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Abstract

We introduce and mathematically study a conceptual model for the dynamics of buyers pop-
ulation in markets of perishable goods where prices are not posted. Buyers behaviours are driven
partly by loyalty to previously visited merchants and partly by sensitivity to merchants intrin-
sic attractiveness. Moreover, attractiveness evolve in time depending on the relative volumes
of buyers, assuming profit/competitiveness optimisation when favourable/unfavourable. While
this negative feedback mechanism is a source of instability that promotes oscillatory behaviour,
our analysis identifies those critical features that are responsible for the asymptotic stability
of stationary states, both in their immediate neighoburhood and globally in phase space. In
particular, we show that while full loss of clientele occurs (depending on the initial state) in
case of a bounded reactivity rate, it cannot happen when this rate is unbounded and merchants
resilience always prevails in this case. Altogether, our analysis provides mathematical insights
into the consequences of introducing feedback into buyer-seller interactions and their diversified
impacts on the long term levels of clientele in the markets.

November 6, 2023.

1 Introduction

In addition to their historical and cultural importance in rural societies [5], fresh product and
foodstuff markets also play a central role in the supply chain of urban populations, including at
the megalopolis scale. Some of the largest examples of such wholesale markets are the Rungis
International Market near Paris, the Central de Abastos in Mexico City and Mercamadrid in
Madrid, which each secure daily food supply for tens of millions of people [17].

Many such markets function based on pairwise buyer-seller interactions, without posted prices
and/or include bargaining as a standard practice. In that case, buyer behaviours are known to
be driven by some degree of loyalty to the previously visited merchants and, concurrently, by
probing for best opportunities [2, 4, 10, 14, 15, 16]. Loyalty simply means the trend to return to
the same sellers that were traded with at the previous market instance (e.g. previous week-day
or previous week). On the other hand, best opportunity is a more convoluted notion which, in
absence of public or solid prices, combines seller (stock-dependent) inclination towards negotiation
with product quality and demand, and also sometimes, with accompanying services. In addition,
opportunities may also vary in time depending on the merchant reaction to clientele changes [7].

As mathematical modelling is concerned, various attempts to capture the behavioural dynamics
in fresh product markets have been developed in the literature. In particular, a fully analysable
simple model has been proposed for the time evolution of the preference towards certain merchants
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over others [16]. This dynamics includes dependence on profits and shows interesting parameter-
dependent bifurcations in the phase portrait of the asymptotic functioning modes. However, the
profits are assumed to be constant in time and the model does not include variable feedback from
the merchants.

Besides, various agent-based detailed models have been introduced that incorporate several
elements of the buyer-seller interactions, including feedback and bargaining. The accompanying
numerical simulations have shown proved capacity to adequately reproduce the salient characteris-
tics of the participants behaviour, such as persistent price dispersion and high loyalty [8, 11]. The
numerics also have provided quantitative evaluations of various bargaining strategies [3, 12]. Yet,
the proposed high level of detail in these models prevents one from a mathematically rigorous and
complete analysis.

As a complement to previous studies, this paper aims to provide a mathematical analysis of the
buyers population dynamics in presence of an adaptative feedback from the merchants. To that
goal, a simple model is introduced (see Section 2.1), in which buyers are partly faithful and partly
sensitive to merchants’ current offers. Considering that the market venue is sufficiently compact so
that all sellers can continuously assess the global buyers population, these offers, and more generally,
the seller’s attractiveness, vary in time depending on the (relative) volume of clientele. Postulating
for simplicity that merchants reaction aims at optimising immediate profit, the resulting feedback
is chosen to be of negative nature: a large volume induces a reduction of the attractiveness and
conversely, the attractiveness increases when the clientele is scarce.

The presence of a negative feedback loop in the underlying interaction graph of a multidimen-
sional dynamical system has been identified as a necessary condition for a stationary state/periodic
orbit to be stable [6, 9, 13]. Here, we show that the local asymptotic stability of the stationary
states, which correspond to constant functioning modes depend on the merchants’ reactivity to
clientele variations: stable when bounded (Proposition 2.1), unstable when the reactivity is arbi-
trary large (Proposition 2.2). Oscillatory behaviours may also take place in this model, especially
when starting initially far away from the stationary points. However, under a suitable condition
that ensures monotonic global behaviour of the merchants’ attractiveness, these oscillations must
asymptotically fade away and the system must approach a stationary state, unless the merchants
behaviours tend to be indifferent (Theorem 2.3), which should remain an exceptional event. In
addition, the asymptotic functioning mode, namely whether the clientele at every seller is asymp-
totically evanescent or maximal, may be sensitive to the initial condition (see Fig. 4), making it
difficult to systematically predict the outcome of the buyer-seller interactions. Altogether, our anal-
ysis provides mathematical insights into the consequences of introducing feedback into buyer-seller
interactions and their diversified impacts on the long term levels of clientele in the markets.

The proofs of the main results, which are all stated in Section 2.2, are given in Section 3. Finally,
Section 4 concludes with a discussion about various limitations of the model and suggestions for
improvements.

2 Population dynamics: definitions and main results

2.1 Definition of the model

We consider the dynamics of the buyers population in fresh product markets for which transaction
prices remain private or are only based on declarations by the participants. Composed by N ∈ Z+ =
{1, 2, · · · } competing merchants, the market is assumed to be open at repetitive and regular events,
typically every working day, which can be labelled by the discrete variable t ∈ N = {0, 1, 2, · · · }.
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In absence of public information about prices and other quantities such as volumes of trans-
actions and stocks, we focus on the volumes of clientele of each merchant i ∈ {1, · · · , N}, which
can be measured a priori by external observers. At day t, these volumes are represented by the
fractions pti ∈ [0, 1] of the total buyer population present in the market that day. Importantly, a
buyer may visit several competing merchants the same day,1 so that we may have

∑N
i=1 p

t
i > 1.

As specified below, the fractions evolve from one day to the next based on buyers’ loyalty and
merchant’s attractiveness.

