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Nonequilibrium Phase Transition To Temporal Oscillations In Mean-Field Spin
Models

Laura Guislain1 and Eric Bertin1

1Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
(Dated: June 7, 2023)

We propose a mean-field theory to describe the nonequilibrium phase transition to a spontaneously
oscillating state in spin models. A nonequilibrium generalization of the Landau free energy is
obtained from the joint distribution of the magnetization and its smoothed stochastic time derivative.
The order parameter of the transition is a Hamiltonian, whose nonzero value signals the onset of
oscillations. The Hamiltonian and the nonequilibrium Landau free energy are determined explicitly
from the stochastic spin dynamics. The oscillating phase is also characterized by a non-trivial
overlap distribution reminiscent of a continuous replica symmetry breaking, in spite of the absence
of disorder. An illustration is given on an explicit kinetic mean-field spin model.

The emergence of spontaneous oscillations at a collec-
tive scale in large assemblies of interacting units is one
of the most striking features of nonequilibrium systems.
Beyond the now well-understood synchronization of cou-
pled oscillators [1, 2], spontaneous oscillations also ap-
pear in diverse systems of interacting units where individ-
ual units do not oscillate in the absence of interactions,
making the onset of oscillations a genuinely collective
phenomenon. Such oscillations have been reported for
instance in biochemical clocks [3–5], populations of bio-
logical cells [6, 7], assemblies of active particles with non-
reciprocal interactions [8, 9], nonequilibrium spin systems
[10–12] as well as population dynamics [13, 14] and socio-
economic models [15, 16].

In the thermodynamic limit, the onset of spontaneous
oscillations is described by a deterministic Hopf bifurca-
tion [17]. Yet, oscillations often occur in mesoscopic sys-
tems like biochemical clocks for which fluctuations play
an important role [18], leading to a stochastic Hopf bifur-
cation [19, 20] and to a finite coherence time of oscilla-
tions [21–25]. To provide a consistent theoretical ground,
the emergence of spontaneous oscillations in large as-
semblies of interacting units has been characterized as
a nonequilibrium thermodynamic phase transition, by
identifying the entropy production as a generalized ther-
modynamic potential whose derivative is discontinuous
at the transition [4, 26–33]. Similar results have also
been obtained for the entropy production in population
dynamics [13], and for a nonequilibrium free energy in the
context of Turing pattern formation [34]. However, be-
yond singularities of thermodynamic potentials, the equi-
librium theory of phase transitions and critical phenom-
ena is based on the key concepts of spontaneous sym-
metry breaking and of associated order parameter [35].
Once the latter is identified, the generic Landau free-
energy can be determined unambiguously to characterize
the phase transition at mean-field level. Recent nonequi-
librium generalizations of Landau’s theory include the
description of relaxation effects [36, 37], or multiple heat
baths and oscillations driven by an oscillatory field [38].

In this Letter, we go beyond the thermodynamic ap-
proach to phase transitions with spontaneously emerg-
ing oscillations, and show how to build a nonequilibrium
generalization of the Landau free energy in a class of
driven kinetic mean-field spin models, based on the spon-
taneous breaking of spin-reversal symmetry and time-
translation invariance. The generalized Landau free en-
ergy is obtained from the joint distribution of the mag-
netization and its smoothed stochastic time derivative,
at odds with previous generalizations based on magneti-
zation only [36–38]. Close to the phase transition to an
oscillating phase, the nonequilibrium Landau free energy
can be expressed in terms of a single order parameter,
which is an effective Hamiltonian describing the oscillat-
ing dynamics of the magnetization. In addition, we show
by evaluating the overlap distribution of spin configura-
tions that the oscillating phase is also characterized by
an analogue of the continuous replica symmetry breaking
phenomenon observed in disordered systems [39].

