
HAL Id: hal-04270562
https://cnrs.hal.science/hal-04270562

Submitted on 4 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary ReRAM-based BNN first-layer implementation
Mona Ezzadeen, Atreya Majumdar, Sigrid Thomas, Jean-Philippe Noël,

Bastien Giraud, Marc Bocquet, François Andrieu, Damien Querlioz,
Jean-Michel Portal

To cite this version:
Mona Ezzadeen, Atreya Majumdar, Sigrid Thomas, Jean-Philippe Noël, Bastien Giraud, et
al.. Binary ReRAM-based BNN first-layer implementation. 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Apr 2023, Antwerp, Belgium. pp.1-6,
�10.23919/DATE56975.2023.10137057�. �hal-04270562�

https://cnrs.hal.science/hal-04270562
https://hal.archives-ouvertes.fr

Binary ReRAM-based BNN first-layer
implementation

Mona Ezzadeen1, Atreya Majumdar3, Sigrid Thomas1,2, Jean-Philippe Noël2, Bastien Giraud2, Marc Bocquet4,
François Andrieu1, Damien Querlioz3, and Jean-Michel Portal4

1Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France, mona.ezzadeen@cea.fr
2Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

3Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
4Aix-Marseille Univ., CNRS, IM2NP, Marseille, France

Abstract—The deployment of Edge AI requires energy-efficient
hardware with a minimal memory footprint to achieve optimal
performance. One approach to meet this challenge is the use
of Binary Neural Networks (BNNs) based on non-volatile in-
memory computing (IMC). In recent years, elegant ReRAM-based
IMC solutions for BNNs have been developed, but they do not
extend to the first layer of a BNN, which typically requires
non-binary activations. In this paper, we propose a modified
first layer architecture for BNNs that uses k-bit input images
broken down into k binary input images with associated fully
binary convolution layers and an accumulation layer with fixed
weights of 2−1, ..., 2−k. To further increase energy efficiency, we
also propose reducing the number of operations by truncating
8-bit RGB pixel code to the 4 most significant bits (MSB). Our
proposed architecture only reduces network accuracy by 0.28%
on the CIFAR-10 task compared to a BNN baseline. Additionally,
we propose a cost-effective solution to implement the weighted
accumulation using successive charge sharing operations on an
existing ReRAM-based IMC solution. This solution is validated
through functional electrical simulations.

Index Terms—Binary Neural Network (BNN), convolution,
accumulation, charge sharing

I. INTRODUCTION

The rapid growth of the Internet of Things (IoT) market
and the increasing performance of AI algorithms have placed
conflicting demands on neuromorphic edge accelerators. These
devices have limited storage capacity, but traditional neural
network architectures often require large amounts of memory to
store their synaptic weights. Binary Neural Networks (BNNs)
are a solution to solve this problem, as they use binary weights
and activations to greatly reduce the memory footprint while
maintaining high accuracy. BNNs also simplify the computation
process by replacing full-precision multiplications with XNOR
operations and the accumulation operation with bit counting
operations (popcount) [1], [2]. However, the large amount of
data movement between processor cores and memories can
lead to significant energy consumption [3], known as the von
Neumann bottleneck. In this context, In-memory-computing
(IMC) based accelerators, based on non-volatile memories
such as ReRAM [4]–[11], are promising solutions, as they

This work was supported by European Research Council starting grant
through the My-CUBE (820048) and NANOINFER (reference: 715872)
projects, and a France 2030 grant managed by the French ANR (ANR-22-
PEEL-0010).

perform computations natively inside the memory, allowing
for energy-efficient, ultra-parallel neuromorphic operations and
eliminating the von Neumann bottleneck. Additionally, the non-
volatility of these memories offers a power-off capability with
an excellent retention [12], which is crucial for edge devices
with limited energy budgets.

In recent years, the field of BNN IMC has seen significant
advancements in the use of ReRAM-based solutions [13]–[16].
Despite these developments, many existing solutions are not
equipped to handle the first layer of a BNN, which requires non-
binary activations. Other approaches, utilizing SRAMs [17],
[18], have proposed either complex analog circuits for the first
layer or thermometer encoding, but these solutions lack the
power-off and instant-on capabilities offered by non-volatile
memories such as ReRAM.