Merchant’s attractiveness is a soft and relative notion that includes all aspects of economic com-
petitivity, as perceived by the buyers, namely price, product quality, adaptability, accompanying
services, etc. Attractiveness is encapsulated in the positive coefficients ati ∈ R+

∗ . When ati > 1,
merchant i is competitive and attracts prospecting customers; the higher ati, the stronger the at-
traction. On the opposite, ati < 1 means a non-competitive seller that repels their clientele, again
as perceived by the buyers (NB: In the intermediate case ati = 1, the fraction pti remain unchanged.)
The attractiveness coefficients ati evolve in time depending on the volume of clientele, as explained
below.

Altogether, the variable of the dynamical system is the pair

(p,a) ∈MN := [0, 1]N × (R+
∗ )N ,

where p = (p1, · · · , pN ) and a = (a1, · · · , aN ). Starting the first day t = 0 from a given initial
condition (p0,a0), the values (pt,at) are updated according to the following day-to-day iteration
rule {

pt+1
i = fα,at+1

i
(pti)

at+1
i = atig(pti,

1
N

∑N
i=1 p

t
i)

for i ∈ {1, · · · , N}, (1)

where the parametrized one-dimensional maps fα,a are defined by

fα,a(p) = αp+ (1− α)fa(p),

and where fa and g are discussed immediately below. For the sake of convenience, we may regard
these iterations as the repeated action of some multidimensional map, viz. equation (1) implicitly
defines a map F : MN →MN such that (pt+1,at+1) = F (pt,at) = F t(p0,a0) for all t ∈ N.

In fα,a, the parameter α ∈ [0, 1) quantifies the amplitude of loyalty, namely the fraction of
the population that is insensitive to merchants’ attractiveness and that systematically returns to
previously visited merchant(s).2 Besides, that pt+1

i in (1) is obtained using fα,at+1
i

(and not fα,ati)

emphasizes on separating the contribution of loyalty to the one due to the merchant’s attractivness
at the current day. Throughout the paper, α remains unchanged. For the sake of notation, we shall
not mention any explicit dependence on this parameter.

Assumptions on the maps fa. In order to comply with the desired buyer behaviours’ depen-
dence on merchants’ attractiveness, the parametrized maps fa in the contagion term of the first
equation in (1) (which are all defined from [0, 1] into itself) must be such that (see Fig. 1 for an
illustration)

• fa(p) > p for every p ∈ [0, 1) and fa(1) = 1 when a > 1,

1Visits to multiple merchants means buying, or merely bargaining about, different goods of the same nature (eg.
fruits or vegetables) at different places the same day. In particular, this feature has been identified as a mechanism
of progressive individual transfer from buying all goods of the same nature at a given seller to a different one [2].

2That α is independent of i reflects that loyalty is a uniform feature of the population which is assumed to be
independent of the visited merchant.
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• fa(p) < p for every p ∈ (0, 1] and fa(0) = 0 when a < 1 (and f1 = Id).

• fa1(p) < fa2(p) for every a1 < a2 ∈ R+
∗ and p ∈ (0, 1).

For the sake of analysis and simplicity, the following technical assumptions are also required.

• For every a ∈ R+
∗ , fa is an increasing C2 map on [0, 1]. Moreover, we have3

f ′a(0) = f ′1
a

(1) = a, ∀a ∈ (0, 1) and sup
a∈(0,1)

max{|f ′′a (0)|, |f ′′1
a

(1)|} < +∞.

• For every x ∈ [0, 1], the map a 7→ fa(x) is continuous in R+
∗ . The map a 7→ ‖f ′a‖∞ :=

maxx∈[0,1] f
′
a(x) is continuous in R+

∗ .

In particular, all the conditions above hold for the following simple quadratic example (see fig. 1
for illustrations)4

fa(x) =

{
ax+ 0.9(1− a)x2 if a ≤ 1

1− 1
a(1− x)− 0.9(1− 1

a)(1− x)2 if a ≥ 1
(2)

0
0

1

1

𝑓" for 𝑎 < 1

𝑓" for 𝑎 > 1

Figure 1: Illustration of graphs of the parametrized functions fa defined by (2).

Basic assumptions on the map g. The second equation in (1) assumes that the merchants can
evaluate the volume of clientele of their competitors in the market and that they react accordingly.5

Considering a negative feedback as indicated in the Introduction, attractiveness should decrease
when the clientele is larger than the mean attendance, and conversely, it should increase in the
case of clientele deficit. Accordingly, the map g : [0, 1]2 → R+

∗ must be a continuous map such that
g(p, p) = 1 for all p ∈ [0, 1] and

(g(p, q)− 1)(q − p) > 0, ∀p 6= q ∈ [0, 1]. (3)

3Notice that this assumption on the value of the derivative is merely a matter of parametrization.
4Instead of 0.9 any constant in (0, 1) could have been chosen in this example. We believe that the closer this

constant is to 1, the more elaborated is the transient phenomenology of the system (1).
5In absence of any other public information such as sellers’ background costs and current stocks, we assume that

attractiveness is only influenced by the volumes of clientele. For simplicity, we also assume that all sellers react the
same way to clientele changes.
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Additional conditions on g will be imposed below in order to control the asymptotic dynamics of
the system (1), in particular the fixed points’ local stability and the global features of the dynamics.

Strictly speaking, we do not need to exclude that g vanishes on [0, 1]2. It suffices that g remains
positive in all orbits of (1), namely that we have

g(pi,
1

N

N∑
i=1

pi) > 0, ∀p ∈ [0, 1]N , i ∈ {1, · · · , N} and N ≥ 2. (4)

This weaker assumption allows one to consider the following linear example

g(p, q) = 1 + q − p. (5)

2.2 Main features of the dynamics

We begin this section by listing some preliminary properties that provide a basis for the main
results that follow.

Well-defined dynamics. The convex combination in the first equation of (1), together with the
property fa([0, 1]) ⊂ [0, 1], and the inequality (4) imply that for every initial condition (p0,a0) ∈
MN , the subsequent orbit {(pt,at)}t∈N is well-defined, and we have (pt,at) ∈MN for all t ∈ N.

Anticipating a claim in Theorem 2.3, notice that the condition (9) on g in that statement
ensures that the coefficients at remain bounded in every orbit, which brings additional consistency
to the modelling under considration.

We aim at characterizing the asymptotic behaviour of orbits in this system. To that goal, we
begin by characterizing the fixed points of F , namely the components of the stationary orbits.