We consider a generic class of nonequilibrium mean-
field spin models with N spins si ± 1 (and possibly
auxiliary variables), and define the magnetization m =

N−1
∑N

i=1 si. We explore far-from-equilibrium regimes
where for large N the magnetization m(t) may exhibit
oscillations, leading to a limit cycle [10–12, 40–42]. In
dynamical systems theory, a limit cycle may be gener-
ically described in the plane of a variable and its time
derivative. We aim at building a generalized Landau
theory describing finite size fluctuations around the av-
erage limit cycle. We thus need to characterize not only
the fluctuations of magnetization, but also of its time
derivative. Yet, directly considering the time derivative
of m(t) leads to diverging, white-noise type fluctuations
that are not appropriate to build a Landau theory. We
thus rather aim at defining an observable attached to
each microscopic configuration that would play the role
of an appropriately smoothed out derivative of the mag-
netization. We denote as C the microscopic configura-
tion of the system; C may correspond to the spin con-
figuration C = (s1, . . . , sN ) [10, 40], or may include ad-
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ditional binary variables, C = (s1, . . . , sN , h1, . . . , hM ),
see below. For a Markov jump dynamics with transition
rate W (C′|C) from configuration C to configuration C′,
a stochastic derivative ṁ(C) of the magnetization m(C)
can be defined as (see Supplemental Material [43])

ṁ(C) =
∑
C′ ̸=C

(m (C′)−m (C))W (C′|C). (1)

This definition is such that d⟨m⟩/dt = ⟨ṁ⟩, where the
average ⟨. . . ⟩ is defined as ⟨x⟩ =

∑
C x(C)P (C). The def-

inition Eq. (1) of the derivative ṁ is valid for any system
size N and leads to fluctuations on a scale comparable to
that of m.

To break detailed balance and possibly allow for os-
cillations, the configuration C is split into two groups of
binary variables denoted as ski (k = a, b) having differ-
ent single-spin-flip dynamics (see [43] for details). These
may correspond to two groups of spins in contact with
different heat baths [10, 40, 44], or to the spin and field
variables as in the explicit model described below. To
detect temporal oscillations, we use as global observables
the magnetization m and its stochastic time derivative
ṁ defined in Eq. (1). We consider the joint distribu-
tion PN (m, ṁ) =

∑
C∈S(m,ṁ) P (C), where S(m, ṁ) cor-

responds to the set of configurations C with m(C) = m
and ṁ(C) = ṁ. The coarse-grained transition rate corre-
sponding to flipping any spin ski = ±1 in group k = a, b,
starting from a configuration C ∈ S(m, ṁ), is denoted
as NW±

k (m, ṁ). A global spin-reversal symmetry is as-
sumed, yielding W±

k (−m,−ṁ) =W∓
k (m, ṁ). Variations

of m and ṁ when flipping a spin ski = ±1 (k = a, b) scale
as 1/N : (∆m,∆ṁ) = ±dk/N . The coarse-grained mas-
ter equation governing the evolution of PN (m, ṁ) reads

∂tPN (m, ṁ) = N
∑
k,σ

[
−Wσ

k (m, ṁ)PN (m, ṁ)

+Wσ
k

(
(m, ṁ)− σdk

N

)
PN

(
(m, ṁ)− σdk

N

)]
.

(2)

From the theory of Markov jump processes with van-
ishing jump size [45], the stationary joint distribution
P (m, ṁ) takes for large N a large deviation form [46]

PN (m, ṁ) ∼ exp [−Nϕ(m, ṁ)] , (3)

which can be interpreted as a WKB approximation of
the solution of the master equation (2) [45]. Using the
large deviation form (3) in Eq. (2) and taking the limit
N → ∞, one ends up with the following equation for the
steady-state rate function ϕ(m, ṁ) ,∑

k,σ

Wσ
k (m, ṁ)

[
eσdk·∇ϕ(m,ṁ) − 1

]
= 0 , (4)

with ∇ϕ = (∂mϕ, ∂ṁϕ). We are interested in an expan-
sion of ϕ(m, ṁ) close to its minimum (or minima), and

thus assume ∇ϕ to be small. At order |∇ϕ|2, Eq. (4)
reads

ṁ∂mϕ+ Y ∂ṁϕ+D11(∂mϕ)
2 +D22(∂ṁϕ)

2

+D12(∂mϕ)(∂ṁϕ) = 0,
(5)

where Y and D = {Dij} are defined as, using Eq. (1),(
ṁ, Y (m, ṁ)