In this paper, we propose a novel first-layer architecture
for BNNs that utilizes exclusively binary MAC operations,
making it fully compatible with state-of-the-art ReRAM-based
In-Memory Computing (IMC) accelerators [16]. We thoroughly
evaluate the performance of our proposed architecture on
CIFAR10 tasks [19] and use approximate computing to further
reduce operation counts and memory capacity. Additionally, we
propose a hardware implementation of our approach utilizing
ReRAM-based in/near-memory computing.

The main contributions of this paper are:

• The development of a modified first layer architecture
for BNNs, that is fully binary, compatible with ReRAM-
based IMC accelerators. This is achieved by breaking
down a k-bit input image into k binary input images

Input RGB images

3x3
filters

Output
feature map

9

9

9

ai

Fig. 1. First Layer CNN classical architecture, with one feature map channel
output. The convolution of an input image with a given filter at a certain
position can also be thought of as a fully connected neuron with 27 inputs
(3×3×3) and one output activation

ai
<k>

ai
<k-1>

ai
<1>

Input RGB images

3x3
filters

MSB
output feature map

9

9

9

MSB-1

MSB-1
output feature map

LSB
output feature map

Output feature map

2-1

2-2

2-k

9

9

9

9

9

9

2-1

2-2

2-k

ai

Fig. 2. Proposed architecture : a k-bit input image is split into k binary input images with their associated fully binary convolution layer, to obtain k partial
feature map a<j>

i and then an weighted accumulation layer is introduced to obtain the output feature map ai.

and implementing fully binary convolution layers and an
accumulation layer with fixed weights.

• The use of approximate computing principles to reduce
the number of operations required for this modification, by
truncating 8-bit RGB pixel code to the 4 most significant
bits (MSB) with minimal impact on network accuracy.

• The proposal of an original solution based on successive
charge sharing to implement on-chip, weighted accumula-
tion of partial feature map activations.

The rest of the paper is organized as follows: Section II
presents the evaluation of the proposed hardware-friendly first
layer in terms of accuracy compared to the classical baseline on
the CIFAR-10 dataset with a Visual Geometry Group (VGG)
[20] like network structure, Section III details the circuit archi-
tecture focusing on the weighted accumulation with successive
charge sharing, and finally, Section IV concludes the paper.

II. BNN FIRST LAYER BINARIZATION

A. First layer binarization principle

The architecture of the first layer of a classical CNN is
shown in Fig.1, where a colored input image typically has
three channels, representing the red, green, and blue (RGB)
components of the pixels, coded each on 8 bits. A filter, usually
3×3 in size and also with three channels, is applied to the
input image and moved across it. At each position of the filter,
the input pixels under it are multiplied by their corresponding
weight in the filter. The results of these multiplications for the
three channels are then added together to create one activation
for the next feature map. By moving the filter across the
input image, all the activations for the next feature map are
generated. To detect more features in the input image, multiple
filters can be applied. This results in the feature map having
multiple channels, each channel being generated by a different

Proposed hardware
friendly first layer

B
at

ch
N

o
rm

C
o

n
v2

-1
2

8

M
ax

Po
o

l

C
o

n
v2

-2
5

6

B
at

ch
N

o
rm

B
at

ch
N

o
rm

C
o

n
v2

-2
5

6

M
ax

Po
o

l

C
o

n
v2

-5
1

2

B
at

ch
N

o
rm

B
at

ch
N

o
rm

C
o

n
v2

-5
1

2

M
ax

Po
o

l

FC
-1

0
2

4

FC
-1

0
2

4

FC
-1

0

So
ft

m
ax

Conv2-128(MSB)

Conv2-128(MSB-1)

Conv2-128(LSB)

A
cc

u
m

u
la

ti
o

n

B
at

ch
N

o
rm

C
o

n
v2

-1
2

8

B
at

ch
N

o
rm

B
at

ch
N

o
rm

C
o

n
v2

-1
2

8

M
ax

Po
o

l

C
o

n
v2

-2
5

6

B
at

ch
N

o
rm

B
at

ch
N

o
rm

C
o

n
v2

-2
5

6

M
ax

Po
o

l

C
o

n
v2

-5
1

2

B
at

ch
N

o
rm

B
at

ch
N

o
rm

C
o

n
v2

-5
1

2

M
ax

Po
o

l

FC
-1

0
2

4

FC
-1

0
2

4

FC
-1

0

So
ft

m
ax

Classical
First layer

(a)

(b)

Fig. 3. Illustration of the VGG like network with identification of all layers
with (a) the classical architecture and (b) the proposed hardware friendly first
layer.

filter. After the convolutional layer, batch-normalization and
sign layers are applied to compare the activations to threshold
values, fully binarizing the feature maps. The convolution of an
input image with a given filter at a certain position can also be
thought of as a fully connected neuron with 27 inputs (3×3×3)
and one output activation ai.

