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Abstract 13 

The representation of air quality and meteorology over Asia remains challenging for chemical 14 

transport models as a result of the complex interactions between the East Asian monsoons and 15 

the large uncertainty (in space and time) of the high anthropogenic emissions levels over the 16 

region. High spatial resolution models allow resolving small-scale features induced by the 17 

complex topography of this region. In this study, the Weather Research and Forecasting 18 

model with Chemistry (WRF-Chem) was used to simulate the spatial and seasonal variability 19 

of main physical and chemical variables over Asia for the year 2015 at 8-km horizontal 20 

resolution to enable resolving small-scale features induced by the region complex topography. 21 

The simulated atmospheric composition was evaluated against satellite retrievals (MOPITT, 22 

IASI+GOME2, MODIS and OMI) in addition to ground-based observations in China for the 23 

year 2015, while the meteorological variables were evaluated by several observational-based 24 

datasets (ERA5, CRU, MODIS, MTE). Results showed low to moderate seasonal biases for 25 

major meteorological variables, i.e. air temperature, relative humidity, precipitation, latent 26 

heat, sensible heat and snow cover fraction. Overall, WRF-Chem reproduced well the spatial 27 

and seasonal variability of lowermost tropospheric ozone content, total column carbon 28 

monoxide and aerosol optical depth, while large discrepancies were found for tropospheric 29 

nitrogen dioxide content, mainly during the warm season. In consistency with previous 30 

studies, the different biases between model-simulated and satellite-retrieved values can be 31 

mainly attributed to i) the large uncertainties in anthropogenic and natural nitrogen oxides 32 

emission estimates, as well as dust and sea salt emissions in the case of aerosol optical depth, 33 

and ii) some coarse parameterizations used to reproduce main small-scale features (e.g. 34 

meteorology, chemical processes, dry deposition to vegetation). Compared to ground-based 35 

observations, the WRF-Chem model reproduced well the mean annual cycle of surface 36 

nitrogen dioxide, ozone and fine particles concentrations in all seasons across China. Our 37 

results suggest that WRF-Chem provides reliable spatio-temporal patterns for most of the 38 

meteorological and chemical variables, adding thus confidence to its applicability in the 39 

context of air pollution risk assessment to human and ecosystems health. 40 

Keywords: Asia, satellite, regional climate model, remote sensing, WRF-Chem 41 

*Corresponding author: psicard@argans.eu  42 
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1. Introduction 43 

China and India are the two most populous countries of the world (~ 2.8 billion people) and 44 

have experienced a rapid growth in industrial, transportation, urbanization and agricultural 45 

activities in recent years (Kumar et al., 2015; Zhang et al., 2016a). This explosive economic 46 

growth has significantly increased anthropogenic emissions of several trace gases and 47 

aerosols over Asia in the last decades (Kumar et al., 2015; Zhang et al., 2016b; Lefohn et al., 48 

2017), with China becoming the largest emitter of air pollutants worldwide (Liu et al., 2015; 49 

Quéré et al., 2015; Boden et al 2017; Wang et al., 2017a).  50 

 51 

The increasing air pollution levels pose health risks to billions of people (Zhong et al., 2016): 52 

in fact, in major metropolitan agglomerations across Asia (e.g. Bangladesh, China, India and 53 

Nepal) surface ozone (O3) concentrations regularly exceed the ambient air quality standard of 54 

100 ppb as hourly value (Wang et al., 2017a), while annual PM2.5 concentrations exceed 100 55 

μg m−3 (Zhang and Cao, 2015; Venkataraman et al., 2018). These high levels of air pollutants 56 

produce acute and chronic effects on population including premature mortality due to cancer, 57 

respiratory and cardio-vascular diseases (Lelieveld et al., 2015; Liu et al., 2016; Cohen et al. 58 

2017; Krishna et al., 2017; Burnett et al., 2018) and reduced life expectancy (Apte et al., 59 

2018). In addition, forests and crops are remarkably affected by high pollution levels: in 60 

particular, effects on plants include, among others, yield (Tang et al., 2013; Tai et al., 2014; 61 

Sicard et al., 2016a; Tian et al., 2016; Feng et al., 2019) and biomass decline (Wittig et al., 62 

2009; Feng et al., 2015; Li et al., 2017). Krishna et al. (2017) estimated that air pollution 63 

contributes to 13-22% of all deaths in South Asia. Other studies showed that for the year 2015 64 

air pollution led to 4.5 million premature deaths and more than half occurring in China and 65 

India (Landrigan et al., 2017; Giani et al., 2020), with fine particulate matters (PM2.5) causing 66 

around 1 million premature deaths every year (Cohen et al., 2017; Li et al., 2018; Burnett et 67 

al., 2018).  68 

 69 

For these reasons, monitoring of air quality plays a pivotal role to preserve human and 70 

ecosystem health; in this regard, in 2013, the State Council of China issued the Air Pollution 71 

Prevention and Control Action Plan (Wang et al., 2018), while India introduced policies and 72 

National Clean Air Programme (Sagar et al., 2016) to provide a framework for air quality 73 

monitoring in order to mitigate the air pollution and attain air quality standards (Sagar et al., 74 

2016; Goldemberg et al., 2018; Wang et al., 2018). In addition to surface measurements, 75 

chemical transport models (CTMs) represent a valuable tool to predict formation/removal of 76 

air pollutants and their transport, and provide air quality information over remote regions or 77 

scarcely populated areas where measurements are not available (Sicard et al., 2017). 78 

However, before providing any assessment of impact of air pollution on human and 79 

vegetation health, it is mandatory assessing how well models perform in reproducing the 80 

spatio-temporal variability of both physical and chemical variables.  81 

 82 

In general, regional CTMs have been found able to reproduce observed spatial pattern of air 83 

pollutants and their seasonal changes (Spiridonov et al., 2019; Li et al., 2018; Liu et al., 2018) 84 

in both North America and Europe (discussed below). However, regional chemistry models 85 

still reproduce poorly the observed spatial pattern of main air pollutants over the Asian region 86 

because of (i) complex landscape ranging from high elevations of Himalayan plateau to 87 

megacities of Easter China; (ii) large uncertainties in removal of trace gases through dry 88 

deposition to vegetation associated to a mosaic land cover (Monks et al., 2015), ranging from 89 

tropical rainforest to boreal forest and semi-arid or desert area; (iii) widely-varying climate 90 

system characterized by a summer monsoon system and (iv) large uncertainties in 91 
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anthropogenic emissions (e.g. Amnuaylojaroen et al., 2014; Jena et al., 2015). Consequently, 92 

remote sensing data represent a unique opportunity to evaluate the spatio-temporal 93 

distribution of air pollutants simulated by regional CTMs (Tuccella et al., 2012; Crippa et al., 94 

2016, 2017; Georgiou et al., 2018; Crippa et al., 2019). China adopted in 2012 the Ambient 95 

Air Quality Standard for human health protection, and started reporting hourly observations of 96 

main air pollutants from about 1,500 monitoring stations at countrywide (MEP, 2012). These 97 

monitoring stations offers an unprecedented way to evaluate model-simulated surface 98 

concentrations of air pollutants. 99 

 100 

The coupled Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) 101 

model is widely used for regional air quality simulation worldwide and validated against 102 

ground-based observations, e.g. over North America (McKeen et al., 2005; Chuang et al., 103 

2011; Archer-Nicholls et al., 2014; Yahya et al., 2015; Zhang et al., 2017), Europe 104 

(Schürmann et al., 2009; Solazzo et al., 2012; Tuccella et al., 2012; Ritter et al., 2013; 105 

Karlický et al., 2017; Werner et al., 2017; Spiridonov et al., 2019; Visser et al., 2019) and 106 

South or East Asia (Tie et al., 2007; Kumar et al., 2012a,b; Gao et al., 2014; Zhong et al., 107 

2016; Zhang et al., 2016; Sharma et al., 2017; Li et al., 2018; Xu et al., 2018; Reddington et 108 

al., 2019).  A few studies reported the WRF-Chem performances over East Asia (Zhang et al., 109 

