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Abstract 

Numerical investigation is performed to analyze natural convection heat transfer 

characteristics within a corrugated surface enclosure filled with fluid under the Rayleigh-

Bénard (RB) instability. The impact of the geometric contribution associated with the 

convective RB effect, is analyzed to provide qualitative heat transfer and flow structure. Such 

thermal process is applying for improving the engineering Polymerase chain reaction (PCR) 

process to amplify a target DNA sample. The grid generation is used to transform the physical 

complex domain to a computational regular coordinate. The governing differential equations 

are discretized by Finite volume approach using a quadratic scheme approximation. The main 

objective of this work is to analyze the combined physical and geometric effects 

characterizing the corrugated enclosure, on the behavior of convective flow and to enlarge the 

active isothermal area favorable for the elementary process actions. Under the effect of the 

different control parameters defined by the dimensionless mathematical model, we 

demonstrate the existence of critical corrugations amplitude as a function of Ra-, describing 

the bifurcation from monocellular towards a bicellular flow. The active isothermal zone are 

identified, quantified and physical explanation and predictive expression were established. 

 

Keywords: Corrugated cavity, Rayleigh-Benard convection, Heat transfer, CFD, Polymerase 

chain reaction (PCR). 
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1. Introduction 

In the current global energy context, an understanding of the physical phenomena that 

occur in various industrial processes is necessary for optimizing energy consumption. Natural 

convection heat transfer and fluid flow in irregular closed cavities is one of the most studied 

thermal phenomena that has considerable attention of engineers because of its potential for 

improving heat transfer performance in reliable process. It is also of great importance in 

several thermal engineering applications such as electronic components cooling, micro-

electromechanical systems (MEMS), heat exchangers, solar energy collectors, cold storage 

performance, building thermal insulation, nuclear energy and molecular biology process 

where the convective Polymerase chain reaction (CPCR) is one of the important tools.  

The change and the location of surface waviness are considered as controlling parameters 

for optimizing the flow and thermal field characteristics. Frequently surfaces are intentionally 

roughened to enhance heat transfer.  

A special case of thermal convection is the Rayleigh-Bénard (RB) convection; which 

corresponds to the situation of heating from the bottom and cooled from the top. The stratified 

and stable state, becomes unstable above critical situation. A density gradient is generated by 

the temperature difference between the two active walls. This driving force is opposed to two 

other braking forces, which are viscous dissipation and heat dissipation. This relationship 

between gravitational driving forces and resistant forces is defined by the Rayleigh number, 

which must exceed a certain critical value for the birth of convection. Due to such strong 

nonlinear coupling and the low number of controlling parameters, RB convection has been the 

subject of several experimental and theoretical works. The importance of this phenomenon 

has given rise to several researches having for purpose of understanding and using it; in the 

framework of fundamental or applied engineering, this research admits extremely broad and 

interesting developments. 

The study of this phenomenon in complex geometries was relatively limited because of the 

increase in the flow complexity. The present literature tries to review the previous studies 

involving the case of corrugated surfaces for the analysis of convection problems.  

Varol and Oztop [1] have performed a numerical free convection heat transfer and fluid 

flow in a horizontal and shallow wavy enclosure. The bottom wall at hot temperature is varied 

with a sinusoidal function while the top flat wall is kept at a cold temperature. Their results 

indicated that heat transfer was decreased with increasing wavelength undulation, however, 
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the exchange is favored with the increase Rayleigh number and enclosure aspect ratio. 

Saha et al. [2] analyzed numerically fluid flow in inclined enclosure with vertical wall of 

sinusoidal shape maintained at a constant low temperature and a constant heat flux source 

discretely embedded at the bottom wall. It is concluded that the average Nusselt number 

increases as inclination angle increases for different heat source sizes. For free convection in 

an enclosure with vertical wavy walls, Mahmud et al. [3] shown the effect of aspect ratio, 

surface waviness on heat transfer at different Grashof numbers. Authors observe at low aspect 

ratios and selected Grashof numbers, a significant increase in heat transfer. Das and Mahmud 

[4] investigated thermal and hydrodynamic fluid flow within wavy horizontals walls 

enclosure. Convective analysis showed that amplitude-wavelength ratio has no significant 

influence on average heat transfer. They demonstrate that natural convection heat transfer is 

considerably influenced by the aspect ratio variations. In addition, the heat transfer 

irreversibility was measured [5].  Favier et al. [6] study the evolution of a melting front 

between the solid and liquid phases for of a pure incompressible material driven by unstable 

RB convection. The authors shown for very thin fluid layer, that convective flow appear as 

the effective Rayleigh number increases. 

Rayleigh-Bénard convection instabilities in L shape and diagonally flipped-L shape 

enclosures are studied by Gawas and Patil [7], using LBM-MRT. This unsteady flow behavior 

is characterized by using time-dependency signal of averaged Nusselt number and its 

corresponding frequency analysis. Geometry Optimization is then carried out to obtain the 

best heat transfer rate. 

Viscous flow of Newtonian fluid in two-dimensional enclosures, consisting of regular, 

square shaped, corrugations on the bottom wall is studied numerically by Bisht et al [8]. After 

comparing LBM and fictitious domain method (FDM) results, a flow features are presented 

for various Reynolds number and corrugations characteristics. This input parameters have a 

great effect on number of vortexes appeared inside the enclosure.  

Convective flow induced by heating blocks periodically distributed on lower surface of a 

channel, is analyzed by Mouhtadi et al. [9].  The validity of the isothermal model under the 

multiple steady solutions obtained, is examined as a function of the different control 

parameters. The onset of longitudinal RB convective rolls in 3D configuration was analyzed 

by Rahli et al. [10]. The authors demonstrate that the dimensionless length of fully developed 

secondary flow is strongly influenced by the cooperating or opposed buoyancy forces.  

Adjlout et al. [11] have investigated laminar convective flow in inclined wavy wall cavity 
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heated differentially. Simulations were performed for different inclination angles, amplitudes 

and Rayleigh numbers; one of their interesting results was a decrease of averaged heat 

transfer compared to regular square cavity. So, they recommended investigating the hot wall 

geometry optimization. 

Biswal and Basak [12] investigate the role of differential vs. RB heating at enclosures 

involving curved walls for efficient processing via entropy generation approach. They show 

for noncurved walls that magnitudes of entropy generation and average heat transfer are 

significantly lesser for the RB heating. However, for the concave or convex cases, the optimal 

configuration is strongly controlled by the modified Darcy and Prandtl numbers. Using scale 

analysis, Choukairy et al. [13] present interesting correlations to quantify the heat exchanges 

as a function of the heated wall thickness.   