)
=

∑
k,σ

σdkW
σ
k (m, ṁ),

D(m, ṁ) =
1

2

∑
k,σ

Wσ
k (m, ṁ)dk ·dT

k .
(6)

At the transition to spontaneous oscillations, ϕ(m, ṁ)
should change from a paraboloid-like shape to a
‘Mexican-hat’ shape. To identify the parameter con-
trolling the transition, we start with a quadratic ap-
proximation of ϕ(m, ṁ) for small m and ṁ, and look
for a change of curvature. At quadratic order in m
and ṁ, Eq. (4) takes the same form as Eq. (5), but
with constant coefficients Dij ≥ 0 and a linear function
Y (m, ṁ) = −v0m + u0ṁ, assuming v0 > 0 (Y (0, 0) = 0
because Y (−m,−ṁ) = Y (m, ṁ)). Assuming ϕ(m, ṁ) =
γ1

2 m
2+ γ2

2 ṁ
2+γ3mṁ with small γi’s close to the transi-

tion, one finds γ3 ∼ γ21 ≪ γ1 and u0γ2 = −(D11γ
2
1/v0 +

D22γ
2
2) < 0. The sign of γ2 = ∂2ϕ/∂ṁ2(0, 0) is thus the

opposite of the sign of u0. Hence u0 is the control param-
eter of the phase transition: u0 = 0 corresponds to the
critical point, and time-translation invariance is broken
for u0 > 0, when ṁ = 0 is no longer stable.
For u0 > 0, the quadratic approximation is not enough

to describe the minima of ϕ(m, ṁ), and higher order
terms are required. One could expand ϕ(m, ṁ) as a
power series in m and ṁ, but this would not work for
nonanalytic ϕ [see, e.g., Eq. (12)]. Instead, we use the
Hamiltonian structure close to the critical point. We no
longer assume Y (m, ṁ) to be linear, and split Y (m, ṁ)
into the ṁ-independent part Y (m, 0) ≡ −V ′(m) and a
ṁ-dependent part Y (m, ṁ) − Y (m, 0) ≡ ṁg(m, ṁ). We
define the control parameter u0 as u0 = ∂Y/∂ṁ(0, 0).
We take u0 ∝ ε with ε a small parameter. To per-
form a consistent small-ε expansion of Eq. (4), we assume
∇ϕ = O(ε), since quadratic terms in ∇ϕ have to balance
the contribution in ε∂ṁϕ coming from the term Y ∂ṁϕ.
Truncating Eq. (4) at order ε2, one recovers Eq. (5),
where the full (m, ṁ)-dependence of the coefficients is
kept. At order ϵ, Eq. (5) reduces to

ṁ∂mϕ− V ′(m)∂ṁϕ = 0. (7)

The general solution of Eq. (7) reads

ϕ(m, ṁ) = f
(
H(m, ṁ)

)
+ f0 (8)

with

H(m, ṁ) =
ṁ2

2
+ V (m), (9)
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and where f is at this stage an arbitrary function, satisfy-
ing for convenience f(0) = 0, and the constant f0 ensures
that the minimal value of ϕ(m, ṁ) is zero. The minimum
value of V (m) is set to V = 0, so that H ≥ 0. H(m, ṁ) is
a Hamiltonian describing the (m, ṁ) dynamics at order ε
as dm

dt = ∂H
∂ṁ , dṁ

dt = −∂H
∂m , and the corresponding trajec-

tories are iso-ϕ lines. Contributions of order ε2 to Eq. (5)
yield a condition determining the derivative f ′(H) [43],

f ′(H) = −
∫m2

m1
dmṁ(m,H) g

(
m, ṁ(m,H)

)∫m2

m1

dm
ṁ(m,H) ∇TH ·D · ∇H

(10)

where m1 and m2 are such that V (m1) = V (m2) = H
and V (m) ≤ H for m1 ≤ m ≤ m2; ṁ(m,H) is deter-
mined from Eq. (9). Note that a related method has
been used to determine nonequilibrium potentials in dis-
sipative dynamical systems [47–49].

