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Abstract

The representation of air quality and meteorologgrdsia remains challenging for chemical
transport models as a result of the complex intenag between the East Asian monsoons and
the large uncertainty (in space and time) of thgh lanthropogenic emissions levels over the
region. High spatial resolution models allow resajvsmall-scale features induced by the
complex topography of this region. In this studye tWeather Research and Forecasting
model with Chemistry (WRF-Chem) was used to sineuthe spatial and seasonal variability
of main physical and chemical variables over Asia the year 2015 at 8-km horizontal
resolution to enable resolving small-scale featurdaced by the region complex topography.
The simulated atmospheric composition was evaluagginst satellite retrievals (MOPITT,
IASI+GOMEZ2, MODIS and OMI) in addition to ground4®d observations in China for the
year 2015, while the meteorological variables waraluated by several observational-based
datasets (ERA5, CRU, MODIS, MTE). Results showed 10 moderate seasonal biases for
major meteorological variables, i.e. air tempemtuelative humidity, precipitation, latent
heat, sensible heat and snow cover fraction. OyakdRF-Chem reproduced well the spatial
and seasonal variability of lowermost troposphesgone content, total column carbon
monoxide and aerosol optical depth, while largerdisancies were found for tropospheric
nitrogen dioxidecontent, mainly during the warm season. In consgtewith previous
studies, the different biases between model-siradl@nd satellite-retrieved values can be
mainly attributed to i) the large uncertaintiesanthropogenic and natural nitrogen oxides
emission estimates, as well as dust and sears@sions in the case of aerosol optical depth,
and ii) some coarse parameterizations used to dapeo main small-scale features (e.g.
meteorology, chemical processes, dry depositionetgetation). Compared to ground-based
observations, the WRF-Chem model reproduced well ifean annual cycle of surface
nitrogen dioxide, ozone and fine particles coneditns in all seasons across China. Our
results suggest that WRF-Chem provides reliabldéispamporal patterns for most of the
meteorological and chemical variables, adding tbosfidence to its applicability in the
context of air pollution risk assessment to hunrah @cosystems health.

Keywords: Asia, satellite, regional climate model, remote sensWgF-Chem

*Corresponding author. psicard@argans.eu




43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

1. Introduction

China and India are the two most populous countfebe world (~ 2.8 billion people) and
have experienced a rapid growth in industrial, gpmmtation, urbanization and agricultural
activities in recent years (Kumar et al., 2015; ithat al., 2016a). This explosive economic
growth has significantly increased anthropogenicissions of several trace gases and
aerosols over Asia in the last decades (Kumar.e2@15; Zhang et al., 2016b; Lefohn et al.,
2017), with China becoming the largest emitteriofjpallutants worldwide (Liu et al., 2015;
Quéré et al., 2015; Boden et al 2017; Wang ef@lL7a).

The increasing air pollution levels pose healtksi® billions of people (Zhong et al., 2016):
in fact, in major metropolitan agglomerations asrésia (e.g. Bangladesh, China, India and
Nepal) surface ozone gDconcentrations regularly exceed the ambient @ity standard of
100 ppb as hourly value (Wang et al., 2017a), waileual PMsconcentrations exceed 100
ug m> (Zhang and Cao, 2015; Venkataraman et al., 20183se high levels of air pollutants
produce acute and chronic effects on populatioludicg premature mortality due to cancer,
respiratory and cardio-vascular diseases (Lelieeela., 2015; Liu et al., 2016; Cohen et al.
2017; Krishna et al., 2017; Burnett et al., 2018y aeduced life expectancy (Apte et al.,
2018). In addition, forests and crops are remaskalflected by high pollution levels: in
particular, effects on plants include, among othgiedd (Tang et al., 2013; Tai et al., 2014;
Sicard et al., 2016a; Tian et al., 2016; Feng ¢t28119) and biomass decline (Wittig et al.,
2009; Feng et al., 2015; Li et al., 2017). Krishetaal. (2017) estimated that air pollution
contributes to 13-22% of all deaths in South A8ither studies showed that for the year 2015
air pollution led to 4.5 million premature deathelamore than half occurring in China and
India (Landrigan et al., 2017; Giani et al., 2020ith fine particulate matters (P)) causing
around 1 million premature deaths every year (Cadteml., 2017; Li et al., 2018; Burnett et
al., 2018).

For these reasons, monitoring of air quality playpivotal role to preserve human and
ecosystem health; in this regard, in 2013, theeSTatuncil of China issued the Air Pollution
Prevention and Control Action Plan (Wang et al1&0 while India introduced policies and
National Clean Air Programme (Sagar et al., 20D6provide a framework for air quality
monitoring in order to mitigate the air pollutiondhattain air quality standards (Sagar et al.,
2016; Goldemberg et al., 2018; Wang et al., 20&8)addition to surface measurements,
chemical transport models (CTMs) represent a védutdml to predict formation/removal of
air pollutants and their transport, and providecaiality information over remote regions or
scarcely populated areas where measurements areavadtble (Sicard et al., 2017).
However, before providing any assessment of impactair pollution on human and
vegetation health, it is mandatory assessing hoW mvedels perform in reproducing the
spatio-temporal variability of both physical andentical variables.

In general, regional CTMs have been found ablepyaduce observed spatial pattern of air
pollutants and their seasonal changes (Spiridohal,,e2019; Li et al., 2018; Liu et al., 2018)

in both North America and Europe (discussed beld¥owever, regional chemistry models

still reproduce poorly the observed spatial pattdrmain air pollutants over the Asian region
because of (i) complex landscape ranging from fhatgvations of Himalayan plateau to

megacities of Easter China; (ii) large uncertastie removal of trace gases through dry
deposition to vegetation associated to a mosait ¢awer (Monks et al., 2015), ranging from

tropical rainforest to boreal forest and semi-aiddesert area; (iii) widely-varying climate

system characterized by a summer monsoon system (i@hdlarge uncertainties in
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anthropogenic emissions (e.g. Amnuaylojaroen e@ll4; Jena et al., 2015). Consequently,
remote sensing data represent a unique opportuoityevaluate the spatio-temporal

distribution of air pollutants simulated by regib&a Ms (Tuccella et al., 2012; Crippa et al.,

2016, 2017; Georgiou et al., 2018; Crippa et &119. China adopted in 2012 the Ambient
Air Quality Standard for human health protectiomg atarted reporting hourly observations of
main air pollutants from about 1,500 monitoringtistas at countrywide (MEP, 2012). These
monitoring stations offers an unprecedented wayewaluate model-simulated surface

concentrations of air pollutants.

The coupled Weather Research and Forecasting modpled with Chemistry (WRF-Chem)
model is widely used for regional air quality simtubn worldwide and validated against
ground-based observations, e.g. over North AmgfideKeen et al., 2005; Chuang et al.,
2011; Archer-Nicholls et al.,, 2014; Yahya et alQl3; Zhang et al.,, 2017), Europe
(Schiurmann et al., 2009; Solazzo et al., 2012; dlleccet al., 2012; Ritter et al., 2013;
Karlicky et al., 2017; Werner et al., 2017; Spindo et al., 2019; Visser et al., 2019) and
South or East Asia (Tie et al., 2007; Kumar et 2012a,b; Gao et al., 2014; Zhong et al.,
2016; Zhang et al., 2016; Sharma et al., 2017 lal.e 2018; Xu et al., 2018; Reddington et
al., 2019). A few studies reported the WRF-Chem performances Bast Asia (Zhang et al.,
2016; Zhong et al., 2016) and South Asia (Kumalet2012a,b; Sharma et al., 2017) for air
pollutants and meteorology, however the coarselugsn and lack of ground observations
limit the model skill to reproduce small-scale msses (e.g. Crippa et al., 2017; Chen et al.,
2019). In this regard, the new generation of hightigal resolution reanalysis offers a unique
opportunity to run CTMs at very high spatial resmns over the South-East Asia.