In classical BNNs, the input image is not converted to a
binary format in order to maintain a high level of accuracy
during the inference process. This means that when building a
hardware accelerator for a BNN, the design of the first layer
must be different from the rest of the fully binary layers and
requires a more complex structure.

We propose a method to overcome this challenge by first
breaking down a k-bit input image into k binary input images, as
illustrated in Fig.2. Then, the convolution process is performed
using only binary operations and generates k different feature
maps. Doing so, the standard BNN multiplication replacement
with XNOR can be used, opening in-memory computation
capability. To combine these feature maps into a single one, we
use a power of two weighting. The resulting single feature map

(a)

(b)

(c)

Fig. 4. Analysis of the CIFAR10 dataset bits contributions. (a) Airplane image
bitmap with its three RGB channels and 8 bits separated (from LSB to the
MSB), (b)-(c) same image with its three channels but with only a portion of
its 8 bits, with (b) starting from the 8 MSB to only 1 MSB, and (b) from 1
LSB to 8 LSB.

is then binarized using batch-normalization and sign layers.
This first layer architecture is similar to having k fully con-

nected layers with 27 binary inputs and one output activation
a<j>
i , with j going from 1 to k, or from the Most Significant

Bit (MSB) to the Least Significant Bit (LSB). Finally, the
accumulation step corresponds to a classical fully connected
layer with fixed weights equal to 2−1, ..., 2−k.

We want to benchmark the performance of the proposed first
layer architecture versus the classical one, using Tensorflow
[21] on the CIFAR10 dataset. We use a VGG-like network
as a baseline, with 8-bit activations for the input image. We
also use the same network, but with our proposed first layer,
which is designed to be hardware friendly. The figure Fig.3
illustrates the two different network architectures. Our proposed
architecture replaces the traditional multi-bit convolution in the
first layer with 8 convolutional layers (with shared weights) and
an accumulation layer. Each convolutional layer j processes
input images of a specific bit of rank j, generating a partial
output feature map a<j>. These partial output feature maps
are then combined, using our specific accumulation layer, to
create the final output feature map.

The baseline accuracy during inference is equal to 89,9%,
whereas the same network with our hardware friendly first layer
achieved an accuracy of 89.69%. This result fully validates our
approach since, we face a drop of only 0.21%.

B. Binarized first layer optimization

Our solution aims to improve its hardware friendliness by re-
ducing the amount of computation and memory required, which
in turn reduces power consumption. We propose to use the
principle of approximate computing. By reconstructing images
starting with the least significant bits (LSB) and progressively
adding more bits to the pixel code, we can get a hint of the
image content after 6 bits (see Fig.4b). On the other hand, if
we reconstruct images by accumulating bits starting with the

Conv2-128(MSB)

Conv2-128(MSB-1)

Conv2-128(LSB)

A
cc

u
m

u
la

ti
o

n

B
at

ch
N

o
rm

Fig. 5. Analysis of intermediate activations inside our custom first layer, for
the same image as in 4, and for the first five channels (over 128).

Baseline
 8 bits

Our work
 8 bits

Baseline
 4 bits

Our work
 4 bits

86.0
86.5
87.0
87.5
88.0
88.5
89.0
89.5
90.0

In
fe

re
nc

e
pr

ec
isi

on
 (%

)

89.9
89.69

89.34
89.05

Fig. 6. The VGG inference accuracy is represented versus the different options
(baseline on 8 bits coded image and with the code of the input image pixel
truncated to the 4 MSB bits as references and the same network with our
hardware friendly first layer here also on 8 bits and truncated to the 4 MSB
bits)

most significant bits (MSB), we can clearly see the contours of
the image with just the MSB value. Additionally, by analyzing
the bit ranks j of images pixel from the CIFAR10 dataset, we
can visually see that most of the useful information is captured
by the four most significant bits, as shown in Fig.4a.