Free convection inside a vertical cosine curved walls cavity is numerically investigated by 

Misirlioglu et al. [14]. The results indicate that for large modified Rayleigh values, aspect 

ratio under 3 and surface waviness about 0.5, the local Nusselt number may become negative; 

which means the generated heat cannot be transferred through the domain. 

Two-dimensional steady state natural convective flow in a square inclined enclosure with 

vertical vee-corrugated isothermal sidewalls has been numerically studied by Hussain et al. 

[12, 15]. A discrete heat flux is flush-mounted on the bottom wall. The authors demonstrate 

that inclination angle strongly affect the convective flow.  

An analysis of thermal performance in lid driven wavy enclosure with various 

configurations is presented by Chattopadhyay et al. [16]. One of the straight walls is no 

uniformly heated, while all other are maintained at cold temperature. They present the effects 

of different dimensionless parameters on fluid flow pattern and Nusselt’s numbers evolutions.  

The most important results presented are mentioned that the fluid flow is highly influenced by 

the direction of moving wall and the vortex structures are strongly changed from 

configuration to another one.  The entropy generation increase linearly with decreasing 

Richardson number.  

Moreover, these classical studies dealing with heat transfer enhancement, another very 

interesting applications linking thermal natural convection induced by RB effect to the 

molecular biology process is the Polymerase chain reaction (PCR). This recently developed 

process is adopted in several fields, such as biomedicine, animal and plant science and food 

safety [17-21]. The efficiency and improvement of this technology has been during this last 

decade, one of the major challenges of the scientific community given its important diagnosis. 
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Thus, the execution of this process under the effect of natural convection of thermal origin has 

already shown its effectiveness in improving the results obtained for PCR process [19] or for 

cryosurgery within the biological tissue, by controlling the cooling/thawing rate over some 

critical range of temperatures and freezing states [22]. Indeed, the convective motion will 

ensure a continuous flow, and consequently an ideal thermal cycle, without having recourse to 

an external agent, as demonstrated by Chen and Hsieh [23] using infrared (IR) heating. A 

comprehensive experiments of measuring temperature profiles versus operational and 

geometrical parameters are presented.  

PCR is powerful technology whose role is to amplify a target DNA sample; the process is 

carried out in three repetitive recycling stages at different temperatures. These stages, see Fig. 

1, are the denaturation step at high temperature (95°C), annealing step, at low temperature 

(50–60°C) and the extension stage at moderate temperature (72–77°C) [24]. The problem 

with conventional PCR thermal cyclers lies in the ability to control these temperatures 

precisely, which increases cycle times and reduces the efficiency of ensuring optimal 

amplification. [19]. Therefore, natural convective PCR (CPCR) under RB effects (RB-PCR) 

is one of the potential approaches to overcome these limitations, by ensuring a continuous 

flow which will allow to execute the three stages of the protocol continuously, while 

controlling the degrees of temperatures suitable for better amplification. Thus, the upward and 

downward motion of fluid particles induced by buoyancy-driven instability, will continuously 

entrain the reagents which will be transported from the hot zones to the cold ones executing 

the different phases of the process. A schematic representation is presented in figure 1 

illustrating the operating principle. This PCR in natural convection systems was previously 

presented by Yariv et al. [25], using the original RB-cell configuration. The beneficial 

contribution to the overall amplification process by molecular diffusion has been 

demonstrated.   

The first research teams to use thermal convection mode of CPCR, are Benett et al. [26] 

for closed-loop, and Hwang et al. [27], performed in a cylindrical capillary tube heated from 

the bottom. The geometrical and material characteristics for closed enclosures design 

distinguished at the CPCR remain a major challenge to improve the efficiency of these 

processes. To date, several forms have been proposed, rectangular, triangular or planes. For 

the RB-CPRC, the major part of the proposed studies considers capillary tubes or enclosures 

with square geometry, under the laminar flow hypothesis [24, 25, 28]. More details and 

information on the subject are exposed in the exhaustive bibliographical review carried out by 
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Miao et al. [19]. It should be noted that it has been shown that the adoption of RB convection 

in stationary mode with single-cell regime, is the most suitable for the PCR reaction [25]. 

However, this configuration is subject to major criticism due to the weakening flow intensity 

outside the vortex relatively to the internal zones, following the non-slip conditions on the 

rigid walls. Thus, the braking flow will necessarily increase the time cycle, especially in the 

vicinity of the walls. The effectiveness of this type of configuration in PCR, is only 

significant over a selected streamlines range  

(Max >>eff >> Min). To remedy this constraint, we propose to modify the flow structure, 

under the geometric deformation effect, with an optimal corrugation amplitude, which will 

favor the flow intensity and modify the temperature distribution fields in the enclosure. This 

configuration will allow us to make the best use of the upward motion particles zone, until 

then untapped for the PCR cycle. On the other hand, the bifurcation towards bicellular 

convective mode can improve the efficiency of PCR by modifying the convective flow 

intensity and thus reduce the operation time cycle, or to double the number of execution PCR 

stages sites. 

It is in this context of the geometric shape of the cavity that our orientation towards this 

type of application (RB-PCR) fits. Because, to our knowledge, during our analysis of the 

bibliographic review, the corrugated cavities had never been treated in PCR procedures. In 

fact, the use of a cavity with a corrugated lower wall, depending on its characteristics (wave 

amplitude and number of waves), will completely modify the convective flow structures as 

well as the thermal gradients, which will strongly influence the execution time of the different 

stages of the PCR process, and reduce the time cycle allowing the DNA sample to be 

amplified as best as possible. 
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Fig. 1. Schematic PCR in a Unicellular Rayleigh-Benard flow [25]. 

Even our present work remains exclusively thermodynamic nature, we try by the 

convective flow prediction analysis, to bring a better understanding which can provide light 

ideas for the scientific community specialized in the field of PCR to develop new efficient 

DNA amplification systems. 