2016; Zhong et al., 2016) and South Asia (Kumar et al., 2012a,b; Sharma et al., 2017) for air 110 

pollutants and meteorology, however the coarse resolution and lack of ground observations 111 

limit the model skill to reproduce small-scale processes (e.g. Crippa et al., 2017; Chen et al., 112 

2019). In this regard, the new generation of high spatial resolution reanalysis offers a unique 113 

opportunity to run CTMs at very high spatial resolutions over the South-East Asia.  114 

 115 

The aim of this paper is to conduct a WRF-Chem simulation of meteorological fields and air 116 

pollutants, and evaluate the model performance over a large area covering India and China. 117 

The novelty is related to the availability of ground observations in China to validate the WRF-118 

Chem outputs. Therefore, we performed the simulations at fine resolution to allow the model 119 

to reproduce well the local variability of climatic and chemical parameters. Despite ground-120 

based observations are amongst the most accurate and reliable datasets to evaluate regional 121 

climate models, the lack of spatial representativeness of air quality monitoring stations 122 

(Beelen et al., 2009; Sicard et al., 2016b) limits the model evaluation to the regions covered 123 

by data. To overcome this gap in spatial heterogeneity, and assess the ability of the WRF-124 

Chem model to reproduce regional patterns of trace gases, we firstly compare simulated data 125 

with satellite-based measurements; successively, we use recent ground observations across 126 

China to validate surface concentrations of air pollutants. 127 

 128 

2. Materials and Methods 129 

2.1. WRF-Chem model 130 

The WRF model is a limited-area, non-hydrostatic, terrain-following eta-coordinate 131 

mesoscale model (Skamarock et al., 2008). This model has been further developed to include 132 

various gas-phase chemistry and aerosol mechanisms creating the coupled chemistry-climate 133 

WRF-Chem model (Grell et al., 2005). The WRF model system offers multiple options for 134 

various physical packages (Skamarock et al., 2008). The dynamical core used in this work is 135 

the Advanced Research Weather Research and Forecasting model (Tab. 1); we used a single-136 

moment 6-class scheme to resolve the microphysics (Hong et al., 2006) and the Rapid 137 

Radiative Transfer Model for GCMs (RRTMG) for the shortwave and longwave radiation 138 

(Iacono et al., 2008). Convective precipitation and cumulus parameterization were resolved 139 
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with the new Tiedtke scheme (Zhang et al., 2011), the planetary boundary layer computations 140 

were performed using the nonlocal K-profile Yongsei University parameterization (Hong et 141 

al., 2006), while the exchange of heat, water and momentum between soil-vegetation and 142 

atmosphere was simulated by the Unified Noah Land Surface Model (Chen and Dudhia, 143 

2001).  144 

 145 

Similarly to physical parameterizations, many different gas phase chemistry and aerosol 146 

options are available in WRF-Chem. Gas-phase chemical reactions are calculated using the 147 

chemical mechanism MOZART (Model for OZone And Related chemical Tracers) (Emmons 148 

et al., 2010) whereas for the aerosols, to reduce the computational cost, we used the GOCART 149 

(Global Ozone Chemistry Aerosol Radiation and Transport) bulk aerosol approach (Chin et 150 

al., 2000). This set-up includes 85 gas-phase species, 12 bulk aerosol compounds, 39 151 

photolysis and 157 gas-phase kinetic reactions.  152 

 153 

Anthropogenic emissions are based on the EDGAR-HTAP (Emission Database for Global 154 

Atmospheric Research for Hemispheric Transport of Air Pollution) global emission inventory 155 

which includes diurnal cycle of emissions of gaseous pollutants such as SO2, NOx, CO, non-156 

methane volatile organic compounds (NMVOCs) and NH3 as well as black carbon and 157 

particulate matter from the following source sectors: aviation, shipping, agriculture, power 158 

generation, industrial non-power, land transport and residential energy use (Janssens-159 

Maenhout et al., 2015). This dataset is available at 0.1°×0.1° horizontal resolution for the year 160 

2010, with no year adjustments. Fire emissions are provided using the FINN (Fire INventory 161 

from NCAR) inventory (Wiedinmyer et al., 2011). This dataset provides estimates of trace 162 

gases and particles emitted by open biomass burning at ~1 km resolution (Wiedinmyer et al., 163 

2011). Biogenic emissions are calculated online using the MEGAN (Model of Emissions of 164 

Gases and Aerosols from Nature) model (Guenther et al. 2012), dust emissions are estimated 165 

online using the GOCART model (Ginoux et al., 2001), whereas sea-salt emissions are 166 

calculated using the method by Gong (2003). Anthropogenic dust emissions (e.g. re-167 

suspended road dust) are not included.  168 

 169 

In addition, MOZART-4/Goddard Earth Observing System Model version 5 (GEOS-5) data 170 

were used for chemical and aerosol boundary conditions. The MOZART-4 data is a model 171 

outputs dataset available at a horizontal grid resolution of 1.9°×2.5° every 6 h and is driven by 172 

the National Aeronautics and Space Administration (NASA). The initial and boundary 173 

meteorological conditions (including time varying sea surface temperature), required to run 174 

the model, are provided by the European Centre for Medium-range Weather Forecast 175 

(ECMWF) re-analysis project ERA5, with a horizontal resolution of about 31 km every 3 176 

hours.  177 

 178 

In this study we used WRF-Chem (v3.9) to simulate meteorology and air quality from 20th 179 

December 2014 to 31st December 2015 using the first 10 days as spin up. We conducted a 180 

fully free running simulation (i.e. without nudging) for the entire year 2015. The model 181 

domain is projected on a Lambert conformal grid (780 x 690 grid cells) with a horizontal grid 182 

resolution of 8 km with 30 vertical levels extending from the surface up to 50 hPa. A 183 

synthesis of parameterizations and input data used in this study is given in Tab. 1. 184 

  185 

2.2. Datasets for model evaluation 186 

To evaluate the spatio-temporal patterns of simulated surface air temperature, relative 187 

humidity and precipitation, we compared model results against Climatic Research Unit (CRU) 188 
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observed data, a monthly high-resolution (0.5°×0.5°) gridded dataset over land areas (Mitchell 189 

and Jones, 2005). In addition to CRU, which can be regarded as an independent dataset, for 190 

the evaluation of physical variables, we also compared simulated data against the boundary 191 

conditions used to drive the model (i.e. ERA5); this allows assessing if a bias has been 192 

introduced into the model by its forcing (Mooney et al., 2013) or is mainly due to poor 193 

representation of some physical processes within the model (Tang et al., 2017). In addition, in 194 

order to remove any possible bias in surface temperature related to the difference in 195 

topography between the coarse reference data and the finer model output, we downscaled 196 

both CRU and ERA5 temperature to our domain using a dry-adiabatic lapse. Sensible and 197 

latent heat fluxes were evaluated using the Machine Tree Ensemble (MTE) a 0.5° × 0.5° 198 

gridded dataset (Jung et al., 2011) created by upscaling eddy covariance measurements 199 

collected around the world (Jung et al. 2009, 2011). This dataset has been widely employed to 200 

evaluate the performances of land surface models, including NOAH-MP, a land surface 201 

scheme often used within WRF (Ma et al., 2017). We used the Moderate Resolution Imaging 202 

