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Abstract

A new three-dimensional potential energy surface of the electronic ground state of the chloronium ion, H2Cl+, based on the
explicitly correlated coupled cluster method with a triple zeta basis set adapted to this method has been expanded in an
analytical representation. This potential energy surface is later incorporated into our home-made Fortran code to compute
variationally the vibrational levels, zero-point ground average structural parameters and the rotational constants of the
chloronium ion and several isotopologues. Our results show a good agreement with experimental data and that our results
will help to detect H2Cl+ isotopologues in the interstellar medium.

1 Introduction

Recently, the chloronium ion H2Cl+ was detected for the first time in the interstellar medium (ISM) by
the Herschel Space Observatory using the Heterodyne Instrument for the far-Infrared (HIFI) [1, 2]. The
dominant ionization state of each element in diffuse interstellar gas clouds is determined by its ionization
potential. Chlorine has a slightly lower ionization potential than that of a hydrogen molecule, and is therefore
mostly ionized individually in the form of Cl+. The latter ion can react with the dominant constituent of the
interstellar medium H2 to form the ion HCl+ [1] which, in turn, reacts with hydrogen to form the chloronium
ion H2Cl+. Chemical modeling suggests that the chloronium ion could be very abundant around the diffuse
ISM [3]. However, prior to the launch of Herschel, H35Cl and H37Cl were the only Cl-bearing molecules
detected in and around the ISM [4, 5, 6, 7]. This can be explained by the fact that the H2Cl+ ion transforms
into hydrogen chloride, HCl by dissociative recombination or by proton transfer to carbon monoxide CO. In
addition to the detection by Herschel, another study reported by Neufeld et al [8], also detected absorption and
emission of H2Cl+ from two interstellar cloud sources. The chemical reactions that give rise to the deuterated
forms HDCl+ and D2Cl+ are similar to those giving the chloronium ion, H2Cl+, with the same orders of
magnitude of the reaction rate coefficient. It follows that, like the chloronium ion, its deuterated isotopologues
should be abundant in the ISM. Surprisingly, to date, the existence of these deuterated isotopologues (HDCl+

and D2Cl+) has not been observed in the ISM.
The availability of accurate spectroscopic data on chloronium and its deuterated forms could greatly facilitate

their identification in interstellar space. Despite their importance, very few spectroscopic data on this ion
and even less on its deuterated forms HDCl+ and D2Cl+ are available in the literature. Experimentally, the
first structural information on the chloronium ion was reported in 1986 by Kawaguchi and Hirota [9], who
studied its ν2 band with infrared diode laser spectroscopy. Saito et al. [10] detected microwave spectral lines
of H2

35Cl+ in 1988. In the same year, Lee et al [11] worked on the difference-frequency laser spectroscopy
of the chloronium. These latter authors have observed the gas phase of the ν1 and ν2 fundamental bands of
H2Cl+ and determined its equilibrium structure. The rotational spectra of H2Cl+ and HDCl+ were measured
by Araki et al [12] using a submillimeter-wave spectrometer. Furthermore, theoretically, Botschwina [13]
computed a potential energy surface (PES) at coupled electron-pair approximation (CEPA) level and the
vibrational frequencies for H2Cl+ and its isotopologues HDCl+ and D2Cl+. More recently, after the detection
of the chloronium ion, Majumdar et al [14] explored the possibility of finding the isotopologues of H2Cl+ in
and around the ISM. These authors used Moller-Plesset perturbation theory (MP2) along with a quadruple-zeta
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correlation consistent (aug-cc-pVQZ) basis set to optimize the geometry of chloronium and computed the
harmonic vibrational frequencies of H2Cl+ and its two deuterated isotopologues HDCl+ and D2Cl+. Within
their chemical modeling, they found that HDCl+ could be efficiently formed in the gas phase and that the
emission line should be strong enough to be observed.

The lack of availability of laboratory data, in particular in the case of reactive species (transition molecules,
radicals, ions) which remain more difficult to study in the laboratory than their stable counterparts, is the main
factor currently limiting astronomical molecular detection. In order to facilitate the detection of the chloronium
isotopologues HDCl+ and D2Cl+, in this work, we provide information on the spectroscopic properties of
these isotopologues. We use the explicitly correlated F12, coupled-cluster method, CCSD(T)-F12b, approach to
optimize the geometric parameters of the ion and to generate the 3D-potential energy surface. This allows the
computation of vibrational energy levels of chloronium H2Cl+, its two isotopologues HDCl+ and D2Cl+ (with
35Cl and 37Cl chlorine isotopes), using the variational approach implemented in our home-made Fortran code.
We compare our theoretical spectra with those available in the literature, experimental ones with Lee et al [11]
and theoretical ones with Botschwina [13]. Our results show good agreements with those of the literature.