The main propose of this work is to examine the momentum and energy transport 

processes in a square enclosure filled with fluid with a wavy bottom surface. The problem 

phenomena are treated under the classical RB convection mode. The cavity is sustained under 

a vertical temperature gradient by subjecting the bottom wall to a relatively higher 

temperature than the top. The results are shown in terms of parametric presentations of 

streamlines and isotherms for various considered pertinent dimensionless parameters. These 

dimensionless groups include the Rayleigh number, the corrugation amplitude and the wavy 

surface undulations number. Finally, the implications of the above dimensionless parameters 

are also depicted on the local and average Nusselt number predictions.  

 

2. Modeling and governing equations 

The problem under consideration is a two-dimensional square (H x H) wavy enclosure 

fully filled with a binary fluid, as shown in Fig. 2. The convective mode considered is the 

classical RB phenomenon; where the cavity is heated from below, on its corrugated surface, 
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by a temperature Th and cooled from above on the rectilinear surface by a temperature Tc. The 

vertical walls are assumed adiabatic.  

 

Fig. 2: Physical model 

 

The fluid saturating the porous substrate is considered incompressible and Newtonian with 

Prandtl number kept constant. The fluid properties are also assumed constant except for the 

density variation which is treated according to Boussinesq approximation while viscous 

dissipation effects are considered negligible. The viscous laminar incompressible flow and the 

temperature distribution inside the cavity are described by mean of the Darcy-Brinkman 

model and the energy equation, respectively. In performing simulations, the profile of the 

wavy-wall was modeled as follows:    

f(x)  = λ [1 − (cos(2π N x)]  (1) 

The governing differential equations of the mass continuity, momentum and energy can be 

written in dimensionless form using the following dimensionless variables: 

X =
x

H
;   Y =

y

H
;    U =

u H

a
;    V =

v H

a
;    θ =

T−Tc

Th−Tc
 ;    P =

p−p0

ρ0(
a

H
)
2  (2) 

The dimensionless governing continuity equation, x- and y-momentum equations, and energy 

equation can then be written respectively as: 

∂U

∂X
+
∂V

∂Y
= 0 

(3) 
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(
∂(U U)

∂X
+
∂(U V)

∂Y
) = −  

∂P

∂X
+  Pr [

∂²U

∂X²
+ 
∂²U

∂Y²
] 

(4) 

(
∂(U V)

∂X
+
∂(V V)

∂Y
) = −  

∂P

∂Y
+ Pr [

∂2V

∂X2
+ 
∂2V

∂Y2
] + 𝑅𝑎 𝑃𝑟 θ 

(5) 

∂(Uθ)

∂X
+
∂(Vθ)

∂Y
= [

∂²θ

∂X²
+ 
∂²θ

∂Y²
] 

(6) 

where, Ra is the thermal Rayleigh number and Pr the Prandtl number. The parameters g, ν 

and a refer to the gravitational acceleration, expansion coefficient, kinematic viscosity and 

thermal diffusivity, respectively.  

𝑃𝑟 = ν a⁄   , 𝑅𝑎 =
g βT ΔT H

3

ν  a
 , a =   

k

ρCp
   (7) 

In the case of complex geometry, the problem of grid generation remains one of the great 

difficulties. To overcome this constraint, we often use a transformation of coordinates from 

the physical domain to a fictitious domain, called computational domain, which will serve as 

computation space ([29-31]). 

 

𝑔(𝑋, 𝑌) 

 

 

>> 

 

𝑔(ξ, η) 

Fig. 3: Physical domain and transformed computational domain 

If the physical domain is described using the variables X and Y, and the computational 

domain is described using the coordinates ξ and η, the general continuous transformation from 

the physical domain to the computational domain shown in Fig. 3 can be written as: 

ξ =  ξ(X, Y) (8) 

𝜂 = 𝜂(X, Y)    (9) 

In many applications, the coordinate transformations are given numerically, then the metrics 



 

 

10 

 

 

are calculated by finite differences. In our case the transformation metrics are given by: 

 

∂f

∂X
=  ξX

∂f

∂ξ
+ ηX

∂f

∂η
 

(10) 

∂f

∂Y
=  ξY

∂f

∂ξ
+ ηY

∂f

∂η
 

(11) 

  

∂2f

∂X2
= J2(Yη

2fξξ − 2 YξYηfξη + Yξ
2fηη)

+ J3(Yη
2yξξ − 2YηYξYξη + Yξ

2Yηη)(Xfξ−Xξfη)

− (Yη
2Xξξ − 2YηYξYξη + Yξ

2Xηη)(Yξfη−Yηfξ) 

 

(12) 

∂2f

∂Y2
= J2(Xη

2fξξ − 2 XξXηfξη + Xξ
2fηη)

+ J3(Xη
2 Yξξ − 2XξXηYξη + Xξ

2Yηη)(Xηfξ−Xξfη)

− (Xη
2Xξξ − 2XηXξXξη + Xξ

2Xηη)(Yξfη−Yηfξ) 

 

(13) 

Where J denotes the Jacobian of the transformation: 

J =  
1

XξYη − YξXη
 

 

(14) 

 

Using this approach, the transformed governing continuity equation, x- and y-momentum 

equations, and energy equation can then be written respectively as follow:  

 

∂Uc

∂ξ
+
∂Vc

∂η
= 0 

(15) 

(
∂(Uc U)

∂ξ
+

∂(Vc U)

∂η
) = −(f11

∂P

∂ξ
+ f21

∂P

∂η
) + Pr [

∂

∂ξ
(q11J

∂U

∂ξ
) +

∂

∂η
(q12J

∂U

∂ξ
) +

 
∂

∂ξ
(q12J

∂U

∂η
) +

 ∂

∂ξ
(q22J

∂U

∂η
)]   

 

(16) 

(
∂(Uc V)

∂ξ
+

∂(Vc V)

∂η
) = −(f11

∂P

∂ξ
+ f21

∂P

∂η
) +  Pr [

∂

∂ξ
(q11J

∂V

∂ξ
) + 

∂

∂η
(q12J

∂V

∂ξ
) +

∂

∂ξ
(q12J

∂V

∂η
) +

∂

∂η
(q22J

∂V

∂η
)] + 

𝑅𝑎.𝑃𝑟.θ

J
  

 

(17) 

(
∂(Uc θ)

∂ξ
+

∂(Vc θ)

∂η
) = [

∂

∂ξ
(q11J

∂θ

∂ξ
) + 

∂

∂η
(q12J

∂θ

∂ξ
) + 

∂

∂ξ
(q12J

∂θ

∂η
) +

∂

∂ξ
(q22J

∂θ

∂η
)]   (18) 

Where:   

 f11 = Yη   ,    f12 = −Xη ,   f21 = −Yξ   ,  f22 = Xξ 
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q11 = (f11
2 + f12 

2 ),   q22 = (f21
2 + f22 

2 ) ,   q12 = (f11f21 + f12f22) 

Uc =  YηU−XηV = f11U + f12 V 

 Vc = XξV − YξU = f22V + f21 U    

In non-dimensional form, the following boundary conditions for the velocity components 

and temperature are imposed for motion and energy conservation equations. 

