.90 : 1.03], [-0.41 : 0.65] and [0.00 : 0.48], respectively. The full grid covers energies up to about 10000 cm -1 and it has been fitted as linear combinations of coordinate displacement products. The fitted potential reproduces almost perfectly the ab initio points. Indeed, the root-mean-square error and the maximum error are about 0.1 cm -1 and 0.5 cm -1 , respectively. Furthermore, Fig. 1 shows the ab initio energy points (red crosses) and the fitted potential (solid blue line) along the three symmetrized coordinates (θ, R + and R -), which clearly shows the almost perfect agreement.

The grid generation and the fitting procedure are explained in detail in the Appendix. This PES has been implemented in the Quantum Model Library, freely available on github [START_REF] Lauvergnat | Quantum Model Library: a library of potentials[END_REF]. 

Vibrational computational approach

The computation of the vibrational levels is relatively standard and it is related on early works on variational methods [START_REF] Carney | Variational approaches to vibration-rotation spectroscopy for polyatomic molecules[END_REF][START_REF] Whitehead | Variational calculation of vibration-rotation energy levels for triatomic molecules[END_REF][START_REF] Botschwina | Vibrational frequencies from anharmonic ab initio/empirical potential energy functions. I. Method and application to H 2 O, HNO, HOF and HOCl[END_REF][START_REF] Tennyson | The ab initio calculation of the vibrational-rotational spectrum of triatomic systems in the close-coupling approach, with KCN and H 2 Ne as examples[END_REF]. For the present study, it has been performed with the help of our home-made pseudo-spectral Fortran code, TI_Schrod [START_REF] Afansounoudji | TI_Schrod: a Fortran code to solve the Schrödinger equation[END_REF]. It allows us to solve the time-independent Schrödinger equation with a Hamiltonian expressed in terms of the three internal coordinates, q = [R 1 , R 2 , θ]. The 3D-quantum vibrational bound states are expanded on a direct product of one-dimensional harmonic oscillator basis sets, and thus, ρ(q) associated with the non-Euclidean volume element is equal to one (ρ(q) = 1). Furthermore, the integration procedure is performed using the direct product of Gauss-Hermite quadrature grids.

More precisely, each eigenstate is developed as follows:

Ψ(R 1 , R 2 , θ) = ∑ i 1 ,i 2 ,i 3 C i 1 ,i 2 ,i 3 HO i 1 (R 1 )HO i 2 (R 2 )HO i 3 (θ), (10) 
where, for the coordinate, q j , the HO i (q j ) are the normalized Harmonic oscillator basis functions, HO i (q j ) = N sc i .H i-1 (x j (q j )) • exp[-1 2 x j (q j ) 2 ]. x j (q j ) is the scaled and shifted coordinate, x j (q j ) = sc j • (q jq j re f ), N sc j i is a normalization factor and H i-1 (x) are the Hermite polynomials. re f is the value of q j at the equilibrium geometry and the expression of sc j is given by 4 k j /G jj where k j and G jj are, respectively, the curvature and the value of contravariant component of the metric tensor at the q re f geometry [START_REF] Marsili | Quantum and Quantum-Classical Studies of the Photoisomerization of a Retinal Chromophore Model[END_REF]. The values of the q j re f , sc j and G jj are given in Table [START_REF] Pilbratt | Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy[END_REF] for all studied isotopologues.

Before discussing in more detail the vibrational spectra of H 2 Cl + and its isotopologues, we have checked the convergence of the energy levels with respect to the basis set and the grid sizes. In our tests, the three 1D-basis sets have the same number of basis functions, nb which increases from 9 to 12 and the grid point number, nq, is fixed to 12. These tests have shown, that, the largest error between the energy levels up to 4000-5000 cm -1 calculated with nb = 11 and nb = 12 is smaller than 10 -2 cm -1 . Therefore, we have chosen 12 basis functions for each Harmonic oscillator basis and for all isotopologues.