Identification of the fixed points. Equation (1) implies that the p-coordinates of every fixed
point F (p,a) = (p,a) must satisfy

g(pi,
1

N

N∑
i=1

pi) = 1, ∀i ∈ {1, · · · , N}.

The condition (3) imposes that these coordinates must be all equal. Moreover, α 6= 1 imposes that,
individually, they must also be fixed points of the maps fai themselves.

We conclude that the fixed points of F with a 6= 1, where 1 = (1, · · · , 1), write either (0,a)
for every a ∈ (0, 1]N where 0 = (0, · · · , 0), or (1,a) for every a ∈ [1,+∞)N . In particular, in
absence of additional information other than clientele volumes, this means that the values of the
attractiveness coefficients in stationary orbits are indifferent.

Synchronized dynamics. As a particular instance of coupled map system with mean-field cou-
pling [1], the dynamics (1) commutes with the simultaneous permutations of buyers fractions and
of attractiveness coefficients, viz. if the sequence {(pt,at)}t∈N is an orbit of (1), then for every
permutation π of {1, · · · , N}, the sequence {(πpt, πat)}t∈N where

πp = (pπ(1), · · · , pπ(N)) and πa = (aπ(1), · · · , aπ(N)),

is also an orbit of this system.
This symmetry implies in particular that the subset of MN of points where p = (p, · · · , p) and

a = (a, · · · , a), is invariant under the action of F . Moreover, the dynamics in this set - the so-called
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synchronized dynamics - reduces to the iterations of the one-dimensional map fα,a (since a remains
constant). The synchronized dynamics is very simple; for every a 6= 1, every orbit asymptotically
converges to 0 (when a < 1) or to 1. In the original phase space, this corresponds to the convergence
to one of the fixed points (0,a) or (1,a) where again a = (a, · · · , a). For a = 1, we have fα,1 = Id,
thus every orbit is stationary.

Clearly, the map F is invertible, ie. (pt,at) in (1) can be uniquely determined by (pt+1,at+1).
Moreover, its inverse also commutes with the simultaneous permutations of the p- and a-coordinates.
As a consequence, no orbit can eventually become synchronized if its initial condition does not sat-
isfy this property.6 Accordingly, the description of the synchronized dynamics above cannot apply
to non-synchronized orbits. A proper analysis is required in order to determine asymptotic be-
haviours in this case. The rest of this section presents the main results of such an analysis.

Global symmetries. As a preliminary comment prior to the presentation of the results, notice
the following symmetries of the sets of maps involved in (1).

• Given a parametrized map fa : [0, 1]→ [0, 1], let f̄a be defined by

f̄a(x) = 1− f 1
a
(1− x), ∀x ∈ [0, 1], a ∈ R+

∗ .

Clearly, when the family {fa}a∈R+
∗

satisfies all assumptions in Section 2.1, the family {f̄a}a∈R+
∗

also satisfies these assumptions. Notice also that we have f̄a = fa for the map defined by (2).

• Given a map g : [0, 1]2 → R+
∗ , let Sg be defined by

Sg(p, q) =
1

g(1− p, 1− q)
, ∀(p, q) ∈ [0, 1]2. (6)

Again, if g satisfies all assumptions in Section 2.1, then so does the image Sg.

There is an obvious connection between the orbits of (1) and those of the dynamical system that
results when substituting fa by f̄a and g by Sg; the sequence {(pt,at)}t∈N is an orbit of the former
iff {(1− pt, 1

at )}t∈N, where

1− p = (1− p1, · · · , 1− pN ) and
1

a
= (

1

a1
, · · · , 1

aN
),

is an orbit of the latter. This property will be repeatedly employed below in order to shorten the
analysis.

2.2.1 Local asymptotic stability

The first equation in (1) and the basic properties of the maps fa imply that in any orbit for which
there exists T ∈ N such that

sup
t>T

max
i∈{1,··· ,N}

ati < 1 or inf
t>T

min
i∈{1,··· ,N}

ati > 1, (7)

all coordinates pti must be monotone in t for t ≥ T , and hence they must asymptotically converge
(to 0 in the first case, to 1 otherwise). However, that such behaviours exist is not clear because

6Indeed, if, at any given t ∈ N, the coordinates of pt and at do not depend on i, then the same property must
hold for (p0,a0).
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in every iteration, some of the a-coordinates must increase and other(s) must decrease (unless the
p-coordinates are all equal). Therefore, the variations of these coordinates, and the displacements
towards 1 especially, need to asymptotically vanish in order to make sure that (7) eventually holds.

This is the case provided that the merchants’ reactivity to clientele changes, that is the am-
plitude of the attractiveness variations, remains bounded in this domain. More precisely, our first
result claims asymptotic convergence to the continuum of fixed points with p = 0 (or p = 1) when
starting initially close to that set. The asymptotic value of a is itself hardly predictable from the
initial condition (due to degeneracy inside the continuum), because no mechanism for attractiveness
selection has been inserted into the dynamics.

Proposition 2.1. Assume the existence of K ∈ R+
∗ such that7

|g(p, q)− 1| ≤ K max{p, q}, ∀(p, q) ∈ (0,
1

2
)2. (8)

Then for every a0 ∈ (0, 1)N , there exists ε > 0 such that for every p0 ∈ [0, ε)N , the subsequent orbit
of (1) satisfies

sup
t∈N

max
i∈{1,··· ,N}

ati < 1 and lim
t→+∞

at exists,

and hence
pt ∈ [0, ε)N , ∀t ∈ N and lim

t→+∞
pt = 0.

Similarly, assume that the symmetric map Sg defined in (6) satisfies (8). Then for every
a0 ∈ (1,+∞)N , there exists ε > 0 such that for every p0 ∈ (1− ε, 1]N , the subsequent orbit of (1)
(still with fα,a and g) satisfies

inf
t∈N

min
i∈{1,··· ,N}

ati > 1 and lim
t→+∞

at exists,

and hence
pt ∈ (1− ε, 1]N , ∀t ∈ N and lim

t→+∞
pt = 1.

For the proof, see Section 3.1. As an example, notice that both the linear map g defined by (5)
and its image Sg satisfy condition (8).