For 0 < ξ <  1     {

   η = 0 →  U, V = 0   and  θ = 1   

η = 1 →  U, V = 0   and  θ = 0
   (19) 

 

For 0 < η <  1     

{
 

    ξ = 0 →  U, V = 0   and  
∂θ

∂ξ
| = 0   

ξ = 1 →  U, V = 0   and    
∂θ

∂ξ
| = 0

   (20) 

 

 

The local Nusselt number Nu is expressed as: 

NuL= −∂θ/(∂n̂) (21) 

While the average Nusselt number NuAv is obtained by integrating the local Nusselt number 

along the bottom wavy surface and is defined by: 

𝑁𝑢AV =
1

S
∫ 𝑁𝑢  ds
s

0
 (22) 

S = ∫ √1 + (
dY

dX
)
21

0
dX (23) 

Where S is the total curve length of the wavy surface.  

 

3.  Numerical method 

The governing equations are discretized using a finite volume method with SIMPLER 

algorithm [32] to handle coupling between the momentum and continuity equations. Third 

order QUICK scheme [33] is used in approximating the advection terms. The discretized 

algebraic equations were solved by means of the combined method, line by line, based on the 

combination between the TDMA direct method and Gauss-Seidel iterative procedure. Denser 

grid clustering distribution near the boundaries of 121x121 nodes are used.   

To ensure convergence of the solution procedure, the following criteria are applied to all 

dependent variables over the solution domain: 
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∑|ϕij
m−ϕij

m−1|

∑|ϕij
m|

≤ 10−5 (24) 

where represents a dependent variable, i.e. U, V, P and , the subscripts i, j indicates a grid 

point and the superscript m the current iteration. Under relaxation factors of 0.2 and 0.9 were 

applied to U, V and , respectively.  

 

4.  Results and discussions   

Before proceeding to the parameterized study and numerical simulations, it is necessary to 

demonstrate that our computer code used is capable of reproducing results already obtained 

by other work. This validation process consists of executing the numerical code under specific 

conditions for reference problems and then comparing the results obtained with data 

published in the literature. 

In the case of a purely thermal natural convection in a square cavity in classical RB 

situation, Table.1 summarizes the values of the average Nusselt number (NuAv) obtained on 

the active horizontal wall, as a function of the intensity of the imposed thermal gradient, 

characterized by the thermal Rayleigh number. Our results obtained with our computer code 

are compared to those of reference [34] considered as a Benchmark of the physical problem 

studied. The values obtained show perfect agreement with those of the reference with a 

maximum error which does not exceed 1.5% recorded at Ra = 10
+6

. 

TABLE 1. Comparison of average Nusselt number with literature results.  

(RB convection in square cavity) 

Ra Benchmark [34] Present 

10
+3

 1.0004 1.0004 

10
+4

 2.1581 2.1573 

10
+5

 3.9103 3.9011 

10
+6

 6.3092 6.3955 

 

The next section present results obtained by analyzing the effects of different parameters 

controlling the thermal convective RB phenomena on the corrugated cavity. The simulations 

are carried out for a Rayleigh number varying between 10
+3≤Ra≤10

+6
. The geometric 

parameters of the corrugated surface will be analyzed as a function of the corrugation 
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amplitude taken between 0.1 and 0.8. All the numerical predictions were obtained for square 

computational domain by using stagnant fluid as first guess solutions. 

The present work is limited to a single ripple (N=1), where we present the simultaneous 

effect of the thermal forces, characterized by the Ra number, associated to the geometric 

deformation related to the corrugation amplitude λ. The effect of corrugations number N will 

be treated separately in next work, given the complexity of the convective flow induced by 

the increasing undulations number.  The results are presented in terms of streamlines and 

isotherms in the considered domain.  

For low Rayleigh number (Ra=10
+3

) under the threshold for the appearance of convection 

(Rac = 1707.7), it can be seen, whatever the amplitude undulation (Fig.4), that the convective 

flow is relatively weak characterized by low velocity regime, bicellular, counter-rotating and 

symmetrical with respect to the line X = 0.5 as shown by streamlines of Fig. 4 (=0.1 and 

=0.6). 

Isotherms present a stratification of the temperature with lines which are almost parallel to 

each other and follow the geometry of the corrugated surfaces, contrary to the case of non-

deformed cavity. This behavior is due to the dominance of the conductive flow regime where 

the transfer of thermal agitation is carried out by microscopic transmission. The exchanges 

between the two walls will then be ineffective and of low intensity. 

Streamline (Ψmin, Ψmax) Iso Streamline (Ψmin, Ψmax) Iso 

    

(-0.04, 0.04) λ=0.1 (-0.3, 0.3) λ=0.6 

 

Fig. 4: Stream line (left) and Isotherms (Right), Ra=10
+3

, N=1 

 

The increase in the thermal force characterized by the Rayleigh number beyond the critical 

instability threshold (Ra=10
+4

), generates the increase in the intensity of the flow and 

promotes the birth of the convective regime. Thus, the general situation is that of a fluid 
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having an increasing density with altitude and thus manifesting a potential instability. The 

buoyancy caused by this difference in density tends to raise the lighter fluid and lower the 

heavier. This physical system thus couples a problem of mechanical stability (variation of 

density) with a problem of heat transfer (variation of temperature). If at a point a positive 

disturbance of the temperature gradient appears, Archimedes' buoyant force induces an 

upward movement of the fluid; this results a local convective supply of fluid particles coming 

from the hot lower layers; and vice versa in the case where the disturbance is negative. The 

upward or downward motion is then completely regular except for the fluid particles, which 

meet an interface, which obliges it to carry out a parallel trajectory to this interface despite to 

the mass conservation law. 