Discussion and conclusion

The table 3 lists the computed and experimental anharmonic vibrational frequencies, expressed in cm -1 , for the H 2 35 Cl + and H 2 37 Cl + isotopologues. The differences between the experimental and the computed values are 0.5 cm -1 for the bending mode (ν 2 ) and about 5 cm -1 for the two stretching modes (ν 1 and ν 3 ). This shows a good agreement between our calculated values and the experimental ones. Furthermore, these values show a clear improvement with respect to those computed by Botschwina with his unscaled potential [START_REF] Botschwina | Anharmonic potential-energy surfaces, vibrational frequencies and infrared intensities calculated from highly correlated wavefunctions[END_REF], in particular, for the bending mode. Indeed, Botschwina developed two potentials: (i) the first one (unscaled) is obtained after the fitting of the ab-initio calculations; (ii) the second one is derived from the first one, but some parameters are scaled to reproduce the experimental fundamental transitions. Therefore, we compare our full ab-initio potential with the first Botschwina potential, and our results clearly show the quality of our potential. Table 4 gives the vibrational frequencies for the other isotopologues of this ion, namely HD 35 Cl + , HD 37 Cl + , D 2 35 Cl + , D 2 37 Cl + . The equilibrium molecular structure was therefore determined by taking the expectation values of each coordinate (⟨R 1 ⟩, ⟨R 2 ⟩ and ⟨Θ⟩) for the vibrational ground-state. The values resulting from these calculations are reported in the table 5. These values obtained for the isotopologues, H 2 35 Cl + , HD 35 Cl + and H 2 37 Cl + agree very well with the experimental values (the distances and the angle are extracted from the experimental rotational constants) [START_REF] Araki | Submillimeter-wave spectra of H 2 Cl + and its isotopic species: Molecular structure[END_REF][START_REF] Kawaguchi | Magnetic field modulated infrared laser spectroscopy of the chloronium ClH 2 + ion ν 2 band[END_REF]. Indeed, for the three isotopologues, the angle values are very close to the experimental ones and the errors are less than 0.1 • [START_REF] Araki | Submillimeter-wave spectra of H 2 Cl + and its isotopic species: Molecular structure[END_REF][START_REF] Kawaguchi | Magnetic field modulated infrared laser spectroscopy of the chloronium ClH 2 + ion ν 2 band[END_REF]. With respect to the Cl-H distance of H 2 35 Cl + obtained from ref [START_REF] Kawaguchi | Magnetic field modulated infrared laser spectroscopy of the chloronium ClH 2 + ion ν 2 band[END_REF], the difference with our calculation is about 0.1 Å, which is surprisingly large. However, we are confident with our values. Indeed, our equilibrium values agree very well with Botschwina ones [START_REF] Botschwina | Anharmonic potential-energy surfaces, vibrational frequencies and infrared intensities calculated from highly correlated wavefunctions[END_REF] and also from the experimental ones [START_REF] Araki | Submillimeter-wave spectra of H 2 Cl + and its isotopic species: Molecular structure[END_REF][START_REF] Kawaguchi | Magnetic field modulated infrared laser spectroscopy of the chloronium ClH 2 + ion ν 2 band[END_REF]. Furthermore, with respect to a more recent study of Araki et al. [START_REF] Araki | Submillimeter-wave spectra of H 2 Cl + and its isotopic species: Molecular structure[END_REF], the experimental Cl-H and Cl-D distances (associated to the zero point average structure [START_REF] Araki | Submillimeter-wave spectra of H 2 Cl + and its isotopic species: Molecular structure[END_REF]) are in good agreement with our calculated values since the largest difference with respect to the experimental value is only 0.005 Å with respect to ref [START_REF] Araki | Submillimeter-wave spectra of H 2 Cl + and its isotopic species: Molecular structure[END_REF]. Furthermore, our calculations nicely reproduce the shortening of the Cl-D bond length with respect to the Cl-H one for the HD 35 Cl + ion [START_REF] Araki | Submillimeter-wave spectra of H 2 Cl + and its isotopic species: Molecular structure[END_REF]. In the Table 5, we also give the expectation values for other isotopologues, D 2 35 Cl + , HD 37 Cl + and D 2 37 Cl + . In addition, we were able to compute the three rotational constants associated with the vibrational ground state. However, this has to be done with care. Indeed, since we did not perform a full ro-vibrational calculation, the rotational Eckart conditions [START_REF] Eckart | Some Studies Concerning Rotating Axes and Polyatomic Molecules[END_REF] must be applied to minimize the Coriolis coupling. The Cartesian equilibrium geometry (obtained from R 1 = R 2 = 2.46729 bohr and θ = 1.64588 rad) is used as the reference geometry to apply the Eckart conditions. They have been implemented in Tnum [START_REF] Lauvergnat | Tnum-Tana: a Fortran code to deal with curvilinear coordinates and kinetic energy operator[END_REF] as described in ref [START_REF] Lauvergnat | Numerical and exact kinetic energy operator using Eckart conditions with one or several reference geometries: Application to HONO[END_REF]. The rotational constants have been computed with the Fortran codes ElVibRot [START_REF] Lauvergnat | ElVibRot: a Fortran Quantum Dynamics code[END_REF] coupled with Tnum using the following procedure: (i) Calculate the average values (⟨µ α,β ⟩, with α and β being x, y or z) of the contravariant rotational components of the metric tensor. This is done with the numerical conditions (basis set and grid parameters) used to compute the energy levels. (ii) Diagonalize the previous 3 × 3 matrix to get the rotational constants as its eigenvalues. The comparison between the computed and the experimental values given in Table 5 shows a nice agreement. Indeed, the largest error is about 1. GHz. Furthermore, the rotational constant shifts due to the isotopic substitution (from H 2 35 Cl + to H 2 37 Cl + ) are well reproduced. In this computational work, we have generated the 3D-potential energy surface of the ground state of the chloronium ion using a state-of-the-art electronic structure level, namely the F12-explicitly correlated coupled cluster method with a F12-triple zeta atomic basis set. This fitted polynomial expansion was incorporated into a home-made variational Fortran code to compute the energy levels, the zero-point average coordinate values and the rotational constants of several isotopologues, H 

