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Highlights
Advances in dissecting in vivo repro-
gramming (mediated by the transcription
factors Oct4, Sox2, Klf4, and c-Myc) re-
veal that it triggers rejuvenation and im-
proves regeneration in various cells and
complex tissues, while still presenting
an inherent risk of tumorigenicity.

Aging was recently found to be caused
by loss of epigenetic information that
can be restored by reprogramming
even if the precise molecular mecha-
The multistep process of in vivo reprogramming, mediated by the transcription
factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM), holds great promise for the
development of rejuvenating and regenerative strategies. However, most of the
approaches developed so far are accompanied by a persistent risk of tumorige-
nicity. Here, we review the groundbreaking effects of in vivo reprogramming
with a particular focus on rejuvenation and regeneration. We discuss how the
activity of pioneer TFs generates cellular plasticity that may be critical for inducing
not only reprogramming and regeneration, but also cancer initiation. Finally, we
highlight how a better understanding of the uncoupled control of cellular identity,
plasticity, and aging during reprogramming might pave the way to the develop-
ment of rejuvenating/regenerating strategies in a nontumorigenic manner.
nisms remain to be fully understood.

Recent findings showed that specific
features, such as cellular plasticity, cellu-
lar identity, and aging, are controlled by
distinct gene regulatory networks during
reprogramming.

The precise action of pioneer tran-
scription factors on the epigenome
remains to be fully understood to
identify alternative molecules that will
pave the way toward the development
of nontumorigenic reprogramming-
based strategies in humans.
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Pluripotent reprogramming is a stepwise process
The generation of induced pluripotent stem cells (iPSCs) in vitro with OSKM holds great promise
for the development of personalized therapies [1]. Following this pioneer work, instrumental stud-
ies demonstrated that differentiated cell types can also be reprogrammed to pluripotency in vivo,
paving the way to future applications in regenerative medicine [2,3]. However, initial attempts at
in vivo reprogramming showed that it triggers the formation of not only benign, but also malignant
tumors [3,4].

Reprogramming is a stepwise process marked by the emergence of cellular intermediate states,
presenting a progressive gain of cellular plasticity (see Glossary) and loss of cellular identity
followed by the activation of the pluripotent network [5,6]. During the process, the cells reach a
‘point of no return’ after which they will not go back to their differentiated state (Figure 1). The in-
ability of cells to successfully overcome different obstacles, including the activation of oncogenic
barriers (senescence and cell death), partly explains the low efficiency of the process [7]. A large
proportion of the epigenetic features remodeled during the early phase of reprogramming are also
modified during regeneration and aging. Therefore, researchers elaborated protocols of partial
reprogramming in which cells begin to reprogram but do not reach the pluripotent state. These
approaches led to groundbreaking effects both in vitro and in vivo, including rejuvenation [8–11],
improvement of regenerative abilities in various organs [9,12,13], and restoration of vision [14].
However, partial reprogramming was reported to trigger and/or foster oncogenic transformation
in certain normal and neoplastic contexts [3,4,15]. This persistent risk of tumorigenicity severely
hinders the future applications of in vivo reprogramming-based approaches.

Oct4, Sox2, and Klf4 belong to the family of ‘pioneer’ TFs, a specific class of molecules able to
interact with, and remodel, the nucleosome to open silent chromatin [16]. Pioneer TFs can trigger
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Glossary
Cellular identity: unique combination of
molecular features (genomic, epigenetic,
and transcriptomic) that leads to a
specific phenotype and function in a cell.
Cellular plasticity: ability of a cell to
change its identity under normal,
pathological, or experimental contexts.
Lineage infidelity: process by which a
cell acquires a mixed identity comprising
the coexistence ofmultiple transcriptional/
epigenetic programs.
Teratoma: benign tumors comprising
differentiated derivatives from the three
germ layers. Therefore, teratoma are
indicative of the multilineage differentiation
potential of a cell.
a widespread reconfiguration of chromatin and TF occupancy in various contexts, including not
only early development and reprogramming, but also regeneration and cancer initiation. Hence,
the promiscuous binding of pioneer TFs to the genome was recently found to trigger undesired
epigenetic and transcriptomic changes in certain contexts [17]. Therefore, a better understanding
of the molecular events driven by pioneer TFs will help to uncouple their beneficial and detrimental
actions during cell fate conversions.