Our proposed first layer approach allows for the same type
of analysis to be performed on intermediate values within the
network. Fig.5 illustrates the intermediate activations after the
eight convolutional layers, each corresponding to a different
bit rank, for the same image as in Fig.4. It also includes the
activations obtained after accumulation, batchnorm, and sign
layers. Similarly to the input image analysis, we can see that
the first four most significant bits (MSB) of the intermediate ac-
tivations contain more visually meaningful information, while
the last four least significant bits (LSB) contain more noisy
information. Based on these observations, the main idea is to
use an approximate computing approach and only rely on the
four MSB bits of each pixel of the image.

We conduct simulations using Tensorflow to compare the
performance of our baseline and our custom first layer ap-

proach, where the input pixels are truncated to the four most
significant bits (MSB). The results of the inference precision are
shown in Fig.6. Compared to the 8-bit approach, the baseline
accuracy dropped by only 0.56%, resulting in a very good
inference accuracy of 89.34%. This confirms the results of
our visual analysis on the dataset images. Our proposed first
layer approach shows a similar trend, with a good inference
accuracy of 89.05%, which corresponds to a drop in accuracy of
only 0.29% compared to the 4-bit baseline. This results clearly
validate that an approximation can be performed on the input
pixels’ code, keeping only the 4 MSB bits.

III. HARDWARE IMPLEMENTATION

Our first layer architecture allows for the use of any in-
memory computing solutions that perform XNOR operations
and popcount to compute the convolution part of the layer. This
is one of the main goals of the first layer modification. However,
to obtain a complete circuit, supporting the proposed first layer
architecture, we have now to develop a custom solution for the
weighted accumulation. To achieve this, we propose an original
solution that is based on successive charge sharing of the partial
feature map activations a<j>.

As an initial hardware solution for the modified first layer
architecture, we use the in/near memory computing circuit
proposed in [16]. Fig.7 illustrates the initial circuit architecture.
The circuit uses a ReRAM array to store binary weights in a
complementary fashion using 2 Transistor - 2 ReRAM (2T2R)
cells. The binary input activations are also applied in a comple-
mentary fashion on the Bit Line (BL) and complementary BL
(BLb). Each 2T2R cell is in a resistive divider configuration,
with the Source Line (SL) being the middle point, whose
value corresponds to XOR(xm, wi,m). A simple inverter is
then added at the bottom of the SL, which converts the XOR
analog output to a clean binary XNOR(xm, wi,m) value. The
popcount operation is then performed using a capacitive divider,
taking inspiration of an original work proposed in [17], [18].
The batchnorm and sign operations are done by comparing
the capacitive divider value to a trained threshold voltage. The
main advantages of this circuit are its high robustness against
intrinsic ReRAM variability and its low energy consumption.
This circuit is already able to compute all the BNN operations

xi

wi

th

x x

w w

XNOR(x,w)

ai

ai

xi

Fig. 7. ReRAM based BNN accelerator, with XNOR operation performed in
memory and accumulation performed through a capacitive neuron. Comparison
to the threshold value and sign function are performed with a comparator
proposed in [16]

and we focus here on adapting it to the weighted accumulation
of partial feature maps activations.

A. Charge sharing accumulation

The proposed weighted accumulation technique is based
on successive charge sharing operations. This means that the
partial feature map activation a<j>

i has to be stored as a voltage
Va<j>

i
across a capacitor.

As shown in Fig.8, the voltage Va<j>
i

across the capacitor is
directly proportional to the partial feature map activation a<j>

i .
Additionally, a<j>

i is in the range of J0, 27K, which corresponds
to a voltage Va<j>

i
between 0 and the supply voltage VDD.

Therefore, we can express the relationship between Va<j>
i

and
a<j>
i as:

Va<j>
i

=
VDD

27
.a<j>

i (1)

Where VDD is the supply voltage and the voltage across the
capacitor is linearly proportional to the activation value.

The proposed technique for weighted accumulation uses
a series of charge sharing operations. This process begins
by storing the activation value of the partial feature map
corresponding to the least significant bit (LSB) in an activation
capacitor (Cacti). This value is then shared with an accumulation
capacitor (Caccu). This process is repeated for each succes-
sive partial feature map activation a<j>

i , up to the activation
corresponding to the most significant bit (MSB). By the end
of this process, the voltage across the accumulation capacitor
(V (Caccu)) represents the total weighted accumulation of all
the partial activations.