Spectro-radiometer (MODIS) product from the NASA Terra Satellite to evaluate the snow 203 

cover fraction (Hall et al., 2010); this dataset provides monthly data with a resolution of 0.05° 204 

x 0.05° (Hall and Riggs, 2015). 205 

We have evaluated the WRF-Chem simulations of NO2 concentrations against satellite 206 

retrievals from the Ozone Monitoring Instrument (OMI), flying aboard NASA's EOS-Aura 207 

satellite. This instrument measures the radiation backscattered by the Earth's atmosphere and 208 

surface, and provides the daily global retrievals of several trace species and aerosols with a 209 

spatial resolution of 13 km × 24 km at nadir (Boersma et al., 2011). To evaluate the ability of 210 

the model to reproduce reliable spatial and seasonal NO2 estimates, we compared the 211 

tropospheric NO2 content simulated by WRF-Chem with spatial resolution of OMI data 212 

available from KNMI (Royal Netherlands Meteorological Institute). Similarly, the CO 213 

amounts derived from the Measurement of Pollution in the Troposphere (MOPITT), flying 214 

aboard the NASA EOS-Terra satellite, are compared with WRF-Chem. MOPITT measures 215 

the thermal infrared (IR) radiation with a spatial resolution of about 22 km x 22 km; these 216 

radiances are then used to retrieve CO mixing ratios profile and total column amounts (Deeter 217 

et al., 2003). Here we used version 6 Level 3 MOPITT CO data from the thermal infrared 218 

band (TIR) to evaluate the spatio-temporal patterns of total column content simulated by the 219 

model.  220 

Tropospheric O3 distributions simulated by WRF-Chem were compared to those derived from 221 

the IASI-GOME2 multispectral approach, combining Infrared Atmospheric Sounding 222 

Interferometer observations in the IR and Global Ozone Monitoring Experiment-2 223 

measurements in the Ultraviolet (Cuesta et al., 2013, 2018). IASI-GOME2 has allowed the 224 

first satellite observation of the horizontal distribution of O3 pollution plumes located below 3 225 

km of altitude, and also quantified the photochemical production of lowermost tropospheric 226 

(LMT) O3 across East Asia. This method is based on measurements from two instruments 227 

onboard the MetOp satellite series since 2006 that offer global coverage every day with a 228 

relatively fine ground resolution (12 km x 25 km for IASI at nadir and 80 km x 40 km for 229 

GOME-2). In this analysis, we have evaluated the LMT O3 content integrating between the 230 

surface and 3km height. 231 

For the evaluation of aerosols simulations, we used aerosol optical depth (AOD) data at a 232 

wavelength of 550 nm derived from the MODIS instruments onboard the Terra and Aqua 233 

satellites. Level-2 MODIS Collection-6 data have a resolution of 10 × 10 km (at nadir). In this 234 

analysis, we used the extinction coefficients simulated by WRF-Chem and extracted daily at 235 

the satellite overpass time. 236 
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In our evaluation, we accounted for the satellite retrieval sensitivity by smoothing WRF 237 

vertical profiles with satellite averaging kernels (Kumar et al., 2012a). In the case of O3, the 238 

IASI+GOME2 averaging kernel AIASI+GOME2 and a priori O3 profiles Xapriori used by 239 

IASI+GOME2 were then applied to the WRF-Chem O3 profile Xint (interpolated over the 240 

IASI+GOME2 vertical grid) to obtain smoothed WRF-Chem O3 profile accounting for the 241 

satellite retrieval sensitivity, as classically done with the equation: 242 

XWRF-Chem (O3)
smoothed

 = Xapriori + AIASI+GOME2 [X int - Xapriori]   (1) 243 

A similar procedure was used to transform the modeled CO profiles using MOPITT averaging 244 

kernels and a priori profiles (Kumar et al., 2012a). For transforming the WRF-Chem 245 

simulated tropospheric NO2 content for comparison to OMI retrievals, the procedure requires 246 

the user to calculate the transformed model profile (Ytrop) as: 247 

Ytrop = A x 
���������� x X���     (2) 248 

where A is the total column averaging kernel, AMF and AMFtrop are the air mass factors for 249 

the total columns and tropospheric columns, respectively, and Xtrop is the tropospheric vertical 250 

profiles of NO2, simulated by WRF-Chem, interpolated to the OMI pressure grid (Kumar et 251 

al., 2012a).  252 

Finally, hourly NO2, O3, PM2.5 and PM10 in-situ measurements were collected from 1497 air 253 

quality monitoring stations across China (589 rural and 908 urban), after checking for data 254 

quality. A minimum data capture of 75% was imposed to calculate seasonal mean 255 

concentrations.  256 

2.3. Assessment of model performance 257 

The model performance was evaluated over different seasons (January-February-March, JFM; 258 

April-May-June, AMJ; July-August-September, JAS; October-November-December, OND) 259 

by using the Pearson’s correlation coefficient (r), mean bias (MB) and the fractional bias 260 

(FB). The first metric allows estimating the correlation pattern, thus the spatial agreement 261 

between model and observations. For physical parameters, the MB provides the absolute bias 262 

of the model, with negative and positive values indicating respectively underestimation and 263 

overestimation by the model while the FB (in %) is used for the chemical variables, as in this 264 

case the absolute bias would be hard to interpret. The mean biases were computed pointwise 265 

and then averaged over the whole domain:    266 

MB�= 
������  ∑ ������ −  � !��"�����

�#�     (3) 267 

FB�= 
������  %∑ ('()*�+ ,-.*�)0����

*12
∑ (3�4*�5 6��*�7 )0����

*12
8 x 100    (4) 268 

with Obsij and Modij the observed and modeled values and Nj
obs the number of data at time i 269 

and station j over the domain. These metrics were successfully used in several studies for 270 

evaluating the performance of regional air quality models (e.g. Savage et al., 2013; Pope et 271 

al., 2015; Im et al., 2015; Crippa et al., 2016; Ghim et al., 2017; Crippa et al., 2019). 272 

In case of in-situ data, we extracted WRF-Chem results at the lowest model layer and, for 273 

each station, we calculate the Pearson’s correlation coefficient to assess the ability of the 274 
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model to reproduce the mean annual cycle and the mean bias to provide a measure model’s 275 

error; in the following analysis results are presented as an average over all the stations. 276 

 277 

3. Results 278 

3.1. Evaluation of meteorological variables   279 

The general ability of the WRF model to reproduce realistic spatio-temporal patterns of most 280 

relevant physical and chemical variables is assessed by comparing simulated output with 281 

observational data averaged over different seasons for the reference year 2015. Looking at the 282 

surface air temperature, WRF well captures the observed spatial pattern with a decreasing 283 

south-north gradient and a cold area over the Tibetan plateau. In general, the spatial 284 

distribution of 2-m temperature during all the seasons was very similar to ERA5 and only 285 

slightly different from CRU (Fig. 1). The largest bias was observed during JFM, where the 286 

model was warmer than the reference data over the northern part of the domain and colder in 287 

most of western China, Vietnam, Laos, and Thailand (Fig. 1). In addition, large discrepancies 288 

were observed over the Tibetan plateau, where the coarse resolution of the datasets and the 289 

sparse availability of local measurements could explain the mismatch. The large thermal 290 

heating occurring over the Indian region during spring and early summer (AMJ) is well 291 

captured by the model, which is a pre-requisite to correctly simulate the summer Asian 292 

monsoon. The high agreement in the spatial pattern is confirmed by the high spatial 293 

correlation ranging between 0.98 and 0.99 with respect to both ERA5 and CRU datasets, 294 

while the MB ranged from - 1.51°C in winter (JFM) to 0.07°C in summer (JAS) using ERA5 295 

as reference, and from - 1.82°C in winter to - 0.20°C in summer when compared to CRU 296 

(Tab. 2). 297 

 298 

Unlike seasonal variations in surface air temperature, which are mainly determined by the 299 

insolation patterns, seasonal precipitation variations are strongly influenced by vertical 300 

movement of air due to atmospheric instabilities of various kinds and by the flow of air over 301 

orographic features; thus, to simulate accurately the seasonally varying pattern of 302 

precipitation, models must correctly simulate a number of processes (e.g., evapotranspiration, 303 

condensation, and transport) (Randal et al., 2007). The spatial distribution of seasonal mean 304 

precipitation from model and reference data (ERA5 and CRU) is depicted in Fig 2. In general, 305 

the model was able to capture the major convective centers as in the observations. WRF 306 

overestimated the precipitation over the Himalayan region in JFM and over eastern China in 307 