The present paper is organized as follows. In Section 2, the methods for the determination of the kinetic
energy operator, the electronic structure, the potential energy surface and the computational details are
presented. The results are discussed and concluding remarks are given in Section 3. In the Appendix, the
fitting procedure of PES is given.

2 Methods

2.1 Coordinates and kinetic energy operator

The vibrational motion of N atom molecular system, moving on a potential energy surface, V(q) can be
described by n = 3N − 6 internal coordinates, q = [q1, q2, . . . qn]. Considering the body-fixed (BF) Cartesian
coordinates expressed as functions of the internal coordinates, x = x (q), i.e xα = xα(q1, . . . , qn), α = 1, . . . 3N,
the standard expression of the deformation part of the kinetic energy operator (KEO) in terms of the
contravariant components of the metric tensor Gij(q) and with the Euclidean volume element, dνE, reads as
[15]:

T̂E
de f (q, ∂q) = − h̄2

2

n,n

∑
i,j=1

J(q)−1∂iJ(q)Gij(q)∂j, ∂i ≡ ∂/∂qi, (1)

where J(q) =
√

det(g), [Gij(q)] = [gij(q)]−1. The covariant components of the metric tensor, gij(q), are

split in several contributions, g =

[
Sn×n Ct

n×3
C3×n I3×3

]
where Sn×n, I3×3 and C3×n are the deformation part, the

rotation part or the inertia tensor and the Coriolis part of the metric tensor, respectively. Furthermore,
dνE

de f = J(q)dq1 · dq2 · · · dqn is the deformation part of the Euclidean volume element.
By expanding the kinetic energy operator (1) and changing the volume element, it can be rewritten in the

form :
T̂ρ

de f (q, ∂q) = ∑
i≤j

f ij
2 (q)∂

2
ij + ∑

i
f i
1(q)∂i + Ve(q), ∂2

ij ≡ ∂2/∂qi∂qj, (2)

where Ve(q) is the extrapotential term [16, 17, 18] resulting from the use of a non-Euclidean volume element
dνρ = ρ(q)dq1dq2 . . . dqn. ρ(q) is a real positive function which has to be adapted so that the basis set be
orthonormal. The quantities f ij

2 (q), f i
1(q) and Ve(q) in eq. (2) are expressed as follows:

f ii
2 (q) = − h̄2

2
Gii(q), (3)

f ij
2 (q) = −h̄2Gij(q) (i ̸= j), (4)

f i
1(q) = − h̄2

2 ∑
j

[
Gij∂j ln ρ(q) + ∂j ln Gij(q)

]
, (5)

Ve(q) =

[√
J(q)
ρ(q)

T̂E
de f (q, ∂q)

√
ρ(q)
J(q)

]
. (6)
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The formalism of the derivation of the kinetic energy operator (KEO) Eq. (1) is well known [15, 19, 20, 21]. The
first numerical implementation of the KEO operator dates back to the work of Laane et al. [22, 23]. Later, other
groups proposed numerical approaches to determine the kinetic energy operator in the context of quantum
dynamics [24, 25, 26]. M. Ndong and coworkers [27, 28] developed the Fortran program TANA which provides
an automatic computation of the kinetic energy operator in analytical form for polyspherical coordinates
for any number of atoms. In this approach, the expression of the metric tensor is obtained analytically and
it can be used in Eq. (1) or in Eq. (2). Furthermore, these expressions can be exported in several formats
(MCTDH,[29, 30] MidasCpp,[31] Fortran).

