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Abstract

In this paper, we investigate the functional central limit theorem and the Marcinkiewicz strong

law of large numbers for U -statistics having absolutely regular data and taking value in a separable

Hilbert space. The novelty of our approach consists in using coupling in order to formulate a deviation

inequality for original U -statistic, where the upper bound involves the mixing coefficient and the tail

of several U -statistics of i.i.d. data. The presented results improve the known results in several

directions: the case of metric space valued data is considered as well as Hilbert space valued, and

the mixing rates are less restrictive in a wide range of parameters.

1 Main results

In all this paper, we will consider U -statistics of order two taking values in a separable Hilbert space

H defined as follows: given a sequence of random variables (Xi)i>1 taking values in a separable metric

space (S, d) and h : S × S → H is measurable,

Un (h) =
∑

16i<j6n

h (Xi,Xj) . (1.1)

Halmos [19] and Hoeffding [20] showed that when (Xi)i>1 is i.i.d., H = R and E [|h (X1,X2)|] < ∞,

Un (h) /
(n
2

)

is a consistent estimator of E [h (X1,X2)]. This results has been then extended to Hilbert

valued case by Borovskikh in [7]. Asymptotic normality has also been established under the assumption

E

[

h (X1,X2)
2
]

< ∞ in [20]. Convergence rates in the central limit theorem for Hilbert space valued

U -statistics were also considered in [26].

This paper is devoted to the obtention of a functional central central limit theorem and Marcinkiewicz

strong law of large numbers for U -statistics whose data is a strictly stationary sequence and taking values

in a separable Hilbert space. The motivation behind the consideration of vector-valued U -statistics is

to consider spatial sign for robust tests (see [10, 30, 23]), or Wilcoxon-Mann-Whitney-type test [9].

Moreover, the assumption that the random variables Xi take values in a metric space instead of the

real line is useful in order to consider function space analogue of Gini’s mean difference (see Section 3.2

in [28]), or correlation dimension for metric space valued data (cf. [29]). Moreover, high dimensional or
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functional data can be treated via the use of Hilbert space valued U -statistics, see for instance [8, 21].

Kendall’s tau for functional data can be also treated via the use of Hilbert value U -statistics, see [22].

We refer the reader to the book [6] for a complete description of U -statistics taking values in Hilbert

spaces.

The classical strong law of large numbers for U -statistics of strictly stationary data without depen-

dence condition has been considered in [1, 4, 15]. A strong law of large numbers has been established

in [17] for U -statistics of arbitrary order whose data comes from a Markov chain. Arcones [2] showed

a law of large numbers for U -statistics of order m, where the normalisation is nm. A similar result

has been obtained for 2m-wise independent sequences, that is, sequences (Xi)i>1 such that for each

i1 < · · · < i2m, the random variables Xi1 , . . . ,Xi2m are independent. Related results on V -functionals

of α-mixing data were estalished in [32]. In [18], the law of large number for U -statistics of order two

whose data comes from a function of an i.i.d. sequence has been investigated.

In order to study the asymptotic behavior of Un (h), we decompose the kernel as follows: take an

independent copy X ′
1 of X1 and let

h1,0 (x) = E
[

h
(

x,X ′
1

)]

− E
[

h
(

X1,X
′
1

)]

(1.2)

h0,1 (y) = E [h (X1, y)]− E
[

h
(

X1,X
′
1

)]

(1.3)

and

h2 (x, y) = h (x, y)− h1,0 (x)− h0,1 (y)− E
[

h
(

X1,X
′
1

)]

. (1.4)

In this way,

Un (h) =

n−1
∑

i=1

(n− i) (h1,0 (Xi)− E [h1,0 (Xi)]) +

n
∑

j=2

(j − 1) (h0,1 (Xj)− E [h0,1 (Xj)]) + Un (h2) (1.5)

and when (Xi)i>1 is i.i.d. , one has

E [h2 (Xi,Xj) | σ (Xk, k 6 j − 1)] = 0 = E [h2 (Xi,Xj) | σ (Xk, k > i+ 1)] (1.6)

hence martingale and reversed martingale properties can be used in order to control moments of the

sum over j and i respectively.

It is also worth pointing out that when h is symmetric, that is, h (x, y) = h (y, x) for each x, y ∈ S,

the functions h1,0 and h0,1 coincide hence (1.5) admits the simpler form

Un (h) = n
n
∑

k=1

(h1,0 (Xk)− E [h1,0 (Xk)]) + Un (h2) . (1.7)

The dependence in our results will be quantified by the so-called mixing coefficients. Let (Ω,F ,P)

be a probability space. The α-mixing and β-mixing coefficients between two sub-σ-algebras A and B of

F are defined respectively by

α (A,B) = sup {|P (A ∩B)− P (A)P (B)| , A ∈ A, B ∈ B} ; (1.8)

β (A,B) = 1

2
sup







I
∑

i=1

J
∑

j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)|







, (1.9)
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where the supremum runs over all the partitions (Ai)
I
i=1 and (Bj)

J
j=1 of Ω of elements of A and B

respectively. Given a strictly stationary sequence (Xi)i>1, we associate its sequences of α and β-mixing

coefficients by letting

α (k) := sup
ℓ>1

α
(

Fℓ
1 ,F∞

ℓ+k

)

, (1.10)

β (k) := sup
ℓ>1

β
(

Fℓ
1,F∞

ℓ+k

)

, (1.11)

where Fv
u , 1 6 u 6 v 6 +∞ is the σ-algebra generated by the random variables Xi, u 6 i 6 v (u 6 i

for v = ∞). A sequence (Xi)i>1 is said to be absolutely regular if limk→∞ β (k) = 0.

The paper is organized as follows: in Subsection 1.1, we will formulate a result for a partial sum

process built on a U -statistic off absolutely regular data and in Subsection 1.2, results on the strong

law of large numbers, distinguishing the degenerated and non-degenerated cases. The proofs are given

in Section 2 and are a consequence of an inequality given in Subsection 2.1.