As market modelling is concerned, Proposition 2.1 can be interpreted as a robustness statement
when close to vanishing or maximal clientele. In particular, when Sg satisfies (8), it shows that the
introduction of an additional merchant into a market in which each seller already attracts almost
all buyers, does not perturb the buyers’ asymptotic behaviours, provided that the newcomer also
initially attracts a large part of the population. An illustration of the dynamics for N = 2 when
starting initially close to p = 1 with all both coefficients above 1, is given in Fig. 2. Notice that in
this example, the initial condition does not satisfy the conditions of Proposition 2.1 because at1 < 1
during some transient time interval. This suggests that convergence to p = 1 may hold even if
some merchants temporary become repulsive.

7The value 1
2

here is arbitrary. Any value in (0, 1) can be chosen.
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Figure 2: Illustration for N = 2 of the (local) asymptotic stability of the set of fixed points with
p = 1. The pictures represent the pt− and at−coordinates time series of the orbit of (1) issued from
(p0,a0) = (0.981, 0.8, 2.02, 2), for fa as in (2), α = 0.9 and g defined by (5). Prompt convergence
towards (1,a) (with both ai > 1) is evident, despite temporary oscillations of pt1 due at1 passing
briefly below 1. This example can be regarded as representing the dynamics that results from
introducing of a concurrent seller (indexed by 2) to an existing isolated one (seller 1) whose initial
clientele fraction and attractiveness coefficients are similar, although more favourable. The initial
strong increase of at2 reveals a rapid reaction from seller 2 in order to attract more customers and
to bring the fraction pt2 above pt1. When that happens, the roles and the variations of the ati are
exchanged and monotone convergence follows.

2.2.2 Role of condition (8) on fixed points stability

Condition (8) in Proposition 2.1 and its analogue for the map Sg are essential for the local stability
of the continua of fixed points. Indeed, the following counter-example of the map g : (0, 1]× [0, 1]→
R+
∗ defined by

g(p, q) =
q

p
,

shows that instability can result when this condition fails.8

Proposition 2.2. For every a0 ∈ (0, 1)N and every p ∈ (0, 1)N such that (p,a0) is not synchro-
nized, there exist T ∈ N and ∆ > 0 such that for every δ ∈ (0,∆) we have

max
i∈{1,··· ,N}

aTi > 1,

for the orbit issued from the initial condition (δp,a0) and generated by (1) with g(p, q) = q
p .

The proof is given in Section 3.2. As market modelling is concerned, Proposition 2.2 can be
interpreted as merchants’ resilience against clientele vanishing. Unlike when (8) holds, reactive
changes in the attractiveness coefficients can become sufficiently large to counteract population
decay and make the sellers become eventually attractive. When this happens, since the symmetric
map Sg satisfies (8) in this example, asymptotic convergence to full clientele is expected from
Proposition 2.1 and as illustrated on Fig. 3.

2.2.3 Asymptotic behaviour of orbits

Back to assuming that g satisfies (8), one may question about the main features of the dynamics
(1) beyond fixed points’ local stability. Because of the merchant’s negative feedback, oscillatory

8Independently, on (0, 1]× [0, 1], this map satisfies all the assumptions imposed on g in Section 2.1. In this case,
the dynamics of (1) is well-defined in (0, 1]N × (R+

∗ )N , which is invariant.
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Figure 3: Illustration for N = 2 of the instability of the set of fixed points with p = 0 for
g(p, q) = q

p which does not satisfies the condition (8) ((NB: Notice however that Sg satisfies (8)).

The pictures represent the pt− and at−coordinates time series of the orbit issued from (p0,a0) =
(0.546, 0.616, 0.473, 0.324), for fa as in (2) and α = 0.9. Notice the logarithmic scale on the left
picture. The figure clearly indicates that a transient oscillating instability of the ati occurs that
eventually brings the two coefficients above 1. Accordingly, after a first phase of exponential decay
to 0, both coordinates pti start to grow and eventually converge to 1 (as expected when both ati > 1).

behaviours may occur over arbitrary large time intervals if the coefficients ati cross 1 arbitrarily
many times.9 As illustrated in Fig. 4, this may be the case when close to the boundary of the fixed
points’ basins. In fact, we do not exclude that oscillations last forever (if in addition to infinitely
many crossings of 1, the coefficients ai approach 1). Yet, the central result of this paper states that,
provided that g satisfies some weak form of concavity, more precisely that its mean value in phase
space cannot exceed 1, permanent oscillations can happen only if the attractiveness coefficients do
not remain away from 1.

Theorem 2.3. In addition to satisfying condition (8), assume that g satisfies that following con-
cavity inequality

1

N

N∑
i=1

g(pi,
1

N

N∑
i=1

pi) ≤ 1, ∀p ∈ (0, 1)N . (9)

Then, for every orbit {(pt,at)}t∈N of (1), we have

sup
t∈N

max
i∈{1,··· ,N}

ati < +∞.

Moreover, every orbit that satisfies

lim inf
t→+∞

min
i∈{1,··· ,N}

|ati − 1| > 0.

must asymptotically converge to a fixed point.

The fact that non-convergence to a fixed point requires that some attractiveness coefficient(s)
must accumulate at 1 suggests that it can only occur for exceptional initial conditions. No such
behaviour has ever been observed in simulations.

9In order to see that this is plausible, let N = 2 for simplicity and assume that we have at1 < 1 < at2 for a number
of consecutive values of t. Over this time interval, pt1 ↘ 0 and pt2 ↗ 1. Depending on the interval length and on the
values of pti at the beginning of this interval, we may eventually have pt1 < pt2. This in tun implies at1 ↘ and at2 ↗.
If this trend also lasts sufficiently long, we may eventually have at2 < 1 < at1 and the whole process may repeat with
the role of 1 and 2 exchanged.
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Figure 4: Illustration for N = 2 (top) and N = 3 (bottom) of the transient oscillatory behaviours
when initially close to the boundary of the fixed points’ basins. Similar time series as in previous
figures but now for two orbits issued from close initial conditions across the boundary of the fixed
points’ basins: For N = 2, a02 = 0.57 for the orbit that converges to p = 0 (darker colours) and
a02 = 0.6 for the other orbit (ligther colours). The other initial coordinates and the parameters are
as in Fig. 2. For N = 3, p03 = 0.487 for the orbit that converges to p = 0 and p03 = 0.497 for the
other orbits. All other coordinates and parameters are equal. As application to market modelling
is concerned, the figure indicates that the outcome that results from introducing a new competitor
in the market - either extinction of the buyers’ population or convergence to maximal population
- can be highly sensitive to small variations in the initial coordinates and may only emerge after a
transient of substantial duration.