Here, we review the effects of in vivo reprogramming with a particular focus on not only its benefits,
such as rejuvenation and regeneration, but also risks, namely tumorigenesis. We highlight the key
roles of pioneer TFs in triggering these effects, in particular in generating cellular plasticity during cell
fate conversions, regeneration, and cancer development. We finally discuss how the regulation of
specific cellular features (aging, identity, and plasticity) can be uncoupled, paving the way to the future
development of in vivo reprogramming-based approaches in a nontumorigenic manner.

Reprogramming in vivo triggers rejuvenation and improves regeneration
Reprogramming to pluripotency and generation of iPSCs is achievable in vivo, indicating that the
microenvironment is not sufficient to constrain OSKM action [3]. In detail, OSKM ubiquitous
expression triggers the formation of differentiated teratomas in various organs (pancreas, kidney,
intestine, adipose tissue, liver, intracranial, stomach, and heart), revealing that multiple cell types
are capable of reprogramming with different kinetics [3,10]. While the emergence of cellular interme-
diates is well documented in vitro [5,6,18], the molecular steps and regulators of in vivo reprogram-
ming remain largely unknown. A recent analysis of pancreatic cells at day 7 of reprogramming in vivo
showed that cellular intermediates, prone or refractory to reprogramming, also emerge in vivo [19].
TrendsTrends inin Cell BiologyCell Biology

Figure 1. Reprogramming can trigger not only rejuvenation but also cancer development. A shared molecular program emerges in cellular intermediates during
reprogramming (induced by Oct4, Sox2, Klf4, and c-Myc; OSKM) and oncogenic transformation (induced by an oncogenic form of K-Ras mutated on a single
residue: K-RasG12D and c-Myc) [6]. During the early phase of reprogramming, the epigenetic marks are remodeled and cellular intermediates gain in cellular plasticity.
The termination of pluripotent reprogramming (cyclic or by pulse) in this time window contributes to rejuvenation and regeneration [9,11]. However, depending on the
cellular model and the reprogramming protocol used, this window can lead to reversible dysplastic features in cells [4]. A ‘point of no return’ arbitrarily defines the limit after
which cells accumulate irreversible epigenetic/genetic modifications. After this point, the outcome of prolonged reprogramming and oncogenic transformation is engaged.
The dosage of OSKM controls the final epigenetic landscape of reprogramming. The hybrid epigenome refers to cells acquiring partial reprogrammed features [4,33].
Figure created with BioRender (biorender.com).
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The refractory cluster harbors high activity of the AP-1 family of TFs, in line with the barrier role of
these factors in vitro [6,18–20]. Senescence also promotes in vivo reprogramming via the paracrine
secretion of a variety of molecules, including IL-6 [21]. By contrast, natural killer (NK) cells constrain
the process by targeting reprogramming cells that upregulate NK-activating ligands (MULT1,
ICAM1, and CD155) that bind the NKG2D receptor [22].

Different settings of partial reprogramming, by which a short exposure to OSKM engages cells in
the process without reaching pluripotency, have been elaborated. Some settings showed
groundbreaking effects on rejuvenation and regeneration. Many of the epigenetic marks that
are remodeled during early reprogramming are also dysregulated during the aging process,
including post-translational DNA methylation, modifications of histones, and chromatin remodel-
ing [23]. In line with this, various epigenetic clocks were developed to estimate age based on the
level of methylation of a restricted number of CpG sites in the genome [24–26]. Recent studies
demonstrated that reprogramming (mediated by OSKM+Lin28+Nanog: OSKMLN) induces a
rapid and persistent amelioration of aging hallmarks and a reversal of cellular age at the transcrip-
tomic, epigenetic, and cellular levels in aged (60–90 years) compared with young (25–35
years) fibroblasts/endothelial cells [27]. Moreover, recent work showed that loss of epige-
netic information can cause mammalian aging [23]. The authors took advantage of I-PpoI,
an endonuclease from Physarum polycephalum that recognizes 20 canonical targets in the
mouse genome, to generate the ICE mouse model (which has inducible changes of the epi-
genome). The induction of I-PpoI triggers the formation of double-strand breaks (DSB) that
are perfectly repaired by cells. However, the repeated induction of DSBs led to the erosion
of the epigenetic landscape, partial loss of cellular identity, senescence, and advancement
of DNA methylation clock [24]. In that context, the adeno-associated virus (AAV) delivery of
OSK significantly restored youthful features [23]. In addition, pioneer works revealed that a
regimen of partial and cyclic reprogramming (mice were exposed to OSKM 2 days per
week) led to the erasure of epigenetic signs of aging and to the amelioration of various
aging hallmarks in the context of not only pathological, but also normal aging [9,11,28].
OSKM also improved recovery from toxin-mediated pancreas and muscle injury and also re-
duced scar tissue formation following cutaneous wounds. Finally, a single short OSKM pulse
performed early in life was reported to modestly prevent some age-related tissue structure
deteriorations and fibrosis [29].