1.1 Functional central limit theorem

Define the process

Un,h (t) =
∑

16i<j6⌊nt⌋

h (Xi,Xj) + (nt− ⌊nt⌋)
⌊nt⌋
∑

i=1

h
(

Xi,X⌊nt⌋+1

)

. (1.12)

Notice that Un,h (k/n) = Uk (h) hence the process Un,h contains the information of all the values

of Uk (h), 2 6 k 6 n. Moreover, for each ω ∈ Ω, the map t 7→ Un,h (t) belongs to CH[0, 1], the

space of H-valued continuous functions defined on the unit interval endowed with the norm ‖x‖∞ =

supt∈[0,1] ‖x (t)‖H, because we interpolate linearly between the points (k/n,Uk (h)).

The limiting process will be described as follows.

Definition 1.1. We say that a non-negative self-adjoint operator Γ: H → H is an S (H) operator if for

some Hilbert basis (ei)i>1,
∑∞

i=1 〈Γei, ei〉H < ∞.

Definition 1.2. Let πt : CH[0, 1] be the projection map, that is, πt (x) = x (t). For Γ ∈ S (H), denote

by WΓ the process such that

1 WΓ (0) = 0,

2 for all 0 6 t0 < t1 < · · · < tN 6 1, the increments (W (ti)−W (ti−1))
N
i=0 are independent

and W (ti)−W (ti−1) has a Gaussian distribution on H with mean zero and covariance operator

(ti − tt−1) Γ.

We are now in position to state our result on functional central limit theorem for U -statistics of

absolutely regular data taking values in a separable Hilbert space.

Theorem 1.3. Let (Xi)i∈Z be a strictly stationary sequence of random variables taking values in a

separable metric space (S, d) and let h : S ×S → H be a symmetric measurable function, where S×S is

endowed with the product σ-algebra and the Hilbert space (H, 〈·, ·〉
H
) with the σ-algebra induced by the

norm. Suppose that the following conditions are satisfied:
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(C.1) the following series is finite:

∞
∑

k=1

∫ α(σ(Xi,i60),σ(Xk))

0
Q2

‖h1(X0)‖H
(u) du < ∞, (1.13)

where h1 (x) = E [h (x,X1)]− E [h (X1,X
′
1)] and X ′

1 is an independent copy of X1,

(C.2) limn→∞ n2β (n) = 0,

(C.3) supj>2 E
[

‖h (X1,Xj)‖H
]

< ∞.

Then the following convergence in distribution in CH[0, 1] takes place:

1

n3/2
(Un,h (t)− E [Un,h (t)]) → WΓ, (1.14)

where the operator Γ is given by

〈Γu, v〉
H
=

∑

k∈Z

E [〈h1 (X0) , u〉H 〈h1 (Xk) , v〉H] , u, v ∈ H. (1.15)

Notice that our result also applies when E [h (X1,X
′
1) | X1] = E [h (X1,X

′
1) | X ′

1] = 0 almost surely,

in which case the limiting processWΓ is zero because so is Γ. In this case, the appropriated normalization

is n−1 instead of n−3/2 and completely different techniques have to be used, like in [24].

Let us compare this result with existing ones in the literature. Yoshihara [31] obtained a similar

result for real-valued U -statistics, but at the cost of a more restrictive assumption on moments and the

decay of mixing coefficients. Moreover, we address the Hilbert-valued case.

Dehling and Wendler [14] obtained a central limit theorem assuming the existence of a positive δ

such that supj>2 E

[

‖h (X1,Xj)‖2+δ
H

]

< ∞ and that for some positive C, η, the β-mixing coefficient

satisfies β (n) 6 Cn−1−2/δ−η. When δ < 2, our condition is less restrictive but our approach does not

give better a weaker condition than (C.2) when we assume moments of order higher than two. The same

authors obtained in [13] a central limit theorem for Hilbert-valued U -statistics whose date comes from

functionals of an absolutely regular sequence. In [5], the more general case of functions of absolutely

regular processes has been addressed but when restricted to β-mixing case, the obtained result is not

better than ours.

Finally, let us mention that Theorem 1.3 may be applied even if there is no positive δ for which

E

[

‖h1 (X0)‖2+δ
H

]

is finite. For instance, if we merely have E

[

‖h1 (X0)‖2H (log (1 + ‖h1 (X0)‖H))γ
]

< ∞,

then (1.13) may be satisfied, but at the cost of the existence of constants C and a ∈ (0, 1) such that

α (σ (Xi, i 6 0) , σ (Xk)) 6 Cak. We refer the reader to [27], pages 155-158.

1.2 Marcinkiewicz strong law of large numbers

In all the results on the Marcinkiewicz strong law of large numbers, a supplementary moment condition

with respect to the i.i.d. case will be required. For 1 < p < 2 and δ > 0, we will consider the assumption

E

[

∥

∥h
(

X1,X
′
1

)∥

∥

p+δ

H

]

< ∞, (1.16)

where X ′
1 is an independent copy of X1. Since the derivation of moment inequalities was done via the

use of moment inequalities for martingale, it will be natural to distinguish between the cases where the

4



exponent p + δ is bigger than 2 or not. An other reasonable assumption is boundedness in L
1 of the

summands which compose a U -statistic, namely,

sup
j>2

E
[

‖h (X1,Xj)‖H
]

< ∞. (1.17)

Theorem 1.4 (Law of large numbers, non-degenerated case, p + δ > 2). Let (Xi)i∈Z be a strictly

stationary sequence of random variables taking values in a separable metric space (S, d) and let h : S ×
S → H be a measurable function, where S × S is endowed with the product σ-algebra and the Hilbert

space H with the σ-algebra induced by the norm. Let 1 < p < 2. Suppose that (1.16) and (1.17) hold

with p+ δ > 2 and the following condition is satisfied: there exists a positive η such that

∞
∑

k=1

kγ(p,δ,η) < ∞, (1.18)

where

γ (p, δ, η) = max

{

p− 1 + η, p − 2 +
p (p− 1)

δ

}

. (1.19)

Then the following convergence takes place:

lim
n→∞

1

n1+1/p
‖Un (h)‖H = 0 a.s.. (1.20)