As application to modelling is concerned, Theorem 2.3 states that, possibly after a transient
of variable duration, the market must eventually stabilize to a stationary functioning mode (that
may include no clientele!), unless some sellers eventually become repeatedly indifferent, an event
that we believe to be highly unlikely.

Theorem 2.3 follows from a more technical statement, namely Proposition 3.6, which is stated
and proved in Section 3.3. For instance, the linear map defined (5) satisfies both conditions (8)
and (9). Moreover, in the case g(p, q) = q

p , the map Sg also satisfies these two conditions (see in
particular Section 3.2). Up to a minor adjustment (see footnote 12), the proof of Theorem 2.3 also
applies in this example.

3 Stability analysis and proofs of the statements

3.1 Proof of Proposition 2.1

We only prove the first statement of the Proposition, since the one that involves Sg immediately
follows by applying the global symmetries, using that the stability of the continuum of fixed points
with p = 1 for the original fa and g is equivalent to the one with p = 0 for the system with f̄a and
Sg.

10



The proof starts with the following crucial bootstrap statement that will also serve for future
purposes.

Claim 3.1. Given a ∈ (0, 1) and β ∈ (α + a(1 − α), 1), there exists ζa,β > 0 such that for every
t ∈ N such that {

pti ≤
(1−β)ζ
K(a−ζ)

ati ≤ a− ζ
for i ∈ {1, · · · , N},

where K is given by the condition (8) and ζ ∈ (0, ζa,β), we have{
pt+1
i ≤ (1−β)βζ

K(a−βζ)
at+1
i ≤ a− βζ

for i ∈ {1, · · · , N}.

Proof of the Claim. Let ζa,β > 0 be such that (1−β)ζ
K(a−ζ) <

1
2 for all ζ ∈ (0, ζa,β). The definition of

at+1
i and inequality (8) imply that we have

at+1
i ≤ ati

(
1 +

(1− β)ζ

a− ζ

)
≤ a− βζ

Moreover, given the choice of β, let ε > 0 be sufficiently small so that α+ (1−α)(a+ ε) ≤ (1− ε)β.
By continuity of the derivative f ′a and the fact that f ′a(0) = a, let ζa,β > 0 be even smaller if
necessary so that we have

fat+1
i

(x) ≤ fa(x) ≤ (a+ ε)x,

when x ≤ (1−β)ζa,β
K(a−ζa,β) . Let again ζa,β be even smaller if necessary so that we also have

1− ε ≤ a− ζ
a− βζ

, for all ζ ∈ (0, ζa,β).

Altogether, we then have for every pti ≤
(1−β)ζ
K(a−ζ) with ζ ∈ (0, ζa,β)

pt+1
i ≤ (1− ε)(1− β)βζ

K(a− ζ)
≤ (1− β)βζ

K(a− βζ)
,

as desired. �

Proof of Proposition 2.1. Given a0 ∈ (0, 1)N , let a ∈ (maxi a
0
i , 1), β ∈ (α+ a(1− α), 1) and

ζ < min

{
ζa,β, a−max

i
a0i

}
.

Then for maxi p
0
i <

(1−β)ζ
K(a−ζ) , Claim 3.1 implies that we have

sup
t∈N

max
i∈{1,··· ,N}

ati ≤ a.

Thanks to the properties of the map fa in the neighbourhood of 0, this inequality not only implies
that all pti tend to 0 but that this convergence is exponential, namely there exists C ∈ R+ and
b ∈ (0, 1) such that

max
i∈{1,··· ,N}

pti ≤ Cbt, ∀t ∈ N.

11



According to the inequality (8), this yields the inequality

max
i∈{1,··· ,N}

|at+1
i − ati| ≤ aKCbt ∀t ∈ N,

which in turns implies that all sequences {ati}t∈N are Cauchy sequences, and hence ensures the
existence of the limits limt→∞ a

t
i. �

3.2 Proof of Proposition 2.2

The proof relies on the following preliminary statement.

Claim 3.2. Assume that p0 ∈ (0, 1)N and that (p0,a0) is not synchronized. Then, in the orbit
issued from (p0,a0), there are infinitely many instances of t ∈ N such that the coordinates of pt

are not all equal.

Proof of the Claim. Assume that all coordinates of pt are equal. Then we must have at+1 =
at. Moreover, the coordinates of at cannot be all equal. Otherwise, (pt,at) would have to be
synchronized, and hence (p0,a0) would have to be synchronized too as we showed in Section 2.2.

In addition, that some of the coordinates of at = at+1 are distinct, strict monotonicity of
a 7→ fα,a(p) for every p ∈ (0, 1) and the fact that we must have pt 6∈ {0,1},10 imply that some of
the coordinates of pt+1 must be distinct. The Claim then easily follows. �

For the proof of the Proposition, consider the product πt :=
∏N
i=1 a

t
i. Expression (1) implies

that we have

πt+1

πt
=

(∑N
i=1 p

t
i

)N
NN

∏N
i=1 p

t
i

, ∀t ∈ N.

Moreover, the AM-GM inequality exactly claims that(∑N
i=1 pi

)N
NN

∏N
i=1 pi

≥ 1, ∀p ∈ (0, 1)N ,

with equality iff all p-coordinates are equal, viz. iff pi
p1

= 1 for all i ∈ {2, · · · , N}. Therefore, in every

orbit, the sequence {πt}t∈N is non-decreasing. Actually, together with Claim 3.2, this argument
shows that the sequence cannot remain constant in non-synchronized orbits. Moreover, assume
that there exists ε > 0 such that

min
i∈{2,··· ,N}

| p
t
i

pt1
− 1| ≥ ε, (10)

for an arbitrary large number of instances of t. At these instances, we have πt+1

πt ≥ 1 + ε′ for
some ε′ > 0, implying altogether that the sequence {πt}t∈N must grow with exponential rate. In
particular, one can make sure that πt > 1, and therefore maxi a

t
i > 1 as desired, for t sufficiently

large.
We are going to prove that the lower bound (10) holds for an arbitrary large number of instances

of t, in the system for which the p-coordinates are iterated using the linearizated dynamics at p = 0
for a ∈ (0, 1)N and α = 0. Then we shall use that under the assumption (otherwise there is nothing
to prove)

max
i∈{1,··· ,N}

ati < 1, ∀t ∈ N,

10Indeed, by assumptions on the maps fa and since α ∈ [0, 1), the only way that pt ∈ {0,1} for t > 0 is that the
same condition holds for t = 0, which is impossible given the current assumption on p0.
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an arbitrary large number of iterates under (1) must remaing close to the corresponding ones under
the linearization, provided that p0 lies in a sufficiently small neighbourhood of 0 (which depends
on a0 and α).