A recent body of work also explored the effects of OSKM on the rejuvenation of specific cell
types in vivo. Adult mammalian cardiomyocytes (CMs) are poorly proliferative and have low re-
generative capability. A specific and short expression of OSKM (6–12 days) in adult CMs repro-
grammed them toward a fetal state [10]. Moreover, OSKM expression, before or during
myocardial infarction, improved heart repair through proliferation of pre-existing CMs. OSKM
action is dependent on the developmental stage of CMs. It can sustain an immature prolifera-
tive state in neonatal CMs, while allowing the acquisition of a mitosis-competent state in adult
CMs. Additionally, OSK expression in mouse retinal ganglion cells was found to restore youthful
DNA methylation/transcriptomic patterns and to reverse vision loss in both a model of glau-
coma and aged mice [14]. Cyclic OSKM expression also induces rejuvenation in the central
nervous system. It restored adult hippocampal neuron migration in the dentate gyrus of old
mice, associated with partial improvement of cognitive functions [30]. Similarly, partial repro-
gramming in myofibers promoted tissue regeneration in a chemically induced tibialis anterior
muscle degeneration model. Mechanistically, OSKM regulate genes critical for the stem cell mi-
croenvironment, leading to stem cell proliferation [12]. Collectively, these studies show the pos-
sibility of using partial reprogramming to rejuvenate cell types and complex tissues to achieve
functional recovery of organs that fail to regenerate under normal conditions. However, the
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 3
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parameters of OSKM exposure (expression level and duration) required to achieve beneficial effects
are cell type and/or organ specific.

A tumorigenic risk is associated with in vivo reprogramming
Pluripotent reprogramming and oncogenic transformation share molecular analogies, as
reviewed elsewhere [7,31,32]. A recent comparison of gene signatures of OSKM-mediated
reprogramming and K-Ras-driven transformation in the pancreas revealed some shared
transcriptomic features [19]. Comparison of the roadmaps of reprogramming and transformation
at the single cell level in mouse embryonic fibroblasts (MEFs) demonstrated the existence of an
early shared epigenetic program induced by OSKM and oncogenic K-Ras/c-Myc (Figure 1) [6].

Paralleling the exploration of these analogies, the question of the intrinsic tumorigenicity of in vivo
reprogramming is still under debate. As mentioned previously, the full process ultimately leads to
the formation of teratomas, but the development of these benign tumors simply reflects the
acquisition of a multilineage differentiation potential. However, pioneer work reported the develop-
ment of malignant tumors in various organs when reprogramming was induced but prematurely
abrogated before reaching pluripotency (after 7 days of OSKM expression) [4,33]. The molecular
mechanisms driving this tumorigenic development remain incompletely defined, but some
parameters are impactful.

The first parameter to consider is the duration of OSKM exposure. An acute effect of OSKM is
the formation of dysplastic lesions in multiple tissues, but dysplasia is often reversed following
short exposure to OSKM (~2 days). However, prolonged exposure (~7 days) drives the subse-
quent formation of tumors, which persist after OSKM removal [4]. Some kidney tumors share
characteristics with Wilms’ tumors, the most common pediatric kidney tumor. Tumors in the
pancreas harbor gene signatures related to germ cell tumors, in accordance with a ‘rejuvenating’
role of OSKM [33]. Transcriptomic analysis of kidney tumors showed that the embryonic stem
cell (ESC)-core and ESC-Myc modules are activated at similar levels in pluripotent and tumoral
cells. However, the ESC-Polycomb targets largely failed to be repressed in tumors [34]. Similarly,
DNA methylation changes were partial, indicating that the abnormal growth of unsuccessfully
reprogrammed cells can lead to tumor formation in which a hybrid epigenetic landscape has
been stabilized (Figure 1).