Theorem 1.5 (Law of large numbers, non-degenerated case, p + δ < 2). Let (Xi)i∈Z be a strictly

stationary sequence of random variables taking values in a separable metric space (S, d) and let h : S ×
S → H be a measurable function, where S × S is endowed with the product σ-algebra and the Hilbert

space H with the σ-algebra induced by the norm. Let 1 < p < 2. Suppose that (1.16) and (1.17) hold

with p+ δ < 2 and that
∞
∑

k=1

kγ(p,δ)β (k) < ∞, (1.21)

where

γ (p, δ) = max

{

p− 2 +
p (p− 1)

δ
,
p (p− 1) + (p− 1) δ

p (p− 1) + (p+ 1) δ

}

(1.22)

Then the following convergence takes place:

lim
n→∞

1

n1+1/p
‖Un (h)‖H = 0 a.s.. (1.23)

Dehling and Sharipov [16] obtained also the convergence (1.23), but with slightly different assump-

tions on the β-mixing coefficients, namely,

∞
∑

k=1

kγ
′(p,δ)β (k) < ∞, (1.24)

where

γ′ (p, δ) = max

{

p− 2 +
p (p− 1)

δ
, 1

}

. (1.25)

Since γ′ (p, δ) > max {γ (p, δ) , γ (p, δ, η)}, our assumption is always equaly or less restrictive. It is also

worth pointing out that we do not need symmetry of the kernel. Moreover, we can also treat Hilbert

space valued kernels. These extensions allows us to consider kernels of the form

h : H×H → H, h (x, y) =







x−y
‖x−y‖

H

if x 6= y,

0 if x = y.,
(1.26)
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which played an important role in [10, 30].

We now continue the presentation of the results in order to address the degenerated case. Like in

the independent case, the appropriated normalisation is n2/p.

Theorem 1.6 (Law of large numbers, degenerated case, p+ δ = 2). Let (Xi)i∈Z be a strictly stationary

sequence of random variables taking values in a separable metric space (S, d) and let h : S × S → H be

a measurable function, where S × S is endowed with the product σ-algebra and the Hilbert space H with

the σ-algebra induced by the norm. Suppose that

E
[

h
(

X1,X
′
1

)

| X1

]

= E
[

h
(

X1,X
′
1

)

| X ′
1

]

= 0. (1.27)

Let 1 < p < 2. Assume that (1.16) and (1.17) hold with p+ δ > 2 and that there exists some positive η

such that
∞
∑

k=1

k
2(p−1)
2−p

+ηβ (k) < ∞. (1.28)

Then the following convergence takes place:

lim
n→∞

1

n2/p
‖Un (h)‖H = 0 a.s.. (1.29)

Note that in the previous result, we only assume the existence of moments of order two. In our

approach, moments of higher order will not help to find a weaker condition on the decay of the β-mixing

coefficients.

Theorem 1.7 (Law of large numbers, degenerated case, p+ δ < 2). Let (Xi)i∈Z be a strictly stationary

sequence of random variables taking values in a separable metric space (S, d) and let h : S × S → H be

a measurable function, where S × S is endowed with the product σ-algebra and the Hilbert space H with

the σ-algebra induced by the norm. Suppose that

E
[

h
(

X1,X
′
1

)

| X1

]

= E
[

h
(

X1,X
′
1

)

| X ′
1

]

= 0. (1.30)

Let 1 < p < 2. Assume that (1.16) and (1.17) hold with p+ δ < 2 and

∞
∑

k=1

kp−1+
p(p−1)

δ β (k) < ∞. (1.31)

Then the following convergence takes place:

lim
n→∞

1

n2/p
‖Un (h)‖H = 0 a.s.. (1.32)

These two theorems complement the ones obtained in [16], where the degenerated case was consid-

ered, but only in the case of a bounded real valued kernel.

2 Proofs

2.1 A general deviation inequality

In this subsection, we give a bound for the maximum of a U -statistic of strictly stationary data in terms

of U -statistics of i.i.d. data and partial sums of sequences of random variables.
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Proposition 2.1. Let N > 2q > 1 be integers, let R,x > 0, let (Xi)i>1 be a strictly stationary sequence

of random variables taking values in a separable metric space (S, d) and let h : S2 → H be a measurable

function, where (H, 〈, 〉) is a separable Hilbert space, such that

E
[

h
(

X1,X
′
1

)

| X1

]

= E
[

h
(

X1,X
′
1

)

| X ′
1

]

= 0, (2.1)

where X ′
1 be an independent copy of X1. Define H := ‖h (X1,X

′
1)‖H. For each r > 2, the following

inequality takes place

P



 max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> x



 6 Crx
−rqrN r

E [Hr1H6R]

+ Crx
−1N2

E [H1H>R] + Crx
−1qN sup

j>2
E
[

‖h (X1,Xj)‖H
]

+ 4Nβ (q) , (2.2)

where the constant Cr depends only on r.

Note that when H has a finite moment of order r, one can simply let R going to infinity, which gives

the simpler inequality

P



 max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> x



 6 Crx
−rqrN r

E [Hr]

+ Crx
−1qN sup

j>2
E
[

‖h (X1,Xj)‖H
]

+ 4Nβ (q) . (2.3)

The contribution of each term is either increasing or decreasing in q hence q has to be chosen in a

judicious way.

We start the proof of Proposition 2.3 by a Lemma which gives a bound of the maximum of a U -

statistics in terms of several U -statistics whose data can be expressed in terms of blocks of vectors of

elements of (Xi)i>1 having a gap of size q.