Given that f ′a(0) = a for a < 1, for g(p, q) = q
p , the system obtained by linearizing the first

equation in (1) at pt = 0 and for at+1 ∈ (0, 1)N and α = 0 is given by{
pt+1
i = at+1

i pti

at+1
i = ati

∑N
i=1 p

t
i

Npti

, ∀i ∈ {1, · · · , N}. (11)

Letting ρti =
pti
pt1

and γti =
ati
at1

, (11) implies the following iteration rule for the variables (ρ2, · · · , ρN , γ2, · · · , γN ){
ρt+1
i = γti
γt+1
i =

γti
ρti

∀i ∈ {2, · · · , N}

Accordingly, we must have

ρt+3
i =

1

ρti
and γt+3

i =
1

γti
∀t ∈ N,

hence, the sequence {ρti}t∈N must be periodic with period (at most) 6. Therefore, if the coordinates
of p0 are not all equal, there must exist i ∈ {1, · · · , N} such that

ρ6ki = ρ0i 6= 1, ∀k ∈ N,

proving that (10) holds for all t ∈ 6N as desired.
Consequently, for every a0 ∈ (0, 1)N and every p0 ∈ (0, 1)N whose coordinates are not all equal,

there exist t(p0,a0) ∈ N such that

max
t∈{0,··· ,t(p0,a0)−1}

max
i∈{1,··· ,N}

ati ≤ 1 < max
i∈{1,··· ,N}

a
t(p0,a0)
i ,

for the orbit generated by (11). Notice that t(εp,a) does not depend on ε ∈ R+
∗ because (11)

commutes with the homogeneous scaling ε 7→ εp of the p-coordinates.
Let Flin be the multidimensional map associated with (11), ie. (pt+1,at+1) = Flin(pt,at). Given

x = (x1, · · · , xN ) ∈ RN let
‖x‖N := max

i∈{1,··· ,N}
|xi|.

Claim 3.3. Given a ∈ (0, 1)N , t ∈ N and ε > 0, there exists δ > 0 such that for every p ∈ (0, 1)N

satisfying ‖p‖N < δ, we have

max
k∈{1,··· ,t}

‖F k(p,a)− F klin(p,a)‖2N < ε,

provided that all a-coordinates of each iterate F klin(p,a) lie in (0, 1).

This statement, whose proof will be given below, helps to complete the proof of the Proposition.
Let a0 ∈ (0, 1)N and p ∈ (0, 1)N be such that (p,a0) is not synchronized. Let t0 ∈ N be the first
time such that the coordinates of pt0 are not all equal. We may assume that at0 ∈ (0, 1)N , otherwise
there is nothing to prove. For the sake of notation, we also assume t0 = 0. Now, let

ε0 = max
i∈{1,··· ,N}

a
t(p,a0)
lin,i − 1,

13



where atlin are the a-coordinates of F tlin(p,a0). Let also ∆ > 0 be the quantifier δ given by Claim
3.3 when t = t(p,a0) and ε = ε0. For every δ ∈ (0,∆), the orbit of F issued from (δp,a0) certainly
satisfies

max
t∈{1,··· ,t(p,a0)}

max
i∈{1,··· ,N}

ati > 1,

as desired, where at are the a-coordinates of F t(δp,a0). The proof of Proposition 2.2 is complete.
�

Proof of Claim 3.3. The proof is standard and proceeds by induction based on the following
properties.

(i) For every (p,a) ∈ (0, 1)N × (R+
∗ )N and ε > 0, there exists δ > 0 such that for every (p′,a′)

satisfying ‖(p′,a′)− (p,a)‖2N < δ, we have

‖F (p′,a′)− F (p,a)‖2N < ε,

as a direct consequence of the facts that a 7→ fa(x) and a 7→ ‖f ′a‖∞ are continuous in R+
∗ ,11

together with continuity of the map g at every point of (0, 1]× [0, 1].

(ii) For every a ∈ (0, 1)N and ε > 0, there exists δ > 0 such that for every p ∈ (0, 1)N satisfying
‖p‖N < δ, we have

‖F (p,a)− Flin(p,a)‖2N < ε,

as an immediate consequence of the fact that fa ∈ C2([0, 1]) for every a ∈ R+
∗ .

For the induction, consider the following decomposition

F t+1(p,a)− F t+1
lin (p,a) = F t+1(p,a)− F ◦ F tlin(p,a) + F ◦ F tlin(p,a)− F t+1

lin (p,a),

and use

• the induction hypothesis together with property (i) above in order to control the first differ-
ence,

• and the fact that all p-ccordinates of F tlin(p,a) remain small (also shown by induction) to-
gether with (ii) above (and atlin ∈ (0, 1)N ) in order to control the second difference. �

3.3 Global analysis in phase space

This Section is devoted to the proof of Theorem 2.3 and begins by the presentation and proof of
several auxiliary properties.

3.3.1 Preliminary statements

We begin with an easy preliminary result on the behaviour of the iterates

pt+1 = fα,at+1(pt), t ∈ N, (12)

given a sequence a = {at}t∈N ∈ (R+
∗ )N. While the result is elementary in itself, it serves as a

reference for the results about the collective system.

11which implies that
|fa′(p′)− fa(p)| ≤ |fa′(p′)− fa′(p)|+ |fa′(p)− fa(p)|,

can be made arbitrarily small by taking (p′, a′) arbitrarily close to (p, a).

14



Claim 3.4. Assume that lim supt→+∞ at < 1 (resp. lim inft→+∞ at > 1). Then, under the iterations
(12) above, the iterates have the following asymptotic behaviour

lim
t→+∞

pt = 0 (resp. lim
t→+∞

pt = 1) for all p0 ∈ (0, 1).