In addition to the duration, the level of expression of OSKM is critical for tumorigenic risk. Low
OSKM expression led to teratoma formation, whereas high levels triggered the generation of
malignant tumors [33]. At the cellular level, the dosage and duration of OSKM exposure in adult
CMs also influenced the development of heart tumors [10]. Short OSKM exposure (6 days) led
to moderate signs of reversible cardiac remodeling, while prolonged time (21 days) triggered
the development of epithelial-like neoplasms. Interestingly, mice carrying only one OSKM allele
developed cardiac neoplasms after 7 weeks of OSKM exposure.

Finally, some regimens of Yamanaka factors were demonstrated to be nontumorigenic in
certain contexts. For example, the exclusion of c-Myc from the cocktail was sufficient to
avoid the development of cancerous lesions in the eye after prolonged expression [14].
Similarly, the long-term and cyclic induction of OSKM (2 days per week) did not lead to
tumor formation. However, in these settings, the reduction of biological age was constrained
to kidney and skin [11]. Altogether, these findings indicate that OSKM exposure promotes
neoplasia in certain settings. Therefore, a better understanding of the molecular mechanisms
associated with this tumorigenic risk could facilitate the development of safe reprogramming-
based therapies.
4 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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Reprogramming generates cellular plasticity
The previous section indicates that OSKM can generate epigenetic changes that lead cells to
acquire undesired phenotypes, potentially leading to malignancy. In line with this, recent insights
from single cell approaches showed that in vitro reprogramming is executed in a series of
bifurcating decisions, where each point on the reconstructed trajectories corresponds to a
concrete cellular decision [35,36].

The first bifurcation leads cells to assume a ‘refractory’ stromal fate or a ‘prone’ mesenchymal–
epithelial transition (MET) fate that mainly gives rise to reprogrammed cells. Of note, the trajectories
of reprogramming are dependent on the cell type of origin and on the cocktail of factors [37,38]. By
contrast, late bifurcations were found to generate a battery of alternative cell fates, such as neural
and extra-embryonic lineages in both human and mouse cells [35,36]. Interestingly, aberrant gene
inductions were initially reported in pioneer bulk RNA-sequencing analysis but considered to be
disorganized gene expression [39]. The advancement of the single cell technologies showed in-
stead that they correspond to true cell fate decisions. Nonetheless, these alternative routes
appear mainly absent from chemical-mediated reprogramming, indicating that the use of pioneer
TFs (see next section) might be responsible for such aberrant acquisition of cellular plasticity [40].
The emergence of a cluster of ‘trophectoderm-like’ cells was recently reported during OSKM
reprogramming of human dermal fibroblasts [41]. These cells were successfully stabilized into
induced trophectodermal stem cells (TSCs) that resembled both molecularly and functionally
TSCs derived from first-trimester placentas. Collectively, these studies show that the action of
pioneer TFs is not exclusively deterministic toward a specific cell fate. Pioneer TFs also generate
cellular plasticity and windows of opportunity for somatic cells to engage into alternative paths.