AMJ, nevertheless, it is important to note that WRF resolved the finer details of orographic 308 

precipitation along the Himalayan foothills, which were missing both in ERA5 because of its 309 

coarser resolution and in CRU due to the lack of widespread measurement stations. Besides, 310 

WRF well reproduced the main monsoon features. The relevant thermal heating occurring 311 

during AMJ over the Indian peninsula results in a pressure gradient with lows over the 312 

landmasses and highs over the colder ocean, which causes a strong moisture advection from 313 

the Bay of Bengal to Indian Peninsula leading to increased precipitation over South-East Asia 314 

and the Indian landmass region during JAS. Looking at the spatial agreement, except for CRU 315 

in winter (r = 0.73), the correlation coefficient exceeded 0.80 during all the seasons and for 316 

both the datasets. The area averaged bias, with respect to the CRU observation, was 0.21-0.25 317 

mm/day during the cold periods (OND-JFM) and 0.68-0.74 mm/day during the warm periods 318 

(AMJ-JAS), while compared to ERA5, WRF showed a slight wet bias during the warm 319 

periods (+ 0.15-0.27 mm/day) and a slight dry bias (about - 0.05 mm/day) during the cold 320 

seasons (Tab. 2). Large discrepancies (overestimation) were observed between 2-m relative 321 

humidity and CRU observations over central Asia, Western China and India (Fig. 3) while an 322 
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underestimation was observed over the western part of the domain compared to ERA5 during 323 

JAS and OND. The spatial correlation ranged from 0.95 to 0.99 for both ERA5 and CRU 324 

datasets. The WRF model underestimated the relative humidity with respect to ERA5 during 325 

all the year, from - 1.5% in JFM to - 4.5% in JAS, and an overestimation was observed 326 

compared to CRU dataset, in particular during the warm period with a MB of 11-12%.  327 

 328 

Looking at latent heat we found an overall good agreement between the WRF model and the 329 

reference datasets (Fig. 4), with spatial correlation exceeding 0.92 for both datasets (Tab. 2). 330 

Nevertheless, WRF remarkably overestimated surface latent heat during the warm seasons, 331 

especially over South and Southeastern Asia, with the largest bias found in JAS and ranging 332 

between 2.6 W/m² and 13.2 W/m² compared to ERA5 and MTE, respectively. This 333 

overestimation was strictly related with the slight overestimation of rainfall during the same 334 

season which brings more water on the land surface that can re-evaporate, subsequently 335 

amplifying convective precipitation. Similarly, the sensible heat was well simulated with a 336 

spatial correlation ranging from 0.82 in JFM for MTE dataset to 0.94 in AMJ for ERA5. 337 

Compared to ERA5, WRF model overestimated the sensible heat during the warm period 338 

(16.4-19.4 W/m²), in particular over the Western part of the domain, while a lower 339 

overestimation is reported for MTE (7.9-11.5 W/m²) over the same season. In contrast during 340 

JFM and OND, WRF model well reproduced the observed spatial patterns (Fig. 5) with a 341 

slight underestimation in winter (- 1.2 and - 2.8 W/m²).  342 

 343 

Besides, WRF well reproduced the snow cover fraction, with a spatial agreement ranging 344 

from 0.74-0.77 in summer to 0.92-0.95 in winter for ERA5 and MODIS datasets, respectively 345 

(Tab. 2). Compared to MODIS data, WRF slightly overestimated the snow cover fraction in 346 

JFM (0.6%) and AMJ (0.2%) mainly around the Tibetan plateau and underestimated it in JAS 347 

(about - 0.1%) and OND (- 1.7%), WRF underestimated the snow cover throughout the year 348 

when compared to ERA5, with a mean bias ranging from - 0.9% in JAS to - 3.2% in AMJ. 349 

The main discrepancies were observed over North Siberia in JFM, over the Tibetan plateau in 350 

AMJ and over both areas in OND (Fig. 6). 351 

 352 

3.2. Evaluation of chemical variables 353 

The spatial distributions of model-simulated and OMI-retrieved seasonal mean tropospheric 354 

NO2 content during winter, spring, summer and autumn for the year 2015 are shown in Fig. 7. 355 

Both WRF-Chem and OMI showed, during all the seasons, the highest tropospheric NO2 356 

content over the polluted region around Beijing and over Korean peninsula, followed by the 357 

Indo-Gangetic Plain region, with hot spots located in correspondence of large urbanized areas 358 

such as Seoul (South Korea) and New Delhi (India). The lowest values were found above the 359 

Tibetan plateau. The spatial correlation averaged over the entire domain ranged between a 360 

0.89 in AMJ and 0.91 in JFM. The percentage differences between WRF-Chem and OMI 361 

tropospheric NO2 content showed a slight underestimation of the model by 2-8% during the 362 

cold period (Tab. 3) while the concentrations of NO2 were significantly under-predicted by 363 

WRF-Chem during the warm period (64-70% in AMJ-JAS). Conversely, large 364 

overestimations occurred during the cold months (JFM and OND), mostly over polluted 365 

regions (e.g. Eastern China). The positive and negative biases found in summer and winter, 366 

respectively, compensated with each other and led to an overall small FB (- 2%). 367 

The highest total column CO was observed over the Southeastern and Eastern Asia and the 368 

lowest column CO values were found above the Tibetan plateau (Fig. 8). The simulated total 369 

CO column showed a high spatial correlation coefficient (about 0.97) during all the seasons 370 

(Tab. 3). The model performed well for simulating CO with a FB < ± 10% of MOPITT. The 371 
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agreement between WRF-Chem and MOPITT is higher in autumn (FB: + 3%) than in spring 372 

(FB: + 7%) and summer (FB: + 8%). The simulated total column CO was slightly 373 

underestimated over Eastern Asia during all seasons and over Southeastern Asia in winter and 374 

autumn. In summer, the most important overestimation was observed over Southeastern Asia 375 

and India (Fig. 8). 376 

The spatial and seasonal distributions of model-simulated and IASI+GOME2-retrieved LMT 377 

O3 content (integrated up to 3km height) are shown in Fig. 9. The WRF-Chem model 378 

simulated well the spatial distributions and the seasonal variations of O3. A particular good 379 

spatial agreement is remarked for the summer season, with a spatial correlation of 0.99 (Tab. 380 

3). During spring and winter, the spatial agreement is moderate (r = 0.61 and r = 0.76, 381 

respectively), while it is fairly low in winter (r = 0.43). The highest O3 content was similarly 382 

depicted in Eastern Asia and in the latitude band 20-45°N, in particular over the Indo-383 

Gangetic Plain region, in both datasets. Although overestimated in the cold seasons, WRF-384 

Chem simulates correctly the eastward export of tropospheric O3 over the Yellow and Japan 385 

Sea (30-40°N 120-130°E). Model and satellite data also agree to show very low LMT O3 386 

values above the Tibetan plateau during the cold season and below 30°N latitude in summer. 387 

North of these high mountains (40°N 80-100°E), high abundances of O3 during summer and 388 

spring depicted by IASI+GOME2 are consistently simulated by WRF-Chem. The overall 389 

seasonal cycle is consistently shown by both datasets, with highest concentrations in spring, a 390 

little lower in summer and lowest in autumn. The FB over the model domain exhibited a 391 

seasonal variability with limited overestimation during the warm season (3-7% in spring and 392 

summer), in the 20-30°N latitude band, and larger over-prediction (11-13%) during the cold 393 

period (winter and autumn). In addition, we remark that only IASI+GOME2 retrievals show 394 

moderate enhancement of O3 concentrations north of 45°N during winter, probably associated 395 

with downward transport of O3 from both upper troposphere and stratosphere. This difference 396 

between IASI+GOME2 and model data was also remarked in a comparison with respect to 397 

other simulations performed with WRF-Chem in springtime 2009 over East Asia (Cuesta et 398 

al., 2018). 399 

Looking at the aerosol optical depth (Fig. 10), both WRF-Chem and MODIS showed, during 400 

all the seasons, the highest AOD over the polluted region of Eastern Asia, over the Goby 401 

desert and over the Indo-Gangetic Plain region. The spatial correlation ranged between 0.86 in 402 

summer and 0.93 in winter (Tab. 3). The model-simulated AOD were lower than those from 403 