Lemma 2.2. Let N > 2q > 1 be integers. Let (Xi)i>1 be a sequence of random variables taking values

in a separable metric space (S, d) and let h : S2 → H be a measurable function, where (H, 〈, 〉) is a

separable Hilbert space. Define the Sq−1-valued vector Vk,u by

Vk,u = (X2qu+k, . . . ,X2qu+k+q−1) . (2.4)

Then the following inequality holds:

max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

6

4
∑

i=1

MN,q,i +

5
∑

i=1

RN,q,i, (2.5)

where

MN,q,1 =

2q
∑

ℓ,ℓ′=1
06ℓ−ℓ′6q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′
(

Vℓ′,u, Vℓ′,v

)

∥

∥

∥

∥

∥

H

, (2.6)

MN,q,2 =

2q
∑

ℓ,ℓ′=1
06ℓ′−ℓ6q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′ (Vℓ,u, Vℓ,v)

∥

∥

∥

∥

∥

H

, (2.7)
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MN,q,3 =

2q
∑

ℓ,ℓ′=1
q6ℓ−ℓ′62q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′ (Vℓ−2q,u, Vℓ−2q,v)

∥

∥

∥

∥

∥

H

, (2.8)

MN,q,4 =

2q
∑

ℓ,ℓ′=1
q6ℓ′−ℓ62q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′
(

Vℓ′,u, Vℓ′,v

)

∥

∥

∥

∥

∥

H

, (2.9)

the functions hℓ,ℓ′ : S
q × Sq → H are defined by

hℓ,ℓ′
(

(xa)
q
a=1 , (yb)

q
b=1

)

=



























h (xℓ−ℓ′+1, y1) if 0 6 ℓ− ℓ′ 6 q − 1,

h (x1, yℓ′+1) if 0 6 ℓ′ − ℓ 6 q − 1,

h
(

x1, yℓ′−ℓ+2q+1

)

if q 6 ℓ− ℓ′ 6 2q − 1,

h
(

xℓ′−ℓ+2q+1, y1
)

if q 6 ℓ′ − ℓ 6 2q − 1,

(2.10)

RN,q,1 =

2q
∑

ℓ,ℓ′=1
q6ℓ−ℓ′62q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

m
∑

v=1

h
(

X2(v−1)q+ℓ,X2vq+ℓ′
)

∥

∥

∥

∥

∥

H

, (2.11)

RN,q,2 =

2q
∑

ℓ,ℓ′=1
q6ℓ−ℓ′62q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

m
∑

v=1

h
(

Xℓ,X2vq+ℓ′
)

∥

∥

∥

∥

∥

H

, (2.12)

RN,q,3 =

2q
∑

ℓ,ℓ′=1
q6ℓ′−ℓ62q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

m
∑

v=1

h
(

Xℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

, (2.13)

RN,q,4 =

2q
∑

ℓ,ℓ′=1
q6ℓ′−ℓ62q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

m
∑

v=0

h
(

X2qv+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

, (2.14)

RN,q,5 =
∑

16ℓ<ℓ′62q

max
26m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

m
∑

u=0

h
(

X2qu+ℓ,2qv+ℓ′
)

∥

∥

∥

∥

∥

H

. (2.15)

Let us explain the roled played by the different terms involved in (2.5). The four terms MN,q,i,

i ∈ {1, 2, 3, 4} are maxima of U -statistics whose data may be dependent, but their behavior is close to

the one of U -statistics of ndependent data. The other terms RN,q,i, i ∈ {1, 2, 3, 4, 5}, play a negligible

role. Indeed, their contribution is of the same order as that of maximum of partial sums of a strictly

stationary sequence, but with the normalization corresponding to a U -statistic, which is stronger than

the one needed.

Proposition 2.3. Let N > 2q > 1 be integers. Let (Xi)i>1 be a strictly stationary sequence of random

variables taking values in a separable metric space (S, d) and let h : S2 → H be a measurable function,

where (H, 〈, 〉) is a separable Hilbert space. Then the following inequality holds:

P



 max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> 8x



 6

4
∑

i=1

P
(

M∗
N,q,i > x

)

+

5
∑

i=1

P (RN,q,i > x) + 4Nβ (q) , (2.16)
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where the terms RN,q,i are defined as in (2.11), (2.12), (2.13), (2.14) and (2.15),

M∗
N,q,1 =

2q
∑

ℓ,ℓ′=1
06ℓ−ℓ′6q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′
(

V ∗
ℓ′,u, V

∗
ℓ′,v

)

∥

∥

∥

∥

∥

H

, (2.17)

M∗
N,q,2 =

2q
∑

ℓ,ℓ′=1
06ℓ′−ℓ6q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′
(

V ∗
ℓ,u, V

∗
ℓ,v

)

∥

∥

∥

∥

∥

H

, (2.18)

M∗
N,q,3 =

2q
∑

ℓ,ℓ′=1
q6ℓ−ℓ′62q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′
(

V ∗
ℓ−2q,u, V

∗
ℓ−2q,v

)

∥

∥

∥

∥

∥

H

, (2.19)

M∗
N,q,4 =

2q
∑

ℓ,ℓ′=1
q6ℓ′−ℓ62q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′
(

V ∗
ℓ′,u, V

∗
ℓ′,v

)

∥

∥

∥

∥

∥

H

, (2.20)

and
(

V ∗
k,u

)

k∈{−q,...,q}
u∈{0,...,⌊N/(2q)⌋}

satisfy the following:

for each k ∈ {−q, . . . , q} ,
(

V ∗
k,u

)⌊N/2q⌋

u=0
is independent, (2.21)

for each k ∈ {−q, . . . , q} , u ∈ {0, . . . , ⌊N/ (2q)⌋} , V ∗
k,u has the same distribution as Vk,u. (2.22)

It will turn out that we will not need the joint distribution of M∗
N,q,i Only the fact that all there

random variables are identically distributed and that the common distribution is the same as the

maximum of norm of a U -statistic having kernel h and i.i.d. data (with the same distribution as X1)

will play a decisive role.