Pioneer TF activity during reprogramming and transdifferentiation
TF-mediated cell fate conversions require a genome-wide epigenetic resetting that includes the
opening of silent chromatin. Nucleosomes impair DNA binding of TFs, but a specific class of
embryonic ‘pioneer’ TFs interact with, and remodel, the nucleosome to open silent chromatin,
as reviewed elsewhere [42]. The ability of pioneer TFs to initiate transcriptional programs is instru-
mental for programming cell fate during development [43]. Numerous embryonic pioneer TFs are
able to drive the conversion of fibroblasts toward a plethora of lineages [44]. Interestingly, their
activity is dependent on different parameters, including stage-specific cofactors. During the
early steps of reprogramming, OSK were found to redistribute c-Myc on the MEF genome,
which may divert it from its tumorigenic action [45]. OSK also hijack MEF cofactors (Runx1,
Cebpa, Cebpb, and Fra1) and epigenetic regulators (Brg1, Hdac1, and Mbd3) to initiate the
inactivation of MEF enhancers [18,46]. In line with this, Oct4, Sox2, and Klf4 are not distributed
similarly on the chromatin when expressed solely or in combination (Figure 2A) [18]. As another
example, Ascl1 and Myod1 are two pioneer basic helix–loop–helix (bHLH) TFs that are sequence
related but drive the transdifferentiation of MEFs into neural and muscular cells, respectively [17]
(Figure 2B). The binding of the two TFs to MEF chromatin was found to be qualitatively similar,
reflecting their sequence similarities, but the transcriptional output of their ectopic expression
was strikingly distinct (muscular versus neural cells). These distinct changes in fate specification
were found to be due to strong differences in the DNA-binding affinity of Ascl1 and Myod1 and
to their respective interaction with cofactors. Moreover, and in line with the generation of cellular
plasticity by pioneer TFs, the pro-myogenic factor Myod1 was found to bind promiscuously to
neuronal genes and the pro-neuronal factor Ascl1 to myogenic ones [47]. Therefore, this promis-
cuous activity needs to be canalized in different ways, including by transcriptional repressors,
such as Myt1l. Myt1l exerts a pro-neuronal function by repressing a variety of non-neuronal
genes occasionally induced by Ascl1 [47]. Interestingly, however, when Myt1l expression is com-
bined with the pro-myogenic factor Myod1, this latter unexpectedly promotes the emergence of
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 5
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Figure 2. Pioneer transcription factor (TF) activity during reprogramming and transdifferentiation. (A) Oct4, Sox2, Klf4, and c-Myc (OSKM)-mediated
reprogramming. The pioneer TFs OSK trigger widespread reconfiguration of chromatin and redistribute on the chromatin c-Myc and mouse embryonic fibroblast (MEF)
cofactors, such as Runx1, Cebpa/b, and Fra1 [18]. (B) Myod1-induced cell fate conversion. Myt1l converts the pro-myogenic factor Myod1 into a pro-neuronal factor
by inhibiting the muscle program and exploiting Myod1 promiscuous binding to neuronal genes [47]. Figure created with BioRender (biorender.com).
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neurons by binding promiscuously to neural genes. Furthermore, dissecting the action of the pi-
oneer TF NeuroD1 during the direct conversion of mouse microglia into neurons also involves
transcriptional repressors. NeuroD1 initially binds to closed bivalent chromatin regions to induce
neuronal gene expression. Among NeurodD1 primary targets, the transcriptional repressors
Scrt1 and Meis2 are induced to silence the microglial program [48].

Altogether, these findings highlight the ability of pioneer TFs to generate cellular plasticity espe-
cially via their promiscuous binding to chromatin. However, this phenomenon depends on the
epigenome of the cell of origin, the cofactors, and the intrinsic abilities of the TF.

Pioneer TF activity in regeneration and cancer initiation
Numerous embryonic pioneer TFs are induced in adult lineages in response to stress and/or
during cancer formation, highlighting how embryonic programsmight have been co-opted during
evolution as stress-response options (Table 1). Under stress, pancreatic acinar cells induce the
expression of the pioneer TFs Sox9 and Klf4, which are normally expressed by ductal cells.
The two TFs trigger lineage infidelity by conferring a mixed progenitor/ductal identity by
repressing some acinar enhancers and by activating ductal ones [49]. This transient process,
termed acinar-to-ductal metaplasia (ADM), facilitates pancreas regeneration and is resolved by
redifferentiation. In response to oncogenic K-Ras (K-RasG12D), Sox9/Klf4-mediated ADM is
also induced before the formation of pancreatic ductal adenocarcinoma [50,51]. Similarly in the
lung, regeneration triggers lineage infidelity in alveolar type 2 epithelial cells, which acquire a
pre-alveolar type-1 mixed cell identity [52]. K-RasG12D also triggers the emergence of a mixed
cellular state from AT2 cells during the early phase of lung tumorigenesis [53]. The ability of
pioneer TFs to sense stress and trigger lineage infidelity in a regenerative context is hijacked
6 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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Table 1. Pioneer TF function in development, regeneration, and tumorigenesis

Pioneer
TF

Development-related function Stress-related function Tumorigenic-related function

Description Refs Description Refs Description Refs

Klf4 Regulates key pluripotency
genes, such as Nanog

[70] Contributes to cutaneous wound
healing

[71] Induces cellular identity change in pancreas
cancer initiation

[51]

Sox9 Establishment and
maintenance of multipotent
neural stem cells

[72] Cartilage regeneration [73] Promotes proliferation, metastasis, and
endocrine resistance in breast cancer

[74]