At low amplitude undulation ≤0.2, it can be seen in Fig. 5, that the convective flow gives 

rise to quasi-unicellular structures (with small secondary vortexes), dictated by a macroscopic 

thermal agitation transfer, and occupying almost the entire enclosure with counterclockwise 

circulation. This direction of flow can be reversed due to the multiplicity of physical involved 

phenomena or different initialization already demonstrated in the literature. The increase in 

the amplitude of the deformations from =0.1 to =0.2 favors the intensification of the flow 

shown by the limit values of the stream functions. In accordance with this natural convection 

flow, the isotherms present a distortion in harmony with the flow direction, which is more 

important than  increases (=0.2). These distortions cause the crushing of the thermal 

boundary layers at levels of the active walls; observed on the left side of the hot surface and 

on the right zone of the cold wall; this is obviously justified by the fluid flow direction. This 

convective transfer mode observed for ≤0.2 generates a significant improvement in 

exchanges and increases the efficiency of the conductive microscopic transfer occurs at the 

walls. 

Streamline (Ψmin, Ψmax) Iso Streamline (Ψmin, Ψmax) Iso 

    

(-0.006, 7.41) λ=0.1 (-0.013, 8.07) λ=0.2 
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(-3.74, 5.36) λ=0.3 (-4.82, 5.66) λ=0.4 

  
  

(-5.43, 5.98) λ=0.5 (-5.74, 6.11) λ=0.6 

 

Fig. 5: Stream line (left) and Isotherms (Right), Ra=10
+4

, N=1 

 

As already indicated in the literature, the structures of RB convection, are strongly 

dependent on the physical and geometric characteristics of the system, and may not be 

established if the damping mechanisms that are, the conductivity thermal, linked to thermal 

disturbance, and viscosity, linked to dynamic disturbance, are very important. Indeed, we can 

show that these two energy diffusion mechanisms can modify the counter-rotating cells, in 

particular their sizes and wavelengths. In the case of strong temperature and speed gradients, 

the vortices formed allow strong diffusions of momentum and heat, which reduces motor 

imbalances and hinders the fluid motion. If the vortexes are very far apart, the parietal friction 

stress, linked to the horizontal particle motion at an interface, becomes more and more 

important and thus slowing down the movement. 

Streamline (Ψmin, Ψmax) Iso Streamline (Ψmin, Ψmax) Iso 

    
 (-0.12, 30.10) λ=0.1 (-0.13, 34.92) λ=0.2 
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(-0.15, 40.33) λ=0.3 (-0.22, 46.57) λ=0.4 

  
  

(-39.82, 37.76) λ=0.5 (-43.48, 41.69) λ=0.6 

 

Fig. 6: Stream line (left) and Isotherms (Right), Ra=10
+5

, N=1 

 

It is in this context that we explain the flow structures obtained for ≥0.3 (Fig.5), where we 

notice under the effect of the geometric deformation of the cavity, the formation of bicellular 

contra-rotative regime caused by the increase of corrugation amplitude, which forms a 

fictitious wall along the crest of the deformation (X = 0.5). This bi-cellular regime is almost 

symmetrical with respect to this fictitious wall, especially when the amplitude increases 

(=0.6). The horizontal movements of the fluid particles then end, when they meet this 

fictitious zone of separation, to start an upward or downward movement, depending on the 

direction of flow. When the fluid particles meet this fictitious zone of separation, their 

horizontal motion ends to start an upward or downward movement, depending on the flow 

direction. Thus, this fictitious zone will create a connection link, which gives a regular and 

self-organized overall motion characterized by the formation of counter-rotating cells. 

Streamline (Ψmin, Ψmax) Iso Streamline (Ψmin, Ψmax) Iso 
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(-8.39, 77.34) λ=0.1 (-7.18, 80.64) λ=0.2 

    

(-6.07, 103.87) λ=0.3 (-5.41, 133.46) λ=0.4 

    

(-6.09, 172.04) λ=0.5 (-9.99, 220.04) λ=0.6 

 

Fig. 7: Stream line (left) and Isotherms (Right), Ra=10
+6

, N=1 

Following the formation of the bicellular regime, the flow intensity was reduced from an 

amplitude of =0.2 to =0.3, which is probably due to the imbalance in the kinetics of the 

fluid particles. Beyond this value (>0.3), the inertia resumes its increase with the increase in 

the amplitude of undulation, following the aggravated confinement caused by these 

deformations. 

In the case of the bicellular convective regime, the isotherms present quasi-symmetrical 

distortions relative to the center line X = 0.5; in accordance to the counter-rotating motion of 

the cells. This is causing the crushing of the thermal boundary layer on the hot wall, at the 

crest of the deformation, with increasing gradients; and a widening outside this zone, where it 

is observed that the compartments at the corners are isothermal, characterized by passive 

surface part to the heat transfer. This phenomenon is reversed on the cold wall. 

By further increasing the thermal force (Ra=10
+5

), we could really understand the 

interaction between the physical effects, due to the Rayleigh number, and those of geometric 

origin due to the deformation of the lower wall (Fig. 6). The physical phenomena observed 

remain in the same order of discussion, except that in this case, we note that the dominance of 

the quasi-unicellular regime persists until λ = 0.4, and the bifurcation towards a bicellular 

regime is not observed until λ = 0.5, where the geometric effects will prevail over the thermal 
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forces, and thus impose the installation of the counter-convective regime as shown by 

streamlines of Fig. 7.  It should be noted that following the intensification of the flow, the 

changes in the isotherms for λ≤0.4 illustrate the increase in the isothermal surface recorded in 

the right lower compartment of the cavity and thus reducing the active wall dimension which 

defines the conductive transfer at the lower hot border. This configuration will promote the 

denaturation in the RB-PCR application. Beyond an amplitude of 0.5, we note the 

accentuation of the geometric effect with a bicellular flow characterized by greater inertia, 

and bigger isothermal compartments (λ = 0.6). 

For a higher Rayleigh number (Ra=10
+6

), he geometric effect, for the chosen range of 

values, does not manage to dictate its dominance even at λ = 0.6 (Fig. 7); the convective flow 

remains dominated by the buoyancy forces, with a unicellular structure occupying almost the 

entire wavy cavity. The inertia zone is proportional to the increasing amplitude. However, it is 

important to report the existence of small cells at the corner enclosure, mainly due to the flow 

intensity. On the other hand, the isothermal surface due to the behavior of the thermal 

boundary layer, is as greater as λ increases; this will considerably affect the transfer rates and 

the exchange may not have a monotonous variation depending the amplitude. When the 

Rayleigh number is around 10
+6

, our simulations allowed us to show that the bifurcation 

towards a bicellular flow is only observed up to an amplitude of 0.8, as shown in Fig. 8 

representing the iso-values.  