The aim of this paper is to conduct a WRF-Chem ktran of meteorological fields and air
pollutants, and evaluate the model performance aVarge area covering India and China.
The novelty is related to the availability of grauobservations in China to validate the WRF-
Chem outputs. Therefore, we performed the simulatit fine resolution to allow the model
to reproduce well the local variability of climatd chemical parameters. Despite ground-
based observations are amongst the most accurdteckable datasets to evaluate regional
climate models, the lack of spatial representaggsnof air quality monitoring stations
(Beelen et al., 2009; Sicard et al., 2016b) lintiitis model evaluation to the regions covered
by data. To overcome this gap in spatial heteraggenand assess the ability of the WRF-
Chem model to reproduce regional patterns of tgases, we firstly compare simulated data
with satellite-based measurements; successivelyuseerecent groundbservations across
China to validate surface concentrations of aitytahts.

2. Materials and Methods
2.1. WRF-Chem model

The WRF model is a limited-area, non-hydrostatiesrain-following eta-coordinate
mesoscale model (Skamarock et al., 2008). This iMwdebeen further developed to include
various gas-phase chemistry and aerosol mechamisatng the coupled chemistry-climate
WRF-Chem model (Grell et al., 2005). The WRF maglgdtem offers multiple options for
various physical packages (Skamarock et al., 2008).dynamical core used in this work is
the Advanced Research Weather Research and Fangcamsidel (Tab. 1); we used a single-
moment 6-class scheme to resolve the microphysiced et al., 2006) and the Rapid
Radiative Transfer Model for GCMs (RRTMG) for thkostwave and longwave radiation
(lacono et al., 2008). Convective precipitation aoudnulus parameterization were resolved
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with the new Tiedtke scheme (Zhang et al., 2011 planetary boundary layer computations
were performed using the nonlocal K-profile Yongsiiversity parameterization (Hong et

al., 2006), while the exchange of heat, water aminentum between soil-vegetation and
atmosphere was simulated by the Unified Noah LandaSe Model (Chen and Dudhia,

2001).

Similarly to physical parameterizations, many diéf® gas phase chemistry and aerosol
options are available in WRF-Chem. Gas-phase cl@nmeactions are calculated using the
chemical mechanism MOZARModel for OZone And Related chemical Tracers) (Emmons

et al., 2010) whereas for the aerosols, to redueedmputational cost, we used the GOCART
(Global Ozone Chemistry Aerosol Radiation and Transport) bulk aerosol approach (Chin et

al., 2000). This set-up includes 85 gas-phase epedi2 bulk aerosol compounds, 39
photolysis and 157 gas-phase kinetic reactions.

Anthropogenic emissions are based on the EDGAR-H{BAHRSssion Database for Global
Atmospheric Research for Hemispheric Transport of Air Pollution) global emission inventory
which includes diurnal cycle of emissions of gasepallutants such as SANO,, CO, non-
methane volatile organic compounds (NMVOCs) and;Nid well as black carbon and
particulate matter from the following source sesta@viation, shipping, agriculture, power
generation, industrial non-power, land transpord aesidential energy use (Janssens-
Maenhout et al., 2015). This dataset is availabl® ¥ x0.1° horizontal resolution for the year
2010, with no year adjustments. Fire emissiongavgided using the FINN (Fire INventory
from NCAR) inventory (Wiedinmyer et al., 2011). Shilataset provides estimates of trace
gases and particles emitted by open biomass buatird km resolution (Wiedinmyer et al.,
2011). Biogenic emissions are calculated onlineagishe MEGAN (Model of Emissions of
Gases and Aerosols from Nature) model (Guenthal. &012), dust emissions are estimated
online using the GOCART model (Ginoux et al., 2Q0djhereas sea-salt emissions are
calculated using the method by Gong (2003). Antbgemic dust emissions (e.g. re-
suspended road dust) are not included.

In addition, MOZART-4/Goddard Earth Observing Syst®lodel version 5 (GEOS-5) data
were used for chemical and aerosol boundary camditiThe MOZART-4 data is a model
outputs dataset available at a horizontal gridlutism of 1.9x2.5° every 6 h and is driven by
the National Aeronautics and Space AdministratibfA$A). The initial and boundary
meteorological conditions (including time varyingassurface temperature), required to run
the model, are provided by the European Centre Medium-range Weather Forecast
(ECMWEF) re-analysis project ERAS, with a horizontakolution of about 31 km every 3
hours.

In this study we used WRF-Chem (v3.9) to simulattenrology and air quality from %0
December 2014 to 31December 2015 using the first 10 days as spif\ig.conducted a
fully free running simulation (i.e. without nudgindor the entire year 2015. The model
domain is projected on a Lambert conformal grido(Xx8&90 grid cells) with a horizontal grid
resolution of 8 km with 30 vertical levels exterglifrom the surface up to 50 hPa. A
synthesis of parameterizations and input data umstids study is given in Tab. 1.

2.2. Datasets for model evaluation

To evaluate the spatio-temporal patterns of simedlasurface air temperature, relative
humidity and precipitation, we compared model rssafjainst Climatic Research Unit (CRU)
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observed data, a monthly high-resolution (0.5°X0gsfdded dataset over land areas (Mitchell
and Jones, 2005). In addition to CRU, which camdgarded as an independent dataset, for
the evaluation of physical variables, we also camgaimulated data against the boundary
conditions used to drive the model (i.e. ERAS);sthillows assessing if a bias has been
introduced into the model by its forcing (Mooneyat, 2013) or is mainly due to poor
representation of some physical processes witl@mtbdel (Tang et al., 2017). In addition, in
order to remove any possible bias in surface teatper related to the difference in
topography between the coarse reference data anfingr model output, we downscaled
both CRU and ERAS temperature to our domain usimyyaadiabatic lapse. Sensible and
latent heat fluxes were evaluated using the Machiree Ensemble (MTE) a 0.5° x 0.5°
gridded dataset (Jung et al.,, 2011) created byalipgceddy covariance measurements
collected around the world (Jung et al. 2009, 20Thjs dataset has been widely employed to
evaluate the performances of land surface modetduding NOAH-MP, a land surface
scheme often used within WRF (Ma et al., 2017). Wed the Moderate Resolution Imaging
Spectro-radiometer (MODIS) product from the NASArf&eSatellite to evaluate the snow
cover fraction (Hall et al., 2010); this dataseiyides monthly data with a resolution of 0.05°
x 0.05° (Hall and Riggs, 2015).