The 3D-vibrational motion of the chloronium ion can be described in terms of the three valence coordinates
q = {q1, q2, q3} ≡ {R1, R2, θ}, where R1 and R2 are the distances between the chlorine atom and the two
hydrogen atoms and θ is the angle between the two Cl − H bonds. The application of the general KEO formula
Eqs. (2, 7, 8) with the Wilson normalization convention, ρ(q) = 1, (dν1 = dR1 · dR2 · dθ) yields the following
KEOs of the H2Cl+ and its isotopologues:

T̂(R1, R2, θ) =F11
2

∂2

∂R2
1
+ F22

2
∂2

∂R2
2
+ F33

2
∂2

∂θ2 + F12
2

∂2

∂R1∂R2
+ F13

2
∂2

∂R1∂θ
+

F23
2

∂2

∂R2∂θ
+ F1

1
∂

∂R1
+ F2

1
∂

∂R2
+ F3

1
∂

∂θ
+ Vep,

(7)

where the functions, Fij
2 , Fi

1 and Vep, are given below:

F11
2 =− h̄2

2µR1

, F22
2 = − h̄2

2µR2

, F12
2 = −h̄2 cos(θ)

mCl
,

F33
2 =− h̄2

2

(
1

µR1 · R1
2 +

1
µR2 · R22 − 2 cos(θ)

mCl · R1 · R2

)
,

F13
2 =

h̄2

2
1

mCl · R2

(
sin(θ) +

1
sin(θ)

− cos2(θ)

sin(θ)

)
,

F23
2 =

h̄2

2
1

mCl · R1

(
sin(θ) +

1
sin(θ)

− cos2(θ)

sin(θ)

)
,

F1
1 =

h̄2

4
1

mCl · R2

(
3 cos(θ)− cos(θ)

sin2(θ)
− cos3(θ)

sin2(θ)

)
,

F2
1 =

h̄2

4
1

mCl · R1

(
3 cos(θ)− cos(θ)

sin2(θ)
− cos3(θ)

sin2(θ)

)
,

F3
1 =h̄2 1

mCl · R1 · R2

(
cos2(θ)

sin(θ)
− 1

sin(θ)

)
,

(8)

Ve(q) =− h̄2

4
1

mCl · R1 · R2

(
2 cos(θ) +

cos3(θ)

sin2(θ)
− 2

cos(θ)
sin2(θ)

)
−

h̄2

8
1

µR1 · R1
2

(
2 +

cos2(θ)

sin2(θ)

)
− h̄2

8
1

µR2 · R22

(
2 +

cos2(θ)

sin2(θ)

)
,

(9)

where µR1 and µR2 are reduced masses : 1
µR1

= 1
mCl

+ 1
mH1

and 1
µR2

= 1
mCl

+ 1
mH2

. Furthermore, mCl , mH1 and

mH2 are, respectively, the isotopic masses of the chlorine, the first hydrogen and the second hydrogen atoms.
It is worth noting, that the TANA code has been used to obtain the analytical expression and the Fortran
subroutines of the KEO. Furthermore, some simplifications are possible in the previous expressions (Eq. (8-9)).

For example,
(

sin(θ) + 1
sin(θ) −

cos2(θ)
sin(θ)

)
can be simplified in (2 sin(θ)). However, we prefer to present the

unsimplified expressions, which are used in our quantum dynamics code and come directly from the TANA
code [27]. The present triatomic KEO has been published in the past by several group [32, 33, 34].
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Table 1: Isotopic masses used in this study and obtained from the 2018 NIST table.

Isotope masses (g.mol−1) masses (au)
35Cl 34.968852682 63744.31895
37Cl 36.965902602 67384.71826
H 1.00782503223 1837.152648
D 2.01410177812 3671.482943

2.2 Electronic structure and potential energy surface

The electronic structure has been carried out with the explicitly correlated, F12, coupled cluster method,
CCSD(T)-F12b [35], with the F12 adapted triple zeta basis set [36], cc-pVTZ-F12 (CCSD(T)-F12b/VTZ-F12)
using molpro2010 code [37]. As noted in several studies, this level of computation provides a good compromise
between quality and computational efficiency [38]. The geometry was optimized at CCSD(T)-F12b/VTZ-F12
and the optimized H-Cl distance and the HClH angle are 1.306 Å and 94.3°, respectively. These values are
close to the Botschwina CEPA-1 values (1.302 Å and 94.2°) [13] and the experimental ones (1.304 Å and 94.24°
for both H2

35Cl+ or H2
37Cl+ isotopologues) [11].