The sharing process can be described step by step. Following
eq.1, the a<1>

i activation value is stored as a voltage level
Va<1>

i
in a activation capacitor Cacti. A second capacitor,

Caccu, of the same size as Cacti, is initially grounded, so that
V (Caccu

<0>) = 0 volts. The two capacitors are then connected

SW

Cacti Caccu

Vai
<j> V(Caccu

<j-1>)

SW

Cacti Caccu

[Vai
<j> + V(Caccu

<j-1>)] x 2-1

Vai
<j>

VDD

27
ai

<j>

𝛼 =
𝑉𝐷𝐷
27

(a)

(b)

Fig. 8. (a) a<j>
i analog voltage equivalence, (b) weighted a<j>

i accumulation
using capacitive sharing

and following the charge conservation law, the resulting voltage
is given by:

V (Caccu
<1>) =

V (C<0>
acti) + V (C<0>

accu)

2
=

Va<1>
i

2
(2)

The process is then repeated with the next activations
a<2>
i ,...,a<k>

i , without clearing the accumulation capacitor
Caccu. We can show recursively that, after the kth accumulation,
the voltage accross Caccu is given by:

V (C<k>
accu) = 2−1.Va<k>

i
+ 2−2.Va<k−1>

i
+ ...+ 2−k.Va<1>

i

=

k∑
j=1

2−j .Va<k−j+1>
i

=
VDD

27

k∑
j=1

2−j .a<k−j+1>
i

(3)

with, the V (C<k>
accu) voltage level corresponding to the ai

element of the output feature map.
In the circuit shown in Figure 7, an additional analog switch

and accumulation capacitor are needed. They are added be-
tween the capacitive bridge and the comparator. It is important
to note that the capacitive bridge acts as the activation capacitor
in this case. The new circuit design is shown in Figure 9.

B. Simulation results

To validate our approach, we carried electrical simulations
using an industrial 130nm Design Kit. We used capacitors of
size 2 fF for the capacitive divider, and of size 27×2 = 54 fF
for Caccu. The simulated chronogram of Fig.10 illustrates the
circuit operation.

To produce the output activation ai, the row of weights
corresponding to the neuron is activated. Next, the capacitive
divider and the accumulation capacitor (Caccu) are reset. For
each time step, j, where j is between 1 and 4, the binary neuron
input activations x<j>

m of rank j are applied to the BL/BLb
circuit. This performs a MAC (multiply-accumulate) between
the inputs and the weights wi,m, resulting in a voltage Va<j>

i
on

xi
<j>

wi

ai

SW

Caccu
Cacti

th

Fig. 9. ReRAM-based BNN first layer implementation : compared to the initial
scheme the capacitive bridge used for the accumulation operation acts as Cacti
and an analog switch SW together with an extra capacitor Caccu are added to
implement the weighted accumulation.

0.0

0.5

1.0

Vo
lta

ge
(V

)

CLRacti
CLRaccu

0.0

1.0

Vo
lta

ge
(V

)

CLKsw CLKcomp

0.0

0.2

0.4

0.6

0.8

1.0

Vo
lta

ge
(V

)

aj
i

Caccu

th

0 20 40 60 80 100 120 140 160
Time (ns)

0.0
1.0

Vo
lta

ge
(V

) ai

Fig. 10. The simulated chronogram presents the different steps of the weighted
accumulation through successive charge sharing operation between Cacti and
Caccu

0 50 100 150 200 250 300 350 400
C < 4 >

accu level

0.00

0.25

0.50

0.75

1.00

V
<

4>
C a

cc
u

Theory
Simulation

Fig. 11. The voltage V (C<k=4>
accu on the accumulation capacitor Caccu is

plotted versus the number of possible level on the capacitor Caccu using the
theoritical equation and the simulated results. A good agreement is reported

the capacitive divider. The switch SW is then closed to perform
a partial accumulation on Caccu. After the partial accumulation
step, SW is opened again, the capacitive divider is reset, and the
next binary neuron input activations x<j+1>

m can be applied.
Once the four partial accumulation steps are completed, the
comparator is triggered, and the final binary output activation
is generated at the comparator’s output.