We have evaluated the WRF-Chem simulations of, NOncentrations against satellite
retrievals from the Ozone Monitoring Instrument (OMlying aboard NASA's EOS-Aura
satellite. This instrument measures the radiatackbcattered by the Earth's atmosphere and
surface, and provides the daily global retrievdlsaveral trace species and aerosols with a
spatial resolution of 13 km x 24 km at nadir (Boeaset al., 2011). To evaluate the ability of
the model to reproduce reliable spatial and seashit® estimates, we compared the
tropospheric N@ content simulated by WRF-Chem with spatial resoiutof OMI data
available from KNMI (Royal Netherlands Meteorolagjicinstitute). Similarly, the CO
amounts derived from the Measurement of Pollutiorthe Troposphere (MOPITT), flying
aboard the NASA EOS-Terra satellite, are compargd WRF-Chem. MOPITT measures
the thermal infrared (IR) radiation with a spatiesolution of about 22 km x 22 km; these
radiances are then used to retrieve CO mixingsairofile and total column amounts (Deeter
et al., 2003). Here we used version 6 Level 3 MAPOO data from the thermal infrared
band (TIR) to evaluate the spatio-temporal pattef®tal column content simulated by the
model.

Tropospheric @distributions simulated by WRF-Chem were compacetthose derived from

the IASI-GOME2 multispectral approach, combiningfrdned Atmospheric Sounding
Interferometer observations in the IR and Globalof@z Monitoring Experiment-2

measurements in the Ultraviolet (Cuesta et al. 32@018). IASI-GOME2 has allowed the
first satellite observation of the horizontal disttion of & pollution plumes located below 3
km of altitude, and also quantified the photocheinmroduction of lowermost tropospheric
(LMT) O3 across East Asia. This method is based on measatenfrom two instruments

onboard the MetOp satellite series since 2006 ¢ffat global coverage every day with a
relatively fine ground resolution (12 km x 25 knr #&\SI at nadir and 80 km x 40 km for
GOME-2). In this analysis, we have evaluated theTL®% content integrating between the
surface and 3km height.

For the evaluation of aerosols simulations, we usebsol optical depth (AOD) data at a
wavelength of 550 nm derived from the MODIS instamts onboard the Terra and Aqua
satellites. Level-2 MODIS Collection-6 data havesolution of 10 x 10 km (at nadir). In this

analysis, we used the extinction coefficients sated by WRF-Chem and extracted daily at
the satellite overpass time.
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In our evaluation, we accounted for the satellg&ieval sensitivity by smoothing WRF
vertical profiles with satellite averaging kerné&mar et al., 2012a). In the case of, the
IASI+GOME2 averaging kernel Rsi:come2 and a priori Oz profiles Xgprioi Used by
IASI+GOME2 were then applied to the WRF-Chem @ofile Xy (interpolated over the
IASI+GOMEZ2 vertical grid) to obtain smoothed WRF&h & profile accounting for the
satellite retrieval sensitivity, as classically domith the equation:

XWRF—Chem (OSS)mOOthed: xapriori + AIASI+GOME2 [Xint - xapriori] (1)
A similar procedure was used to transform the meti€lO profiles using MOPITT averaging
kernels and a priori profiles (Kumar et al.,, 2012&pr transforming the WRF-Chem
simulated tropospheric N@ontent for comparison to OMI retrievals, the @aare requires
the user to calculate the transformed model préfile,) as:

_ AMF
Yiop = A X TiE—X Xerop (2)
where A is the total column averaging kernel, AMfe 8AMF, are the air mass factors for
the total columns and tropospheric columns, respgt and X.op is the tropospheric vertical
profiles of NQ, simulated by WRF-Chem, interpolated to the OMdgzure grid (Kumar et
al., 2012a).

Finally, hourly NQ, Os;, PM, sandPMy, in-situ measurements were collected from 1497 air
guality monitoring stations across China (589 rumadl 908 urban), after checking for data
quality. A minimum data capture of 75% was imposed calculate seasonal mean

concentrations.

2.3.Assessment of model performance

The model performance was evaluated over diffeseasons (January-February-March, JFM,;
April-May-June, AMJ; July-August-September, JAS;t@er-November-December, OND)
by using the Pearson’s correlation coefficient (ngan bias (MB) and the fractional bias
(FB). The first metric allows estimating the coatedn pattern, thus the spatial agreement
between model and observations. For physical paeasme¢he MB provides the absolute bias
of the model, with negative and positive valuesdating respectively underestimation and
overestimation by the model while the FB (in %yused for the chemical variables, as in this
case the absolute bias would be hard to interptet. mean biases were computed pointwise
and then averaged over the whole domain:

1 N, ; ;
MBJ=W Y. °(Mod] — 0bs]) 3)
L4 ZI.V{’Z’S(Modj— obs’)
]: n L=1‘ l. .l
EB N, N’ Mod!+obs] x 100 (4)
obs Zi=o1 s(%)

with Obs; and Mod the observed and modeled values ahgsthe number of data at time i
and station j over the domain. These metrics wapeessfully used in several studies for
evaluating the performance of regional air quatitgdels (e.g. Savage et al., 20P&ipe et
al., 2015; Im et al., 2015; Crippa et al., 2016jrskt al., 2017; Crippa et al., 2019).

In case of in-situ data, we extracted WRF-Chemligsui the lowest model layer and, for
each station, we calculate the Pearson’s correlataefficient to assess the ability of the

6
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model to reproduce the mean annual cycle and tlerbms to provide a measure model’'s
error; in the following analysis results are presdras an average over all the stations.

3. Results
3.1. Evaluation of meteorological variables

The general ability of the WRF model to reproduealistic spatio-temporal patterns of most
relevant physical and chemical variables is assebgecomparing simulated output with
observational data averaged over different sea®orike reference year 2015. Looking at the
surface air temperature, WRF well captures the rebdgespatial pattern with a decreasing
south-north gradient and a cold area over the a&ibgilateau. In general, the spatial
distribution of 2-m temperature during all the seeswas very similar to ERA5 and only
slightly different from CRU (Fig. 1). The largesiab was observed during JFM, where the
model was warmer than the reference data overdfteern part of the domain and colder in
most of western China, Vietnam, Laos, and Thail@gng. 1). In addition, large discrepancies
were observed over the Tibetan plateau, where dhese resolution of the datasets and the
sparse availability of local measurements couldla®pthe mismatch. The large thermal
heating occurring over the Indian region duringirgprand early summer (AMJ) is well
captured by the model, which is a pre-requisitecdorectly simulate the summer Asian
monsoon. The high agreement in the spatial patierconfirmed by the high spatial
correlation ranging between 0.98 and 0.99 with eespo both ERAS5 and CRU datasets,
while the MB ranged from - 1.51°C in winter (JFM)@.07°C in summer (JAS) using ERA5
as reference, and from - 1.82°C in winter to - 020 summer when compared to CRU
(Tab. 2).