Eqs. (8) and (10) provide a convenient description of
a mean-field phase transition to a state with tempo-
ral oscillations. The function f(H) plays a role simi-
lar to the Landau free energy at equilibrium. Let us
denote as H∗ the value of H which minimizes f(H).
The case H∗ = 0 corresponds to usual time-independent
phases, either paramagnetic or ferromagnetic depending
on whether V (m) is minimum for m = 0 or m ̸= 0 re-
spectively. The case H∗ > 0 instead corresponds to the
onset of spontaneous oscillations, where (m, ṁ) follow a
limit cycle in the deterministic limit N → ∞. Hence H∗

may be considered as the formal order parameter of the
transition to an oscillating state. Note that although the
system exhibits macroscopic temporal oscillations, the
probability distribution PN (m, ṁ) is time-independent
(in the long-time limit), because it describes an infinite
ensemble of systems oscillating at the same frequency,
but with uniformly distributed phases.

In the simple yet generic case where V (m) = 1
2v0m

2

and g(m, ṁ) = α0ε−α1m
2−α2mṁ−α3ṁ

2, f(H) takes
for small H the generic form

f(H) = −εaH + bH2, (11)

where a and b can be expressed in terms of the param-
eters αi [43]. The case ε < 0 corresponds to a time-
independent phase (H∗ = 0), while ε > 0 corresponds
to an oscillating phase, with H∗ = εa/2b > 0. One thus
finds a continuous phase transition to temporal oscilla-
tions, with an elliptic limit cycle whose size scales as ε1/2,
i.e., m ∼ ṁ ∼ ε1/2, or more precisely ⟨m2⟩ ∼ ⟨ṁ2⟩ ∼ ε.
The two observables ⟨m2⟩ and ⟨ṁ2⟩ constitute the prac-
tically measurable order parameters, respectively charac-
terizing the paramagnetic-ferromagnetic phase transition
and the onset of spontaneous oscillations. From the ex-
pression (9) of the Hamiltonian H, the oscillation period
τ is given in the case V (m) = 1

2v0m
2 by τ = 2π/

√
v0,

and is thus independent of ε. Yet, the scaling with ε
of the different observables may differ from the results
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FIG. 1. (a) The scaling function ψ(y) of the overlap distri-
bution in the oscillating phase. The inset corresponds to a
logarithmic x-axis. (b) Evolution of the N spins with time
(si = +1 in white, si = −1 in black) obtained using Monte
Carlo simulations of the specific model described below, for
(Tc − T )/Tc = 0.3, µ = 2, and N = 100. (c) The correspond-
ing m(t) = N−1 ∑ si vs. time t.

given above. Close to a tricritical point where the para-
magnetic, ferromagnetic and oscillating phases meet, one
rather finds V (m) = 1

4v1m
4 (see explicit example below).

In this case, f(H) takes the nonanalytic form

f(H) = −εaH + cH3/2 (12)

from Eq. (10) [43], and the scaling of H∗ is now H∗ ∼ ε2

instead of H∗ ∼ ε. As V (m) is proportional to m4, m
and ṁ have different scalings with ε: m ∼ ε1/2, while
ṁ ∼ ε. The limit cycle is no longer elliptic but it flattens.
This actually corresponds to a period that diverges as
τ ∼ ε−1/2.
The small fluctuations of m and ṁ around their zero

average value in the paramagnetic phase ε < 0 can
be characterized by generalized susceptibilities χm =
N⟨m2⟩ and χṁ = N⟨ṁ2⟩, taking into account that
⟨m2⟩ ∼ ⟨ṁ2⟩ ∼ N−1 in the paramagnetic phase. When
approaching the phase transition to a limit cycle (ε →
0−), both generalized susceptibilities χṁ and χm diverge
as |ε|−1. At the critical point (ε = 0), one finds a different
scaling of fluctuations with N : ⟨ṁ2⟩ ∼ ⟨m2⟩ ∼ N−1/2.
As for the finite-size fluctuations of H, we obtain that in
the paramagnetic phase, var(H) ∼ N−2 whereas in the
oscillating phase var(H) ∼ N−1.
The rate function is a key tool to determine which so-