Sex determination [75] Renal tubule epithelial regeneration [76] Promotes migration, invasion, and EMT via
Wnt/β-catenin pathway in non-small-cell lung
cancer (NSCLC)

[77]

Required during pancreas
organogenesis and
chondrogenesis

[78] Skin wound re-epithelization [79] Initiates pancreatic ductal adenocarcinoma by
acinar-to-ductal metaplasia

[50]

Klf5 Suppresses ERK signaling in
mESC

[80] Attenuates cardiomyocyte
inflammation induced by stress

[81] Promotes gastric and prostate cancer cell
proliferation

[82]

Promotes epiblast lineages
while suppressing primitive
endoderm lineage

[83] Contributes to liver regeneration by
inducing biliary epithelial cell
proliferation

[84] Redistributed across chromatin to regulate
transition from Barrett's esophagus to
esophageal adenocarcinoma

[85]

Gata6 Specifies primitive endoderm [86] Controls identity of sebaceous duct
lineage cells for wound healing

[87] Modulates chromatin landscape during early
stage of NSCLC to promote proliferation

[88]

Controls hair follicle regeneration [89] Enables self-renewal of colon adenoma stem
cells

[90]

Required for proper lung epithelial
regeneration

[91] Sustains oncogenic lineage survival in
esophageal adenocarcinoma

[92]

Sox2 Essential for self-renewal
and pluripotency of ESCs

[93] Implicated in central nervous system
remyelination after demyelination by
activating oligodendrocyte
progenitor cells differentiation

[94] Facilitates neuroendocrine differentiation in
prostate adenocarcinoma to acquire
resistance toward antihormonal therapies

[95]

Regulates skin repair, likely by
controlling neural crest precursor cells

[96] Promotes lineage plasticity and drug
resistance by phenotypic shift from androgen
receptor (AR)-dependent luminal epithelial
cells to AR-independent basal-like cells

[97]

Mediates salivary gland regeneration
after radiation injury

[98] Epigenetic switch between Sox2 and Sox9
regulates lung cancer cell plasticity

[99]

Gata4 Necessary for development
of cardiac muscle cells

[100] Protects against liver fibrosis and
promotes regeneration

[101] Induces migratory phenotype of
hepatoblastoma cells

[102]

Required for follicular
development and normal
ovarian function

[103] Promotes myocardial regeneration [104] Promotes metastasis in lung adenocarcinoma [105]

Trends in Cell Biology
OPEN ACCESS
during cancer initiation. In these examples of regeneration, lineage infidelity is transient and
resolved rapidly. Therefore, understanding their maintenance during cancer initiation is critical.

In the lung, TP53 promotes lineage infidelity and its genetic inactivation stalls the cells in this mixed
state, indicating that the loss of this tumor suppressor can be directly responsible for the persis-
tence of lineage infidelity [52]. In the skin, the pioneer TFs Klf5 and Sox9, normally expressed in a
mutually exclusive manner, are expressed simultaneously during wound response. This lineage
infidelity process is reinforced by the activation of specific stress-induced TFs, such as ETS2 by
MAPK-mediated phosphorylation [54]. Molecularly, during both repair and tumorigenesis,
‘stress-responsive’ enhancers become activated and override the homeostatic enhancer land-
scape. However, during wound repair, the activity of those ‘stress-responsive’ enhancers
decreases and the Klf5/Sox9 balance is restored. By contrast, in cancer initiation, a new enhancer
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 7
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landscape comprising ‘high stress’ tumor-specific enhancers is proposed to lock malignant cells
into a lineage infidelity state (Figure 3). These findings highlight how pioneer TF activity influences
both regeneration and tumorigenesis.