The H2Cl+ potential energy surface (PES), V(Q), was obtained by fitting 145 ab initio points at CCSD(T)-
F12b/VTZ-F12 level using symmetrized coordinate displacements (θ − θeq, 1/2(R1 + R2)− Req and 1/2(R1 −
R2)). Along these displacements, the grid ranges in bohr are [−0.90 : 1.03], [−0.41 : 0.65] and [0.00 : 0.48],
respectively. The full grid covers energies up to about 10000 cm−1and it has been fitted as linear combinations
of coordinate displacement products. The fitted potential reproduces almost perfectly the ab initio points.
Indeed, the root-mean-square error and the maximum error are about 0.1 cm−1and 0.5 cm−1, respectively.
Furthermore, Fig. 1 shows the ab initio energy points (red crosses) and the fitted potential (solid blue line)
along the three symmetrized coordinates (θ, R+ and R−), which clearly shows the almost perfect agreement.

The grid generation and the fitting procedure are explained in detail in the Appendix. This PES has been
implemented in the Quantum Model Library, freely available on github [39].

Figure 1: Ab initio energy point (red cross) and fitted potential (full blue line) along the three symmetrized coordinates. The energy is
in Hartree, θ in radian and R+ and R− are in bohr.

Fig. 2 shows the two iso-contours of the PES cuts. The left panel displays the contour as function of the two
HCl distances with the angle fixed around its equilibrium value (1.64 radian), while the right panel displays
the contour as function of the angle and one HCl distance with the other distance fixed around its equilibrium
value (2.46 bohr).
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Figure 2: 2D-contour plots of H2Cl+ potential energy surface at CCSD(T)F12b/cc-pVTZ-F12. Left panel: R1 − R2 contour. Right
panel: R1 − θ contour.

2.3 Vibrational computational approach

The computation of the vibrational levels is relatively standard and it is related on early works on variational
methods [32, 40, 41, 42]. For the present study, it has been performed with the help of our home-made
pseudo-spectral Fortran code, TI_Schrod [43]. It allows us to solve the time-independent Schrödinger equation
with a Hamiltonian expressed in terms of the three internal coordinates, q = [R1, R2, θ]. The 3D-quantum
vibrational bound states are expanded on a direct product of one-dimensional harmonic oscillator basis sets,
and thus, ρ(q) associated with the non-Euclidean volume element is equal to one (ρ(q) = 1). Furthermore,
the integration procedure is performed using the direct product of Gauss-Hermite quadrature grids.

More precisely, each eigenstate is developed as follows:

Ψ(R1, R2, θ) = ∑
i1,i2,i3

Ci1,i2,i3 HOi1(R1)HOi2(R2)HOi3(θ), (10)

where, for the coordinate, qj, the HOi(qj) are the normalized Harmonic oscillator basis functions, HOi(qj) =

Nsc
i .Hi−1(xj(qj)) · exp[− 1

2 xj(qj)2]. xj(qj) is the scaled and shifted coordinate, xj(qj) = scj · (qj − qj
re f ), Nscj

i is a
normalization factor and Hi−1(x) are the Hermite polynomials.

Table 2: Basis set parameters (in atomic unit) for the isotopologues.

qj 1 (R1) 2 (R2) 3 (θ)

qj
re f 2.467 2.467 1.646

kj 0.282 0.282 0.168

H2
35Cl+ 1785.69 1785.69 5424.03

HD35Cl+ 1785.69 3471.53 7158.55
1/Gjj D2

35Cl+ 3471.53 3471.53 10523.94
H2

37Cl+ 1788.39 1788.39 5432.85
HD37Cl+ 1788.39 3481.78 7173.92
D2

37Cl+ 3481.78 3481.78 10557.19

H2
35Cl+ 4.74 4.74 5.49

HD35Cl+ 4.74 5.59 5.89
scj D2

35Cl+ 5.59 5.59 6.48
H2

37Cl+ 4.74 4.74 5.49
HD37Cl+ 4.74 5.60 5.89
D2

37Cl+ 5.60 5.60 6.49
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qj
re f is the value of qj at the equilibrium geometry and the expression of scj is given by 4

√
kj/Gjj where kj

and Gjj are, respectively, the curvature and the value of contravariant component of the metric tensor at the
qre f geometry [44]. The values of the qj

re f , scj and Gjj are given in Table [2] for all studied isotopologues.

Before discussing in more detail the vibrational spectra of H2Cl+ and its isotopologues, we have checked
the convergence of the energy levels with respect to the basis set and the grid sizes. In our tests, the three
1D-basis sets have the same number of basis functions, nb which increases from 9 to 12 and the grid point
number, nq, is fixed to 12. These tests have shown, that, the largest error between the energy levels up to
4000-5000 cm−1calculated with nb = 11 and nb = 12 is smaller than 10−2 cm−1. Therefore, we have chosen 12
basis functions for each Harmonic oscillator basis and for all isotopologues.