Proof. We only prove the first case. The second one follows from symmetry. By assumption, let
T ∈ N be such that at < 1 for all t ≥ T . For t ≥ T − 1, we have fα,at+1(p) < p for all p ∈ (0, 1);
hence the sequence {pt}t∈N eventually decreases. Therefore, it must be convergent. Let us show
that the limit p∞ ∈ [0, 1) must be equal to 0. Let {atn}n∈N be a convergent subsequence and let
a∞ be its limit. Writing

|fα,atn (ptn−1)− fα,a∞(p∞)| ≤ |fα,atn (ptn−1)− fα,atn (p∞)|+ |fα,atn (p∞)− fα,a∞(p∞)|
≤ ‖f ′α,atn‖∞|ptn−1 − p∞|+ |fα,atn (p∞)− fα,a∞(p∞)|

and using the continuity of a 7→ ‖f ′a‖∞, we obtain

p∞ = lim
n→∞

ptn = lim
n→∞

fα,atn (ptn−1) = fα,a∞(p∞),

hence p∞ = 0.

The next statement collects some constraints on the asymptotic behaviours in the system (1).

Claim 3.5. (i) It is impossible that

min
i∈{1,··· ,N}

lim sup
t→+∞

ati < 1 < max
i∈{1,··· ,N}

lim inf
t→+∞

ati.

(ii) Assume that all the sequences {pti}t∈N converge. Then, their limits must be equal.

Proof. (i) By contradiction, assume the existence of imin, imax ∈ {1, · · · , N} such that

lim sup
t→+∞

atimin
< 1 < lim inf

t→+∞
atimax

.

Claim 3.4 then implies the following limits

lim
t→+∞

ptimin
= 0 and lim

t→+∞
ptimax

= 1.

As a consequence, the continuity of g and the inequality (3) imply the existence of ε > 0 and T ∈ N
such that

g(ptimin
,

1

N

N∑
i=1

pti) > 1 + ε > 1 > 1− ε > g(ptimax
,

1

N

N∑
i=1

pti), ∀t > T,

from which it follows that

lim
t→+∞

atimin
= +∞ and lim

t→+∞
atimax

= 0, (13)

in contradiction with the initial assumption.

(ii) Similarly, assume the existence of imin, imax ∈ {1, · · · , N} such that

p∞imin
:= lim

t→+∞
ptimin

< p∞max := lim
t→+∞

ptimax
.

Then, as before, the limits (13) must hold and therefore we must have p∞imin
= 1 and p∞imax

= 0,
contradicting the inequality above.

15



3.3.2 Proof of Theorem 2.3

The Theorem is an immediate corollary of the following more technical statement.

Proposition 3.6. Assume that g satisfies the conditions (8) and (9). Then the following statements
hold.
(i) In every orbit, the product πt is non-increasing.
(ii) If limt→+∞ π

t > 0, then we have

lim
t→+∞

max
i,j∈{1,··· ,N}

|pti − ptj | = 0.

(iii) The condition
lim inf
t→+∞

min
i∈{1,··· ,N}

|ati − 1| > 0,

implies that the corresponding orbit must converge to a fixed point.
(iv) For every orbit, we have

sup
t∈N

max
i∈{1,··· ,N}

ati < +∞.

Proof. (i) Applying the AM-GM inequality and then the inequality (9) yields

N∏
i=1

g(pi,
1

N

N∑
i=1

pi) ≤

(
1

N

N∑
i=1

g(pi,
1

N

N∑
i=1

pi)

)N
≤ 1, ∀p ∈ (0, 1)N .

(ii) We have

lim
t→+∞

πt+1

πt
= lim

t→+∞

N∏
i=1

g(pti,
1

N

N∑
i=1

pti) = 1,

which implies

lim
t→+∞

at+1
i

ati
= lim

t→+∞
g(pti,

1

N

N∑
i=1

pti) = 1, ∀i ∈ {1, · · · , N}. (14)

Indeed, by compactness, let {tk}k∈N be an infinite subsequence such that

lim
k→+∞

g(ptki ,
1

N

N∑
i=1

ptki ) = g∞i ∈ [0, γ] exists for all i ∈ {1, · · · , N}.

Then, we have

1 =

N∏
i=1

g∞i ≤

(
1

N

N∑
i=1

g∞i

)N
= lim

k→+∞

(
1

N

N∑
i=1

g(ptki ,
1

N

N∑
i=1

ptki )

)N
≤ 1,

and optimality of the AM-GM inequality imposes that

g∞i = 1, ∀i ∈ {1, · · · , N},

as desired.
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Furthermore, we claim that the second limits in (14) implies

lim
t→+∞

∣∣∣∣∣pti − 1

N

N∑
i=1

pti

∣∣∣∣∣ = 0, ∀i ∈ {1, · · · , N},

from where the desired conclusion immediately follows. Indeed, by contradiction, assume that {pt}
had an accumulation point p∞ such that

min
i∈{1,··· ,N}

∣∣∣∣∣p∞i − 1

N

N∑
i=1

p∞i

∣∣∣∣∣ > 0.

The continuity of the map g implies that each sequence {g(pti,
1
N

∑N
i=1 p

t
i)} must accumulate on

g(p∞i ,
1
N

∑N
i=1 p

∞
i ). However, one of these values would have to differ from 1 because of the condition

(3), which is impossible.

(iii) We separate the cases limt→+∞ π
t = 0 and limt→+∞ π

t > 0. In the first case, let {tk}k∈N be
an infinite subsequence such that

lim
k→+∞

min
i∈{1,··· ,N}

|atki − 1| > 0.

By passing to a further subsequence if necessary, the convergence πt → 0 implies the existence of
i0 ∈ {1, · · · , N} such that

lim
k→+∞

atki0 = 0.

By continuity and compactness, let12

γ = max
[0,1]2

Sg < +∞.

Together with the previous limit, that γ is finite implies that for every t ∈ N, we have

lim
k→+∞

max
s∈{0,··· ,t}

atk−si0
= 0.

Independently, the properties of the maps fa ensure that

lim
t→+∞

max
p∈[0,1]

f tα,a(p) = 0, ∀a ∈ (0, 1).