MODIS with a FB of - 19% and - 2% for JFM and OND, respectively, in particular over the 404 

polluted region of Eastern China and Indo-Gangetic Plain region (Fig. 10). WRF-Chem 405 

overestimated the AOD by 6% and 20% in spring and summer over Southern part of the 406 

domain. 407 

Compared to in-situ measurements, WRF-Chem was able to reproduce the surface NO2 408 

concentrations over China during all the seasons (Fig 11). The high concentrations over 409 

polluted regions are well captured, despite some stations showed a large bias, while minimum 410 

NO2 concentrations, found in Western China, are slightly underestimated. Overall, the 411 

correlation coefficient computed from mean daily concentrations was 0.29, with a mean bias 412 

of 10.1 ppb and a FB ranging from 35% in spring to 45% in autumn (Tab. 4). These statistics 413 

were calculated from the mean of the metrics computed over the stations, thus stations with 414 

poor agreement significantly contribute to lower model skills. As poor model performances 415 

were expected, particularly in urban areas, where a regional chemistry transport model is 416 

unable to correctly predict the observed hourly variability of air pollutants concentrations, 417 

which depends on local processes, we also computed the correlation comparing the mean 418 

temporal evolutions averaged over all the stations. In this latter case, the model performance 419 
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was remarkably better, with a temporal correlation of 0.71 (data not shown). Unlike NO2, the 420 

comparison of surface O3 showed a complex bias pattern: the model well reproduced O3 421 

during cold seasons (FB = - 8% in JFM, - 15% in OND), in particular concentrations below 422 

15 ppb over megacities (Fig. 12). Similarly, high O3 concentrations over Tibetan plateau are 423 

well represented during all the seasons. Nevertheless, during warmer months (AMJ and JAS), 424 

the WRF-Chem systematically overestimated surface O3 concentrations (FB = 23-24%). The 425 

mean annual cycle of O3 is slightly better simulated compared to NO2, with a correlation 426 

coefficient of 0.51 (0.90 in case of correlation computed from the mean temporal evolution 427 

averaged over all the stations), while the mean bias was 5 ppb (Tab. 4). Looking at surface 428 

PM2.5 (Fig. 13) and PM10 (Fig. 14) concentrations during the cold period, the high 429 

concentrations (exceeding 100 µg m-3) over polluted regions and megacities in Eastern China 430 

are well captured (FB = 5% in JFM for both PM2.5 and PM10), while low PM2.5 and PM10 431 

concentrations in Western China (less than 10 µg m-3) are slightly overestimated. During the 432 

warm period, the surface concentrations are well captured across China, with a slight 433 

overestimation in AMJ for PM10 (FB = 11%). The highest overestimation is observed in 434 

summer with a FB of 29% and 36% for PM10 and PM2.5, respectively (Tab. 4). Overall, the 435 

correlation coefficient computed from mean daily concentrations was 0.44 for PM2.5 and 0.35 436 

for PM10, with a mean bias of 10.4 µg m-3 and 14.8 µg m-3, respectively (Tab. 4). By 437 

considering the mean temporal evolutions averaged over all the stations, the temporal 438 

correlations were 0.83 and 0.71, respectively (data not shown). 439 

 440 

4. Discussion 441 

Capturing spatiotemporal patterns of trace gases and weather patterns over Asia is challenging 442 

for chemistry transport models because of the complex orography associated to the monsoon 443 

systems and large uncertainty in the anthropogenic emission inventories over heavily 444 

populated regions in Asia (Kumar et al., 2015; Zhang et al., 2016a). In this study, the WRF-445 

Chem model was used to simulate the spatial and seasonal variability of main physical and 446 

chemical variables over the Asian region at fine horizontal resolution (8 km) to capture local 447 

small-scale processes. 448 

In addition to surface air temperature and moist fluxes, which influence the rate of chemical 449 

reactions close to land surface and the removal of air pollutants through wet deposition, 450 

respectively, heat fluxes also play a pivotal role in surface energy balance and influence the 451 

Asian monsoon (Wang et al., 2014, 2016, 2017b). When compared to ERA5 and CRU 452 

datasets, WRF well reproduced meteorological observational-based data. In particular, 453 

looking at temperature, WRF performed well in terms of spatial distributions over time, even 454 

over complex terrain with uneven surface topography, such as Tibetan plateau and Himalayan 455 

chain. To reproduce observed patterns over Tibetan plateau, a meteorological model must 456 

correctly reproduce several processes ranging from convection to thermal balance. 457 

Considering the relative humidity, we found slight discrepancies over the Tibetan plateau, 458 

particularly in winter, while we found a large bias for surface sensible heat over the Western 459 

part of the domain during the warm period. Besides, WRF slightly overestimated the 460 

precipitation, in particular during the monsoon period; previous studies suggested that the 461 

magnitude of precipitation bias depends on the cumulus parameterization schemes (Ratna et 462 

al., 2014; Juneng et al., 2016). The WRF model predicted much stronger rain over Western 463 

China, Northern Bay of Bengal and Eastern India. Zhang et al. (2016a) showed that the 464 

rainfall overestimation can be attributed to the slightly excessive precipitation predicted by 465 

the cumulus Tiedtke scheme, and the apparent underestimation of air temperature is most 466 

likely caused by an error in the radiation balance and certain limitations in the Yonsei 467 
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University Scheme used in resolving main features of the Planetary Boundary Layer 468 

meteorology, particularly over complex terrain such as mountainous regions over high-469 

elevation Tibetan plateau, Vietnam and Laos (Zhang et al., 2016b).  470 

A previous study performed with WRF over South Asia at 45 km of spatial resolution, 471 

indicated that the MB was 1-4 °K for temperature, 20-65 % for water vapor and within ± 10 472 

mm/day for the precipitation during all seasons except in summer, with an overestimation 473 

exceeding 20 mm/day over Himalaya and along the coastline in Eastern India (Kumar et al., 474 

2012b). In another study where WRF was run over East Asia at 36 km of horizontal 475 

resolution, Zhang et al. (2016b) showed a MB ranging from - 1.0°C to + 1.5°C for surface air 476 

temperature and moderate to large biases for precipitation (+ 0.2 to + 1.7 mm/day) and 477 

relative humidity (+ 0.4% to + 23.4%). In a different study over East Asia, where WRF was 478 

run at 50 km of horizontal resolution, using a spectral nudging applied to wind direction and 479 

speed and air temperature over the time period 1989-2007, Tang et al. (2017) found for the 480 

surface air temperature an averaged MB of 1.77 °C (- 8 to + 4 °C) compared to CRU, and of 481 

1.45 mm (- 4 to + 8mm) for precipitation with an overestimation by 2-8 mm/day in tropical 482 

regions and an underestimation of 0.5-1.0 mm/day over Southern China.  483 

In our study, the model performances in simulating surface meteorology were better than the 484 

other simulations performed over Asian regions with the same model but with a coarser 485 

spatial resolution at 36 - 50 km of spatial resolution (e.g. Kumar et al., 2012a,b; Zhang et al., 486 

2016a,b; Tang et al., 2017); this suggests that the finer model resolution (8 km) helps to 487 

resolve small-scale features induced by complex topography e.g. in Himalaya or Sichuan 488 

region. In general, increasing model resolution has resulted in improved model simulations 489 

and predictions for air temperature, relative humidity, precipitation (Malardel et al., 2016; 490 

Prodhomme et al., 2016; Zhang et al., 2016c), global energy budget (Vannière et al., 2019) 491 

and orographic winds (Roebber et al., 2004). By using the WRF model with horizontal 492 

resolutions of 2, 10 and 30 Km, Lin et al. (2018) showed that finer resolutions improved 493 

biases over the Tibetan Plateau, in particular for precipitation. A significant difference was 494 

observed from 30 to 10 km of horizontal resolution, suggesting that approximately 10 km of 495 

horizontal resolution represents a good compromise (Lin et al., 2018). 496 

The WRF-Chem model well reproduced tropospheric NO2 content, total column CO and LMT 497 