Streamline (Ψmin, Ψmax) Iso 

  

(-162.64, 154.23)  

 

Fig. 8: Stream line (left) and Isotherms (Right), Ra=10
+6

, N=1, λ=0.8 

 

For the RB-PCR application, we can affirm from these visualizations that the use of a 

corrugated enclosure can improve the process of the DNA sample amplification. As an 

example, for Ra = 10
+6

 case, it can be seen that the flow is clearly favored by the increasing 

corrugation amplitude. Nevertheless, it is necessary to determine the optimal amplitude which 
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offers the favor flow intensity associated with a quasi-unicellular flow, where the intensity of 

the small secondary cells is reduced to avoid the recirculation zones, which will be unsuitable 

for the application efficiency. Thus, we notice that the intensity of these small cells is reduced 

for <0.5 (=0.4 optimal value), promoting the dominance of the large primary cell. As 

already explained, the quasi-unicellular flow induced by the RB effect will modify the 

thermal field distribution according to the counterclockwise convective motion, the isotherms 

then have a hot quasi-isothermal zone on the right side of the cavity, which will make this 

ascending particles zone usable in the RB-PCR process by amplifying the denaturation phase; 

unlike to the regular cavities RB-PCR cases. This improvement is schematically presented in 

Fig. 9. 

 

Fig. 9. Schematic PCR in a quasi-unicellular Rayleigh-Bénard flow, Ra=10
+6

, =0.4 

On the other hand, we saw overall that the flow intensity is favored in the case of bicellular 

flow; it is just important to avoid the critical amplitude cases of bifurcation, where the 

intensity decreases compared to unicellular mode. The great advantage of the bicellular flow 

remains to double the site of RB-PCR cycle execution (Fig. 10). 
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Fig. 10. Schematic PCR in a Bicellular Rayleigh-Benard flow 

Through this first analysis, we were able to illustrate the simultaneous effects of the Ra- 

couple on the streamline structures describing the natural convection flow as well as the 

behavior generated temperature fields. Thus, as a function of the chosen range values, we 

have given the critical values of the amplitude undulation, as a function of the Rayleigh 

number, allowing the bifurcation towards the bicellular contra-rotative flow. 

Fig. 11 illustrates the variation of the mean Nusselt number as a function of the undulation 

amplitude and Ra number. For a purely conductive mode (Ra=10
+3

), it can be seen that the 

average heat exchange is favored with the increasing amplitudes which is due to the increase 

in the exchange surface. The improvement of the heat transfer compared to the case of a 

rectilinear wall, represented by dash (N = 0), can exceed 100% for λ≥0.4. In convective mode 

(Ra=10
+4

 and Ra=10
+5

), as long as the flow regime is unicellular, we find that the average 

transfer undergoes an increase proportional to the amplitude (λ≤0.2 for Ra=10
+4

 and λ≤0.4 

for Ra=10
+5

). 
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Fig. 11:  Average Nusselt as a function of the undulation amplitude and Ra number, N=1 

As soon as the bifurcation towards bicellular flow is reached, a reduction in the mean 

Nusselt is observed according to the stabilized redistribution velocity fields, in counter-

rotating configuration with expanded thermal boundary layer. The corresponding amplitude 

values are then described as the critical values (λc) allowing the bifurcation towards bicellular 

regime (ie: λc=0.3 for Ra=10
+4

 and λc=0.5 for Ra=10
+5

). Beyond these critical limits, the 

average heat transfer resumes its increasing evolution with the increase in amplitude, under 

the significant inertia due to the aggravated confinement. This improved transfer is all the 

more pronounced as the Ra number is high (Ra=10
+5

). It is important to report the 

irreversibility bicellular flow installed, which persists with the increasing amplitude, and in 

any case, we re-observe the unicellular flow. Compared to the regular cavity case (N=0), the 

average heat transfer recorded with a deformation, presents a considerable improvement, in 

particular when the thermal force increases (from Ra=10
+4

 to 10
+5

). 

At Ra=10
+6

 we noticed a completely unexpected evolution, where a slight reduction of 

mean Nusselt is occur for amplitudes 0.1 to 0.4. These Nusselt values are even lower 

compared to without wavy case (N = 0) found in classical RB convection. Beyond λ=0.4 the 

average transfer increase by an exponential growth to reach maximum at λ = 0.6. 

The improvement in heat transfer compared to the case of a regular cavity is represented in 

Fig. 12, the comparison is described by the ratio between the average Nusselt number 
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calculated as a function of Ra-and the reference expressed by the average Nusselt number 

for regular cavity at each Ra numbers. These data are shown in Table 1 for the classical RB 

problem. It is generally observed that the improvement in heat transfer compared to the 

rectilinear surface increases exponentially with increasing corrugation amplitude for all Ra 

numbers; except at critical amplitudes where the improvement is relatively reduced. For the 

purely conductive case, the transfer gain with corrugated cavities can reach 900% at  = 0.8. 

 

Fig. 12: Relative average Nusselt to RB regular cavity case as a function  

of the undulation amplitude, N=1 

 

A distinction is noted for Ra = 10
+6

 where the gain in transfer increases only from the                 

 = 0.5, which is due to the isothermal zone induced by deformation. Beyond this value, the 

convective and geometric effects become cooperative, generating a significant improvement 

in heat transfer which becomes ten time higher as the flat surface. It should be noted that all 

the evolutions tend towards an infinite limit value corresponding to the singularity = 1. 

Fig. 13 summarizes the critical limit of the corrugation amplitudes as a function to Ra 

number, which affirms the bifurcation towards the bicellular regime and delimits flow 

patterns according to the Ra-λ couple. We note that the value of the critical amplitude λc is 

more important than Ra augment, this variation is approximated by correlation valid only for 

the range of values chosen.  
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crit = 0.025 Ra
0.25

     (25) 

 

Fig. 13:  Critical corrugation amplitudes as a function to Ra number, N=1 

 

This behavior suggest that the flow rate controls the bifurcation. The flow rate is the 

velocity order of magnitude (Ra
1/2

) and the boundary layer size (Ra
-1/4

). To analyze the flow 

intensity for the different cases of the couple Ra-, we represent in Fig. 14 the relative 

variation of the stream function expressed by the absolute value quantity (MAX-MIN) / MAX 

which compare the intensity between the primary cell and the secondary cells. 