Proof of Lemma 2.2. We express for a fixed n the set I :=
{

(i, j) ∈ N
2, 1 6 i < j 6 n

}

as

I =

2q
⋃

ℓ,ℓ′=1

{(

2qu+ ℓ, 2qv + ℓ′
)

, 0 6 u 6 v 6
⌊(

n− ℓ′
)

/ (2q)
⌋

, 2qu+ ℓ < 2qv + ℓ′
}

, (2.23)

which can be splitted as the disjoint union I =
⋃5

a=1 In,a, where

In,1 =

2q
⋃

ℓ,ℓ′=1
06ℓ−ℓ′6q−1

In,1,ℓ,ℓ′, In,1,ℓ,ℓ′ =
{(

2qu+ ℓ, 2qv + ℓ′
)

, 0 6 u < v 6
⌊(

n− ℓ′
)

/ (2q)
⌋}

, (2.24)

In,2 =

2q
⋃

ℓ,ℓ′=1
16ℓ′−ℓ6q−1

In,2,ℓ,ℓ′, In,2,ℓ,ℓ′ =
{(

2qu+ ℓ, 2qv + ℓ′
)

, 0 6 u < v 6
⌊(

n− ℓ′
)

/ (2q)
⌋}

, (2.25)

In,3 =

2q
⋃

ℓ,ℓ′=1
q6ℓ−ℓ′62q−1

In,3,ℓ,ℓ′, In,3,ℓ,ℓ′ :=
{(

2qu+ ℓ, 2qv + ℓ′
)

, 0 6 u < v 6
⌊(

n− ℓ′
)

/ (2q)
⌋}

, (2.26)

In,4 =

2q
⋃

ℓ,ℓ′=1
q6ℓ′−ℓ62q−1

In,4,ℓ,ℓ′, In,4,ℓ,ℓ′ =
{(

2qu+ ℓ, 2qv + ℓ′
)

, 0 6 u < v 6
⌊(

n− ℓ′
)

/ (2q)
⌋}

, (2.27)
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In,5 =
⋃

16ℓ<ℓ′62q

In,5,ℓ,ℓ′, In,5,ℓ,ℓ′ =
{(

2qu+ ℓ, 2qu+ ℓ′
)

, 0 6 u 6
⌊(

n− ℓ′
)

/ (2q)
⌋}

. (2.28)

The first two sets I1 and I2 contain the indices of the form (2qu+ ℓ, 2qv + ℓ′) for which |ℓ− ℓ′| 6 q − 1

and a distinction is made according to the order between ℓ and ℓ′. The sets I3 and I4 contain the

indices of the form (2qu+ ℓ, 2qv + ℓ′) for which |ℓ− ℓ′| > q− 1 (since 1 6 ℓ, ℓ′ 6 2q, we necessarily have

|ℓ− ℓ′| 6 2q − 1) and here again, a distinction is made according to the order between ℓ and ℓ′. Note

that in the sets Ia, 1 6 a 6 4, one has u < v which guarantees that 2qu + ℓ < 2qv + ℓ′. Finally, in the

set I5, the indexes corresponding to the case u = v are collected.

As a consequence, the following inequality takes place:

max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

6

2q
∑

ℓ,ℓ′=1
06ℓ−ℓ′6q−1

max
26n6N

∥

∥

∥

∥

∥

∥

∥

∥

∑

06u<v6
⌊

n−ℓ′

2q

⌋

h
(

X2qu+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

∥

∥

∥

H

+

2q
∑

ℓ,ℓ′=1
16ℓ′−ℓ6q−1

max
26n6N

∥

∥

∥

∥

∥

∥

∥

∥

∑

06u<v6
⌊

n−b
2q

⌋

h
(

X2qu+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

∥

∥

∥

H

+

2q
∑

ℓ,ℓ′=1
q6ℓ−ℓ′62q−1

max
26n6N

∥

∥

∥

∥

∥

∥

∑

06u<v6⌊(n−ℓ′)/(2q)⌋

h
(

X2qu+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

∥

H

+

2q
∑

ℓ,ℓ′=1
q6ℓ′−ℓ62q−1

max
26n6N

∥

∥

∥

∥

∥

∥

∑

06u<v6⌊(n−ℓ′)/(2q)⌋

h
(

X2qu+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

∥

H

+
∑

16ℓ<ℓ′62q

max
26n6N

∥

∥

∥

∥

∥

∥

⌊(n−ℓ′)/(2q)⌋
∑

u=0

h
(

X2qu+ℓ,X2qu+ℓ′
)

∥

∥

∥

∥

∥

∥

H

. (2.29)

By the elementary inequality

max
26n6N

a⌊(n−ℓ′)/(2q)⌋ 6 max
06m6⌊N/(2q)⌋

am (2.30)

valid for a non-negative sequence (am)m>0, we derive from (2.29) that

max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

6

2q
∑

ℓ,ℓ′=1
06ℓ−ℓ′6q−1

max
06m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

h
(

X2qu+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

+

2q
∑

ℓ,ℓ′=1
16ℓ′−ℓ6q−1

max
06m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

h
(

X2qu+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

+

2q
∑

ℓ,ℓ′=1
q6ℓ−ℓ′62q−1

max
06m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

h
(

X2qu+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

+

2q
∑

ℓ,ℓ′=1
q6ℓ′−ℓ62q−1

max
06m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

h
(

X2qu+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

+
∑

16ℓ<ℓ′62q

max
06m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

m
∑

u=0

h
(

X2qu+ℓ,X2qu+ℓ′
)

∥

∥

∥

∥

∥

H

=: A1 +A2 +A3 +A4 +A5. (2.31)
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Using the expression of hℓ,ℓ′ and Vk,u given by (2.10) and (2.4), we bound A1 by MN,q,1 and A2 by

MN,q,2. Moreover, A5 coincides with RN,q,5. For A3, we write

∑

06u<v6m

h
(

X2qu+ℓ,X2qv+ℓ′
)

=
∑

06u<v6m

h
(

X2q(u−1)+ℓ,X2qv+ℓ′
)

+

m
∑

v=1

v−1
∑

u=0

(

h
(

X2qu+ℓ,X2qv+ℓ′
)

− h
(

X2q(u−1)+ℓ,X2qv+ℓ′
))

, (2.32)

and since the sum over u is telescopic, the inequality

∥

∥

∥

∥

∥

∑

06u<v6m

h
(

X2qu+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

6

∥

∥

∥

∥

∥

∑

06u<v6m

h
(

X2q(u−1)+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

+

∥

∥

∥

∥

∥

m
∑

v=1

h
(

X2qv+ℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

+

∥

∥

∥

∥

∥

m
∑

v=1

h
(

Xℓ,X2qv+ℓ′
)

∥

∥

∥

∥

∥

H

(2.33)

takes place. Then we use the expression of hℓ,ℓ′ in order to show that A3 6 MN,q,3 + RN,q,1 + RN,q,3.