O3 content with a FB within the air quality model performance criteria, except for NO2 during 498 

the warm season. The highest column content for NO2, CO and O3 was observed over 499 

Southeastern and Eastern Asia due to road traffic, industries, power plants and biomass 500 

burning (Streets et al., 2003; Kumar et al., 2012a; Cooper et al., 2014), with 2015 recording 501 

the highest fire activity season since 1997 (Huijnen et al., 2016; Mead et al., 2018). In 502 

contrast, the column NO2, CO and O3 values above regions of high terrain such as the Tibetan 503 

plateau were lower than adjacent regions due to the limited depth of the troposphere and 504 

fewer emissions (Cooper et al., 2014).  505 

In this study, WRF-Chem captured the seasonal variability of tropospheric NO2 content 506 

values with a summer minimum and a winter maximum. The winter maximum is due to a 507 

lower removal rate of NO2 with OH radicals, compared to summer (Beirle et al., 2003). The 508 

large NO2 overestimation was observed during winter and autumn over polluted regions with 509 

abundant anthropogenic NOx emissions, such as road traffic and power plants as previously 510 

reported e.g. in Europe (Barten et al., 2019; Visser et al., 2019). These results are in 511 

agreement with prior studies that found WRF-Chem overestimating tropospheric NO2 content 512 

in urban areas such as London, Madrid, Rome and in cities of Eastern Europe by 5-18 % in 513 

urban areas (Barten et al., 2019; Visser et al., 2019), despite they adopted a different chemical 514 
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mechanism (i.e., CBM-Z). The NOx emissions from microbial activity and lightning, which 515 

were not considered in our emission inventory, are important during summer in rural areas of 516 

Southeastern Asia (Kumar et al., 2012a). The largest discrepancies (underestimation) during 517 

spring and summer point to uncertainties in biomass burning, lightning and soil emission 518 

estimates (Kumar et al., 2012a; Barten et al., 2019) and another plausible reason is the NOx 519 

removal overestimation through the reaction of dinitrogen pentoxide (N2O5) to nitric acid in 520 

the WRF-Chem chemical mechanism (Yegorova et al., 2011). The discrepancies in NOx 521 

concentrations can be also explained by no year adjustments for EDGAR-HTAP 522 

anthropogenic emission data (based on year 2010), in particular in China. Kumar et al. 523 

(2012a) showed that the discrepancies in anthropogenic emission estimates were mainly due 524 

to uncertainties in the emissions inventory (emission factors and socio-economic parameters). 525 

Prior studies have found that, over South Asia, WRF-Chem tends to overestimate NO2 526 

tropospheric content from OMI retrievals by 10-50% over South Asia and up to 90% over the 527 

Indo-Gangetic Plain region during winter (Kumar et al., 2012a) with a correlation coefficient 528 

between model and OMI ranging from 0.61 to 0.73 in 2008 (Kumar et al., 2012a). Over East 529 

Asia, WRF-Chem underestimated the tropospheric NO2 content by up to - 30.6% compared to 530 

SCIAMACHY data in 2005 (Zhang et al., 2016b). As NOx emissions display strong spatial 531 

variation, we obtained a better spatial representation and simulations of NO2 levels, by 532 

increasing the model grid resolution, compared to previous studies at coarser scale e.g. at 533 

20 km of grid resolution (Schaap et al., 2015; Barten et al., 2019; Visser et al., 2019). 534 

 535 

The seasonal variation of the total column CO is well reproduced by WRF-Chem with highest 536 

and lowest values during late autumn-winter and summer (monsoon), respectively. In general, 537 

both the model and MOPITT were highest during winter, decreased during spring, attained 538 

minimum levels during summer and increased again during autumn. MOPITT CO retrievals 539 

over South and Southeast Asia were slightly underestimated by WRF-Chem in spring, 540 

between March and May, when biomass burning constitutes the major fraction of total CO 541 

emissions (Amnuaylojaroen et al., 2019), suggesting that CO emissions from biomass burning 542 

is slightly underestimated. Over South Asia, the WRF-Chem model similarly estimated 543 

MOPITT column CO retrievals by - 9.0% to + 7.0% during all seasons with a r value from 544 

0.63 to 0.84 for the year 2008 (Kumar et al., 2012a) and by - 24.2% to + 3.9% over East Asia 545 

in 2005 (Zhang et al., 2016b). The annual mean contribution of biomass burning to the total 546 

CO emissions was around 24% over Asia (Streets et al., 2003). The slight overestimation of 547 

CO retrievals during other seasons (low fire activity) indicated that anthropogenic CO 548 

emissions are overestimated over this region (Zhang et al., 2016a). A better treatment of 549 

biomass burning sources and improved boundary conditions of CO (e.g. for transboundary 550 

inputs, in particular from wildfires, biomass burning and transport) are needed to improve the 551 

performance of the total column CO. 552 

 553 

The seasonality of LMT O3 content is well reproduced by WRF-Chem by capturing the 554 

increase in O3 burden during the warm season, with a spring maximum (Sicard et al., 2009; 555 

Kumar et al., 2012a; Cooper et al., 2014). Eastern China and Northern India are two main 556 

pollution sources, emitting significant amounts of NOx, CO and VOCs (Wang et al., 2010) in 557 

winter and autumn (cold period) leading to the highest LMT O3 in spring and summer 558 

(Cooper et al., 2014). Furthermore, the relatively high biogenic NMVOC emissions and active 559 

photochemical reactions constitute favorable conditions for O3 formation in summer (Sicard 560 

et al., 2016b). The WRF-Chem overestimation of anthropogenic NO2 and CO emissions led to 561 

a model overestimation of surface O3 concentrations in winter (13%) and autumn (11%), in 562 

particular in South Asia and Eastern China. A previous study employing an offline regional 563 

model showed an overestimation of O3 levels during summer over India (Roy et al., 2008). As 564 
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reported here, the regional models generally underestimate mean O3 concentrations during 565 

high O3 seasons and overestimate mean O3 concentrations during low O3 seasons (Fiore et al., 566 

2009; Huang et al., 2017). The differences in anthropogenic NOx, CO and VOCs inventories 567 

are the dominant factors for the discrepancies in simulated O3 levels, as already reported in 568 

China and Southeast Asia (Ma and van Aardenne, 2004; Amnuaylojaroen et al., 2014). The 569 

slight mean bias of LMT O3 for spring 2015 (3%) entails among other the correct 570 

representation of the seasonal variations of stratospheric O3 intrusions to the upper 571 

troposphere. The over-prediction of O3 and under-prediction of NO2 in all months indicated 572 

an insufficient titration of O3 by NO (Zhang et al., 2016b). In Southern India and Southeastern 573 

Asia, below 30°N latitude, the summer is dominated by cloudy conditions and heavy rainfall 574 

due to monsoon leading to lower O3 levels by reducing the photochemical production of O3 575 

(e.g. Roy et al., 2008; Kumar et al., 2012a). The FB ranged from - 16% to 0% over South 576 

Asia in 2008 (Kumar et al., 2012a) with larger differences during spring and early summer, 577 

mainly due to additional O3 precursor sources (e.g. biomass burning).  578 

 579 

High AOD were observed over desert regions due to mineral dust (e.g. Goby) and over areas 580 

with large anthropogenic aerosol emissions, especially East and South Asia (Shindell et al., 581 

2013). As EDGAR does not provide black and organic carbon and PM2.5 emissions, and 582 

GOCART does not include secondary organic aerosols or nitrate aerosols, an under-prediction 583 

of aerosol burden is observed in Asia, in particular in winter (Zhong et al., 2016; Zhang et al., 584 

2016a; Crippa et al., 2019). The overestimations of AOD over Eastern China, South and 585 