We admit that when MIN tends towards zero the convective flow tends towards a purely 

unicellular regime, characterized by a cell circulating counterclockwise and occupying the 

entire cavity. When MIN tends towards MAX we define the perfectly symmetrical bicellular 

flow. The stream function MIN then represents, the non-diverging component velocity of the 

secondary cells whose value is constant, and contrarotative to the primary cell. The relative 

intensity evolution is thus represented for each Ra number as a function of the corrugation 

amplitude, by simulations and analytical fitted approximations on the same figure. For the 

sake of clarity, the approximate curves are described in terms of /Crit, where Crit are the 

bifurcation values corresponding to the bicellular flow birth. 

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8
 Simulation

 Fitted


c

Ra

Quasi-Unicellular

           flow

1
7
0
7
.7

6

Convection

Bicellular flow

C
o

n
d

u
c

ti
o

n

Ra
c
()



 

 

24 

 

 

 

Fig. 14:  Relative stream function variation with Ra- 

 

For low amplitudes (at Ra=10
+4

 and Ra=10
+5

), the relative intensity tends towards the unit 

value indicating the existence of the quasi-unicellular regime dominated by the primary 

vortex. As the amplitude increases the relative intensity decreases indicating the emergence of 

secondary cells whose intensity gradually increases. When the geometric bifurcation threshold 

is reached (Crit = 0.3, 0.5, and 0.8 for Ra=10
+4

, 10
+5

 and 10
+6

 respectively), the unstable 

bicellular flow settles asymmetrically, and tends towards a symmetrical mode when the 

geometrical deformation increase. As shown by the fitted curves, it is important to note that 

the bicellular flow induced at the bifurcation, is all the more symmetrical as the Ra number 

increase, which reduces the slope of the relative intensity while passing from a quasi-

unicellular regime towards the bicellular one. Put another way, reducing the effective height 

(Heff = 1-) promotes the orthogonality of the fictitious wall at X=0.5, to improve the 

convective symmetry between the two counter-rotating cells. 

For a large thermal gradient (Ra=10
+6

) a clear distinction is noted for an effective height 

greater than 0.5 (ie:  <0.5). Thus, the relative intensity in this case is reversed due to the 

intensity reduction of the small secondary cells (from = 0.1 to = 0.4), favoring the 

dominance of the primary cell. We can therefore conclude that at Ra=10
+6

, an effective height 

of the order of 0.5 represents an optimal value for promoting the unicellular regime. We can 
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also show that the critical Ra number as a function of the amplitude varies as a function of 

the effective height (1-)
3
. 

 

Fig. 15:  Local Nusselt numbers long the width of the cavity, Ra = 10
+6

, N=1 

The evolutions of the local Nusselt numbers at Ra = 10
+6

 as a function of the width of the 

cavity are shown in Fig. 15, for the different amplitudes considered. It can be seen that all the 

curves show an increasing evolution until reaching a maximum value, from which NuL is 

reduced to reach an asymptotic value in the right compartment of the cavity. This value is all 

closer to zero as the amplitude increases, indicating the adiabatic character of this portion of 

the lower wall. As already explained, the counterclockwise circular motion, and under the 

deformation effect, will create an isothermal zone where the thermal gradients will tend 

towards zero; this portion of the surface is then considered to be totally ineffective for heat 

transfer, hence our definition of the active and passive parts of the exchange surface. 

Following flow direction, the parabolic evolutions of the local Nusselt numbers are positioned 

in the left compartment of the cavity, with an amplitude peak, positioned closer to the left 

wall as the amplitude deformation increases. 

In the bottom left corner of the cavity (X≤0.1), we notice in Fig. 15 the inversion of the 

local Nusselt growth order as function of λ (Zoomed part). This phenomenon is justified by 

the thickening thermal boundary layer in this zone, following the emergence of the small 
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counter-rotating cells exposed in Fig. 8 Thus, the counter-rotating circulation will play a 

stabilizing role forcing the fluid, in this part, to slow down the dominated primary cell flow, 

and increasing the thermal gradients in this corner. Therefore, and as these small cells do not 

appear at low amplitudes, hence this reverse evolution. 

To better exploit the local Nusselt variations, we present in Fig. 16 (Ra=10
+6

 and λ=0.6) 

the different characteristics defining the behavior of NuL as a function of the normalized 

width. We then define the full width at half maximum (FWHM) which corresponds to the 

portion length of wall where the heat exchange will double to reach its maximum value. The 

heat transfer centroid is also defined as the position around which the heat transfer takes 

place, with maximum crushing of the thermal layer. The notion of the active and passive wall 

portions will allow us to define the dimension of the passive surface on which the wall is 

almost adiabatic with an almost zero transfer, and vice versa, the active portion where the 

transfer takes place. The limit position between these two portions is represented by the 

position XA on the dimensionless scale. To determine this position, we assumed that the heat 

transfer is considered adiabatic, when the local Nusselt number is less than 1% of the 

maximum value recorded at the peak of its parabolic variation (ie: NuL (XA) = 1% NuL MAX). 
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Fig. 16:  Characteristics defining local Nusselt number, Ra = 10
+6

, λ=0.6, N=1  

 

The normalized position XA will correspond to the position SA on the real scale (S (λ)) 

which represents the total length of the deformation curvature already defined in the 

calculation of the local Nusselt number. This position couple (XA, SA) will tell us about the 

normalized and real positions delimiting the passive portions to the variation of thermal 

gradients. 

  

Fig. 17:  The FWHM and centroid of heat transfers for different amplitude, Ra = 10
+6

, N=1  

 

Fig. 17 represents the FWHM variations and those of the centroid of the transfers for the 

different undulation amplitudes. We note that FWHM does not vary too much; nevertheless, 

we notice its reduction for λ≤0.4, which reduces the dimension of the maximum transfer. 