These two limits imply the following one

lim
k→+∞

ptki0 = 0.

Besides, we may assume that {tk}k∈N is such that atk−1i0
≥ atki0 . Indeed, it is impossible that {ati0}t∈N

be eventually increasing. Moreover, its liminf is certainly attained in the set of values of t for which
at−1i0

≥ ati0 . The inequality atk−1i0
≥ atki0 forces the following one

ptki0 ≥
1

N

N∑
i=1

ptki .

12For the example g(p, q) = q
p
, we actually have

sup
p∈(0,1)N

Sg(pi,
1

N

N∑
i=1

pi) < N,

which is all we need for our purpose.
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Hence, we must have
lim

k→+∞
ptki = 0, ∀i ∈ {1, · · · , N}.

Moreover, as shown next, this imposes in turn

lim sup
k→+∞

atki ≤ 1, ∀i ∈ {1, · · · , N},

and hence
lim

k→+∞
ptki = 0 and lim sup

k→+∞
atki < 1, ∀i ∈ {1, · · · , N},

given the initial assumption in (iii). Therefore (ptk ,atk) must satisfy the conditions of Proposition
2.1 for k sufficiently large, viz. it must eventually belong to the basin of attraction of some fixed
point, completing the proof in the case limt→+∞ π

t = 0. We prove the claimed inequality on the
limsup above by contradiction. Given i ∈ {1, · · · , N}, assume the existence of ε > 0 such that for

every k ∈ N, there exists k′ > k such that a
tk′
i > 1 + ε. Then

p
tk′
i ≥ fα,1+ε(0) > 0,

making it impossible that limk→+∞ p
tk
i = 0.

In the case limt→+∞ π
t > 0, when combined with the assumption

lim inf
t→+∞

min
i∈{1,··· ,N}

|ati − 1| > 0,

and Claim 3.5 - (i), the fact that

lim
t→+∞

at+1
i

ati
= 1, ∀i ∈ {1, · · · , N}

implies the existence of T ∈ N and ε > 0 such that we have

either sup
t>T

max
i∈{1,··· ,N}

ati ≤ 1− ε, or inf
t>T

min
i∈{1,··· ,N}

ati ≥ 1− ε.

Claim 3.4 then ensures convergence to a fixed point.

(iv) By contradiction, assume the existence of i1 ∈ {1, · · · , N} and an infinite subsequence {tk}k∈N
such that

lim
k→+∞

atki1 = +∞.

Then similar arguments as in the proof of (iii) can be developed to show that we must have

lim
k→+∞

ptki1 = 1.

However, since πt converges to a finite limit, there must exist i0 ∈ {1, · · · , N} such that

lim
k→+∞

atki0 = 0,

for the same subsequence. Moreover, we showed in the proof of (iii) that this limit implies

lim
k→+∞

ptki = 0, ∀i ∈ {1, · · · , N},

which contradicts the limit of {ptki1} above.
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4 Conclusion

In this paper, a macroscopic model for the dynamics of buyers population in markets of perishable
goods where prices are not posted has been introduced and mathematically analyzed. In particu-
lar, a simple mechanism for merchants feedback has been included, based on assuming immediate
profit/competiviteness optimisation and prompt estimation of the overall volumes of buyers. Such
negative feedback implies oscillatory behaviours and makes (local) asymptotic stabilization depen-
dent on the nature of the reactivity rate. A bounded rate cannot counteract intrinsic response to
merchants attractiveness/repulsiveness. In such case of moderate reactivity, convergence towards
stationary functioning modes takes place, with either full or absence of clientele at all merchants.
On the other hand, an arbitrarily large reactivity can promote resilience against vanishing clientele,
as shown with the example g(p, q) = q

p .
In addition to the control of local asymptotic stability of the fixed points, a concavity-type

condition on the reactivity rate has been identified, that forces the oscillations to eventually cease
in every orbit for which the merchants attractiveness remain bounded away from 1, a feature we
believe to be generic and to fail only in exceptional cases. In particular, this may fail and oscillations
may perdure forever when on the boundary of the fixed points basins of attraction, when neither
convergence to a fixed point with p = 1 or p = 0 holds. Moreover, as evidenced in the numerics,
to predict the asymptotic functioning mode, either full or empty clientele, is a delicate task when
starting close to such boundary. In other words, while the basic ingredients of the dynamics are
rather simple, the resulting temporal process that they generate can be rather involved and hardly
predictable, especially in case of a major perturbation such as the introduction of a new seller in
the market.

We conclude the paper with few additional comments about the modelling assumptions in the
system (1) and some suggestions about possible improvements.

First, the modelling time scale has been chosen to be rather coarse for simplicity. It does
not incorporate intraday variations of clientele or attractiveness. However, evidences have been
given, especially at Rungis market [2], that sellers may react during sessions in order to adapt their
attractiveness to initially scarce clienteles or to insufficient sale volumes given their stocks. Hence,
a more elaborated modelling should incorporate more rapid changes such as hourly variations.

Likewise, the feedback term in (1) assumes instant evaluation by the merchants of the overall
clientele volume in the market. While this hypothesis is justified when the market place is compact
or the number of competitors is limited, in large markets with a high number of merchants selling
goods of the same nature, it would be relevant to adopt, in the feedback evaluation, a local clientele
estimation that is evaluated in a limited neighbourhood of the seller under consideration. In such
case of local interaction terms, the dynamics is often richer than in globally coupled models, as for
instance, spatial patterns and non-synchronous solutions emerge [1].

Equally important since real populations are of finite size, it is questionable to consider buyers
fractions pti that are extremely small or extremely large, and in particular smaller than the inverse
of the total population size when the latter is given. A description of the dynamics at the level
of individuals should be adopted when pti is close to 0 or to 1, especially when experimenting the
introduction of a new seller with very small initial clientele. In that setting, it would be particularly
interesting to identify the analogues of the stability condition (8) at the level of individual dynamics.

In addition, a more detailed dynamics at the level of individuals gives the opportunity to take
into account intrinsic heterogeneities in the individual features that may arise in such diversified
populations of buyers that are present in these markets. Likewise, temporal non-systematic fluctu-
ations of the individual behaviours could be integrated. In particular both these aspects could be
taken into account through modelling of the dynamics using random process. All these considera-
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tions can be the subject of future studies.
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