Fig.11.a shows all the possible simulated accumulation levels
V (C<k=4>

accu), for a clock period of 40ns. We can see that the
accumulated values follow closely the theoretical values, but
that the maximum V (C<k=4>

accu) voltage is 61 mV lower than
the theoretical value, which is mainly due to the size of the
comparator’s input capacitor with regards to Caccu capacitance.
The minimum ∆V (C<k=4>

accu) is equal to 2.65 mV, which
enables a sufficient voltage margin at the comparator’s inputs.

IV. CONCLUSION

In this paper, we propose a modification to the first layer of a
Binary Neural Network (BNN) that allows for fully binary in-
memory computation. Currently, BNNs are limited by the fact
that the first layer is fed with non-binary activation values, as
image pixels are typically coded using 8-bits per RGB channel.
Our solution addresses this issue by breaking down a k-bit
input image into k binary input images with their associated
fully binary convolution layers and adding an accumulation
process that mimics a fully connected layer with fixed weights
(equal to 2−1, ..., 2−k). Additionally, we limit the number of
accumulation by using approximate values and truncating the
8-bit image values to 4 most significant bits. Our solution leads
to a very small decrease in accuracy of only 0.28% compared
to a 4-bit baseline. As a result, the first layer becomes fully
compatible with XNOR and popcount operations that can be
performed in-memory. We also propose a cost-effective mod-
ification to a ReRAM based in-memory computation solution
by adding only an analog switch and a capacitor to implement
the weighted accumulation. This solution has been validated
through functional electrical simulation. It’s worth noting that
the proposed modification of the first layer is compatible with
any BNN hardware implementation that presents popcount
values in an analog way, typically in the form of voltage.

REFERENCES

[1] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

[2] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” 2016.

[3] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2014, pp. 10–14, ISSN: 2376-8606.

[4] W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu,
S. Deiss, P. Raina, H. Qian, B. Gao, S. Joshi, H. Wu, H.-S. P. Wong,
and G. Cauwenberghs, “A compute-in-memory chip based on resistive
random-access memory,” vol. 608, no. 7923, pp. 504–512. [Online].
Available: https://www.nature.com/articles/s41586-022-04992-8

[5] R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, H. Suwa,
R. Yasuhara, K. Katayama, T. Mikawa, and Y. Gohou, “A 4m synapses
integrated analog ReRAM based 66.5 TOPS/w neural-network processor
with cell current controlled writing and flexible network architecture,” in
2018 IEEE Symposium on VLSI Technology, 2018, pp. 175–176, ISSN:
2158-9682.

[6] Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao,
C.-X. Xue, W.-H. Chen, J. Tang, Y. Wang, M.-F. Chang, H. Qian,
and H. Wu, “33.2 a fully integrated analog ReRAM based 78.4tops/w
compute-in-memory chip with fully parallel MAC computing,” in 2020
IEEE International Solid- State Circuits Conference - (ISSCC), pp. 500–
502, ISSN: 2376-8606.

[7] W.-H. Chen, K.-X. Li, W.-Y. Lin, K.-H. Hsu, P.-Y. Li, C.-H. Yang, C.-X.
Xue, E.-Y. Yang, Y.-K. Chen, Y.-S. Chang, T.-H. Hsu, Y.-C. King, C.-J.
Lin, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, and M.-F. Chang, “A 65nm
1mb nonvolatile computing-in-memory ReRAM macro with sub-16ns
multiply-and-accumulate for binary DNN AI edge processors,” in 2018
IEEE International Solid - State Circuits Conference - (ISSCC), 2018,
pp. 494–496, ISSN: 2376-8606.

[8] C.-X. Xue, W.-H. Chen, J.-S. Liu, J.-F. Li, W.-Y. Lin, W.-E. Lin, J.-H.
Wang, W.-C. Wei, T.-W. Chang, T.-C. Chang, T.-Y. Huang, H.-Y. Kao, S.-
Y. Wei, Y.-C. Chiu, C.-Y. Lee, C.-C. Lo, Y.-C. King, C.-J. Lin, R.-S. Liu,
C.-C. Hsieh, K.-T. Tang, and M.-F. Chang, “24.1 a 1mb multibit ReRAM
computing-in-memory macro with 14.6ns parallel MAC computing time
for CNN based AI edge processors,” in 2019 IEEE International Solid-
State Circuits Conference - (ISSCC), pp. 388–390, ISSN: 2376-8606.