However, the FWHM for λ≥0.5 increases slightly and improves the area under the curve. Heat 

transfer centroid is generally around the position X = 0.3, with tendency to approach the left 

wall for the λ≤0.4. 
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Fig. 18: Positions delimiting the passive and active portions, Ra = 10
+6

, N=1 

 

Fig. 18 summarizes the different positions of the couple (XA, SA) delimiting the passive 

portion of the active part of the total heat transfer surface, at Ra = 10
+6

. We note for λ = 0.1, 

that the entire wall surface is active to the heat transfer process; whereas, for amplitudes 0.2 to 

0.4, the length of passive portion is as all as more important, which reduces the heat transfer 

efficiency and justifies the average quantities represented in figure 8. This analysis cannot be 

based solely on the geometrical aspect, but it is necessary to associate the physical character; 

because for example at λ = 0.6, we notice that the passive part is the most important despite 

that the average transfer is the highest. Thus, the effect of the aggravated confinement will 

induce a significant intensification flow and consequently thinner thermal boundary layers. 

This will compensate loss due to the passive portion. 
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For RB-PCR process, a larger passive part favors the denaturation stage, which increases 

the amplification efficiency.  

 

Fig. 19: Comparison of the local Nusselt Number evolutions for  

Ra = 10
+6

 and Ra = 10
+5

, λ = 0.4, N=1 

 

To justify that the average exchange recorded at Ra=10
+5

 is more important than that of 

Ra=10
+6

, for the same amplitude (λ=0.4), we present on Fig. 19 the local Nusselt number 

behaviors in function of X. It is clearly noted that the passive portion length is greater for the 

case of Ra=10
+6

 (XA=0.7) than Ra=10
+5

 (XA=0.8); which reduces the exchange efficiency for 

the first case. On the other hand, the birth of small cells at left corners of the cavity, already 

mentioned in Fig. 10, and due to the counter-rotating and high fluid circulation, the thermal 

boundary layer will thicken reducing the thermal gradients in this transfer zone, and therefore 

reducing the average Nusselt number. This is clearly shown by the portions streamlines and 

isotherms shown in Figure 18. Under the effect of these two aspects, it is obvious that the area 

under the local Nusselt curve at Ra=10
+6

 is reduced. 

To complete our analysis of the heat transfer behavior and fluid flow structures, we have 

represented a cartography, on a logarithmic scale, which summarizes the variation of Iso-
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Nusselt as a function of the couple Ra-λ (Fig .20). Overall, this figure shows that the heat 

transfer is favored by increasing the two control parameters, with a distinction for the case of 

Ra=10
+6

. The disturbance recorded in the vicinity of Ra=10
+6

 is essentially due to the 

behavior of the secondary convective cells on both sides of the effective optimal height Heff = 

0.5.  

The figure delimits the bifurcation line from the primary quasi-unicellular regime towards 

the secondary bicellular flow, under the interaction constraint of the geometric effects, due to 

the deformation, to those of thermal origin. 

 

Fig. 20: Iso Nusselt as a function of the Ra-l couple, λ = 0.4, N=1 
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 5.  Conclusion 

Natural convection heat transfer in a corrugated cavity filled with fluid heated from below 

is studied numerically. The bottom surface is considered to follow a wavy pattern.  Results 

analysis focused on the influence of the different controlling parameters derived from the 

dimensionless mathematical model, and which describe the thermophysical and geometrical 

effects induced in the corrugated enclosure. The flow intensity and structure were anlysed for 

mastering the engineering Polymerase chain reaction (PCR) process. 

For the considered domain, beyond the convective instability threshold, we have 

demonstrated the existence of a bifurcation from quasi-unicellular flow towards a bicellular 

regime, controlled exclusively by corrugations amplitude value. An approximate solution has 

been proposed to these critical amplitude values (c), depending on Rayleigh number. For 

bicellular convective regime, the isotherms present quasi-symmetrical distortions relative to 

the center line X = 0.5.  

 An optimal configuration, for wavy cavity with an amplitude of 0.4 (Ra=10
+5

), was 

found to promote the amplification of DNA sample by RB-PCR. This optimum is due to the 

reduction of the recirculation zones caused by secondary cells and a quasi-unicellular regime. 

Moreover, we identified the forming of isothermal zone between the vicinity of the vertical 

cavity wall and the demonstrated passive heat transfer lower zone. Such isothermal active 

zone will be used to amplify the denaturation phase of the PCR process to improve the 

amplification. Recall that this upward flow zone was completely inactive in the case of a 

regular cavity. Such isothermal zone, under the critical amplitude value (c=0.8 at Ra=10
+6

),  

is of the size of λ due to the thermal boundary layer behavior,.  

For the bifurcation case towards the bicellular flow, a small effective height ( 1) 

ensures a great intensity of flow which improves the efficiency of the RB-PCR protocol, 

without forgetting the fact of doubling the execution site of amplification. For heat exchanges, 

this configuration significantly improves heat transfer compared to the regular cavity. 

The behavior of the secondary cells and their influences on the thermal boundary layer, 

proved significant difference between the cases Ra=10
+5

 and Ra=10
+6

. This induced 

difference effect is due to the geometric deformation, and against all expectations, gives a 

higher average heat exchange at Ra=10
+5

 than 10
+6

. 

Finally, an interesting cartography summarizing the Iso-Nusselt distribution as a function 
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of the Ra-λ couple is presented. This map summarise also the flow topologies and 

bifurcations. 

As a perspective to this work, we plan to explore other optimization based on the control 

parameters, notably the corrugation number. To better understand and predict the behavior of 

the fluid flow as well as the heat transfer modes and their efficiencies related to the PCR an 

integration of the chain forming kinetics versus the temperature and the local concentration is 

also required.  
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Nomenclature 

Latin letters 

a  

Cp 

H 

J 

k 

K 

n̂  

N 

Nu 

P 

Pr 

Ra 

S 

T 

u, v 

U, V 

U
c
, V

c
  

x, y 

X, Y 

 

Greek  

 

 



ξ , η      

ν 





 

Subscripts 

A 

Av 

c  

eff  

h 

L 

MAX 

MIN 

 

 

Thermal diffusivity 

Heat capacity 

Height / Length 

Jacobian 

Thermal conductivity 

Permeability 

Unit normal vector 

Corrugations number 

Nusselt number 

Dimensionless pressure 

Prandtl number 

Rayleigh number 

Curve length 

Temperature 

Velocity component (x,y) 

Dimensionless Velocity (X, Y) 

Contravariant velocity (ξ , η) 

Coordinates 

Dimensionless coordinates 

 

 

Dynamic viscosity 

Fluid density 

Dimensionless temperature 

Curvilinear coordinates. 

Fluid kinematic viscosity 

Corrugation amplitude 

Stream function 

 

 

Active 

Average 

Cold / Critical 

effective 

Hot 

Local 

Maximum 

Minimum 

 

 




