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Abstract ���

The representation of air quality and meteorology over Asia remains challenging for chemical ���

transport models as a result of the complex interactions between the East Asian monsoons and ���
the large uncertainty (in space and time) of the high anthropogenic emissions levels over the ���
region. High spatial resolution models allow resolving small-scale features induced by the ���
complex topography of this region. In this study, the Weather Research and Forecasting �	�

model with Chemistry (WRF-Chem) was used to simulate the spatial and seasonal variability �
�
of main physical and chemical variables over Asia for the year 2015 at 8-km horizontal ���
resolution to enable resolving small-scale features induced by the region complex topography. ���
The simulated atmospheric composition was evaluated against satellite retrievals (MOPITT, ���

IASI+GOME2, MODIS and OMI) in addition to ground-based observations in China for the ���
year 2015, while the meteorological variables were evaluated by several observational-based ���
datasets (ERA5, CRU, MODIS, MTE). Results showed low to moderate seasonal biases for ���
major meteorological variables, i.e. air temperature, relative humidity, precipitation, latent ���

heat, sensible heat and snow cover fraction. Overall, WRF-Chem reproduced well the spatial ���
and seasonal variability of lowermost tropospheric ozone content, total column carbon �	�
monoxide and aerosol optical depth, while large discrepancies were found for tropospheric �
�
nitrogen dioxide content, mainly during the warm season. In consistency with previous ���
studies, the different biases between model-simulated and satellite-retrieved values can be ���

mainly attributed to i) the large uncertainties in anthropogenic and natural nitrogen oxides ���
emission estimates, as well as dust and sea salt emissions in the case of aerosol optical depth, ���
and ii) some coarse parameterizations used to reproduce main small-scale features (e.g. ���
meteorology, chemical processes, dry deposition to vegetation). Compared to ground-based ���

observations, the WRF-Chem model reproduced well the mean annual cycle of surface ���
nitrogen dioxide, ozone and fine particles concentrations in all seasons across China. Our ���
results suggest that WRF-Chem provides reliable spatio-temporal patterns for most of the �	�
meteorological and chemical variables, adding thus confidence to its applicability in the �
�

context of air pollution risk assessment to human and ecosystems health. ���

Keywords: Asia, satellite, regional climate model, remote sensing, WRF-Chem ���
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1. Introduction ���

China and India are the two most populous countries of the world (~ 2.8 billion people) and ���
have experienced a rapid growth in industrial, transportation, urbanization and agricultural ���
activities in recent years (Kumar et al., 2015; Zhang et al., 2016a). This explosive economic ���
growth has significantly increased anthropogenic emissions of several trace gases and ���
aerosols over Asia in the last decades (Kumar et al., 2015; Zhang et al., 2016b; Lefohn et al., �	�
2017), with China becoming the largest emitter of air pollutants worldwide (Liu et al., 2015; �
�
Quéré et al., 2015; Boden et al 2017; Wang et al., 2017a).  ���
 ���
The increasing air pollution levels pose health risks to billions of people (Zhong et al., 2016): ���
in fact, in major metropolitan agglomerations across Asia (e.g. Bangladesh, China, India and ���
Nepal) surface ozone (O3) concentrations regularly exceed the ambient air quality standard of ���
100 ppb as hourly value (Wang et al., 2017a), while annual PM2.5 concentrations exceed 100 ���
� g m�3  (Zhang and Cao, 2015; Venkataraman et al., 2018). These high levels of air pollutants ���
produce acute and chronic effects on population including premature mortality due to cancer, ���
respiratory and cardio-vascular diseases (Lelieveld et al., 2015; Liu et al., 2016; Cohen et al. �	�
2017; Krishna et al., 2017; Burnett et al., 2018) and reduced life expectancy (Apte et al., �
�
2018). In addition, forests and crops are remarkably affected by high pollution levels: in ���
particular, effects on plants include, among others, yield (Tang et al., 2013; Tai et al., 2014; ���
Sicard et al., 2016a; Tian et al., 2016; Feng et al., 2019) and biomass decline (Wittig et al., ���
2009; Feng et al., 2015; Li et al., 2017). Krishna et al. (2017) estimated that air pollution ���
contributes to 13-22% of all deaths in South Asia. Other studies showed that for the year 2015 ���
air pollution led to 4.5 million premature deaths and more than half occurring in China and ���
India (Landrigan et al., 2017; Giani et al., 2020), with fine particulate matters (PM2.5) causing ���
around 1 million premature deaths every year (Cohen et al., 2017; Li et al., 2018; Burnett et ���
al., 2018).  �	�
 �
�
For these reasons, monitoring of air quality plays a pivotal role to preserve human and ���
ecosystem health; in this regard, in 2013, the State Council of China issued the Air Pollution ���
Prevention and Control Action Plan (Wang et al., 2018), while India introduced policies and ���
National Clean Air Programme (Sagar et al., 2016) to provide a framework for air quality ���
monitoring in order to mitigate the air pollution and attain air quality standards (Sagar et al., ���
2016; Goldemberg et al., 2018; Wang et al., 2018). In addition to surface measurements, ���
chemical transport models (CTMs) represent a valuable tool to predict formation/removal of ���
air pollutants and their transport, and provide air quality information over remote regions or ���
scarcely populated areas where measurements are not available (Sicard et al., 2017). �	�
However, before providing any assessment of impact of air pollution on human and �
�
vegetation health, it is mandatory assessing how well models perform in reproducing the 	��
spatio-temporal variability of both physical and chemical variables.  	��
 	��
In general, regional CTMs have been found able to reproduce observed spatial pattern of air 	��
pollutants and their seasonal changes (Spiridonov et al., 2019; Li et al., 2018; Liu et al., 2018) 	��
in both North America and Europe (discussed below). However, regional chemistry models 	��
still reproduce poorly the observed spatial pattern of main air pollutants over the Asian region 	��
because of (i) complex landscape ranging from high elevations of Himalayan plateau to 	��
megacities of Easter China; (ii) large uncertainties in removal of trace gases through dry 		�
deposition to vegetation associated to a mosaic land cover (Monks et al., 2015), ranging from 	
�
tropical rainforest to boreal forest and semi-arid or desert area; (iii) widely-varying climate 
��
system characterized by a summer monsoon system and (iv) large uncertainties in 
��
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anthropogenic emissions (e.g. Amnuaylojaroen et al., 2014; Jena et al., 2015). Consequently, 
��
remote sensing data represent a unique opportunity to evaluate the spatio-temporal 
��
distribution of air pollutants simulated by regional CTMs (Tuccella et al., 2012; Crippa et al., 
��
2016, 2017; Georgiou et al., 2018; Crippa et al., 2019). China adopted in 2012 the Ambient 
��
Air Quality Standard for human health protection, and started reporting hourly observations of 
��
main air pollutants from about 1,500 monitoring stations at countrywide (MEP, 2012). These 
��
monitoring stations offers an unprecedented way to evaluate model-simulated surface 
	�
concentrations of air pollutants. 