3 Discussion and conclusion

The table 3 lists the computed and experimental anharmonic vibrational frequencies, expressed in cm−1, for
the H2

35Cl+ and H2
37Cl+ isotopologues. The differences between the experimental and the computed values

are 0.5 cm−1 for the bending mode (ν2) and about 5 cm−1 for the two stretching modes (ν1 and ν3). This
shows a good agreement between our calculated values and the experimental ones. Furthermore, these values
show a clear improvement with respect to those computed by Botschwina with his unscaled potential [13], in
particular, for the bending mode. Indeed, Botschwina developed two potentials: (i) the first one (unscaled) is
obtained after the fitting of the ab-initio calculations; (ii) the second one is derived from the first one, but some
parameters are scaled to reproduce the experimental fundamental transitions. Therefore, we compare our full
ab-initio potential with the first Botschwina potential, and our results clearly show the quality of our potential.
Table 4 gives the vibrational frequencies for the other isotopologues of this ion, namely HD35Cl+, HD37Cl+,
D2

35Cl+, D2
37Cl+.

Table 3: computed and experimental anharmonic vibrational transitions (in cm−1) for H2
35Cl+ and H2

37Cl+ isotopologues.

H2
35Cl+ H2

37Cl+

Band This work Botschwina[13] Exp. This work Exp.

ν2 1184.6 1206.8 1184.1a 1183.7 1183.2a

2ν2 2356.6 2398.1 2354.8
ν3 2634.9 2637.4 2630.1b 2632.8 2628.1b

ν1 2648.2 2650.0 2643.2b 2646.5 2641.5b

3ν2 3515.3 3565.7 3512.6
ν2 + ν3 3794.0 3816.5 3791.1
ν1 + ν2 3813.1 3838.3 3810.5
4ν2 4660.2 4690.5 4656.6
2ν2 + ν3 4940.7 4979.8 4937.0
2ν2 + ν1 4965.5 5011.1 4962.1
ZPE 3320.9 3335.1 3318.4

a: Ref [9] b: Ref [11]
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Table 4: Computed anharmonic vibrational frequencies (in cm−1) for HD35Cl+, HD37Cl+, D2
35Cl+ and D2

37Cl+ isotopologues.

Band HD35Cl+ HD37Cl+ D2
35Cl+ D2

37Cl+

ν2 1034.6 1033.5 856.9 855.7
2ν2 2059.4 2057.4 1707.4 1705.0
ν3 2641.3 2639.4 1915.3 1912.4
ν1 1917.5 1914.8 1920.0 1917.5
3ν2 3074.2 3071.2 2551.4 2547.8
ν2 + ν3 3653.5 3650.6 2759.0 2754.9
ν1 + ν2 2939.9 2936.2 2766.7 2763.0
4ν2 4078.5 4074.4 3388.5 3383.8
2ν2 + ν3 4656.2 4652.4 3596.5 3591.3
2ν2 + ν1 3952.7 3948.0 3607.0 3602.2
ZPE 2862.9 2860.0 2391.0 2387.6

The equilibrium molecular structure was therefore determined by taking the expectation values of each
coordinate (⟨R1⟩, ⟨R2⟩ and ⟨Θ⟩) for the vibrational ground-state. The values resulting from these calculations
are reported in the table 5. These values obtained for the isotopologues, H2

35Cl+, HD35Cl+ and H2
37Cl+

agree very well with the experimental values (the distances and the angle are extracted from the experimental
rotational constants) [12, 9]. Indeed, for the three isotopologues, the angle values are very close to the
experimental ones and the errors are less than 0.1◦ [12, 9]. With respect to the Cl-H distance of H2

35Cl+

obtained from ref [9], the difference with our calculation is about 0.1 Å, which is surprisingly large. However,
we are confident with our values. Indeed, our equilibrium values agree very well with Botschwina ones[13]
and also from the experimental ones [12, 9]. Furthermore, with respect to a more recent study of Araki et al.
[12], the experimental Cl-H and Cl-D distances (associated to the zero point average structure[12]) are in good
agreement with our calculated values since the largest difference with respect to the experimental value is only
0.005 Å with respect to ref [12]. Furthermore, our calculations nicely reproduce the shortening of the Cl-D
bond length with respect to the Cl-H one for the HD35Cl+ ion [12]. In the Table 5, we also give the expectation
values for other isotopologues, D2

35Cl+, HD37Cl+ and D2
37Cl+.