A Potential energy surface fitting procedure

The potential, V(Q), has been expanded in terms of displacements,

∆Q i = Q i -Q re f i , (i = 1, 2, 3)) of symmetrized coordinates, Q ([θ, R + , R -]) with Q re f = [1.
645916 rad, 2.467341 bohr, 0. bohr] and expressed as a sum of four n-mode contributions, V 0 (Q), ∆V 1 (Q), ∆V 2 (Q) and ∆V 3 (Q), which depend on the coupling between modes. The first contribution, V 0 (Q), is just the reference energy, i.e. the energy of the minimum. The other contributions are fitted from the energies generated similarly to the n-mode expansion:

∆V K (Q) = ∑ R V K (i 1 ,i 2 ,i 3 ) C i 1 ,i 2 ,i 3 • ∆Q 1 i 1 ∆Q 2 i 2 ∆Q 3 i 3 . (11) 
The C i 1 ,i 2 ,i 3 are the coefficients obtained by a least square procedure of the multimode expansion ab initio values,

∆V ab K (Q). Each R V K (i 1 , i 2 , i 3 ) defines a constraint on the [i 1 , i 2 , i 3 ] and its general expression is (i 1 + i 2 + i 3 ) ≤ L V
K and with i 1 ≥ 0, i 2 ≥ 0 and i 3 ≥ 0. Furthermore, Since the potential is symmetric with respect to ∆Q 3 , only the even values of i 3 are possible. L V K is a parameter which controls the number of terms or functions in the expansion. More precisely, for each value of K, R K is defined as follows:

(i) One mode expansion (K=1), R V 1 :
The possible values of the indices are [i 1 , 0, 0] or [0, i 2 , 0] or [0, 0, i 3 ] (with i 1 ≥ 1, i 2 ≥ 1 and i 3 ≥ 2) and L V 1 = 9, the number of functions is 22 (9 functions for [i 1 , 0, 0] and [0, i 2 , 0] and only 4 functions for [0,

0, i 3 ] since i 3 is even. (ii) Two mode expansion (K=2), R V 2 : The possible values of the indices are [i 1 , i 2 , 0] or [i 1 , 0, i 3 ] or [0, i 2 , i 3 ] (with i 1 ≥ 1, i 2 ≥ 1 and i 3 ≥ 2). With L V 2 =
8, the number of functions is 52 (28 functions for [i 1 , i 2 , 0] and 12 functions for [i 1 , 0, i 3 ] or [0, i 2 , i 3 ]. (iii) Three mode expansion (K=3), R V 3 : Here, all indices are larger than 0 and with L V 3 = 6, the number of functions is 7.

Those three contributions are fitted independently of each other using well-defined grids generated in terms of displacement with respect to a reference geometry, Q re f . A least-square procedure is used with the ∆V ab K (Q) values on the grid points. Those values are related to the ab initio energy values, V ab (Q). The full 3D-grid is split in four parts, G 0 , G 1 , G 2 and G 3 depending on the coupling between modes. The first grid, G 0 , contains a single point, the reference geometry and the corresponding ab initio energy, E 0 . The other points are generated with constraints, R G K , on the indices [u 1 , u 2 , u 3 ]: u 1 + u 2 + u 3 ≤ L G K , where L G K control the size of the grid. The constraints for K = 1, 2, 3 are the following: (i) One mode expansion (K=1), R G 1 : The possible values of the indices are [u 1 , 0, 0] or [0, u 2 , 0] or [0, 0, u 3 ] (with u 1 ≥ 1, u 2 ≥ 1 and u 3 ≥ 1). With L G 1 = 5, the number of grid points is 25 (10 for [u 1 , 0, 0] or [0, u 2 , 0] and only 5 for [0, 0, u 3 ]. Then, the ∆V ab 1 (Q) values are obtained as follows: ∆V ab 1 (Q) = V ab (Q) -E 0 . (ii) Two mode expansion (K=2), R G 2 : The possible values of the indices are [u 1 , u 2 , 0] or [u 1 , 0, u 3 ] or [0, u 2 , u 3 ] (with u 1 ≥ 1, u 2 ≥ 1 and u 3 ≥ 2). With L G 2 = 5, the number of grid points is 80 (40 for [u 1 , y 2 , 0] and 20 [u 1 , 0, u 3 ] or [0, u 2 , u 3 ]. The ∆V ab 2 (Q) is given by:

∆V ab 2 (Q) = V ab (Q) -E 0 -∆V ab 1 (Q 1 , Q re f 2 , Q re f 3 ) -∆V ab 1 (Q re f 1 , Q 2 , Q re f 3 ) -∆V ab 1 (Q re f 1 , Q re f 2 , Q 3 ). (12) 
(iii) Three mode expansion (K=3), R G 3 : Here, all index absolute values are larger than 0 and with L G 3 = 5, the number of grid points is 40. The ∆V ab 3 (Q) is given by:

∆V ab 3 (Q) = V ab (Q) -E 0 -∆V ab 1 (Q 1 , Q re f 2 , Q re f 3 ) -∆V ab 1 (Q re f 1 , Q 2 , Q re f 3 ) -∆V ab 1 (Q re f 1 , Q re f 2 , Q 3 ) -∆V ab 2 (Q 1 , Q 2 , Q re f 3 ) -∆V ab 2 (Q 1 , Q re f 2 , Q 3 ) -∆V ab 2 (Q re f 1 , Q 2 , Q 3 ) (13) 
In those three grids (G K ), for each point the k th -coordinate reads:

Q k = Q re f k + ∆Q k (u k ) (14) 
where the ∆Q k (u k ) (k = 1, 2, 3) are given in table 6. 

Figure 1 :

 1 Figure 1: Ab initio energy point (red cross) and fitted potential (full blue line) along the three symmetrized coordinates. The energy is in Hartree, θ in radian and R + and R -are in bohr.

Fig. 2

 2 Fig.2shows the two iso-contours of the PES cuts. The left panel displays the contour as function of the two HCl distances with the angle fixed around its equilibrium value (1.64 radian), while the right panel displays the contour as function of the angle and one HCl distance with the other distance fixed around its equilibrium value (2.46 bohr).

Figure 2 :

 2 Figure 2: 2D-contour plots of H 2 Cl + potential energy surface at CCSD(T)F12b/cc-pVTZ-F12. Left panel: R 1 -R 2 contour. Right panel: R 1θ contour.

Table 1 :

 1 Isotopic masses used in this study and obtained from the 2018 NIST table.

  The geometry was optimized at CCSD(T)-F12b/VTZ-F12 and the optimized H-Cl distance and the HClH angle are 1.306 Å and 94.3°, respectively. These values are close to the Botschwina CEPA-1 values (1.302 Å and 94.2°)[START_REF] Botschwina | Anharmonic potential-energy surfaces, vibrational frequencies and infrared intensities calculated from highly correlated wavefunctions[END_REF] and the experimental ones (1.304 Å and 94.24°f or both H 2 35 Cl + or H 2 37

Table 2 :

 2 Basis set parameters (in atomic unit) for the isotopologues.

	q j			1 (R 1 )	2 (R 2 )	3 (θ)
	q	j re f			2.467	2.467	1.646
	k j			0.282	0.282	0.168
			35 Cl + HD 35 Cl + 1785.69 3471.53 7158.55 1785.69 1785.69 5424.03 H 2
	35 Cl + 37 Cl + HD 37 Cl + 1788.39 3481.78 7173.92 3471.53 3471.53 10523.94 1/G jj D 2 1788.39 1788.39 5432.85 H 2
			D 2	37 Cl +	3481.78 3481.78 10557.19
			35 Cl + HD 35 Cl + H 2	4.74 4.74	4.74 5.59	5.49 5.89
	sc j	35 Cl + 37 Cl + HD 37 Cl + D 2 H 2	5.59 4.74 4.74	5.59 4.74 5.60	6.48 5.49 5.89
			D 2	37 Cl +	5.60	5.60	6.49

Table 3 :

 3 computed and experimental anharmonic vibrational transitions (in cm -1 ) for H 235 Cl + and H 237 Cl + isotopologues.