Unlike seasonal variations in surface air tempeeatwhich are mainly determined by the
insolation patterns, seasonal precipitation varegi are strongly influenced by vertical
movement of air due to atmospheric instabilitievafious kinds and by the flow of air over
orographic features; thus, to simulate accuratdlg seasonally varying pattern of
precipitation, models must correctly simulate a bemof processes (e.g., evapotranspiration,
condensation, and transport) (Randal et al., 200A¢. spatial distribution of seasonal mean
precipitation from model and reference data (ERA& @RU) is depicted in Fig 2. In general,
the model was able to capture the major conveatemters as in the observations. WRF
overestimated the precipitation over the Himalagggion in JFM and over eastern China in
AMJ, nevertheless, it is important to note that WilRBolved the finer details of orographic
precipitation along the Himalayan foothills, whiglere missing both in ERA5 because of its
coarser resolution and in CRU due to the lack afespread measurement statiddssides,
WRF well reproduced the main monsoon features. rEfevant thermal heating occurring
during AMJ over the Indian peninsula results in rasgure gradient with lows over the
landmasses and highs over the colder ocean, whigbes a strong moisture advection from
the Bay of Bengal to Indian Peninsula leading toeased precipitation over South-East Asia
and the Indian landmass region during JAS. Lookintpe spatial agreement, except for CRU
in winter (r = 0.73), the correlation coefficientceeded 0.80 during all the seasons and for
both the datasets. The area averaged bias, wileee® the CRU observation, was 0.21-0.25
mm/day during the cold periods (OND-JFM) and 0.6B40mm/day during the warm periods
(AMJ-JAS), while compared to ERA5, WRF showed atdliwet bias during the warm
periods (+ 0.15-0.27 mm/day) and a slight dry {etsout - 0.05 mm/day) during the cold
seasons (Tab. 2). Large discrepancies (overestimatvere observed between 2-m relative
humidity and CRU observations over central AsiasW# China and India (Fig. 3) while an
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underestimation was observed over the westernopdine domain compared to ERA5 during
JAS and OND. The spatial correlation ranged fro86Qo 0.99 for both ERA5 and CRU
datasets. The WRF model underestimated the relativadity with respect to ERA5 during
all the year, from - 1.5% in JFM to - 4.5% in JA®S)d an overestimation was observed
compared to CRU dataset, in particular during themvperiod with a MB of 11-12%.

Looking at latent heat we found an overall gooceagrent between the WRF model and the
reference datasets (Fig. 4), with spatial correagxceeding 0.92 for both datasets (Tab. 2).
Nevertheless, WRF remarkably overestimated surf@esmt heat during the warm seasons,
especially over South and Southeastern Asia, wighldrgest bias found in JAS and ranging
between 2.6 W/m2 and 13.2 W/m? compared to ERA5 BHKE, respectively. This
overestimation was strictly related with the sligiverestimation of rainfall during the same
season which brings more water on the land surfhae can re-evaporate, subsequently
amplifying convective precipitation. Similarly, treensible heat was well simulated with a
spatial correlation ranging from 0.82 in JFM for M Tdataset to 0.94 in AMJ for ERAb.
Compared to ERA5, WRF model overestimated the Bens$ieat during the warm period
(16.4-19.4 W/m?), in particular over the Westernrtpaf the domain, while a lower
overestimation is reported for MTE (7.9-11.5 W/mo¢er the same season. In contrast during
JFM and OND, WRF model well reproduced the obsersgatial patterns (Fig. 5) with a
slight underestimation in winter (- 1.2 and - 2.8W).

Besides, WRF well reproduced the snow cover fractigith a spatial agreement ranging
from 0.74-0.77 in summer to 0.92-0.95 in winter ERRAS5 and MODIS datasets, respectively
(Tab. 2). Compared to MODIS data, WRF slightly @simated the snow cover fraction in
JFM (0.6%) and AMJ (0.2%) mainly around the Tibepateau and underestimated it in JAS
(about - 0.1%) and OND (- 1.7%), WRF underestimakedsnow cover throughout the year
when compared to ERA5, with a mean bias rangingn frd.9% in JAS to - 3.2% in AMJ.
The main discrepancies were observed over Nortériailin JFM, over the Tibetan plateau in
AMJ and over both areas in OND (Fig. 6).

3.2. Evaluation of chemical variables

The spatial distributions of model-simulated and I9&trieved seasonal mean tropospheric
NO, contentduring winter, spring, summer and autumn for thary@015 are shown in Fig. 7.
Both WRF-Chem and OMI showed, during all the segasdime highest tropospheric NO
content over the polluted region around Beijing andr Korean peninsula, followed by the
Indo-Gangetic Plain region, with hot spots locatedorrespondence of large urbanized areas
such as Seoul (South Korea) and New Delhi (Indiag lowest values were found above the
Tibetan plateau. The spatial correlation averagest the entire domain ranged between a
0.89 in AMJ and 0.91 in JFM. The percentage difieess between WRF-Chem and OMI
tropospheric N@ content showed a slight underestimation of the ehbgt 2-8% during the
cold period (Tab. 3) while the concentrations of N@ere significantly under-predicted by
WRF-Chem during the warm period (64-70% in AMJ-JASYonversely, large
overestimations occurred during the cold monthdVi(ddhd OND), mostly over polluted
regions (e.g. Eastern China). The positive and thegaiases found in summer and winter,
respectively, compensated with each other andoleah toverall small FB (- 2%).

The highest total column CO was observed over th#leastern and Eastern Asia and the
lowest column CO values were found above the Tibptateau (Fig. 8). The simulated total
CO column showed a high spatial correlation cofdfic (about 0.97) during all the seasons
(Tab. 3).The model performed well for simulating CO with B E £ 10% of MOPITT. The
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agreement between WRF-Chem and MOPITT is highautamn (FB: + 3%) than in spring
(FB: + 7%) and summer (FB: + 8%). The simulatedaltatolumn CO was slightly
underestimated over Eastern Asia during all seasndver Southeastern Asia in winter and
autumn. In summer, the most important overestimatias observed over Southeastern Asia
and India (Fig. 8).

The spatial and seasonal distributions of modelited and IASI+GOME2-retrieved LMT
O3 content (integrated up to 3km height) are showrFig. 9. The WRF-Chem model
simulated well the spatial distributions and thasemal variations of £ A particular good
spatial agreement is remarked for the summer seastina spatial correlation of 0.99 (Tab.
3). During spring and winter, the spatial agreemenmoderate (r = 0.61 and r = 0.76,
respectively), while it is fairly low in winter @& 0.43). The highest £xontent was similarly
depicted in Eastern Asia and in the latitude baBed2’N, in particular over the Indo-
Gangetic Plain region, in both datasets. Althougbarestimated in the cold seasons, WRF-
Chem simulates correctly the eastward export giaspheric @ over the Yellow and Japan
Sea (30-40°N 120-130°E). Model and satellite ddsa agree to show very low LMT O
values above the Tibetan plateau during the caddmeand below 30°N latitude in summer.
North of these high mountains (40°N 80-100°E), hadgpundances of £during summer and
spring depicted by IASI+GOME?2 are consistently dated by WRF-Chem. The overall
seasonal cycle is consistently shown by both detas&th highest concentrations in spring, a
little lower in summer and lowest in autumn. The &Ber the model domain exhibited a
seasonal variability with limited overestimationrithg the warm season (3-7% in spring and
summer), in the 20-30°N latitude band, and largergrediction (11-13%) during the cold
period (winter and autumn). In addition, we remtrét only IASI+GOME?2 retrievals show
moderate enhancement of @ncentrations north of 45°N during winter, prolyadssociated
with downward transport of £from both upper troposphere and stratosphere.difievence
between IASI+GOME?2 and model data was also remankexd comparison with respect to
other simulations performed with WRF-Chem in sptimg 2009 over East Asia (Cuesta et
al., 2018).

Looking at the aerosol optical depth (Fig. 10),H0dtRF-Chem and MODIS showed, during
all the seasons, the highest AOD over the polluegdon of Eastern Asia, over the Goby
desert and over the Indo-Gangetic Plain region.spaial correlation ranged between 0.86 in
summer and 0.93 in winter (Tab. 3). The model-sated AOD were lower than those from
MODIS with a FB of - 19% and - 2% for JFM and ONBspectively, in particular over the
polluted region of Eastern China and Indo-Gangétiain region (Fig. 10). WRF-Chem
overestimated the AOD by 6% and 20% in spring amtirser over Southern part of the
domain.