The treatment of A4 is similar, with the minor difference that we use the decomposition

∑

06u<v6m

h
(

X2qu+ℓ,X2qv+ℓ′
)

=
∑

06u<v6m

h
(

X2q(u+1)+ℓ,X2qv+ℓ′
)

+

m
∑

v=1

v−1
∑

u=0

(

h
(

X2qu+ℓ,X2qv+ℓ′
)

− h
(

X2q(u+1)+ℓ,X2qv+ℓ′
))

. (2.34)

This ends the proof of Lemma 2.2.

In order to prove Proposition 2.3, we will need the following coupling lemma, due to Berbee [3].

Lemma 2.4. Let X and Y be random variables defined on (Ω,F ,P) with values in a Polish space

S. Let σ (X) be the σ-algebra generated by X and let U be a random variable uniformly distributed

on [0, 1] and independent of (X,Y ). There exists a random variable Y ∗, measurable with respect to

σ (X) ∨ σ (Y ) ∨ σ (U), independent of X and distributed as Y , and such that P (Y 6= Y ∗) = β (X,Y ).

Proof of Proposition 2.3. A consequence of Lemma 2.4 is the following. Given a sequence (Yu)u>1

defined on a probability space (Ω,F ,P) with values in a Polish space S, we can find, on a richer

probability space, an indepdent sequence (Y ∗
u )u>1 of random variable, such that for each u > 1, Yu have

the same distribution as Y ∗
u and P (Y ∗

u 6= Yu) 6 β (σ (Yi, i 6 u− 1) , σ (Yu)).

Applying this result for each fixed k ∈ {−q, . . . , q} gives sequences
(

V ∗
k,u

)⌊N/(2q)⌋

u=0
satisfying (2.21),

(2.22) and P

(

V ∗
k,u 6= Vk,u

)

6 β (σ (Vk,i, i 6 u− 1) , σ (Vk,i)). Define the events

Ak,u :=
{

V ∗
k,u 6= Vk,u

}

, k ∈ {−q, . . . , q} , u ∈ {0, . . . , ⌊N/ (2q)⌋} (2.35)

and

A =

q
⋃

k=−q

⌊N/(2q)⌋
⋃

u=0

Ak,u. (2.36)

In view of Lemma 2.2, one has
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P



 max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> 5x



 6 P ({MN,q,1 +MN,q,2 +MN,q,3 +MN,q,4 > x} ∩Ac)

+ P (A) +
4

∑

i=1

P (MN,q,i > x) . (2.37)

Since the vectors Vk,u coincide with the vectors V ∗
k,u, k ∈ {−q, . . . , q} , u ∈ {0, . . . , ⌊N/ (2q)⌋} on Ac, the

events {MN,q,1 +MN,q,2 +MN,q,3 +MN,q,4 > x} ∩ Ac and
{

M∗
N,q,1 +M∗

N,q,2 +M∗
N,q,3 +M∗

N,q,4 > x
}

∩
Ac are equal, where M∗

N,q,i, i ∈ {1, 2, 3, 4}, are defined by (2.17).

Moreover, since A is a union of (2q + 1) (⌊N/ (2q)⌋+ 1) sets having probability smaller than β (q), one

derives that P (A) 6 (2q + 1) (⌊N/ (2q)⌋+ 1) β (q) 6 4Nβ (q). This ends the proof of Proposition 2.3.

Proof of Proposition 2.1. We apply Proposition 2.3 with x replaced by 2x and a use of Markov’s in-

equality gives

P



 max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> 16x





6

4
∑

i=1

P
(

M∗
N,q,i > 2x

)

+ (2x)−1
5

∑

i=1

E [RN,q,i] + 4Nβ (q) . (2.38)

One has

RN,q,i 6

2q
∑

ℓ,ℓ′=1

⌊

N
2q

⌋

∑

v=0

∥

∥Yℓ,ℓ′,v

∥

∥

H
, (2.39)

where Yℓ,ℓ′,v equal h (Xi,Xj) for some indices i and j. Therefore, using ⌊N/ (2q)⌋+ 1 6 N/q, we find

E [RN,q,i] 6 4qN sup
j>2

E
[

‖h (X1,Xj)‖H
]

. (2.40)

In order to control the terms MN,q,i, we introduce truncated and degenerated kernels as follows For

a kernel h : S2 → H and a strictly stationary sequence (Xi)i>1, define

hdeg (x, y) = h (x, y)− E [h1 (X1, y)]− E [h1 (x,X1)] + E
[

h
(

X1,X
′
1

)]

, (2.41)

where X ′
1 is an independent copy of X1. In this way, one has

E

[

hdeg
(

X1,X
′
1

)

| X1

]

= E

[

hdeg
(

X1,X
′
1

)

| X ′
1

]

= 0 (2.42)

hence if (ξi)i>1 is an i.i.d. sequence and ξ1 has the same distribution as X1, the U -statistic of data

(ξi)i>1 and kernel hdeg is degenerated. Note that this property of degeneracy depends on the law of X1,

but since there will be no ambiguity, we will not write this dependence. Let 1 < r 6 2, N > 2q > 1 and

R > 0. Let h6 : S2 → H and h> : S2 → H be defined as

h6 (x, y) = h (x, y) 1‖h(x,y)‖
H
6R (2.43)

h> (x, y) = h (x, y)1‖h(x,y)‖
H
>R. (2.44)
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In view of (2.1), one has h (x, y) = (h6)
deg (x, y) + (h>)

deg (x, y). Therefore, defining M∗
N,q,i,6 and

M∗
N,q,i,> as in (2.17) with h replaced respectively by (h6)

deg and (h>)
deg the equality MN,q,i 6 M∗

N,q,i,6+

M∗
N,q,i,> holds hence by (2.38) and Markov’s inequality, it follows that

P



 max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> 16x





6

4
∑

i=1

P
(

M∗
N,q,i,6 > x

)

+
4

∑

i=1

P
(

M∗
N,q,i,> > x

)

+
10

x
qN sup

j>2
E
[

‖h (X1,Xj)‖H
]

+ 4Nβ (q)

6 x−r
4

∑

i=1

E
[(

M∗
N,q,i,6

)r]
+ x−1

4
∑

i=1

E
[

M∗
N,q,i>

]