		H 2	35 Cl +		H 2	37 Cl +
	Band	This work Botschwina[13]	Exp.	This work	Exp.
	ν 2	1184.6	1206.8	1184.1 a	1183.7	1183.2 a
	2ν 2	2356.6	2398.1		2354.8
	ν 3	2634.9	2637.4	2630.1 b	2632.8	2628.1 b
	ν 1	2648.2	2650.0	2643.2 b	2646.5	2641.5 b
	3ν 2	3515.3	3565.7		3512.6
	ν 2 + ν 3	3794.0	3816.5		3791.1
	ν 1 + ν 2	3813.1	3838.3		3810.5
	4ν 2	4660.2	4690.5		4656.6
	2ν 2 + ν 3	4940.7	4979.8		4937.0
	2ν 2 + ν 1	4965.5	5011.1		4962.1
	ZPE	3320.9	3335.1		3318.4

a: Ref

[START_REF] Kawaguchi | Magnetic field modulated infrared laser spectroscopy of the chloronium ClH 2 + ion ν 2 band[END_REF] 

b: Ref

[START_REF] Lee | Difference-frequency laser spectroscopy of the ν 1 and ν 3 fundamental bands of H 2 Cl + : Determination of the equilibrium molecular structure[END_REF] 

Table 4 :

 4 Computed anharmonic vibrational frequencies (in cm -1 ) for HD35 Cl + , HD 37 Cl + , D 235 Cl + and D 237 Cl + isotopologues.BandHD35 Cl + HD 37 Cl + D 235 Cl + D 237 Cl +

	ν 2	1034.6	1033.5	856.9	855.7
	2ν 2	2059.4	2057.4	1707.4	1705.0
	ν 3	2641.3	2639.4	1915.3	1912.4
	ν 1	1917.5	1914.8	1920.0	1917.5
	3ν 2	3074.2	3071.2	2551.4	2547.8
	ν 2 + ν 3	3653.5	3650.6	2759.0	2754.9
	ν 1 + ν 2	2939.9	2936.2	2766.7	2763.0
	4ν 2	4078.5	4074.4	3388.5	3383.8
	2ν 2 + ν 3	4656.2	4652.4	3596.5	3591.3
	2ν 2 + ν 1	3952.7	3948.0	3607.0	3602.2
	ZPE	2862.9	2860.0	2391.0	2387.6

Table 5 :

 5 Experimental and computed expectation values of coordinates and rotationnal constants for several isotoplogues with the distances in Å, the angles in °and the rotationnal constants in GHz.

		H 2	35 Cl +		HD 35 Cl +		H 2	37 Cl +
		This work Ref [12] This work Ref[12] This work Ref[12]
	⟨R 1 ⟩	1.325	1.3206	1.325	1.3207	1.325	1.3206
	⟨R 2 ⟩	1.325	1.3206	1.319	1.3165	1.325	1.3206
	⟨Θ⟩	94.33	94.24	94.32		94.33	94.24
	A	336.9	337.352	308.8	309.476	336.0	336.360
	B	272.5	273.587	152.7	153.168	272.5	273.587
	C	147.9	148.100	100.7	100.837	147.7	147.907
		HD 37 Cl +	D 2	35 Cl +		D 2	37 Cl +
		This work	This work		This work
	⟨R 1 ⟩	1.325		1.320		1.319
	⟨R 2 ⟩	1.319		1.320		1.319
	⟨Θ⟩	94.32		94.31		94.31
	A	308.2		177.6		176.7
	B	152.4		136.5		136.5
	C	100.5		76.2		76.0

  2 35 Cl + , H 237 Cl + , HD35 Cl + , HD 37 Cl + , D 2 35 Cl + and D 2 37 Cl + . Our results are in good agreement with the available experimental data. DL gratefully acknowledges the hospitality of the Laboratoire de Physique des Matériaux et des Composants à Semi-conducteurs, Département de Physique, Université de Lomé, where part of this work was carried out. RA gratefully thanks the ASESMANET network for giving me the opportunity to spend a month in the Institut de Chimie Physique of the Université Paris-Saclay.

	4 Acknowledgement

Table 6 :

 6 Values of the ∆Q k (u k ) as function of u k (k = 1, 2, 3) to define the grid points. ∆Q 1 0.00 0.21 -0.18 0.41 -0.36 0.62 -0.54 0.83 -0.72 1.03 -0.90 ∆Q 2 0.00 0.13 -0.08 0.26 -0.17 0.39 -0.25 0.52 -0.33 0.65 -0.41

	u k	0	1	-1	2	-2	3	-3	4	-4	5	-5
	∆Q 3 0.00 0.10		0.19		0.29		0.38		0.48