Southeastern Asia in spring and summer, were mainly due to over-predictions in PM10 586 

concentrations because of dust emissions (Shindell et al., 2013; Zhang et al., 2016a). Over 587 

East Asia, the differences between model-simulated and MODIS-based AOD ranged from - 588 

38.7% to + 5.6% in 2005 (Zhang et al., 2016b). 589 

Considering the performances of WRF-Chem for reproducing atmospheric chemistry at 590 

ground-level, the recommended benchmarks proposed by Morris et al. (2005), Boylan and 591 

Russell (2006) and Emery et al. (2017) for the chemical model performance is FB within ± 592 

15% for O3 and NO2 if r is greater than 0.5. By comparing the WRF-Chem model outputs 593 

with ground-based observations, overall the WRF-Chem model reproduced well the mean 594 

annual cycle of surface O3, PM2.5 and PM10 mean concentrations at regional scale in 2015, in 595 

particular during the cold season. Furthermore, the model well reproduced the NO2 titration 596 

over the polluted Eastern China. The WRF-Chem model overestimated surface O3 597 

concentrations during the warm period, when plants are active, then a part of the observed 598 

bias can be explained by (i) a poor parameterization of dry deposition to vegetation in the 599 

Noah Land Surface Model, leading to an underestimation of dry deposition velocities (Wu et 600 

al., 2011), then to a reduction of the O3 removal capacity by plants; and by (ii) the under-601 

prediction of cloud optical depth and overestimation of photolysis rates by WRF (Ryu et al., 602 

2018). However, when the correlations were computed from the average of individual 603 

stations, the performances were much poorer. Nevertheless, this result was partially expected 604 

being an intrinsic characteristic of regional models. In other words, a regional CTM (even at 605 

high spatial resolution) is not able to reproduce well temporal variation of local urban 606 

observations because of the lack of detailed local inputs (both emission inventories and 607 

removal processes). Besides, it should be noted that WRF-Chem was forced with annual mean 608 

anthropogenic emissions, thus it is hard to reproduce the high frequency temporal variability 609 

of observations, especially in urban environments which are extremely dynamics and poorly 610 

controlled by natural processes.    611 

 612 

5. Conclusions 613 
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In this study WRF-Chem was applied at high spatial resolution (8-km) over Asia for the year 614 

2015, to allow resolving fine-scale features over complex topography areas (e.g. Indo-615 

Gangetic Plain region). As we did not use nudging, our results enhance the reliability of this 616 

study and the ability of the model to capture spatio-temporal variation of physical and 617 

chemical variables. Overall model skills in simulating surface meteorological and air quality 618 

were higher than those showed in previous studies focusing on the same region where the 619 

model was applied at coarser spatial resolution. In this study, the mean bias ranges are lower 620 

than Zhang et al. (2016b) e.g. [- 1.51 °C; + 0.07 °C] vs. [- 1.0 °C; + 1.5°C] for air 621 

temperature, [- 0.05 mm/day; + 0.27 mm/day] vs. [+ 0.2 mm/day; + 1.7 mm/day] for 622 

precipitation; [- 4.5 %; - 1.5 %] vs. [+ 0.4 %; + 23.4%] for relative humidity and [- 7 %; + 8 623 

%] vs. [- 24.2 %; + 3.9 %] for column CO retrievals. The better observed performance is 624 

mainly due to the advantage of the finer model spatial resolution. WRF-Chem simulation 625 

showed low to moderate biases for major meteorological variables, except for sensible heat 626 

where a large bias (16-19 W.m-2) is observed during the warm period. Furthermore, the results 627 

indicate some limitations in parameterization, such as the cumulus Tiedtke scheme leading to 628 

precipitation overestimation over widely-varying climate and topography regions e.g. high-629 

elevation Tibetan plateau, Indo-Gangetic Plain region and Southeastern Asia. 630 

 631 

The WRF-Chem reproduced well the overall spatial and seasonal variability of O3, CO and 632 

AOD over the Asian region, but large discrepancies were found for NO2 during the warm 633 

period. The observed bias between model-simulated and satellite-retrieved values were 634 

mainly attributed to uncertainties in satellite retrievals, vertical and horizontal model 635 

resolution, bottom-up emissions, anthropogenic and natural NOx emission estimates (e.g. by 636 

lightning and soil), dust and PM2.5 emission, stratosphere-to-troposphere O3 exchange, 637 

transboundary pollution, low NO titration and uncertainty in N2O5 and nitrate radical 638 

reactions in the WRF-Chem chemical mechanism (Yegorova et al., 2011; Li et al., 2014; 639 

Parrish et al., 2014; Huang et al., 2017; Sicard et al., 2017; Zhang et al., 2016a; Mu et al., 640 

2017).  641 

 642 

For any application of models results, including reliable air pollution risk assessment, the 643 

generation of realistic maps is needed, particularly over highly complex terrain of Northern 644 

India (Indo-Gangetic Plain) where air quality is poor (Kumar et al., 2012a). Regional 645 

chemistry-climate models at coarse horizontal resolution are often unable to resolve the local 646 

features influencing the chemical transformation (Tie at al., 2010; Huang et al., 2017) and 647 

barely able to fully reproduce the ground observations (Schaap et al., 2015; Jonson et al., 648 

2018) in particular at high-elevation sites (Strode et al., 2015). To date, the most damaging air 649 

pollutant for vegetation and human health are O3 and PM (Sicard et al., 2016a, 2019). In this 650 

study, WRF-Chem model reproduced well the spatial and seasonal variability of surface NO2, 651 

O3, PM2.5 and PM10 mean concentrations across China, following the recommended 652 

benchmarks for the chemical model performance for O3 and NO2. However, our results 653 

suggest that it is essential to improve the emission estimates of primary PM (e.g. new dust 654 

emission scheme) and NOx (e.g. adjusted anthropogenic emission and vertical distribution) 655 

and upgrade chemical mechanisms e.g. Polycyclic Aromatic Hydrocarbon heterogeneous 656 

reactions with O3 and homogeneous reaction with the nitrate radical in order to reduce bias in 657 

simulating the surface O3 and PM concentrations over Asia (Zhang et al., 2016b; Mu et al., 658 

2017).  659 
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Table 1. Model set up with main physical and chemical schemes adopted in the simulation.  1210 

  

Model set-up Values 
  

  

Domain South-East Asia 
Simulation period 1st January - 31st December 2015 
Spin up 20st December - 31st December 2014 
Horizontal resolution 8 km 
Vertical resolution 30 eta levels up to 50 hPa 
Domain size 780 x 690 cells (lon x lat) 
Meteorological boundary ERA5 (31 km), 3h 
Chemical boundary MOZART-4/GEOS-5 
  

Physical option Adopted scheme 
  

  

Microphysics Single–moment 6–class 
Cumulus Parameterization New Tiedtke 
Shortwave Radiation RRTMG 
Longwave Radiation RRTMG 
Land-surface Noah Land Surface Model 
Planetary boundary layer Yonsei University Scheme 
  

Chemical options Adopted scheme 
  

  

Gas phase chemistry MOZART 
Aerosols GOCART 
Photolysis Madronich F-TUV 
Biogenic emissions MEGAN 
Anthropogenic emissions EDGAR HTAP (v2.2) 
Fire emissions FINN (v1.5) 
  

 1211 
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Table 2. Pearson’s correlation coefficient (r) and mean bias (model-reference) computed 1214 

using WRF results and different reference datasets for surface air temperature, precipitation, 1215 

relative humidity, latent heat, sensible heat and snow cover fraction. Note that reference data 1216 

were re-gridded to the WRF domain; in addition to downscale temperature we used a dry 1217 

adiabatic lapse rate correction. 1218 

VARIABLE REFERENCE 

Pearson’s correlation coefficient 
(r)  

 Mean bias 

 
JFM AMJ JAS OND  JFM AMJ JAS OND 

TEMPERATURE 
(°C) 