Table 5: Experimental and computed expectation values of coordinates and rotationnal constants for several isotoplogues with the
distances in Å, the angles in ° and the rotationnal constants in GHz.

H2
35Cl+ HD35Cl+ H2

37Cl+

This work Ref [12] This work Ref[12] This work Ref[12]

⟨R1⟩ 1.325 1.3206 1.325 1.3207 1.325 1.3206
⟨R2⟩ 1.325 1.3206 1.319 1.3165 1.325 1.3206
⟨Θ⟩ 94.33 94.24 94.32 94.33 94.24

A 336.9 337.352 308.8 309.476 336.0 336.360
B 272.5 273.587 152.7 153.168 272.5 273.587
C 147.9 148.100 100.7 100.837 147.7 147.907

HD37Cl+ D2
35Cl+ D2

37Cl+

This work This work This work

⟨R1⟩ 1.325 1.320 1.319
⟨R2⟩ 1.319 1.320 1.319
⟨Θ⟩ 94.32 94.31 94.31

A 308.2 177.6 176.7
B 152.4 136.5 136.5
C 100.5 76.2 76.0
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In addition, we were able to compute the three rotational constants associated with the vibrational ground
state. However, this has to be done with care. Indeed, since we did not perform a full ro-vibrational
calculation, the rotational Eckart conditions[45] must be applied to minimize the Coriolis coupling. The
Cartesian equilibrium geometry (obtained from R1 = R2 = 2.46729 bohr and θ = 1.64588 rad) is used as the
reference geometry to apply the Eckart conditions. They have been implemented in Tnum[28] as described
in ref [46]. The rotational constants have been computed with the Fortran codes ElVibRot[47] coupled with
Tnum using the following procedure: (i) Calculate the average values (⟨µα,β⟩, with α and β being x, y or z)
of the contravariant rotational components of the metric tensor. This is done with the numerical conditions
(basis set and grid parameters) used to compute the energy levels. (ii) Diagonalize the previous 3 × 3 matrix
to get the rotational constants as its eigenvalues. The comparison between the computed and the experimental
values given in Table 5 shows a nice agreement. Indeed, the largest error is about 1. GHz. Furthermore, the
rotational constant shifts due to the isotopic substitution (from H2

35Cl+ to H2
37Cl+) are well reproduced.

In this computational work, we have generated the 3D-potential energy surface of the ground state of the
chloronium ion using a state-of-the-art electronic structure level, namely the F12-explicitly correlated coupled
cluster method with a F12-triple zeta atomic basis set. This fitted polynomial expansion was incorporated into
a home-made variational Fortran code to compute the energy levels, the zero-point average coordinate values
and the rotational constants of several isotopologues, H2

35Cl+, H2
37Cl+, HD35Cl+, HD37Cl+, D2

35Cl+ and
D2

37Cl+. Our results are in good agreement with the available experimental data.
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A Potential energy surface fitting procedure

The potential, V(Q), has been expanded in terms of displacements, ∆Qi = Qi − Qre f
i , (i = 1, 2, 3)) of

symmetrized coordinates, Q ([θ, R+, R−]) with Qre f = [1.645916 rad, 2.467341 bohr, 0. bohr] and expressed as
a sum of four n-mode contributions, V0(Q), ∆V1(Q), ∆V2(Q) and ∆V3(Q), which depend on the coupling
between modes. The first contribution, V0(Q), is just the reference energy, i.e. the energy of the minimum. The
other contributions are fitted from the energies generated similarly to the n-mode expansion:

∆VK(Q) = ∑
RV

K (i1,i2,i3)

Ci1,i2,i3 · ∆Q1
i1 ∆Q2

i2 ∆Q3
i3 . (11)

The Ci1,i2,i3 are the coefficients obtained by a least square procedure of the multimode expansion ab
initio values, ∆Vab

K (Q). Each RV
K (i1, i2, i3) defines a constraint on the [i1, i2, i3] and its general expression is

(i1 + i2 + i3) ≤ LV
K and with i1 ≥ 0, i2 ≥ 0 and i3 ≥ 0. Furthermore, Since the potential is symmetric with

respect to ∆Q3, only the even values of i3 are possible. LV
K is a parameter which controls the number of terms

or functions in the expansion. More precisely, for each value of K, RK is defined as follows:

(i) One mode expansion (K=1), RV
1 :

The possible values of the indices are [i1, 0, 0] or [0, i2, 0] or [0, 0, i3] (with i1 ≥ 1, i2 ≥ 1 and i3 ≥ 2) and
LV

1 = 9, the number of functions is 22 (9 functions for [i1, 0, 0] and [0, i2, 0] and only 4 functions for [0, 0, i3]
since i3 is even.