Compared to in-situ measurements, WRF-Chem was tableproduce the surface NO

concentrations over China during all the seasomng {#). The high concentrations over
polluted regions are well captured, despite somtosis showed a large bias, while minimum
NO, concentrations, found in Western China, are dighlinderestimated. Overall, the

correlation coefficient computed from mean dailyoentrations was 0.29, with a mean bias
of 10.1 ppb and a FB ranging from 35% in spring$06 in autumn (Tab. 4). These statistics
were calculated from the mean of the metrics coertbatver the stations, thus stations with
poor agreement significantly contribute to lowerdabskills. As poor model performances
were expected, particularly in urban areas, whereggonal chemistry transport model is
unable to correctly predict the observed hourlyiakility of air pollutants concentrations,

which depends on local processes, we also comghtedaorrelation comparing the mean
temporal evolutions averaged over all the statitmshis latter case, the model performance
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was remarkably better, with a temporal correlatd®.71 (data not shown). Unlike NChe
comparison of surface {Gshowed a complex bias pattern: the model wellodpced Q
during cold seasons (FB = - 8% in JFM, - 15% in QND particular concentrations below
15 ppb over megacities (Fig. 12). Similarly, high €@@ncentrations over Tibetan plateau are
well represented during all the seasons. Nevedbetiuring warmer months (AMJ and JAS),
the WRF-Chem systematically overestimated surfageddcentrations (FB = 23-24%). The
mean annual cycle of s slightly better simulated compared to N@ith a correlation
coefficient of 0.51 (0.90 in case of correlatiormputed from the mean temporal evolution
averaged over all the stations), while the mean hias 5 ppb (Tab. 4). Looking at surface
PM.s (Fig. 13) and PNy (Fig. 14) concentrations during the cold periode thigh
concentrations (exceeding 100 ud)nover polluted regions and megacities in Eastérm&
are well captured (FB = 5% in JFM for both Pdand PMg), while low PMsand PMg
concentrations in Western China (less than 10 [fyare slightly overestimated. During the
warm period, the surface concentrations are wefiturad across China, with a slight
overestimation in AMJ for PM (FB = 11%). The highest overestimation is obseried
summer with a FB of 29% and 36% for Rjnd PM s, respectively (Tab. 4). Overall, the
correlation coefficient computed from mean dailypcentrations was 0.44 for BMand 0.35
for PMy, with a mean bias of 10.4 pg hand 14.8 pg m respectively (Tab. 4). By
considering themean temporal evolutions averaged over all thelostst the temporal
correlations were 0.83 and 0.71, respectively (datsshown).

4. Discussion

Capturing spatiotemporal patterns of trace gasdswveather patterns over Asia is challenging
for chemistry transport models because of the cermptography associated to the monsoon
systems and large uncertainty in the anthropogemussion inventories over heavily
populated regions in Asia (Kumar et al., 2015; Zhanhal., 2016a). In this study, the WRF-
Chem model was used to simulate the spatial angbeabhvariability of main physical and
chemical variables over the Asian region at fineéZumtal resolution (8 km) to capture local
small-scale processes.

In addition to surface air temperature and moistds, which influence the rate of chemical
reactions close to land surface and the removaiopollutants through wet deposition,
respectively, heat fluxes also play a pivotal riolesurface energy balance and influence the
Asian monsoon (Wang et al., 2014, 2016, 2017b). Wbempared to ERA5 and CRU
datasets, WRF well reproduced meteorological olagemval-based data. In particular,
looking at temperature, WRF performed well in tewhspatial distributions over time, even
over complex terrain with uneven surface topograghygh as Tibetan plateau and Himalayan
chain. To reproduce observed patterns over Tibptateau, a meteorological model must
correctly reproduce several processes ranging froonvection to thermal balance.
Considering the relative humidity, we found slighscrepancies over the Tibetan plateau,
particularly in winter, while we found a large bifs surface sensible heat over the Western
part of the domain during the warm period. Besidd&RF slightly overestimated the
precipitation, in particular during the monsoonipéy previous studies suggested that the
magnitude of precipitation bias depends on the d¢usnparameterization schemes (Ratna et
al., 2014; Juneng et al., 2016). The WRF modelipted much stronger rain over Western
China, Northern Bay of Bengal and Eastern Indiaarghet al. (2016a) showed that the
rainfall overestimation can be attributed to thiglgly excessive precipitation predicted by
the cumulus Tiedtke scheme, and the apparent wstdeation of air temperature is most
likely caused by an error in the radiation balamce certain limitations in the Yonsei
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University Scheme used in resolving main featurésthe Planetary Boundary Layer
meteorology, particularly over complex terrain sugé mountainous regions over high-
elevation Tibetan plateau, Vietham and Laos (Zletrgy., 2016b).

A previous study performed with WRF over South Aata45 km of spatial resolution,
indicated that the MB was 1-4 °K for temperatur@,6% % for water vapor and within £ 10
mm/day for the precipitation during all seasonsegxdn summer, with an overestimation
exceeding 20 mm/day over Himalaya and along thsthoa in Eastern India (Kumar et al.,
2012b). In another study where WRF was run overt Basa at 36 km of horizontal
resolution, Zhang et al. (2016b) showed a MB ragdiom - 1.0°C to + 1.5°C for surface air
temperature and moderate to large biases for pratgm (+ 0.2 to + 1.7 mm/day) and
relative humidity (+ 0.4% to + 23.4%). In a diffatestudy over East Asia, where WRF was
run at 50 km of horizontal resolution, using a s@#audging applied to wind direction and
speed and air temperature over the time period-2989, Tang et al. (2017) found for the
surface air temperature an averaged MB of 1.77- €t¢ + 4 °C) compared to CRU, and of
1.45 mm (- 4 to + 8mm) for precipitation with aneogstimation by 2-8 mm/day in tropical
regions and an underestimation of 0.5-1.0 mm/d&y 8outhern China.

In our study, the model performances in simulasngace meteorology were better than the
other simulations performed over Asian regions viik same model but with a coarser
spatial resolution at 36 - 50 km of spatial redolufe.g. Kumar et al., 2012a,b; Zhang et al.,
2016a,b; Tang et al., 2017); this suggests thatfitter model resolution (8 km) helps to
resolve small-scale features induced by complexdmphy e.g. in Himalaya or Sichuan
region. In general, increasing model resolution fessilted in improved model simulations
and predictions for air temperature, relative hutpjdorecipitation (Malardel et al., 2016;
Prodhomme et al., 2016; Zhang et al., 2016c), glebargy budget (Vanniere et al., 2019)
and orographic winds (Roebber et al.,, 2004). Byhgishe WRF model with horizontal
resolutions of 2, 10 and 30 Km, Lin et al. (2018pwed that finer resolutions improved
biases over the Tibetan Plateau, in particularpfecipitation. A significant difference was
observed from 30 to 10 km of horizontal resolutisaggesting that approximately 10 km of
horizontal resolution represents a good comprofftigeet al., 2018).