ERA5 0.99 0.99 0.99 0.99  -1.51 -0.42 0.07 -0.68 

CRU 0.98 0.99 0.99 0.99  -1.82 -0.82 -0.20 -1.20 

PRECIPITATION 
(mm/day) 

ERA5 0.80 0.90 0.91 0.88  -0.04  0.15 0.27 -0.05 

CRU 0.73 0.84 0.84 0.81  0.25 0.74 0.68 0.21 

RELATIVE HUMIDITY  

(%) 

ERA5 0.99 0.99 0.99 0.99  -1.5 -3.1 -4.5 -4.0 

CRU 0.95 0.96 0.97 0.96  2.1 11.0 12.0 2.7 

LATENT HEAT 
(W/m2) 

ERA5 0.92 0.94 0.95 0.94  2.0 0.5 2.6 -0.24 

MTE 0.95 0.97 0.97 0.95  3.0 6.3 13.2 4.6 

SENSIBLE HEAT 
(W/m2) 

ERA5 0.88 0.94 0.93 0.87  -1.2 16.4 19.4 2.2 

MTE 0.82 0.93 0.91 0.87  -2.8 7.9 11.5 1.5 

SNOW COVER FRACTION 
(%) 

ERA5 0.95 0.84 0.74 0.89  -3.0 -3.2 -0.9 -2.7 

MODIS 0.92 0.89 0.77 0.92  0.6 0.2 -0.08 -1.7 

JFM: January-February-March, AMJ: April-May-June, JAS: July-August-September, OND: October-1219 

November-December. 1220 
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Table 3. Pearson’s correlation coefficient (r) and fractional bias computed using WRF-Chem 1223 

results and different reference datasets for surface nitrogen dioxide (NO2), aerosol optical 1224 

depth (AOD), ozone (O3) and carbon monoxide (CO) concentrations.  1225 

VARIABLE REFERENCE  

Pearson’s correlation 
coefficient (r) 

 Fractional bias 

JFM AMJ JAS OND  JFM AMJ JAS OND 

NO2 OMI 0.91 0.89 0.90 0.89  -2% -64% -70% -8% 

CO MOPITT 0.97 0.97 0.96 0.97  -7% 7% 8% 3% 

O3 IASI 0.76 0.61 0.99 0.43  13% 3% 7% 11% 

AOD MODIS 0.93 0.88 0.86 0.91  -19% 6% 20% -2% 

JFM: January-February-March, AMJ: April-May-June, JAS: July-August-September, OND: October-1226 

November-December. 1227 
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Table 4. Pearson’s correlation coefficient, mean bias and fractional bias computed using 1230 

WRF-Chem daily results at surface layer and ground measurements for surface nitrogen 1231 

dioxide (NO2), ozone (O3), particulate matters (PM2.5 and PM10) concentrations; results 1232 

represent the mean computed over all the available stations.  1233 

 1234 

VARIABLE 
Pearson’s 
correlation 

coefficient (r) 
Mean bias 

Fractional bias 

JFM AMJ JAS OND 

NO2 0.29   10.1 ppb 38% 35% 42% 45% 

O3 0.51   5.0 ppb -8% 23% 24% -14% 

PM2.5 0.44   10.4 µg m-3 5% 20% 36% 23% 

PM10 0.35   14.8 µg m-3 5% 11% 29% 24% 

JFM: January-February-March, AMJ: April-May-June, JAS: July-August-September, OND: 1235 

October-November-December. 1236 
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 1239 

 1240 

Figure 1. Spatial pattern of 2-meter air temperature (°C) as simulated by WRF-Chem (left 1241 

panels) and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) 1242 

during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-1243 

August-September, OND: October-November-December) in 2015. Mind the differences in 1244 

color scales between seasonal climatologies. 1245 
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 1246 

Figure 2. Spatial pattern of precipitation (mm/day) as simulated by WRF-Chem (left panels) 1247 

and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) during 1248 

different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-August-1249 

September, OND: October-November-December). Mind the differences in color scales 1250 

between seasonal climatologies. 1251 
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 1253 

Figure 3. Spatial pattern of 2-meter relative humidity (%) as simulated by WRF-Chem (left 1254 

panels) and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) 1255 

during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-1256 

August-September, OND: October-November-December). Mind the differences in color 1257 

scales between seasonal climatologies. 1258 

Jo
urn

al 
Pre-

pro
of



34 

 

 1259 

Figure 4. Spatial pattern of surface latent heat (W/m²) as simulated by WRF-Chem (left 1260 

panels) and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) 1261 

during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-1262 

August-September, OND: October-November-December). 1263 Jo
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 1264 

Figure 5. Spatial pattern of surface sensible heat (W/m²) as simulated by WRF-Chem (left 1265 

panels) and compared to ERA5 reanalysis (central panels) and CRU dataset (right panels) 1266 

during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-1267 

August-September, OND: October-November-December). 1268 Jo
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 1269 

Figure 6. Seasonal spatial pattern of snow fractional cover (%) as simulated by WRF-Chem 1270 

(left panels) and compared to ERA5 (center panels) and MODIS data (right panels) during 1271 

different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-August-1272 

September, OND: October-November-December). 1273 

 1274 
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 1276 

Figure 7. Spatial distributions of WRF-Chem simulated and OMI- retrieved tropospheric NO2 1277 

content (x 1015 molecules/cm²) during different seasons (JFM: January-February-March, 1278 

AMJ: April-May-June, JAS: July-August-September, OND: October-November-December). 1279 
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 1280 

Figure 8. Comparison of WRF-Chem simulated total CO column with MOPITT data (x 1017 
1281 

molecules/cm²) during different seasons (JFM: January-February-March, AMJ: April-May-1282 

June, JAS: July-August-September, OND: October-November-December). The WRF-Chem 1283 

simulated CO are quite discontinuous due to coarse spatial resolution of MOPITT data (1x1 1284 

deg) to compute WRF total column. 1285 
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 1286 

 1287 

 1288 

Figure 9. Spatial tropospheric column ozone (Dobson Unit, DU), integrated between the 1289 

surface and the tropopause, according to the WRF-Chem model (left panels) and IASI-1290 

GOME2 satellite retrievals (right panels) during different seasons (JFM: January-February-1291 

March, AMJ: April-May-June, JAS: July-August-September, OND: October-November-1292 

December). 1293 
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 1295 

Figure 10. Comparison of simulated aerosol optical depth (dimensionless) with MODIS data 1296 

during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: July-1297 

August-September, OND: October-November-December). 1298 
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 1300 

Figure 11. Spatial distributions of surface NO2 concentrations (in ppb) simulated by the 1301 

WRF-Chem model (background) and from air quality monitoring stations (dots) across China 1302 

in 2015 during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: 1303 

July-August-September, OND: October-November-December). 1304 
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 1307 

Figure 12. Spatial distributions of surface O3 concentrations (in ppb) simulated by the WRF-1308 

Chem model (background) and from air quality monitoring stations (dots) across China in 1309 

2015 during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: 1310 

July-August-September, OND: October-November-December). 1311 
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 1315 

Figure 13. Spatial distributions of surface PM2.5 concentrations (in µg m-3) simulated by the 1316 

WRF-Chem model (background) and from air quality monitoring stations (dots) across China 1317 

in 2015 during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: 1318 

July-August-September, OND: October-November-December). 1319 
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 1322 

Figure 14. Spatial distributions of surface PM10 concentrations (in µg m-3) simulated by the 1323 

WRF-Chem model (background) and from air quality monitoring stations (dots) across China 1324 

in 2015 during different seasons (JFM: January-February-March, AMJ: April-May-June, JAS: 1325 

July-August-September, OND: October-November-December). 1326 
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Highlights 

 

The WRF-Chem model was applied over Asia in 2015 at 8-km horizontal resolution 

The outputs were evaluated against satellite and ground-based observations in China in 2015 

WRF-Chem reproduced well the spatio-temporal patterns for meteorological and chemical 
variables 

WRF-Chem reliable tool for air pollution risk assessment to human and ecosystems health 
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