[9] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and
A. Raychowdhury, “29.1 a 40nm 64kb 56.67tops/w read-disturb-tolerant
compute-in-memory/digital RRAM macro with active-feedback-based
read and in-situ write verification,” in 2021 IEEE International Solid-
State Circuits Conference (ISSCC), vol. 64, pp. 404–406, ISSN: 2376-
8606.

[10] C.-X. Xue, T.-Y. Huang, J.-S. Liu, T.-W. Chang, H.-Y. Kao, J.-H. Wang,
T.-W. Liu, S.-Y. Wei, S.-P. Huang, W.-C. Wei, Y.-R. Chen, T.-H. Hsu,
Y.-K. Chen, Y.-C. Lo, T.-H. Wen, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T.
Tang, and M.-F. Chang, “15.4 a 22nm 2mb ReRAM compute-in-memory
macro with 121-28tops/w for multibit MAC computing for tiny AI edge
devices,” in 2020 IEEE International Solid- State Circuits Conference -
(ISSCC). IEEE, 2020, pp. 244–246.

[11] C.-X. Xue, J.-M. Hung, H.-Y. Kao, Y.-H. Huang, S.-P. Huang, F.-C.
Chang, P. Chen, T.-W. Liu, C.-J. Jhang, C.-I. Su, W.-S. Khwa, C.-C. Lo,
R.-S. Liu, C.-C. Hsieh, K.-T. Tang, Y.-D. Chih, T.-Y. J. Chang, and M.-F.
Chang, “16.1 a 22nm 4mb 8b-precision ReRAM computing-in-memory
macro with 11.91 to 195.7tops/w for tiny AI edge devices,” in 2021 IEEE
International Solid- State Circuits Conference (ISSCC), vol. 64, 2021, pp.
245–247, ISSN: 2376-8606.

[12] Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Mu-
raoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima,
T. Mikawa, K. Shimakawa, and K. Aono, “Demonstration of high-density
reram ensuring 10-year retention at 85°c based on a newly developed
reliability model,” in 2011 International Electron Devices Meeting, 2011,
pp. 31.4.1–31.4.4.

[13] T. Hirtzlin, M. Bocquet, B. Penkovsky, J.-O. Klein, E. Nowak,
E. Vianello, J.-M. Portal, and D. Querlioz, “Digital biologically plausible
implementation of binarized neural networks with differential hafnium
oxide resistive memory arrays,” Frontiers in neuroscience, vol. 13, p.
1383, 2020.

[14] L. Wang, W. Ye, C. Dou, X. Si, X. Xu, J. Liu, D. Shang, J. Gao, F. Zhang,
Y. Liu, M.-F. Chang, and Q. Liu, “Efficient and robust nonvolatile
computing-in-memory based on voltage division in 2t2r RRAM with
input-dependent sensing control,” vol. 68, no. 5, pp. 1640–1644, 2021.

[15] J.-M. Hung, Y.-H. Huang, S.-P. Huang, F.-C. Chang, T.-H. Wen, C.-I. Su,
W.-S. Khwa, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, Y.-D. Chih,
T.-Y. J. Chang, and M.-F. Chang, “An 8-mb DC-current-free binary-to-8b
precision ReRAM nonvolatile computing-in-memory macro using time-
space-readout with 1286.4-21.6tops/w for edge-AI devices,” in 2022 IEEE
International Solid- State Circuits Conference (ISSCC), vol. 65, pp. 1–3,
ISSN: 2376-8606.

[16] M. Ezzadeen, A. Majumdar, M. Bocquet, B. Giraud, J.-P. Noël, F. An-
drieu, D. Querlioz, and J.-M. Portal, “Low-overhead implementation of
binarized neural networks employing robust 2t2r resistive RAM bridges,”
in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference
(ESSCIRC), 2021, pp. 83–86.

[17] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An
always-on 3.8µJ/86% CIFAR-10 mixed-signal binary CNN processor
with all memory on chip in 28nm CMOS,” in 2018 IEEE International
Solid - State Circuits Conference - (ISSCC), pp. 222–224, ISSN: 2376-
8606.

[18] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A mixed-signal bina-
rized convolutional-neural-network accelerator integrating dense weight
storage and multiplication for reduced data movement,” in 2018 IEEE
Symposium on VLSI Circuits. IEEE, 2018, pp. 141–142.

[19] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
p. 60.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in Osdi, vol. 16, no. 2016. Savannah, GA,
USA, 2016, pp. 265–283.