+
10

x
qN sup

j>2
E
[

‖h (X1,Xj)‖H
]

+ 4Nβ (q) . (2.45)

We now control the moment of order r of M∗
N,q,1,6 in the following way:

E
[(

M∗
N,q,1,6

)r]
=

∥

∥

∥

∥

∥

∥

∥

∥

2q
∑

ℓ,ℓ′=1
06ℓ−ℓ′6q−1

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′
(

V ∗
ℓ′,u, V

∗
ℓ′,v

)

∥

∥

∥

∥

∥

H

∥

∥

∥

∥

∥

∥

∥

∥

r

r

(2.46)

6









2q
∑

ℓ,ℓ′=1
06ℓ−ℓ′6q−1

∥

∥

∥

∥

∥

∥

max
16m6

⌊

N
2q

⌋

∥

∥

∥

∥

∥

∑

06u<v6m

hℓ,ℓ′
(

V ∗
ℓ′,u, V

∗
ℓ′,v

)

∥

∥

∥

∥

∥

H

∥

∥

∥

∥

∥

∥

r









r

(2.47)

6 4









2q
∑

ℓ,ℓ′=1
06ℓ−ℓ′6q−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∑

06u<v6
⌊

N
2q

⌋

hℓ,ℓ′
(

V ∗
ℓ′,u, V

∗
ℓ′,v

)

∥

∥

∥

∥

∥

∥

∥

∥

H

∥

∥

∥

∥

∥

∥

∥

∥

r









r

(2.48)

6 C1,r

(

(2q)2
N

2q

)r

E

[∥

∥

∥
(h6)

deg (X1,X
′
1

)

∥

∥

∥

r

H

]

(2.49)

6 C2,rq
rN r

E

[

∥

∥h
(

X1,X
′
1

)∥

∥

r

H
1‖h(X1,X′

1)‖H
6R

]

, (2.50)

where C1,r and C2,r depend only on r, the step from (2.46) to (2.47) is justified by the triangle inequality,

the one from (2.47) to (2.48) from Doob’s inequality, (2.49) follows by the use of degeneracy of (h6)
deg,

which gives a martingale and reversed martingale property for the summation over j and i respectively

and a double use of Theorem 4.1 in [25]. Finally, (2.50) is a consequence of the fact that

(h6)
deg (X1,X

′
1

)

= h6
(

X1,X
′
1

)

−E
[

h6
(

X1,X
′
1

)

| X1

]

−E
[

h6
(

X1,X
′
1

)

| X ′
1

]

+E
[

h6
(

X1,X
′
1

)]

(2.51)

and an appplication of the triangle inequality. A similar bound holds for P
(

M∗
N,q,i > x

)

, i ∈ {2, 3, 4}.
The control of the tail of the U -statistic associated to (h>)

deg is much simpler and follows from

max
26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

(h>)
deg (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

6
∑

16i<j6N

∥

∥

∥
(h>)

deg (Xi,Xj)
∥

∥

∥

H

, (2.52)

Markov’s inequality and

(h>)
deg (X1,X

′
1

)

= h>
(

X1,X
′
1

)

− E
[

h>
(

X1,X
′
1

)

| X1

]

− E
[

h>
(

X1,X
′
1

)

| X ′
1

]

+ E
[

h>
(

X1,X
′
1

)]

.

This ens the proof of Proposition 2.1.
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2.2 Proof of Theorem 1.3

We start from decomposition 1.5. Theorem 2 in [12] applied with Xi replaced by h1 (Xi) gives the

convergence in distribution in CH[0, 1]

1√
n





⌊nt⌋
∑

j=1

h1 (Xi) + (nt− ⌊nt⌋)h1
(

X⌊nt⌋+1

)



 → WΓ, (2.53)

where

〈Γu, v〉
H
= lim

n→∞
E

[〈

n−1/2Sn, u
〉

H

〈

n−1/2Sn, v
〉

H

| σ (Xk, k 6 0)
]

, u, v ∈ H, (2.54)

and Sn =
∑n

i=1 h1 (Xi). As Remark 1 in [12] says, when the sequence (Xi)i>1 is ergodic, the operator

Γ is non random. Ergodicity is ensured by the absolute regularity of (Xi)i>1. Then a computation

combined with the absolute convergence of the series in (1.15) shows that Γ has the expression given in

that equation.

By (1.5), the convergence (1.14) will follows from

1

N3/2
max

26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h2 (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

→ 0 in probability, (2.55)

where h2 is defined as in (1.4), or in other words, that for each positive ε,

lim
N→∞

P





1

N3/2
max

26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h2 (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> ε



 = 0. (2.56)

To do so, let us fix η > 0. We use (2.3) with r = 2, q =
⌊

η
√
N
⌋

and x = N3/2 and get that

P





1

N3/2
max

26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h2 (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> ε



 6 C2ε
−2N−3

⌊

η
√
N
⌋2u

N2
E
[

H2
]

+ C2ε
−1N−3/2

⌊

η
√
N
⌋

N sup
j>2

E
[

‖h (X1,Xj)‖H
]

+ 4Nβ
(⌊

η
√
N
⌋)

. (2.57)

Since the assumption n2β (n) → 0 implies that for each fixed η > 0, 4Nβ
(⌊

η
√
N
⌋)

→ 0, we find that

lim sup
N→∞

P





1

N3/2
max

26n6N

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h2 (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> 9ε



 6 C2ε
−2

E
[

H2
]

η2+C2ε
−1η sup

j>2
E
[

‖h (X1,Xj)‖H
]

.

Since η is arbitrary, the proof of Theorem 1.3 is complete.