Uncoupling cellular identity, plasticity, and aging during reprogramming
The groundbreaking effects of reprogramming, and its inherent tumorigenic risk, prompted
researchers to better dissect the early steps of the process. Recent work deciphered the
sequence by which cellular identity, plasticity, and aging are modulated during reprogramming.
Fibroblast identity repression was found to occur by distinct mechanisms depending on the
reprogramming factor used (Ascl1, MyoD1, FoxA2, Sox2, or Oct4) and no general principle
emerged, highlighting that different entry points exist to erase cell identity [55]. A special relation-
ship between the germ layer of the cell of origin and the TF was evidenced, and the mesodermal
factor Myod1 was found to repress fibroblast identity most potently. Therefore, therapeutic cell
conversions may best be limited to related cell types when possible. Another conclusion is that
cell fate conversion does not scale gradually with increasing the expression level of reprogram-
ming factors but rather depends on a critical expression threshold. It indicates that an optimal,
cell type-specific level of reprogramming factors exists, which is sufficient for reprogramming
and that may also minimize the risk of failure and/or tumorigenicity [33]. In line with this, the cap-
ture of early cellular intermediates recently allowed researchers to uncouple the regulation of cel-
lular identity and plasticity during MEF reprogramming [6]. These early intermediates are already
highly prone to generate iPSCs even if their MEF identity scores are not yet significantly decreased
[35,37]. Multi-omics characterization of these rare cells revealed the existence of a partitioned
regulatory network, driven by the bHLH TF Atoh8, which controls specifically cellular plasticity.
TrendsTrends inin Cell BiologyCell Biology

Figure 3. Pioneer transcription factor (TF) function during development, regeneration, and cancer initiation. (A) During normal development, developmental
signals drive the expression of pioneer TFs by specific enhancers. Pioneer TFs subsequently trigger nucleosome remodeling and induce different transcriptional programs
to dictate embryonic lineage segregation and ensure lineage fidelity [42]. (B) Pioneer TF expression is transiently activated via stress and/or injury enhancers during
regeneration, leading to mixed cellular identity. These transient lineage infidelity events contribute to repair and are rapidly resolved by redifferentiation [54]. (C) During
tumorigenesis, activation of novel high stress enhancers by the oncogenic insult stabilizes lineage infidelity events [69]. Figure created with BioRender (biorender.com).
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Outstanding questions
What are the molecular and epigenetic
determinants of cellular plasticity?

How can we reconcile the cell type-
specific kinetics of in vivo reprogram-
mingwithmedical needs?Would trans-
lational medicine need personalized
strategies?

Can we manipulate endogenous
regulators of in vivo reprogramming
(immunity, senescence) to render
the process nontumorigenic?

How do adult cells encode, store, and
restore youthful epigenetic information
in response to reprogramming?
The effect of OSKMLN on the epigenetic clock of human fibroblasts and endothelial cells was also
described to occur before the epigenetic changes of cellular identity, indicating that rejuvenation
may be achievable while preserving cellular identity [8]. By contrast, when partial reprogramming
is induced in primary adipogenic and mesenchymal stem cells, the somatic identity was found to
be suppressed transiently [56].

OSK expression in inducible changes to the epigenome (ICE) fibroblasts restored age-associated
mRNA changes and epigenetic age without impacting cellular identity [23]. By contrast, work in
human fibroblasts showed that, if reprogramming were to be separated in three phases (initiation,
maturation, and stabilization), rejuvenation could be pushed to the maturation phase, where the
complete pluripotency program is attained [57].

In the context of pathologies, such as neurological age-associated diseases (AAD), different lab-
oratories have used OSKM-based reprogramming methods to generate patient-derived cell
types of interest, such as neurons [58]. However, such an approach is limited to model aging
because the iPSC-derived neurons are reset and have erased many of the aging features
required for AAD modeling [59]. As an alternative, the so-called direct conversion of fibroblasts
into induced neurons maintains the age-associated features of donor cells [60,61]. Therefore,
the comparison of neurons derived from fibroblasts from patients with Alzheimer’s disease
using reprogramming or direct conversion revealed age-dependent features, such as a
pronounced instability of the mature neuronal fate [62].

Concluding remarks
The exploration of OSKM-mediated reprogramming in vivo constitutes a great opportunity to
identify pathways and/or molecules that control regeneration and aging for therapeutic purposes,
even if major limitations persist. First, the studies of reprogramming in vivo are not numerous and
most findings still rely on in vitro work. Therefore, the principles dictating early reprogramming
in vivo should be intensively explored in the coming years (see Outstanding questions and
Figure 4). In line with this, the multiple autocrine and paracrine barriers constraining in vivo repro-
gramming efficiency remain to be identified. Moreover, the molecular bases of the cell type- and
organ-specific sensitivity to reprogramming also remain imperfectly understood. Results of different
studies are difficult to compare because the nature of the reprogramming cocktail and the duration
of exposure often differ. In terms of rejuvenation, future studies should also systemically assess the
functional and physiological effects of reprogramming on cellular rejuvenation. The partial restoration
of a youthful gene expression pattern is limited and may not significantly correlate with the functional
reversion of an aging phenotype. Identifying which degree of transcriptomic and epigenomic rever-
sion is needed to achieve a functional effect will be vital. Exploring the epigenetic landscape of
various organs at the single cell level in response to OSKM requires the development of lineage-
tracing tools. In addition, focusing research on organs and/or cell types described as refractory to
reprogrammingmight be of interest to identify endogenous barriers. As an example, comprehensive
single cell transcriptomic atlases were recently built in various tissues undergoing aging or calorie
restriction (CR) [63]. CR emerged as one of the most effective interventions to rejuvenate cells and
organs, delay the onset of age-associated diseases, and extend healthspan and lifespan, and its
geroprotective effect was found to restore the aging-disturbed immune ecosystem in particular.