The WRF-Chem model well reproduced tropospheri¢ kiéhtent, totatolumn CO and LMT
O3 content with a FB within the air quality model fmemance criteria, except for N@uring
the warm season. The highest column content fop, NEID and @ was observed over
Southeastern and Eastern Asia due to road traffdystries, power plants and biomass
burning (Streets et al., 2003; Kumar et al., 202agper et al., 2014), with 2015 recording
the highest fire activity season since 1997 (Huijre¢ al., 2016; Mead et al., 2018). In
contrast, the column NOQCO and @ values above regions of high terrain such as thetdn
plateau were lower than adjacent regions due tolithiked depth of the troposphere and
fewer emissions (Cooper et al., 2014).

In this study, WRF-Chem captured the seasonal hiitia of tropospheric N@ content
values with a summer minimum and a winter maximdime winter maximum is due to a
lower removal rate of NOwith OH radicals, compared to summer (Beirle et2003). The
large NQ overestimation was observed during winter andrantover polluted regions with
abundant anthropogenic N@missions, such as road traffic and power planigragiously
reported e.g. in Europe (Barten et al., 2019; Visseal.,, 2019). These results are in
agreement with prior studies that found WRF-Chemrestimating tropospheric N@ontent

in urban areas such as London, Madrid, Rome amties of Eastern Europe by 5-48in
urban areas (Barten et al., 2019; Visser et al9P@espite they adopted a different chemical
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mechanism (i.e., CBM-Z)The NQ emissions from microbial activity and lightninghieh
were not considered in our emission inventory,iamgortant during summer in rural areas of
Southeastern Asia (Kumar et al., 2012a). The lardissrepancies (underestimation) during
spring and summer point to uncertainties in biomasing, lightning and soil emission
estimates (Kumar et al., 2012a; Barten et al., 2@h@ another plausible reason is the,NO
removal overestimation through the reaction oftdigien pentoxide (pDs) to nitric acid in
the WRF-Chem chemical mechanism (Yegorova et &11p The discrepancies in NO
concentrations can be also explained by no yeaustdgnts for EDGAR-HTAP
anthropogenic emission data (based on year 20mOparticular in China. Kumar et al.
(2012a) showed that the discrepancies in anthropoganission estimates were mainly due
to uncertainties in the emissions inventory (emisgactors and socio-economic parameters).
Prior studies have found that, over South Asia, WRIEM tends to overestimate NO
tropospheric content from OMI retrievals by 10-56%&r South Asia and up to 90% over the
Indo-Gangetic Plain region during winter (Kumaraét 2012a) with a correlation coefficient
between model and OMI ranging from 0.61 to 0.72008 (Kumar et al., 2012a). Over East
Asia, WRF-Chem underestimated the tropospherig &ttent by up to - 30.6% compared to
SCIAMACHY data in 2005 (Zhang et al., 2016b). As Nénissions display strong spatial
variation, we obtained a better spatial represemtaand simulations of NOlevels, by
increasing the model grid resolution, compared r@vipus studies at coarser scale e.g. at
20km of grid resolution (Schaap et al., 2015; Badeal., 2019; Visser et al., 2019).

The seasonal variation of the total column CO i#f veproduced by WRF-Chem with highest
and lowest values during late autumn-winter andream(monsoon), respectively. In general,
both the model and MOPITT were highest during winteecreased during spring, attained
minimum levels during summer and increased agaimgwutumn. MOPITT CO retrievals
over South and Southeast Asia were slightly underated by WRF-Chem in spring,
between March and May, when biomass burning camssitthe major fraction of total CO
emissions (Amnuaylojaroen et al., 2019), suggestiag CO emissions from biomass burning
is slightly underestimated. Over South Asia, the FAGhem model similarly estimated
MOPITT column CO retrievals by - 9.0% to + 7.0% idgrall seasons with a r value from
0.63 to 0.84 for the year 2008 (Kumar et al., 20E2al by - 24.2% to + 3.9% over East Asia
in 2005 (Zhang et al., 2016b). The annual meanritantion of biomass burning to the total
CO emissions was around 24% over Asia (Street,e2(03). The slight overestimation of
CO retrievals during other seasons (low fire atfjviindicated that anthropogenic CO
emissions are overestimated over this region (Zhetngl., 2016a). A better treatment of
biomass burning sources and improved boundary tondiof CO (e.g. for transboundary
inputs, in particular from wildfires, biomass burgiand transport) are needed to improve the
performance of the total column CO.

The seasonality of LMT ©content is well reproduced by WRF-Chem by capturine
increase in @burden during the warm season, with a spring marin{Sicard et al., 2009;
Kumar et al., 2012a; Cooper et al., 2014). Eas@rma and Northern India are two main
pollution sources, emitting significant amountd\®d,, CO and VOCs (Wang et al., 2010) in
winter and autumn (cold period) leading to the bgfhLMT O in spring and summer
(Cooper et al., 2014). Furthermore, the relativegh biogenic NMVOC emissions and active
photochemical reactions constitute favorable caonkt for Q formation in summer (Sicard
et al., 2016b). The WRF-Chem overestimation of mpbgenic NQ and CO emissions led to
a model overestimation of surfacg €bncentrations in winter (13%) and autumn (11%), i
particular in South Asia and Eastern China. A prasistudy employing an offline regional
model showed an overestimation of Il®vels during summer over India (Roy et al., 2008
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reported here, the regional models generally urstienate mean ©concentrations during
high O; seasons and overestimate mearc@centrations during low{3easons (Fiore et al.,
2009; Huang et al., 2017). The differences in agbgenic NQ, CO and VOCs inventories
are the dominant factors for the discrepanciesnmulsited Q levels, as already reported in
China and Southeast Asia (Ma and van Aardenne,;28@#huaylojaroen et al., 2014). The
slight mean bias of LMT © for spring 2015 (3%) entails among other the airre
representation of the seasonal variations of spderic Q intrusions to the upper
troposphere. The over-prediction of @d under-prediction of NOn all months indicated
an insufficient titration of @by NO (Zhang et al., 2016b). In Southern India Sodtheastern
Asia, below 30°N latitude, the summer is domindtgctloudy conditions and heavy rainfall
due to monsoon leading to loweg @vels by reducing the photochemical productiorOgf
(e.g. Roy et al., 2008; Kumar et al., 2012a). TlBer&nged from - 16% to 0% over South
Asia in 2008 (Kumar et al., 2012a) with larger éiffnces during spring and early summer,
mainly due to additional £precursor sources (e.g. biomass burning).

High AOD were observed over desert regions dueiteral dust (e.g. Goby) and over areas
with large anthropogenic aerosol emissions, eslhedtast and South Asia (Shindell et al.,
2013). As EDGAR does not provide black and orgazadbon and Pl emissions, and
GOCART does not include secondary organic aerasaidrate aerosols, an under-prediction
of aerosol burden is observed in Asia, in particidavinter (Zhong et al., 2016; Zhang et al.,
2016a; Crippa et al., 2019). The overestimationAOGD over Eastern China, South and
Southeastern Asia in spring and summer, were maioly to over-predictions in Pl
concentrations because of dust emissions (Shiedlell., 2013; Zhang et al., 2016&@ver
East Asia, the differences between model-simulatetl MODIS-based AOD ranged from -
38.7% to + 5.6% in 2005 (Zhang et al., 2016b).