�
 ����
The coupled Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) ����
model is widely used for regional air quality simulation worldwide and validated against ����
ground-based observations, e.g. over North America (McKeen et al., 2005; Chuang et al., ����
2011; Archer-Nicholls et al., 2014; Yahya et al., 2015; Zhang et al., 2017), Europe ����
(Schürmann et al., 2009; Solazzo et al., 2012; Tuccella et al., 2012; Ritter et al., 2013; ����
Karlický et al., 2017; Werner et al., 2017; Spiridonov et al., 2019; Visser et al., 2019) and ����
South or East Asia (Tie et al., 2007; Kumar et al., 2012a,b; Gao et al., 2014; Zhong et al., ����
2016; Zhang et al., 2016; Sharma et al., 2017; Li et al., 2018; Xu et al., 2018; Reddington et ��	�
al., 2019). �A few studies reported the WRF-Chem performances over East Asia (Zhang et al., ��
�
2016; Zhong et al., 2016) and South Asia (Kumar et al., 2012a,b; Sharma et al., 2017) for air ����
pollutants and meteorology, however the coarse resolution and lack of ground observations ����
limit the model skill to reproduce small-scale processes (e.g. Crippa et al., 2017; Chen et al., ����
2019). In this regard, the new generation of high spatial resolution reanalysis offers a unique ����
opportunity to run CTMs at very high spatial resolutions over the South-East Asia.  ����
 ����
The aim of this paper is to conduct a WRF-Chem simulation of meteorological fields and air ����
pollutants, and evaluate the model performance over a large area covering India and China. ����
The novelty is related to the availability of ground observations in China to validate the WRF-��	�
Chem outputs. Therefore, we performed the simulations at fine resolution to allow the model ��
�
to reproduce well the local variability of climatic and chemical parameters. Despite ground-����
based observations are amongst the most accurate and reliable datasets to evaluate regional ����
climate models, the lack of spatial representativeness of air quality monitoring stations ����
(Beelen et al., 2009; Sicard et al., 2016b) limits the model evaluation to the regions covered ����
by data. To overcome this gap in spatial heterogeneity, and assess the ability of the WRF-����
Chem model to reproduce regional patterns of trace gases, we firstly compare simulated data ����
with satellite-based measurements; successively, we use recent ground observations across ����
China to validate surface concentrations of air pollutants. ����
 ��	�
2. Materials and Methods ��
�

2.1. WRF-Chem model ����

The WRF model is a limited-area, non-hydrostatic, terrain-following eta-coordinate ����
mesoscale model (Skamarock et al., 2008). This model has been further developed to include ����
various gas-phase chemistry and aerosol mechanisms creating the coupled chemistry-climate ����
WRF-Chem model (Grell et al., 2005). The WRF model system offers multiple options for ����
various physical packages (Skamarock et al., 2008). The dynamical core used in this work is ����
the Advanced Research Weather Research and Forecasting model (Tab. 1); we used a single-����
moment 6-class scheme to resolve the microphysics (Hong et al., 2006) and the Rapid ����
Radiative Transfer Model for GCMs (RRTMG) for the shortwave and longwave radiation ��	�
(Iacono et al., 2008). Convective precipitation and cumulus parameterization were resolved ��
�
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with the new Tiedtke scheme (Zhang et al., 2011), the planetary boundary layer computations ����
were performed using the nonlocal K-profile Yongsei University parameterization (Hong et ����
al., 2006), while the exchange of heat, water and momentum between soil-vegetation and ����
atmosphere was simulated by the Unified Noah Land Surface Model (Chen and Dudhia, ����
2001).  ����
 ����
Similarly to physical parameterizations, many different gas phase chemistry and aerosol ����
options are available in WRF-Chem. Gas-phase chemical reactions are calculated using the ����
chemical mechanism MOZART (Model for OZone And Related chemical Tracers) (Emmons ��	�
et al., 2010) whereas for the aerosols, to reduce the computational cost, we used the GOCART ��
�
(Global Ozone Chemistry Aerosol Radiation and Transport) bulk aerosol approach (Chin et ����
al., 2000). This set-up includes 85 gas-phase species, 12 bulk aerosol compounds, 39 ����
photolysis and 157 gas-phase kinetic reactions.  ����
 ����
Anthropogenic emissions are based on the EDGAR-HTAP (Emission Database for Global ����
Atmospheric Research for Hemispheric Transport of Air Pollution) global emission inventory ����
which includes diurnal cycle of emissions of gaseous pollutants such as SO2, NOx, CO, non-����
methane volatile organic compounds (NMVOCs) and NH3 as well as black carbon and ����
particulate matter from the following source sectors: aviation, shipping, agriculture, power ��	�
generation, industrial non-power, land transport and residential energy use (Janssens-��
�
Maenhout et al., 2015). This dataset is available at 0.1°×0.1° horizontal resolution for the year ����
2010, with no year adjustments. Fire emissions are provided using the FINN (Fire INventory ����
from NCAR) inventory (Wiedinmyer et al., 2011). This dataset provides estimates of trace ����
gases and particles emitted by open biomass burning at ~1 km resolution (Wiedinmyer et al., ����
2011). Biogenic emissions are calculated online using the MEGAN (Model of Emissions of ����
Gases and Aerosols from Nature) model (Guenther et al. 2012), dust emissions are estimated ����
online using the GOCART model (Ginoux et al., 2001), whereas sea-salt emissions are ����
calculated using the method by Gong (2003). Anthropogenic dust emissions (e.g. re-����
suspended road dust) are not included.  ��	�
 ��
�
In addition, MOZART-4/Goddard Earth Observing System Model version 5 (GEOS-5) data ����
were used for chemical and aerosol boundary conditions. The MOZART-4 data is a model ����
outputs dataset available at a horizontal grid resolution of 1.9°×2.5° every 6 h and is driven by ����
the National Aeronautics and Space Administration (NASA). The initial and boundary ����
meteorological conditions (including time varying sea surface temperature), required to run ����
the model, are provided by the European Centre for Medium-range Weather Forecast ����
(ECMWF) re-analysis project ERA5, with a horizontal resolution of about 31 km every 3 ����
hours.������
���	�
In this study we used WRF-Chem (v3.9) to simulate meteorology and air quality from 20th ��
�
December 2014 to 31st December 2015 using the first 10 days as spin up.�We conducted a �	��
fully free running simulation (i.e. without nudging) for the entire year 2015. The model �	��
domain is projected on a Lambert conformal grid (780 x 690 grid cells) with a horizontal grid �	��
resolution of 8 km with 30 vertical levels extending from the surface up to 50 hPa. A �	��
synthesis of parameterizations and input data used in this study is given in Tab. 1. �	��
  �	��

2.2. Datasets for model evaluation �	��

To evaluate the spatio-temporal patterns of simulated surface air temperature, relative �	��
humidity and precipitation, we compared model results against Climatic Research Unit (CRU) �		�
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observed data, a monthly high-resolution (0.5°×0.5°) gridded dataset over land areas (Mitchell �	
�
and Jones, 2005). In addition to CRU, which can be regarded as an independent dataset, for �
��
the evaluation of physical variables, we also compared simulated data against the boundary �
��
conditions used to drive the model (i.e. ERA5); this allows assessing if a bias has been �
��
introduced into the model by its forcing (Mooney et al., 2013) or is mainly due to poor �
��
representation of some physical processes within the model (Tang et al., 2017). In addition, in �
��
order to remove any possible bias in surface temperature related to the difference in �
��
topography between the coarse reference data and the finer model output, we downscaled �
��
both CRU and ERA5 temperature to our domain using a dry-adiabatic lapse. Sensible and �
��
latent heat fluxes were evaluated using the Machine Tree Ensemble (MTE) a 0.5° × 0.5° �
	�
gridded dataset (Jung et al., 2011) created by upscaling eddy covariance measurements �

�
collected around the world (Jung et al. 2009, 2011). This dataset has been widely employed to ����
evaluate the performances of land surface models, including NOAH-MP, a land surface ����
scheme often used within WRF (Ma et al., 2017). We used the Moderate Resolution Imaging ����
Spectro-radiometer (MODIS) product from the NASA Terra Satellite to evaluate the snow ����
cover fraction (Hall et al., 2010); this dataset provides monthly data with a resolution of 0.05° ����
x 0.05° (Hall and Riggs, 2015). ����

We have evaluated the WRF-Chem simulations of NO2 concentrations against satellite ����
retrievals from the Ozone Monitoring Instrument (OMI), flying aboard NASA's EOS-Aura ����
satellite. This instrument measures the radiation backscattered by the Earth's atmosphere and ��	�
surface, and provides the daily global retrievals of several trace species and aerosols with a ��
�
spatial resolution of 13 km × 24 km at nadir (Boersma et al., 2011). To evaluate the ability of ����
the model to reproduce reliable spatial and seasonal NO2 estimates, we compared the ����
tropospheric NO2 content simulated by WRF-Chem with spatial resolution of OMI data ����
available from KNMI (Royal Netherlands Meteorological Institute). Similarly, the CO ����
amounts derived from the Measurement of Pollution in the Troposphere (MOPITT), flying ����
aboard the NASA EOS-Terra satellite, are compared with WRF-Chem. MOPITT measures ����
the thermal infrared (IR) radiation with a spatial resolution of about 22 km x 22 km; these ����
radiances are then used to retrieve CO mixing ratios profile and total column amounts (Deeter ����
et al., 2003). Here we used version 6 Level 3 MOPITT CO data from the thermal infrared ��	�
band (TIR) to evaluate the spatio-temporal patterns of total column content simulated by the ��
�
model.  ����

Tropospheric O3 distributions simulated by WRF-Chem were compared to those derived from ����
the IASI-GOME2 multispectral approach, combining Infrared Atmospheric Sounding ����
Interferometer observations in the IR and Global Ozone Monitoring Experiment-2 ����
measurements in the Ultraviolet (Cuesta et al., 2013, 2018). IASI-GOME2 has allowed the ����
first satellite observation of the horizontal distribution of O3 pollution plumes located below 3 ����
km of altitude, and also quantified the photochemical production of lowermost tropospheric ����
(LMT) O3 across East Asia. This method is based on measurements from two instruments ����
onboard the MetOp satellite series since 2006 that offer global coverage every day with a ��	�
relatively fine ground resolution (12 km x 25 km for IASI at nadir and 80 km x 40 km for ��
�
GOME-2). In this analysis, we have evaluated the LMT O3 content integrating between the ����
surface and 3km height. ����

For the evaluation of aerosols simulations, we used aerosol optical depth (AOD) data at a ����
wavelength of 550 nm derived from the MODIS instruments onboard the Terra and Aqua ����
satellites. Level-2 MODIS Collection-6 data have a resolution of 10 × 10 km (at nadir). In this ����
analysis, we used the extinction coefficients simulated by WRF-Chem and extracted daily at ����
the satellite overpass time. ����
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In our evaluation, we accounted for the satellite retrieval sensitivity by smoothing WRF ����
vertical profiles with satellite averaging kernels (Kumar et al., 2012a). In the case of O3, the ��	�
IASI+GOME2 averaging kernel AIASI+GOME2 and a priori O3 profiles Xapriori used by ��
�
IASI+GOME2 were then applied to the WRF-Chem O3 profile Xint (interpolated over the ����
IASI+GOME2 vertical grid) to obtain smoothed WRF-Chem O3 profile accounting for the ����
satellite retrieval sensitivity, as classically done with the equation: ����

XWRF-Chem (O3)
smoothed

 = Xapriori + AIASI+GOME2 [X int - Xapriori]   (1) ����

A similar procedure was used to transform the modeled CO profiles using MOPITT averaging ����
kernels and a priori profiles (Kumar et al., 2012a). For transforming the WRF-Chem ����
simulated tropospheric NO2 content for comparison to OMI retrievals, the procedure requires ����
the user to calculate the transformed model profile (Ytrop) as: ����

Ytrop = A x 
���

��� ����
�	
 ���      (2) ��	�

where A is the total column averaging kernel, AMF and AMFtrop are the air mass factors for ��
�
the total columns and tropospheric columns, respectively, and Xtrop is the tropospheric vertical ����
profiles of NO2, simulated by WRF-Chem, interpolated to the OMI pressure grid (Kumar et ����
al., 2012a).  ����

Finally, hourly NO2, O3, PM2.5 and PM10 in-situ measurements were collected from 1497 air ����
quality monitoring stations across China (589 rural and 908 urban), after checking for data ����
quality. A minimum data capture of 75% was imposed to calculate seasonal mean ����
concentrations.  ����

2.3. Assessment of model performance ����

The model performance was evaluated over different seasons (January-February-March, JFM; ��	�
April-May-June, AMJ; July-August-September, JAS; October-November-December, OND) ��
�
by using the Pearson’s correlation coefficient (r), mean bias (MB) and the fractional bias ����
(FB). The first metric allows estimating the correlation pattern, thus the spatial agreement ����
between model and observations. For physical parameters, the MB provides the absolute bias ����
of the model, with negative and positive values indicating respectively underestimation and ����
overestimation by the model while the FB (in %) is used for the chemical variables, as in this ����
case the absolute bias would be hard to interpret. The mean biases were computed pointwise ����
and then averaged over the whole domain:    ����
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with Obsij and Modij the observed and modeled values and Nj
obs the number of data at time i ��
�

and station j over the domain. These metrics were successfully used in several studies for ����
evaluating the performance of regional air quality models (e.g. Savage et al., 2013; Pope et ����
al., 2015; Im et al., 2015; Crippa et al., 2016; Ghim et al., 2017; Crippa et al., 2019). ����

In case of in-situ data, we extracted WRF-Chem results at the lowest model layer and, for ����
each station, we calculate the Pearson’s correlation coefficient to assess the ability of the ����
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model to reproduce the mean annual cycle and the mean bias to provide a measure model’s ����
error; in the following analysis results are presented as an average over all the stations. ����
 ����

3. Results ��	�

3.1. Evaluation of meteorological variables   ��
�

The general ability of the WRF model to reproduce realistic spatio-temporal patterns of most �	��
relevant physical and chemical variables is assessed by comparing simulated output with �	��
observational data averaged over different seasons for the reference year 2015. Looking at the �	��
surface air temperature, WRF well captures the observed spatial pattern with a decreasing �	��
south-north gradient and a cold area over the Tibetan plateau. In general, the spatial �	��
distribution of 2-m temperature during all the seasons was very similar to ERA5 and only �	��
slightly different from CRU (Fig. 1). The largest bias was observed during JFM, where the �	��
model was warmer than the reference data over the northern part of the domain and colder in �	��
most of western China, Vietnam, Laos, and Thailand (Fig. 1). In addition, large discrepancies �		�
were observed over the Tibetan plateau, where the coarse resolution of the datasets and the �	
�
sparse availability of local measurements could explain the mismatch. The large thermal �
��
heating occurring over the Indian region during spring and early summer (AMJ) is well �
��
captured by the model, which is a pre-requisite to correctly simulate the summer Asian �
��
monsoon. The high agreement in the spatial pattern is confirmed by the high spatial �
��
correlation ranging between 0.98 and 0.99 with respect to both ERA5 and CRU datasets, �
��
while the MB ranged from - 1.51°C in winter (JFM) to 0.07°C in summer (JAS) using ERA5 �
��
as reference, and from - 1.82°C in winter to - 0.20°C in summer when compared to CRU �
��
(Tab. 2). �
��
 �
	�
Unlike seasonal variations in surface air temperature, which are mainly determined by the �

�
insolation patterns, seasonal precipitation variations are strongly influenced by vertical ����
movement of air due to atmospheric instabilities of various kinds and by the flow of air over ����
orographic features; thus, to simulate accurately the seasonally varying pattern of ����
precipitation, models must correctly simulate a number of processes (e.g., evapotranspiration, ����
condensation, and transport) (Randal et al., 2007). The spatial distribution of seasonal mean ����
precipitation from model and reference data (ERA5 and CRU) is depicted in Fig 2. In general, ����
the model was able to capture the major convective centers as in the observations. WRF ����
overestimated the precipitation over the Himalayan region in JFM and over eastern China in ����
AMJ, nevertheless, it is important to note that WRF resolved the finer details of orographic ��	�
precipitation along the Himalayan foothills, which were missing both in ERA5 because of its ��
�
coarser resolution and in CRU due to the lack of widespread measurement stations��Besides, ����
WRF well reproduced the main monsoon features. The relevant thermal heating occurring ����
during AMJ over the Indian peninsula results in a pressure gradient with lows over the ����
landmasses and highs over the colder ocean, which causes a strong moisture advection from ����
the Bay of Bengal to Indian Peninsula leading to increased precipitation over South-East Asia ����
and the Indian landmass region during JAS. Looking at the spatial agreement, except for CRU ����
in winter (r = 0.73), the correlation coefficient exceeded 0.80 during all the seasons and for ����
both the datasets. The area averaged bias, with respect to the CRU observation, was 0.21-0.25 ����
mm/day during the cold periods (OND-JFM) and 0.68-0.74 mm/day during the warm periods ��	�
(AMJ-JAS), while compared to ERA5, WRF showed a slight wet bias during the warm ��
�
periods (+ 0.15-0.27 mm/day) and a slight dry bias (about - 0.05 mm/day) during the cold ����
seasons (Tab. 2). Large discrepancies (overestimation) were observed between 2-m relative ����
humidity and CRU observations over central Asia, Western China and India (Fig. 3) while an ����
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underestimation was observed over the western part of the domain compared to ERA5 during ����
JAS and OND. The spatial correlation ranged from 0.95 to 0.99 for both ERA5 and CRU ����
datasets. The WRF model underestimated the relative humidity with respect to ERA5 during ����
all the year, from - 1.5% in JFM to - 4.5% in JAS, and an overestimation was observed ����
compared to CRU dataset, in particular during the warm period with a MB of 11-12%.  ����
 ��	�
Looking at latent heat we found an overall good agreement between the WRF model and the ��
�
reference datasets (Fig. 4), with spatial correlation exceeding 0.92 for both datasets (Tab. 2). ����
Nevertheless, WRF remarkably overestimated surface latent heat during the warm seasons, ����
especially over South and Southeastern Asia, with the largest bias found in JAS and ranging ����
between 2.6 W/m² and 13.2 W/m² compared to ERA5 and MTE, respectively. This ����
overestimation was strictly related with the slight overestimation of rainfall during the same ����
season which brings more water on the land surface that can re-evaporate, subsequently ����
amplifying convective precipitation. Similarly, the sensible heat was well simulated with a ����
spatial correlation ranging from 0.82 in JFM for MTE dataset to 0.94 in AMJ for ERA5. ����
Compared to ERA5, WRF model overestimated the sensible heat during the warm period ��	�
(16.4-19.4 W/m²), in particular over the Western part of the domain, while a lower ��
�
overestimation is reported for MTE (7.9-11.5 W/m²) over the same season. In contrast during ����
JFM and OND, WRF model well reproduced the observed spatial patterns (Fig. 5) with a ����
slight underestimation in winter (- 1.2 and - 2.8 W/m²).  ����
 ����
Besides, WRF well reproduced the snow cover fraction, with a spatial agreement ranging ����
from 0.74-0.77 in summer to 0.92-0.95 in winter for ERA5 and MODIS datasets, respectively ����
(Tab. 2). Compared to MODIS data, WRF slightly overestimated the snow cover fraction in ����
JFM (0.6%) and AMJ (0.2%) mainly around the Tibetan plateau and underestimated it in JAS ����
(about - 0.1%) and OND (- 1.7%), WRF underestimated the snow cover throughout the year ��	�
when compared to ERA5, with a mean bias ranging from - 0.9% in JAS to - 3.2% in AMJ. ��
�
The main discrepancies were observed over North Siberia in JFM, over the Tibetan plateau in ����
AMJ and over both areas in OND (Fig. 6). ����
 ����
3.2. Evaluation of chemical variables ����

The spatial distributions of model-simulated and OMI-retrieved seasonal mean tropospheric ����
NO2 content during winter, spring, summer and autumn for the year 2015 are shown in Fig. 7. ����
Both WRF-Chem and OMI showed, during all the seasons, the highest tropospheric NO2 ����
content over the polluted region around Beijing and over Korean peninsula, followed by the ����
Indo-Gangetic Plain region, with hot spots located in correspondence of large urbanized areas ��	�
such as Seoul (South Korea) and New Delhi (India). The lowest values were found above the ��
�
Tibetan plateau. The spatial correlation averaged over the entire domain ranged between a ����
0.89 in AMJ and 0.91 in JFM. The percentage differences between WRF-Chem and OMI ����
tropospheric NO2 content showed a slight underestimation of the model by 2-8% during the ����
cold period (Tab. 3) while the concentrations of NO2 were significantly under-predicted by ����
WRF-Chem during the warm period (64-70% in AMJ-JAS). Conversely, large ����
overestimations occurred during the cold months (JFM and OND), mostly over polluted ����
regions (e.g. Eastern China). The positive and negative biases found in summer and winter, ����
respectively, compensated with each other and led to an overall small FB (- 2%). ����

The highest total column CO was observed over the Southeastern and Eastern Asia and the ��	�
lowest column CO values were found above the Tibetan plateau (Fig. 8). The simulated total ��
�
CO column showed a high spatial correlation coefficient (about 0.97) during all the seasons ����
(Tab. 3).�The model performed well for simulating CO with a FB < ± 10% of MOPITT. The ����
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agreement between WRF-Chem and MOPITT is higher in autumn (FB: + 3%) than in spring ����
(FB: + 7%) and summer (FB: + 8%). The simulated total column CO was slightly ����
underestimated over Eastern Asia during all seasons and over Southeastern Asia in winter and ����
autumn. In summer, the most important overestimation was observed over Southeastern Asia ����
and India (Fig. 8). ����

The spatial and seasonal distributions of model-simulated and IASI+GOME2-retrieved LMT ����
O3 content (integrated up to 3km height) are shown in Fig. 9. The WRF-Chem model ��	�
simulated well the spatial distributions and the seasonal variations of O3. A particular good ��
�
spatial agreement is remarked for the summer season, with a spatial correlation of 0.99 (Tab. �	��
3). During spring and winter, the spatial agreement is moderate (r = 0.61 and r = 0.76, �	��
respectively), while it is fairly low in winter (r = 0.43). The highest O3 content was similarly �	��
depicted in Eastern Asia and in the latitude band 20-45°N, in particular over the Indo-�	��
Gangetic Plain region, in both datasets. Although overestimated in the cold seasons, WRF-�	��
Chem simulates correctly the eastward export of tropospheric O3 over the Yellow and Japan �	��
Sea (30-40°N 120-130°E). Model and satellite data also agree to show very low LMT O3 �	��
values above the Tibetan plateau during the cold season and below 30°N latitude in summer. �	��
North of these high mountains (40°N 80-100°E), high abundances of O3 during summer and �		�
spring depicted by IASI+GOME2 are consistently simulated by WRF-Chem. The overall �	
�
seasonal cycle is consistently shown by both datasets, with highest concentrations in spring, a �
��
little lower in summer and lowest in autumn. The FB over the model domain exhibited a �
��
seasonal variability with limited overestimation during the warm season (3-7% in spring and �
��
summer), in the 20-30°N latitude band, and larger over-prediction (11-13%) during the cold �
��
period (winter and autumn). In addition, we remark that only IASI+GOME2 retrievals show �
��
moderate enhancement of O3 concentrations north of 45°N during winter, probably associated �
��
with downward transport of O3 from both upper troposphere and stratosphere. This difference �
��
between IASI+GOME2 and model data was also remarked in a comparison with respect to �
��
other simulations performed with WRF-Chem in springtime 2009 over East Asia (Cuesta et �
	�
al., 2018). �

�

Looking at the aerosol optical depth (Fig. 10), both WRF-Chem and MODIS showed, during ����
all the seasons, the highest AOD over the polluted region of Eastern Asia, over the Goby ����
desert and over the Indo-Gangetic Plain region. The spatial correlation ranged between 0.86 in ����
summer and 0.93 in winter (Tab. 3). The model-simulated AOD were lower than those from ����
MODIS with a FB of - 19% and - 2% for JFM and OND, respectively, in particular over the ����
polluted region of Eastern China and Indo-Gangetic Plain region (Fig. 10). WRF-Chem ����
overestimated the AOD by 6% and 20% in spring and summer over Southern part of the ����
domain. ����

Compared to in-situ measurements, WRF-Chem was able to reproduce the surface NO2 ��	�
concentrations over China during all the seasons (Fig 11). The high concentrations over ��
�
polluted regions are well captured, despite some stations showed a large bias, while minimum ����
NO2 concentrations, found in Western China, are slightly underestimated. Overall, the ����
correlation coefficient computed from mean daily concentrations was 0.29, with a mean bias ����
of 10.1 ppb and a FB ranging from 35% in spring to 45% in autumn (Tab. 4). These statistics ����
were calculated from the mean of the metrics computed over the stations, thus stations with ����
poor agreement significantly contribute to lower model skills. As poor model performances ����
were expected, particularly in urban areas, where a regional chemistry transport model is ����
unable to correctly predict the observed hourly variability of air pollutants concentrations, ����
which depends on local processes, we also computed the correlation comparing the mean ��	�
temporal evolutions averaged over all the stations. In this latter case, the model performance ��
�
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was remarkably better, with a temporal correlation of 0.71 (data not shown). Unlike NO2, the ����
comparison of surface O3 showed a complex bias pattern: the model well reproduced O3 ����
during cold seasons (FB = - 8% in JFM, - 15% in OND), in particular concentrations below ����
15 ppb over megacities (Fig. 12). Similarly, high O3 concentrations over Tibetan plateau are ����
well represented during all the seasons. Nevertheless, during warmer months (AMJ and JAS), ����
the WRF-Chem systematically overestimated surface O3 concentrations (FB = 23-24%). The ����
mean annual cycle of O3 is slightly better simulated compared to NO2, with a correlation ����
coefficient of 0.51 (0.90 in case of correlation computed from the mean temporal evolution ����
averaged over all the stations), while the mean bias was 5 ppb (Tab. 4). Looking at surface ��	�
PM2.5 (Fig. 13) and PM10 (Fig. 14) concentrations during the cold period, the high ��
�
concentrations (exceeding 100 µg m-3) over polluted regions and megacities in Eastern China ����
are well captured (FB = 5% in JFM for both PM2.5 and PM10), while low PM2.5 and PM10 ����
concentrations in Western China (less than 10 µg m-3) are slightly overestimated. During the ����
warm period, the surface concentrations are well captured across China, with a slight ����
overestimation in AMJ for PM10 (FB = 11%). The highest overestimation is observed in ����
summer with a FB of 29% and 36% for PM10 and PM2.5, respectively (Tab. 4). Overall, the ����
correlation coefficient computed from mean daily concentrations was 0.44 for PM2.5 and 0.35 ����
for PM10, with a mean bias of 10.4 µg m-3 and 14.8 µg m-3, respectively (Tab. 4). By ����
considering the� mean temporal evolutions averaged over all the stations, the temporal ��	�
correlations were 0.83 and 0.71, respectively (data not shown). ��
�

 ����
4. Discussion ����

Capturing spatiotemporal patterns of trace gases and weather patterns over Asia is challenging ����
for chemistry transport models because of the complex orography associated to the monsoon ����
systems and large uncertainty in the anthropogenic emission inventories over heavily ����
populated regions in Asia (Kumar et al., 2015; Zhang et al., 2016a). In this study, the WRF-����
Chem model was used to simulate the spatial and seasonal variability of main physical and ����
chemical variables over the Asian region at fine horizontal resolution (8 km) to capture local ����
small-scale processes. ��	�

In addition to surface air temperature and moist fluxes, which influence the rate of chemical ��
�
reactions close to land surface and the removal of air pollutants through wet deposition, ����
respectively, heat fluxes also play a pivotal role in surface energy balance and influence the ����
Asian monsoon (Wang et al., 2014, 2016, 2017b). When compared to ERA5 and CRU ����
datasets, WRF well reproduced meteorological observational-based data. In particular, ����
looking at temperature, WRF performed well in terms of spatial distributions over time, even ����
over complex terrain with uneven surface topography, such as Tibetan plateau and Himalayan ����
chain. To reproduce observed patterns over Tibetan plateau, a meteorological model must ����
correctly reproduce several processes ranging from convection to thermal balance. ����
Considering the relative humidity, we found slight discrepancies over the Tibetan plateau, ��	�
particularly in winter, while we found a large bias for surface sensible heat over the Western ��
�
part of the domain during the warm period. Besides, WRF slightly overestimated the ����
precipitation, in particular during the monsoon period; previous studies suggested that the ����
magnitude of precipitation bias depends on the cumulus parameterization schemes (Ratna et ����
al., 2014; Juneng et al., 2016). The WRF model predicted much stronger rain over Western ����
China, Northern Bay of Bengal and Eastern India. Zhang et al. (2016a) showed that the ����
rainfall overestimation can be attributed to the slightly excessive precipitation predicted by ����
the cumulus Tiedtke scheme, and the apparent underestimation of air temperature is most ����
likely caused by an error in the radiation balance and certain limitations in the Yonsei ����
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University Scheme used in resolving main features of the Planetary Boundary Layer ��	�
meteorology, particularly over complex terrain such as mountainous regions over high-��
�
elevation Tibetan plateau, Vietnam and Laos (Zhang et al., 2016b).  ����

A previous study performed with WRF over South Asia at 45 km of spatial resolution, ����
indicated that the MB was 1-4 °K for temperature, 20-65 % for water vapor and within ± 10 ����
mm/day for the precipitation during all seasons except in summer, with an overestimation ����
exceeding 20 mm/day over Himalaya and along the coastline in Eastern India (Kumar et al., ����
2012b). In another study where WRF was run over East Asia at 36 km of horizontal ����
resolution, Zhang et al. (2016b) showed a MB ranging from - 1.0°C to + 1.5°C for surface air ����
temperature and moderate to large biases for precipitation (+ 0.2 to + 1.7 mm/day) and ����
relative humidity (+ 0.4% to + 23.4%). In a different study over East Asia, where WRF was ��	�
run at 50 km of horizontal resolution, using a spectral nudging applied to wind direction and ��
�
speed and air temperature over the time period 1989-2007, Tang et al. (2017) found for the �	��
surface air temperature an averaged MB of 1.77 °C (- 8 to + 4 °C) compared to CRU, and of �	��
1.45 mm (- 4 to + 8mm) for precipitation with an overestimation by 2-8 mm/day in tropical �	��
regions and an underestimation of 0.5-1.0 mm/day over Southern China.  �	��

In our study, the model performances in simulating surface meteorology were better than the �	��
other simulations performed over Asian regions with the same model but with a coarser �	��
spatial resolution at 36 - 50 km of spatial resolution (e.g. Kumar et al., 2012a,b; Zhang et al., �	��
2016a,b; Tang et al., 2017); this suggests that the finer model resolution (8 km) helps to �	��
resolve small-scale features induced by complex topography e.g. in Himalaya or Sichuan �		�
region. In general, increasing model resolution has resulted in improved model simulations �	
�
and predictions for air temperature, relative humidity, precipitation (Malardel et al., 2016; �
��
Prodhomme et al., 2016; Zhang et al., 2016c), global energy budget (Vannière et al., 2019) �
��
and orographic winds (Roebber et al., 2004). By using the WRF model with horizontal �
��
resolutions of 2, 10 and 30 Km, Lin et al. (2018) showed that finer resolutions improved �
��
biases over the Tibetan Plateau, in particular for precipitation. A significant difference was �
��
observed from 30 to 10 km of horizontal resolution, suggesting that approximately 10 km of �
��
horizontal resolution represents a good compromise (Lin et al., 2018). �
��

The WRF-Chem model well reproduced tropospheric NO2 content, total column CO and LMT �
��
O3 content with a FB within the air quality model performance criteria, except for NO2 during �
	�
the warm season. The highest column content for NO2, CO and O3 was observed over �

�
Southeastern and Eastern Asia due to road traffic, industries, power plants and biomass ����
burning (Streets et al., 2003; Kumar et al., 2012a; Cooper et al., 2014), with 2015 recording ����
the highest fire activity season since 1997 (Huijnen et al., 2016; Mead et al., 2018). In ����
contrast, the column NO2, CO and O3 values above regions of high terrain such as the Tibetan ����
plateau were lower than adjacent regions due to the limited depth of the troposphere and ����
fewer emissions (Cooper et al., 2014).  ����

In this study, WRF-Chem captured the seasonal variability of tropospheric NO2 content ����
values with a summer minimum and a winter maximum. The winter maximum is due to a ����
lower removal rate of NO2 with OH radicals, compared to summer (Beirle et al., 2003). The ��	�
large NO2 overestimation was observed during winter and autumn over polluted regions with ��
�
abundant anthropogenic NOx emissions, such as road traffic and power plants as previously ����
reported e.g. in Europe (Barten et al., 2019; Visser et al., 2019). These results are in ����
agreement with prior studies that found WRF-Chem overestimating tropospheric NO2 content ����
in urban areas such as London, Madrid, Rome and in cities of Eastern Europe by 5-18�% in ����
urban areas (Barten et al., 2019; Visser et al., 2019), despite they adopted a different chemical ����
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mechanism (i.e., CBM-Z).�The NOx emissions from microbial activity and lightning, which ����
were not considered in our emission inventory, are important during summer in rural areas of ����
Southeastern Asia (Kumar et al., 2012a). The largest discrepancies (underestimation) during ����
spring and summer point to uncertainties in biomass burning, lightning and soil emission ��	�
estimates (Kumar et al., 2012a; Barten et al., 2019) and another plausible reason is the NOx ��
�
removal overestimation through the reaction of dinitrogen pentoxide (N2O5) to nitric acid in ����
the WRF-Chem chemical mechanism (Yegorova et al., 2011). The discrepancies in NOx ����
concentrations can be also explained by no year adjustments for EDGAR-HTAP ����
anthropogenic emission data (based on year 2010), in particular in China. Kumar et al. ����
(2012a) showed that the discrepancies in anthropogenic emission estimates were mainly due ����
to uncertainties in the emissions inventory (emission factors and socio-economic parameters). ����
Prior studies have found that, over South Asia, WRF-Chem tends to overestimate NO2 ����
tropospheric content from OMI retrievals by 10-50% over South Asia and up to 90% over the ����
Indo-Gangetic Plain region during winter (Kumar et al., 2012a) with a correlation coefficient ��	�
between model and OMI ranging from 0.61 to 0.73 in 2008 (Kumar et al., 2012a). Over East ��
�
Asia, WRF-Chem underestimated the tropospheric NO2 content by up to - 30.6% compared to ����
SCIAMACHY data in 2005 (Zhang et al., 2016b). As NOx emissions display strong spatial ����
variation, we obtained a better spatial representation and simulations of NO2 levels, by ����
increasing the model grid resolution, compared to previous studies at coarser scale e.g. at ����
20�km of grid resolution (Schaap et al., 2015; Barten et al., 2019; Visser et al., 2019). ����
 ����
The seasonal variation of the total column CO is well reproduced by WRF-Chem with highest ����
and lowest values during late autumn-winter and summer (monsoon), respectively. In general, ����
both the model and MOPITT were highest during winter, decreased during spring, attained ��	�
minimum levels during summer and increased again during autumn. MOPITT CO retrievals ��
�
over South and Southeast Asia were slightly underestimated by WRF-Chem in spring, ����
between March and May, when biomass burning constitutes the major fraction of total CO ����
emissions (Amnuaylojaroen et al., 2019), suggesting that CO emissions from biomass burning ����
is slightly underestimated. Over South Asia, the WRF-Chem model similarly estimated ����
MOPITT column CO retrievals by - 9.0% to + 7.0% during all seasons with a r value from ����
0.63 to 0.84 for the year 2008 (Kumar et al., 2012a) and by - 24.2% to + 3.9% over East Asia ����
in 2005 (Zhang et al., 2016b). The annual mean contribution of biomass burning to the total ����
CO emissions was around 24% over Asia (Streets et al., 2003). The slight overestimation of ����
CO retrievals during other seasons (low fire activity) indicated that anthropogenic CO ��	�
emissions are overestimated over this region (Zhang et al., 2016a). A better treatment of ��
�
biomass burning sources and improved boundary conditions of CO (e.g. for transboundary ����
inputs, in particular from wildfires, biomass burning and transport) are needed to improve the ����
performance of the total column CO. ����
 ����
The seasonality of LMT O3 content is well reproduced by WRF-Chem by capturing the ����
increase in O3 burden during the warm season, with a spring maximum (Sicard et al., 2009; ����
Kumar et al., 2012a; Cooper et al., 2014). Eastern China and Northern India are two main ����
pollution sources, emitting significant amounts of NOx, CO and VOCs (Wang et al., 2010) in ����
winter and autumn (cold period) leading to the highest LMT O3 in spring and summer ��	�
(Cooper et al., 2014). Furthermore, the relatively high biogenic NMVOC emissions and active ��
�
photochemical reactions constitute favorable conditions for O3 formation in summer (Sicard ����
et al., 2016b). The WRF-Chem overestimation of anthropogenic NO2 and CO emissions led to ����
a model overestimation of surface O3 concentrations in winter (13%) and autumn (11%), in ����
particular in South Asia and Eastern China. A previous study employing an offline regional ����
model showed an overestimation of O3 levels during summer over India (Roy et al., 2008). As ����
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reported here, the regional models generally underestimate mean O3 concentrations during ����
high O3 seasons and overestimate mean O3 concentrations during low O3 seasons (Fiore et al., ����
2009; Huang et al., 2017). The differences in anthropogenic NOx, CO and VOCs inventories ����
are the dominant factors for the discrepancies in simulated O3 levels, as already reported in ��	�
China and Southeast Asia (Ma and van Aardenne, 2004; Amnuaylojaroen et al., 2014). The ��
�
slight mean bias of LMT O3 for spring 2015 (3%) entails among other the correct ����
representation of the seasonal variations of stratospheric O3 intrusions to the upper ����
troposphere. The over-prediction of O3 and under-prediction of NO2 in all months indicated ����
an insufficient titration of O3 by NO (Zhang et al., 2016b). In Southern India and Southeastern ����
Asia, below 30°N latitude, the summer is dominated by cloudy conditions and heavy rainfall ����
due to monsoon leading to lower O3 levels by reducing the photochemical production of O3 ����
(e.g. Roy et al., 2008; Kumar et al., 2012a). The FB ranged from - 16% to 0% over South ����
Asia in 2008 (Kumar et al., 2012a) with larger differences during spring and early summer, ����
mainly due to additional O3 precursor sources (e.g. biomass burning).  ��	�
 ��
�
High AOD were observed over desert regions due to mineral dust (e.g. Goby) and over areas �	��
with large anthropogenic aerosol emissions, especially East and South Asia (Shindell et al., �	��
2013). As EDGAR does not provide black and organic carbon and PM2.5 emissions, and �	��
GOCART does not include secondary organic aerosols or nitrate aerosols, an under-prediction �	��
of aerosol burden is observed in Asia, in particular in winter (Zhong et al., 2016; Zhang et al., �	��
2016a; Crippa et al., 2019). The overestimations of AOD over Eastern China, South and �	��
Southeastern Asia in spring and summer, were mainly due to over-predictions in PM10 �	��
concentrations because of dust emissions (Shindell et al., 2013; Zhang et al., 2016a).�Over �	��
East Asia, the differences between model-simulated and MODIS-based AOD ranged from - �		�
38.7% to + 5.6% in 2005 (Zhang et al., 2016b). �	
�

Considering the performances of WRF-Chem for reproducing atmospheric chemistry at �
��
ground-level, the recommended benchmarks proposed by Morris et al. (2005), Boylan and �
��
Russell (2006) and Emery et al. (2017) for the chemical model performance is FB within ± �
��
15% for O3 and NO2 if r is greater than 0.5. By comparing the WRF-Chem model outputs �
��
with ground-based observations, overall the WRF-Chem model reproduced well the mean �
��
annual cycle of surface O3, PM2.5 and PM10 mean concentrations at regional scale in 2015, in �
��
particular during the cold season. Furthermore, the model well reproduced the NO2 titration �
��
over the polluted Eastern China. The WRF-Chem model overestimated surface O3 �
��
concentrations during the warm period, when plants are active, then a part of the observed �
	�
bias can be explained by (i) a poor parameterization of dry deposition to vegetation in the �

�
Noah Land Surface Model, leading to an underestimation of dry deposition velocities (Wu et ����
al., 2011), then to a reduction of the O3 removal capacity by plants; and by (ii) the under-����
prediction of cloud optical depth and overestimation of photolysis rates by WRF (Ryu et al., ����
2018). However, when the correlations were computed from the average of individual ����
stations, the performances were much poorer. Nevertheless, this result was partially expected ����
being an intrinsic characteristic of regional models. In other words, a regional CTM (even at ����
high spatial resolution) is not able to reproduce well temporal variation of local urban ����
observations because of the lack of detailed local inputs (both emission inventories and ����
removal processes). Besides, it should be noted that WRF-Chem was forced with annual mean ��	�
anthropogenic emissions, thus it is hard to reproduce the high frequency temporal variability���
�
of observations, especially in urban environments which are extremely dynamics and poorly ����
controlled by natural processes.    ����

 ����
5. Conclusions ����
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In this study WRF-Chem was applied at high spatial resolution (8-km) over Asia for the year ����
2015, to allow resolving fine-scale features over complex topography areas (e.g. Indo-����
Gangetic Plain region). As we did not use nudging, our results enhance the reliability of this ����
study and the ability of the model to capture spatio-temporal variation of physical and ����
chemical variables. Overall model skills in simulating surface meteorological and air quality ��	�
were higher than those showed in previous studies focusing on the same region where the ��
�
model was applied at coarser spatial resolution. In this study, the mean bias ranges are lower ����
than Zhang et al. (2016b) e.g. [- 1.51 °C; + 0.07 °C] vs. [- 1.0 °C; + 1.5°C] for air ����
temperature, [- 0.05 mm/day; + 0.27 mm/day] vs. [+ 0.2 mm/day; + 1.7 mm/day] for ����
precipitation; [- 4.5 %; - 1.5 %] vs. [+ 0.4 %; + 23.4%] for relative humidity and [- 7 %; + 8 ����
%] vs. [- 24.2 %; + 3.9 %] for column CO retrievals.�The better observed performance is ����
mainly due to the advantage of the finer model spatial resolution. WRF-Chem simulation ����
showed low to moderate biases for major meteorological variables, except for sensible heat ����
where a large bias (16-19 W.m-2) is observed during the warm period. Furthermore, the results ����
indicate some limitations in parameterization, such as the cumulus Tiedtke scheme leading to ��	�
precipitation overestimation over widely-varying climate and topography regions e.g. high-��
�
elevation Tibetan plateau, Indo-Gangetic Plain region and Southeastern Asia. ����
 ����
The WRF-Chem reproduced well the overall spatial and seasonal variability of O3, CO and ����
AOD over the Asian region, but large discrepancies were found for NO2 during the warm ����
period. The observed bias between model-simulated and satellite-retrieved values were ����
mainly attributed to uncertainties in satellite retrievals, vertical and horizontal model ����
resolution, bottom-up emissions, anthropogenic and natural NOx emission estimates (e.g. by ����
lightning and soil), dust and PM2.5 emission, stratosphere-to-troposphere O3 exchange, ����
transboundary pollution, low NO titration and uncertainty in N2O5 and nitrate radical ��	�
reactions in the WRF-Chem chemical mechanism (Yegorova et al., 2011; Li et al., 2014; ��
�
Parrish et al., 2014; Huang et al., 2017; Sicard et al., 2017; Zhang et al., 2016a; Mu et al., ����
2017).������
�����
For any application of models results, including reliable air pollution risk assessment, the ����
generation of realistic maps is needed, particularly over highly complex terrain of Northern ����
India (Indo-Gangetic Plain) where air quality is poor (Kumar et al., 2012a). Regional ����
chemistry-climate models at coarse horizontal resolution are often unable to resolve the local ����
features influencing the chemical transformation (Tie at al., 2010; Huang et al., 2017) and ����
barely able to fully reproduce the ground observations (Schaap et al., 2015; Jonson et al., ��	�
2018) in particular at high-elevation sites (Strode et al., 2015). To date, the most damaging air ��
�
pollutant for vegetation and human health are O3 and PM (Sicard et al., 2016a, 2019). In this ����
study, WRF-Chem model reproduced well the spatial and seasonal variability of surface NO2, ����
O3, PM2.5 and PM10 mean concentrations across China, following the recommended ����
benchmarks for the chemical model performance for O3 and NO2. However, our results ����
suggest that it is essential to improve the emission estimates of primary PM (e.g. new dust ����
emission scheme) and NOx (e.g. adjusted anthropogenic emission and vertical distribution) ����
and upgrade chemical mechanisms e.g. Polycyclic Aromatic Hydrocarbon heterogeneous ����
reactions with O3 and homogeneous reaction with the nitrate radical in order to reduce bias in ����
simulating the surface O3 and PM concentrations over Asia (Zhang et al., 2016b; Mu et al., ��	�
2017).  ��
�
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Table 1. Model set up with main physical and chemical schemes adopted in the simulation.  �����

  

Model set-up Values 
  

  

Domain South-East Asia 
Simulation period 1st January - 31st December 2015 
Spin up 20st December - 31st December 2014 
Horizontal resolution 8 km 
Vertical resolution 30 eta levels up to 50 hPa 
Domain size 780 x 690 cells (lon x lat) 
Meteorological boundary ERA5 (31 km), 3h 
Chemical boundary MOZART-4/GEOS-5 
  

Physical option Adopted scheme 
  

  

Microphysics Single–moment 6–class 
Cumulus Parameterization New Tiedtke 
Shortwave Radiation RRTMG 
Longwave Radiation RRTMG 
Land-surface Noah Land Surface Model 
Planetary boundary layer Yonsei University Scheme 
  

Chemical options Adopted scheme 
  

  

Gas phase chemistry MOZART 
Aerosols GOCART 
Photolysis Madronich F-TUV 
Biogenic emissions MEGAN 
Anthropogenic emissions EDGAR HTAP (v2.2) 
Fire emissions FINN (v1.5) 
  

 �����

 �����

  �����
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Table 2. Pearson’s correlation coefficient (r) and mean bias (model-reference) computed �����
using WRF results and different reference datasets for surface air temperature, precipitation, �����
relative humidity, latent heat, sensible heat and snow cover fraction. Note that reference data �����
were re-gridded to the WRF domain; in addition to downscale temperature we used a dry �����
adiabatic lapse rate correction. ���	�

VARIABLE REFERENCE 

Pearson’s correlation coefficient 
(r)  

 Mean bias 

 JFM AMJ JAS OND  JFM AMJ JAS OND 

TEMPERATURE 
(°C) 

ERA5 0.99 0.99 0.99 0.99  -1.51 -0.42 0.07 -0.68 

CRU 0.98 0.99 0.99 0.99  -1.82 -0.82 -0.20 -1.20 

PRECIPITATION 
(mm/day) 

ERA5 0.80 0.90 0.91 0.88  -0.04  0.15 0.27 -0.05 

CRU 0.73 0.84 0.84 0.81  0.25 0.74 0.68 0.21 

RELATIVE HUMIDITY  

(%) 

ERA5 0.99 0.99 0.99 0.99  -1.5 -3.1 -4.5 -4.0 

CRU 0.95 0.96 0.97 0.96  2.1 11.0 12.0 2.7 

LATENT HEAT 
(W/m2) 

ERA5 0.92 0.94 0.95 0.94  2.0 0.5 2.6 -0.24 

MTE 0.95 0.97 0.97 0.95  3.0 6.3 13.2 4.6 

SENSIBLE HEAT 
(W/m2) 

ERA5 0.88 0.94 0.93 0.87  -1.2 16.4 19.4 2.2 

MTE 0.82 0.93 0.91 0.87  -2.8 7.9 11.5 1.5 

SNOW COVER FRACTION 
(%) 

ERA5 0.95 0.84 0.74 0.89  -3.0 -3.2 -0.9 -2.7 

MODIS 0.92 0.89 0.77 0.92  0.6 0.2 -0.08 -1.7 

JFM: January-February-March, AMJ: April-May-June, JAS: July-August-September, OND: October-���
�
November-December. �����
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Table 3. Pearson’s correlation coefficient (r) and fractional bias computed using WRF-Chem �����
results and different reference datasets for surface nitrogen dioxide (NO2), aerosol optical �����
depth (AOD), ozone (O3) and carbon monoxide (CO) concentrations.  �����

VARIABLE REFERENCE  

Pearson’s correlation 
coefficient (r) 

 Fractional bias 

JFM AMJ JAS OND  JFM AMJ JAS OND 

NO2 OMI 0.91 0.89 0.90 0.89  -2% -64% -70% -8% 

CO MOPITT 0.97 0.97 0.96 0.97  -7% 7% 8% 3% 

O3 IASI 0.76 0.61 0.99 0.43  13% 3% 7% 11% 

AOD MODIS 0.93 0.88 0.86 0.91  -19% 6% 20% -2% 

JFM: January-February-March, AMJ: April-May-June, JAS: July-August-September, OND: October-�����
November-December. �����
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Table 4. Pearson’s correlation coefficient, mean bias and fractional bias computed using �����
WRF-Chem daily results at surface layer and ground measurements for surface nitrogen �����
dioxide (NO2), ozone (O3), particulate matters (PM2.5 and PM10) concentrations; results �����
represent the mean computed over all the available stations.  �����

 �����

VARIABLE 
Pearson’s 
correlation 

coefficient (r) 
Mean bias 

Fractional bias 

JFM AMJ JAS OND 

NO2 0.29   10.1 ppb 38% 35% 42% 45% 

O3 0.51   5.0 ppb -8% 23% 24% -14% 

PM2.5 0.44   10.4 µg m-3 5% 20% 36% 23% 

PM10 0.35   14.8 µg m-3 5% 11% 29% 24% 

JFM: January-February-March, AMJ: April-May-June, JAS: July-August-September, OND: �����
October-November-December. �����
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Figure 1. Spatial pattern of 2-meter air temperature (°C) as simulated by WRF-Chem (left �����
panels) and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) �����
during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-�����
August-September, OND: October-November-December) in 2015. Mind the differences in �����
color scales between seasonal climatologies. �����
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Figure 2. Spatial pattern of precipitation (mm/day) as simulated by WRF-Chem (left panels) �����
and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) during ���	�
different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-August-���
�
September, OND: October-November-December). Mind the differences in color scales �����
between seasonal climatologies. �����
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Figure 3. Spatial pattern of 2-meter relative humidity (%) as simulated by WRF-Chem (left �����
panels) and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) �����
during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-�����
August-September, OND: October-November-December). Mind the differences in color �����
scales between seasonal climatologies. ���	�
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Figure 4. Spatial pattern of surface latent heat (W/m²) as simulated by WRF-Chem (left �����
panels) and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) �����
during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-�����
August-September, OND: October-November-December).������
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Figure 5.�Spatial pattern of surface sensible heat (W/m²) as simulated by WRF-Chem (left �����
panels) and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) �����
during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-�����
August-September, OND: October-November-December).����	�
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Figure 6. Seasonal spatial pattern of snow fractional cover (%) as simulated by WRF-Chem �����
(left panels) and compared to ERA5 (center panels) and MODIS data (right panels) during �����
different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-August-�����
September, OND: October-November-December). �����
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Figure 7. Spatial distributions of WRF-Chem simulated and OMI- retrieved tropospheric NO2 �����
content (x 1015 molecules/cm²) during different seasons (JFM: January-February-March, ���	�
AMJ: April-May-June, JAS: July-August-September, OND: October-November-December). ���
�
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Figure 8.�Comparison of WRF-Chem simulated total CO column with MOPITT data (x 1017 ��	��
molecules/cm²) during different seasons (JFM: January-February-March, AMJ: April-May-��	��
June, JAS: July-August-September, OND: October-November-December).� The WRF-Chem ��	��
simulated CO are quite discontinuous due to coarse spatial resolution of MOPITT data (1x1 ��	��
deg) to compute WRF total column.���	��
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Figure 9. Spatial tropospheric column ozone (Dobson Unit, DU), integrated between the ��	
�
surface and the tropopause, according to the WRF-Chem model (left panels) and IASI-��
��
GOME2 satellite retrievals (right panels) during different seasons (JFM: January-February-��
��
March, AMJ: April-May-June, JAS: July-August-September, OND: October-November-��
��
December). ��
��
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Figure 10. Comparison of simulated aerosol optical depth (dimensionless) with MODIS data ��
��
during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-��
��
August-September, OND: October-November-December). ��
	�
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Figure 11. Spatial distributions of surface NO2 concentrations (in ppb) simulated by the �����
WRF-Chem model (background) and from air quality monitoring stations (dots) across China �����
in 2015 during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: �����
July-August-September, OND: October-November-December). �����
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Figure 12. Spatial distributions of surface O3 concentrations (in ppb) simulated by the WRF-���	�
Chem model (background) and from air quality monitoring stations (dots) across China in ���
�
2015 during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: �����
July-August-September, OND: October-November-December). �����
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Figure 13. Spatial distributions of surface PM2.5 concentrations (in µg m-3) simulated by the �����
WRF-Chem model (background) and from air quality monitoring stations (dots) across China �����
in 2015 during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: ���	�
July-August-September, OND: October-November-December). ���
�
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Figure 14. Spatial distributions of surface PM10 concentrations (in µg m-3) simulated by the �����
WRF-Chem model (background) and from air quality monitoring stations (dots) across China �����
in 2015 during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: �����
July-August-September, OND: October-November-December). �����
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Highlights 

 

The WRF-Chem model was applied over Asia in 2015 at 8-km horizontal resolution 

The outputs were evaluated against satellite and ground-based observations in China in 2015 

WRF-Chem reproduced well the spatio-temporal patterns for meteorological and chemical 
variables 

WRF-Chem reliable tool for air pollution risk assessment to human and ecosystems health 
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