(ii) Two mode expansion (K=2), RV
2 :

The possible values of the indices are [i1, i2, 0] or [i1, 0, i3] or [0, i2, i3] (with i1 ≥ 1, i2 ≥ 1 and i3 ≥ 2). With
LV

2 = 8, the number of functions is 52 (28 functions for [i1, i2, 0] and 12 functions for [i1, 0, i3] or [0, i2, i3].
(iii) Three mode expansion (K=3), RV

3 :
Here, all indices are larger than 0 and with LV

3 = 6, the number of functions is 7.

Those three contributions are fitted independently of each other using well-defined grids generated in
terms of displacement with respect to a reference geometry, Qre f . A least-square procedure is used with the
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∆Vab
K (Q) values on the grid points. Those values are related to the ab initio energy values, Vab(Q). The full

3D-grid is split in four parts, G0, G1, G2 and G3 depending on the coupling between modes. The first grid,
G0, contains a single point, the reference geometry and the corresponding ab initio energy, E0. The other
points are generated with constraints, RG

K , on the indices [u1, u2, u3]: u1 + u2 + u3 ≤ LG
K , where LG

K control the
size of the grid. The constraints for K = 1, 2, 3 are the following:

(i) One mode expansion (K=1), RG
1 :

The possible values of the indices are [u1, 0, 0] or [0, u2, 0] or [0, 0, u3] (with u1 ≥ 1, u2 ≥ 1 and u3 ≥ 1).
With LG

1 = 5, the number of grid points is 25 (10 for [u1, 0, 0] or [0, u2, 0] and only 5 for [0, 0, u3]. Then, the
∆Vab

1 (Q) values are obtained as follows: ∆Vab
1 (Q) = Vab(Q)− E0.

(ii) Two mode expansion (K=2), RG
2 :

The possible values of the indices are [u1, u2, 0] or [u1, 0, u3] or [0, u2, u3] (with u1 ≥ 1, u2 ≥ 1 and u3 ≥ 2).
With LG

2 = 5, the number of grid points is 80 (40 for [u1, y2, 0] and 20 [u1, 0, u3] or [0, u2, u3]. The ∆Vab
2 (Q)

is given by:

∆Vab
2 (Q) = Vab(Q)− E0 − ∆Vab

1 (Q1, Qre f
2 , Qre f

3 )

− ∆Vab
1 (Qre f

1 , Q2, Qre f
3 )− ∆Vab

1 (Qre f
1 , Qre f

2 , Q3).
(12)

(iii) Three mode expansion (K=3), RG
3 :

Here, all index absolute values are larger than 0 and with LG
3 = 5, the number of grid points is 40. The

∆Vab
3 (Q) is given by:

∆Vab
3 (Q) = Vab(Q)− E0 − ∆Vab

1 (Q1, Qre f
2 , Qre f

3 )

− ∆Vab
1 (Qre f

1 , Q2, Qre f
3 )− ∆Vab

1 (Qre f
1 , Qre f

2 , Q3)

− ∆Vab
2 (Q1, Q2, Qre f

3 )− ∆Vab
2 (Q1, Qre f

2 , Q3)

− ∆Vab
2 (Qre f

1 , Q2, Q3)

(13)

In those three grids (GK), for each point the kth-coordinate reads:

Qk = Qre f
k + ∆Qk(uk) (14)

where the ∆Qk(uk) (k = 1, 2, 3) are given in table 6.

Table 6: Values of the ∆Qk(uk) as function of uk (k = 1, 2, 3) to define the grid points.

uk 0 1 -1 2 -2 3 -3 4 -4 5 -5
∆Q1 0.00 0.21 -0.18 0.41 -0.36 0.62 -0.54 0.83 -0.72 1.03 -0.90
∆Q2 0.00 0.13 -0.08 0.26 -0.17 0.39 -0.25 0.52 -0.33 0.65 -0.41
∆Q3 0.00 0.10 0.19 0.29 0.38 0.48
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