Considering the performances of WRF-Chem for repcody atmospheric chemistry at
ground-level, the recommended benchmarks propogdddsris et al. (2005), Boylan and
Russell (2006) and Emery et al. (2017) for the dnehmodel performance is FB within £
15% for Q and NQ if r is greater than 0.5. By comparing the WRF-@heodel outputs
with ground-based observations, overall the WRFrCmeodel reproduced well the mean
annual cycle of surfacesOPM, sandPM;p, mean concentrations at regional scale in 2015, in
particular during the cold season. Furthermore,nioglel well reproduced the NQ@itration
over the polluted Eastern China. The WRF-Chem moolarestimated surface 30
concentrations during the warm period, when plamés active, then a part of the observed
bias can be explained by (i) a poor parameterigabiodry deposition to vegetation in the
Noah Land Surface Model, leading to an underesiomaif dry deposition velocities (Wu et
al., 2011), then to a reduction of thg @moval capacity by plants; and by (ii) the under-
prediction of cloud optical depth and overestimatid photolysis rates by WRF (Ryu et al.,
2018). However, when the correlations were computedh the average of individual
stations, the performances were much poorer. Nesleds, this result was partially expected
being an intrinsic characteristic of regional madéh other words, a regional CTM (even at
high spatial resolution) is not able to reproducell wemporal variation of local urban
observations because of the lack of detailed lagalts (both emission inventories and
removal processes). Besides, it should be notedRE-Chem was forced with annual mean
anthropogenic emissions, thus it is hard to repredhe high frequency temporal variability
of observations, especially in urban environmertigchy are extremely dynamics and poorly
controlled by natural processes.

5. Conclusions
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In this study WRF-Chem was applied at high spa&ablution (8-km) over Asia for the year
2015, to allow resolving fine-scale features ovemplex topography areas (e.g. Indo-
Gangetic Plain region). As we did not use nudgmg, results enhance the reliability of this
study and the ability of the model to capture sp&mporal variation of physical and
chemical variables. Overall model skills in simirigtsurface meteorological and air quality
were higher than those showed in previous studiegsing on the same region where the
model was applied at coarser spatial resolutiorthig study, the mean bias ranges are lower
than Zhang et al. (2016b) e.g. [- 1.51 °C; + 0.@ ¥s. [- 1.0 °C; + 1.5°C] for air
temperature, [- 0.05 mm/day; + 0.27 mm/day] vs.(02 mm/day; + 1.7 mm/day] for
precipitation; [- 4.5 %; - 1.5 %] vs. [+ 0.4 %; B.2%)] for relative humidity and [- 7 %; + 8
%] vs. [- 24.2 %; + 3.9 %] for column CO retrievalhe better observed performance is
mainly due to the advantage of the finer model iapaésolution. WRF-Chem simulation
showed low to moderate biases for major meteorcédgiariables, except for sensible heat
where a large bias (16-19 W3nis observed during the warm period. Furthermtre results
indicate some limitations in parameterization, sastthe cumulus Tiedtke scheme leading to
precipitation overestimation over widely-varyingntate and topography regions e.g. high-
elevation Tibetan plateau, Indo-Gangetic Plainae@nd Southeastern Asia.

The WRF-Chem reproduced well the overall spatial s@asonal variability of £ CO and
AOD over the Asian region, but large discrepaneiese found for N@ during the warm
period. The observed bias between model-simulatetl satellite-retrieved values were
mainly attributed to uncertainties in satellite rietals, vertical and horizontal model
resolution, bottom-up emissions, anthropogenic @atdral NQ emission estimates (e.g. by
lightning and soil), dust and PJM emission, stratosphere-to-troposphere &xchange,
transboundary pollution, low NO titration and urteerty in NOs and nitrate radical
reactions in the WRF-Chem chemical mechanism (Yegoret al., 2011; Li et al., 2014;
Parrish et al., 2014; Huang et al., 2017; Sicardlet2017; Zhang et al., 2016a; Mu et al.,
2017).

For any application of models results, includinjatde air pollution risk assessment, the
generation of realistic maps is needed, particplavier highly complex terrain of Northern
India (Indo-Gangetic Plain) where air quality isopo(Kumar et al., 2012a). Regional
chemistry-climate models at coarse horizontal tggwi are often unable to resolve the local
features influencing the chemical transformatiore (&t al., 2010; Huang et al., 2017) and
barely able to fully reproduce the ground obseoreti(Schaap et al., 2015; Jonson et al.,
2018) in particular at high-elevation sites (Stretlal., 2015). To date, the most damaging air
pollutant for vegetation and human health agead PM (Sicard et al., 2016a, 2019). In this
study, WRF-Chem model reproduced well the spatidlseasonal variability of surface NO
O3, PMps and PM;; mean concentrations across China, following theomemended
benchmarks for the chemical model performance fgra@d NQ. However, our results
suggest that it is essential to improve the emissistimates of primary PM (e.g. new dust
emission scheme) and NQ@e.g. adjusted anthropogenic emission and vertstibution)
and upgrade chemical mechanisms e.g. Polycyclionatic Hydrocarbon heterogeneous
reactions with @and homogeneous reaction with the nitrate radiicalder to reduce bias in
simulating the surface £and PM concentrations over Asia (Zhang et al.6B0Mu et al.,
2017).
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1210

1211

1212

1213

Model set-up Values

Domain South-East Asia

Simulation period 1 January - 31December 2015
Spin up 26 December - 31December 2014

Horizontal resolution
Vertical resolution
Domain size
Meteorological boundary
Chemical boundary

8 km

30 eta levels up to 50 hPa

780 x 690 cells (lon x lat)

ERAS5 (31 km), 3h
MOZART-4/GEOS-5

Physical option

Adopted scheme

Microphysics

Cumulus Parameterization
Shortwave Radiation
Longwave Radiation
Land-surface

Planetary boundary layer

Single-moment 6—class
New Tiedtke

RRTMG

RRTMG

Noah Land Surface Model
Yonsei University Scheme

Chemical options

Adopted scheme

Gas phase chemistry
Aerosols

Photolysis

Biogenic emissions
Anthropogenic emissions
Fire emissions

MOZART
GOCART
Madronich F-TUV
MEGAN
EDGAR HTAP (v2.2)
FINN (v1.5)

Table 1.Model set up with main physical and chemical scheatopted in the simulation.
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1215
1216
1217
1218

1219
1220

1221

1222

Table 2. Pearson’s correlation coefficient (r) and mean @a®del-reference) computed
using WRF results and different reference dataeetsurface air temperature, precipitation,
relative humidity, latent heat, sensible heat amalxscover fraction. Note that reference data

were re-gridded to the WRF domain; in addition ttwdscale temperature we used a dry
adiabatic lapse rate correction.
Pearson’s correlation coefficient .
Mean bias
VARIABLE REFERENCE ("
JM AMJ JAS  OND JM AMJ JAS OND
TEMPERATURE ERA5 099 099 099  0.99 151 -042 007 -0.68
(*C) CRU 098 099 099  0.99 182 082 -020 -1.20
PRECIPITATION ERA5 080 090 091 088 0.04 015 027 -0.05
(mm/day) CRU 073 084 084 081 025 074 068 021
RELATIVEE FUMIDITY ERA5 099 099 099  0.99 15 -31 45  -40
(%) CRU 095 096 097  0.96 21 110 120 27
UATENT HEAT ERA5 092 094 095 094 20 05 26 -024
2
(W/m°) MTE 095 097 097 0095 30 63 132 46
SENSIBLE HEAT ERA5 088 094 093 087 12 164 194 22
2

(W/m°) MTE 082 093 091 087 28 79 115 15
SNOW COVER FRACTION  ERAS 095 084 074  0.89 30 -32 09 2.7
(%) MODIS 092 089 077 092 06 02 -008 -17

JFM:  January-February-March, AMJ:

November-December.