2.3 Proof of Theorem 1.4

In view of the decomposition (1.5), it suffices to prove that

lim
n→∞

1

n1+1/p

n−1
∑

i=1

(i− 1) (h1,0 (Xi)− E [h1,0 (Xi)]) = 0 a.s., (2.58)
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lim
n→∞

1

n1+1/p

n
∑

j=2

(n− j) (h0,1 (Xj)− E [h0,1 (Xj)]) = 0 a.s. and (2.59)

lim
n→∞

1

n1+1/p
‖Un (h2)‖H = 0, (2.60)

where the functions h1,0, h0,1 and h2 are defined respectively by (1.2), (1.3) and (1.4). Define Si =
∑i

k=1 (h1,0 (Xk)− E [h1,0 (Xk)]) and S′
j =

∑j
k=1 (h0,1 (Xk)− E [h0,1 (Xk)]). Then

n−1
∑

i=1

(i− 1) (h1,0 (Xi)− E [h1,0 (Xi)]) =
n
∑

j=2

(Sn − Sj) (2.61)

hence
1

n1+1/p

∥

∥

∥

∥

∥

n−1
∑

i=1

(i− 1) (h1,0 (Xi)− E [h1,0 (Xi)])

∥

∥

∥

∥

∥

H

6
2

n1+1/p
max
16i6n

‖Si‖H (2.62)

and similarly,

1

n1+1/p

∥

∥

∥

∥

∥

∥

n
∑

j=2

(n− j) (h0,1 (Xi)− E [h0,1 (Xi)])

∥

∥

∥

∥

∥

∥

H

6
2

n1+1/p
max
16j6n

∥

∥S′
j

∥

∥

H
. (2.63)

By Corollary 3 in [11], condition 1.18 implies that n−1/p ‖Sn‖H + n−1/p ‖S′
n‖H → 0 a.s. Therefore, it

suffices to prove (2.60), which reduces, by the Borel-Cantelli lemma, to prove that for each positive ε,

∞
∑

M=0

P



2
−M

(

1+ 1
p

)

max
26n62M

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h2 (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> ε



 < ∞. (2.64)

By (2.3) applied with R = p+δ, N replaced by 2M , x by ε2M(1+1/p) and q =
⌊

2Ma
⌋

where a = 1/ (p+ η),

we infer that

P



2
−M

(

1+ 1
p

)

max
26n62M

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h2 (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> 9ε



 6 Cp+δε
−(p+δ)2

−2M
(

1+ 1
p

)

2
2

p+η
M22ME

[

Hp+δ
]

+ Crε
−12

−M
(

1+ 1
p

)

2
M

p+η 2M sup
j>2

E
[

‖h (X1,Xj)‖H
]

+ 4 · 2Mβ
(⌊

2
M

p+η

⌋)

. (2.65)

Since a < 1/p, the convergence of
∑∞

M=0 P

(

2
−M

(

1+ 1
p

)

max26n62M

∥

∥

∥

∑

16i<j6n h2 (Xi,Xj)
∥

∥

∥

H

> 9ε

)

is guaranteed by the convergence of
∑∞

M=0 2
Mβ

(⌊

2
M
p+η

⌋)

. By dividing the sum over sets of the

form
{⌊

2Ma
⌋

+ 1, . . . ,
⌊

2(M+1)a
⌋}

and the fact that (β (k))k>1 is non-increasing, the convergence of
∑∞

M=0 2
Mβ

(⌊

2Ma
⌋)

is equivalent to that of
∑∞

k=1 k
1
a
−1β (k), which is guaranteed by 1.18.

This ends the proof of Theorem 1.4.

2.4 Proof of Theorem 1.5

By the same arguments as in the proof of Theorem 1.4, it suffices to prove that (2.64) holds for each

positive ε. To do so, we apply Proposition 2.3 with x = 2M(1+1/p)ε, N replaced by 2M , q =
⌊

2Ma
⌋

and

R = 2Mb, where a ∈ (0, 1/p) and b > 0 will be specified later and in such a way that

∞
∑

M=0

2−2M/p22Ma
E
[

H21H62Mb

]

< ∞, (2.66)
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∞
∑

M=0

2−M(1+1/p)22ME [H1H>2Mb ] < ∞, (2.67)

∞
∑

M=0

2Mβ
(⌊

2Ma
⌋)

< ∞. (2.68)

Notice that for each positive b and c and each non-negative random variable Y ,

∞
∑

M=0

2−Mc
E
[

Y 21Y 62Mb

]

6 K (b, c)E
[

Y 2− c
b

]

, (2.69)

∞
∑

M=0

2Mc
E [Y 1Y >2Mb ] 6 K (b, c)E

[

Y 1+ c
b

]

. (2.70)

Therefore, applying (2.70) with c = 1 − 1/p imposes the choice b = (p− 1) / (p (p+ δ − 1)). Now,

applying (2.69) with c = 2 (1 + 1/p)− 2a shows that a must satisfy

2− 2/p− 2a

b
= p+ δ, (2.71)

hence

a =
p (p− 1) + δ (p+ 1)

2p (p+ δ − 1)
. (2.72)

Notice that (2.68) is equivalent to the convergence of
∑∞

k=1 k
1/a−1β (k). Therefore, (2.64) is a conse-

quence of (1.21).

2.5 Proof of Theorem 1.6

By the Borel-Cantelli lemma, it suffices to prove that

∞
∑

M=0

P



2−2M/p max
26n62M

∥

∥

∥

∥

∥

∥

∑

16i<j6n

h (Xi,Xj)

∥

∥

∥

∥

∥

∥

H

> ε



 < ∞. (2.73)

To do so, let M and ε > 0 and let us apply Proposition 2.3 with r = 2, x = 22M/pε, N replaced by

2M and q =
⌊

2Ma
⌋

, where a = 1/ (η + p/ (2− p)). The convergence of the series
∑∞

M=0 2
Mβ

(⌊

2Ma
⌋)

is

equivalent to that of
∑∞

k=1 k
−1+1/aβ (k), which is guaranteed by (1.31).

2.6 Proof of Theorem 1.7

Here again, it suffices to check (2.73). Letting a = δ/ (p (p+ δ − 1)) and b := p (p+ δ − 1) / (2 (p− 1)),

then applying Proposition 2.1 with N replaced by 2M , r = 2, x = 22M/pε, q =
⌊

2Ma
⌋

and R = 2Mb

gives the convergence of
∑∞

M=0 P

(

2−2M/p max26n62M

∥

∥

∥

∑

16i<j6n h (Xi,Xj)
∥

∥

∥

H

> ε
)

thanks to (1.31).
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