Pioneer TF activity is directly related to their ability to reprogram, regenerate, and potentially poise
the cells for oncogenic transformation. These findings highlight the need for more profound
studies of pioneer TF mechanisms and functioning, especially in human cells, if translational
strategies are to be foreseen. As depicted in Figure 1, we posit that somatic cells acquire a hybrid
unstable epigenetic landscape that is initially reversible. After the point of no return, cells adopt a
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 9
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Figure 4. Challenges of in vivo reprogramming research. Oct4, Sox2, Klf4, and c-Myc (OSKM)-mediated
reprogramming triggers various outcomes, including rejuvenation, regeneration, and cancer. These effects are due, at
least partly, to epigenetic modifications that depend on OSKM level and duration of expression. A better definition of the
action of pioneer TFs on the epigenome, and of the cellular conversions they trigger in a cell type- and organ-specific
manner, is required to precisely modify cellular features in vivo. This knowledge might enable OSKM to be replaced by
molecules able to modulate specifically cellular aging and/or cellular plasticity without promoting tumorigenesis. Figure
created with BioRender (biorender.com).

Trends in Cell Biology
OPEN ACCESS
reprogramming or tumorigenic trajectory. The neoplastic risks related to OSKM use should be
thoroughly investigated, especially in the context of pre-neoplastic lesions to avoid any detrimental
outcomes. A related question is whether, and towhat extent, alternativemolecules can recapitulate
OSKM effect on reprogramming/rejuvenation. Recently, the multipotent factor Msx1 was found to
restore a certain degree of youthful expression in myogenic cells [56]. Moreover, Nanog was also
reported to confer a youthful phenotype to senescentmyoblasts and to improvemolecular features
of skeletal muscle in a mouse model of premature aging [64]. In addition, chemical stimulation fol-
lowing exposure to small molecules might constitute a suitable alternative to not only induce
cellular plasticity in both rodent and human cells [65], but also trigger rejuvenation [66].

Finally, a fascinating remaining question is how OSKM, or alternative molecules, trigger organismal
rejuvenation. One hypothesis would be that these factors rewire globally the chromatin landscape
in an embryonic manner and, therefore, abolish the epigenetic erosion caused by aging. In line with
this, recent studies showed that heterochromatin loss during aging leads to long interspersed
nuclear element (LINE) derepression in aged cells. In this context, LINE-1 causes heterochromatin
erosion by regulating the activity of the histone-lysine N-methyltransferase suppression of variega-
tion 3-9 homolog 1 (Suv39h1). Meanwhile, LINE-1 expression is high in pre-implantation embryos,
in which it regulates transcription and developmental potency [67]. Depletion of LINE-1 RNA in
dermal fibroblast cells from patients with different progeroid syndromes was recently found to
restore heterochromatin H3K9Me3/H3K27Me3 marks and reverse DNA methylation age in vitro
[68]. Another intriguing possibility would be that adult cells encode, store, and restore
youthful epigenetic information in response to pioneer TF expression or chemicals. Based on the
‘relocalization of chromatinmodifiers’ theory of aging, deciphering howOSKM trigger the reorganiza-
tion of which chromatin modifiers remains to be investigated [23]. The roles of covalent modifications,
DNA-binding proteins, RNA-guided chromatin-modifying factors, RNA–DNA hybrids established
early in life, and bookmarking systems also remain to be investigated. Altogether, such future work
will pave the way toward the development of nontumorigenic reprogramming-based strategies in
10 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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humans. These approaches should aim at replacing OSKM with molecules controlling specifically
features, such as rejuvenation and/or regeneration, for human health improvement.
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