April-May-June, JAS. July-August-September, OND: October-
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1223  Table 3. Pearson’s correlation coefficient (r) and fractiomias computed using WRF-Chem
1224  results and different reference datasets for serfatrogen dioxide (Ng), aerosol optical
1225 depth (AOD), ozone (§) and carbon monoxide (CO) concentrations.

Pearson’s correlation
VARIABLE REFERENCE coefficient ()
JFM AMJ JAS OND JFM  AMJ JAS OND

Fractional bias

NO, OMI 091 0.89 0.90 0.89 2%  -64% -70% -8%
CO MOPITT 0.97 0.97 096 0.97 1% 1% 8% 3%
03 IASI 0.76 0.61 0.99 0.43 13% 3% % 11%
AOD MODIS 0.93 088 086 091 -19% 6%  20% 2%
1226 JFM: January-February-March, AMJ: April-May-June, JAS. July-August-September, OND: October-
1227 November-December.
1228
1229

29



1230 Table 4. Pearson’s correlation coefficient, mean bias armdtional bias computed using
1231  WRF-Chem daily results at surface layer and groomehsurements for surface nitrogen
1232  dioxide (NQ), ozone (@), particulate matters (PM and PMg) concentrations; results
1233 represent the mean computed over all the avaiktbt®ons.

1234
Pearson’s Fractional bias
VARIABLE correlation Mean bias
coefficient (r) JFM AMJ JAS OND
NO, 0.29 10.1 ppb 38% 35% 42% 45%
O, 0.51 5.0 ppb -8% 23% 24% -14%
PM, s 0.44 10.4 ugfﬁ 5% 20% 36% 23%
PM 1o 0.35 14.8 pug m 5% 11% 29% 24%
1235 JFM:  January-February-March, AMJ: April-May-June, JAS. July-August-September, OND:
1236 October-November-December.
1237
1238
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1239

1240

1241  Figure 1. Spatial pattern of 2-meter air temperature (°Cyiasulated by WRF-Chem (left
1242  panels) and compared to ERA5S reanalysis (centnaglppand CRU dataset (right panels)
1243  during different seasons (JFM: January-FebruaryellaAMJ: April-May-June, JAS: July-
1244  August-September, OND: October-November-December2G15. Mind the differences in
1245  color scales between seasonal climatologies.
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1246 e

1247  Figure 2. Spatial pattern of precipitation (mm/day) as sirtedaby WRF-Chem (left panels)
1248 and compared to ERAS5 reanalysis (central paneld) @RU dataset (right panels) during
1249  different seasons (JFM: January-February-March, AMaril-May-June, JAS: July-August-

1250 September, OND: October-November-December). Mind tlifferences in color scales
1251  between seasonal climatologies.

1252
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HIE HE t20E 6OE 90E 120E BOE WE 120€

Figure 3. Spatial pattern of 2-meter relative humidity (%)sasulated by WRF-Chem (left
panels) and compared to ERAS5 reanalysis (centnaélppand CRU dataset (right panels)
during different seasons (JFM: January-FebruaryeMaAMJ: April-May-June, JAS: July-
August-September, OND: October-November-Decembiind the differences in color
scales between seasonal climatologies.
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120E

Figure 4. Spatial pattern of surface latent heat (W/m?) asukited by WRF-Chem (left
panels) and compared to ERAS reanalysis (centnaélppand CRU dataset (right panels)
during different seasons (JFM: January-FebruaryeMaAMJ: April-May-June, JAS: July-
August-September, OND: October-November-December).
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1264

1265  Figure 5. Spatial pattern of surface sensible heat (W/m%iamilated by WRF-Chem (left
1266  panels) and compared to ERA5S reanalysis (centnaglppand CRU dataset (right panels)
1267  during different seasons (JFM: January-FebruaryellaAMJ: April-May-June, JAS: July-
1268  August-September, OND: October-November-December).
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1269

1270  Figure 6. Seasonal spatial pattern of snow fractional cq¥@ras simulated by WRF-Chem
1271  (left panels) and compared to ERA5 (center paraats) MODIS data (right panels) during
1272  different seasons (JFM: January-February-March, AMaril-May-June, JAS: July-August-
1273  September, OND: October-November-December).
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Figure 7. Spatial distributions of WRF-Chem simulated and ©Mtrieved tropospheric NO
content (x 16° molecules/cm?) during different seasons (JFM: JamBEabruary-March,
AMJ: April-May-June, JAS: July-August-September, DNDctober-November-December).
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Figure 8.Comparison of WRF-Chem simulated total CO columthwiOPITT data (x 18

molecules/cm?) during different seasons (JFM: JanEkabruary-March, AMJ: April-May-
June, JAS: July-August-September, OND: October-Nter-December)The WRF-Chem
simulated CO are quite discontinuous due to cosps#ial resolution of MOPITT data (1x1

deg) to compute WRF total column.
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Figure 9. Spatial tropospheric column ozone (Dobson Unit, Didjegrated between the
surface and the tropopause, according to the WRChmodel (left panels) and IASI-
GOME2 satellite retrievals (right panels) durindfetent seasons (JFM: January-February-
March, AMJ: April-May-June, JAS: July-August-Septaen, OND: October-November-
December).
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1296  Figure 10. Comparison of simulated aerosol optical depth étisionless) with MODIS data
1297  during different seasons (JFM: January-FebruaryellaAMJ: April-May-June, JAS: July-
1298  August-September, OND: October-November-December).
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1300

1301  Figure 11. Spatial distributions of surface NQoncentrations (in ppb) simulated by the
1302  WRF-Chem model (background) and from air qualitynitaring stations (dots) across China
1303  in 2015 during different seasons (JFM: January-katyrMarch, AMJ: April-May-June, JAS:
1304  July-August-September, OND: October-November-Deainb

1305

1306
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1308  Figure 12.Spatial distributions of surfaces@oncentrations (in ppb) simulated by the WRF-
1309 Chem model (background) and from air quality maiitp stations (dots) across China in
1310 2015 during different seasons (JFM: January-Fepsirch, AMJ: April-May-June, JAS:
1311 July-August-September, OND: October-November-Deainb
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1315

1316  Figure 13. Spatial distributions of surface BMconcentrations (in pg M simulated by the
1317  WRF-Chem model (background) and from air qualitynitaring stations (dots) across China
1318 in 2015 during different seasons (JFM: January-atyrMarch, AMJ: April-May-June, JAS:
1319  July-August-September, OND: October-November-Deainb
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1322

1323 Figure 14. Spatial distributions of surface RMconcentrations (in pg ™ simulated by the
1324  WRF-Chem model (background) and from air qualitynitaring stations (dots) across China
1325 in 2015 during different seasons (JFM: January-atyrMarch, AMJ: April-May-June, JAS:
1326 July-August-September, OND: October-November-Deainb

1327
1328

1329

44



Highlights

The WRF-Chem model was applied over Asiain 2015 at 8-km horizontal resolution
The outputs were evaluated against satellite and ground-based observations in Chinain 2015

WRF-Chem reproduced well the spatio-temporal patterns for meteorological and chemical
variables

WRF-Chem reliable tool for air pollution risk assessment to human and ecosystems health
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