lution is the macroscopically observed one when two or
more solutions are present in the deterministic descrip-
tion. This is the case, e.g., when f(H) = aH−bH2+cH3,

with a, b, c > 0. Both H∗ = 0 and H∗ = b+
√
b2−3ac
3c > 0

are local minima of f(H), corresponding to two solutions
of the deterministic equations. The macroscopically ob-
served solution is the one with the lowest f(H). Varying
parameters, one thus observes a discontinuous transition
from a paramagnetic phase (H∗ = 0) to a limit cycle
phase (H∗ > 0). An explicit example is given below.
A fine characterization of the phase transition to an

oscillating state is obtained by considering the statistics
of the overlap qab = N−1

∑N
i=1 s

a
i s

b
i between two spin
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FIG. 2. (a) Phase diagram of the spin model in the (−ε, µ)-
plane, with ε = (Tc − T )/Tc, displaying the paramagnetic
(P), ferromagnetic (F) and oscillating (O) phases (J1 = 1.4,
J2 = −0.5). P and O phases coexist in the hatched area. (b)
f(H) for µ = 5.7 and ε = −3.5×10−2 (top curve), ε = −3.0×
10−2 (bottom curve). (c), (d) Corresponding rate function
ϕ(m, ṁ).

configurations {sai } and {sbi}. Identical (opposite) con-
figurations have an overlap qab = 1 (qab = −1), while
qab = 0 for uncorrelated configurations. The overlap dis-
tribution P (q) can be evaluated for N → ∞ [43]. For
V (m) = 1

2v0m
2, we obtain for ϵ > 0 (oscillating phase)

the scaling form P (q) = q−1
ε ψ(q/qε), with qε = εa/bv0

[a and b are introduced in Eq. (11)]; the scaling function
ψ(y) is plotted in Fig. 1(a) (see [43] for its explicit expres-
sion). P (q) has a logarithmic divergence in q = 0, and
has a continuous support, a property usually considered
as a hallmark of continuous replica symmetry breaking
in disordered systems [39]. As in the latter, the presence
of a non-trivial overlap distribution can be traced back
to an average over many pure states [39, 50].

As an explicit model, we introduce a generalization
of the kinetic mean-field Ising model with ferromagnetic
interactions (see also related models with two spin popu-
lations [10, 40] or with feedback control [11]). The model
involves 2N microscopic variables: N spins si = ±1 and
N fields hi = ±1. We define the magnetization m =
N−1

∑N
i=1 si and the average field h = N−1

∑N
i=1 hi.

The stochastic dynamics consists in randomly flipping
a single spin si or a single field hi. The flipping rates
Ws and Wh depend only on m and h, Ws,h = [1 +
exp(β∆Es,h)]

−1, with β = T−1 the inverse temperature
and ∆Es,h the variation of Es,h when flipping a spin si
or a field hi, where Es = −N(J1

2 m
2 + J2

2 h
2 +mh) and

Eh = Es + µNhm. Detailed balance is broken as soon
as µ ̸= 0. The fluctuating derivative ṁ determined from
Eq. (1) reads ṁ = −m+ tanh[β(J1m+ h)].

Depending on (T, µ) values, the model exhibits a para-
magnetic (high T ), ferromagnetic (low T , low µ) or oscil-
lating (low T , high µ) behavior. We restrict the study to
J1 > −J2. An example of a phase diagram is shown in
Fig. 2(a) for J1 = 1.4 and J2 = −0.5. The boundary of
the ferromagnetic phase is obtained from the determin-
istic equations [43]. Other lines are obtained using the
perturbative framework introduced in Eqs. (10) and (8)
[43]. The three phases meet at a tricritical point (Tc, µc),

with Tc =
J1+J2

2 and µc = 1+ (J1−J2)
2

4 . For µc < µ < µd,

where µd = 1− J1

J2
, a continuous transition from param-

agnetic to oscillating states (with an elliptic limit cycle) is
observed. An example of the oscillations of theN spins si
with time and m(t) = N−1

∑
i si, obtained from Monte-

Carlo simulations in the oscillating phase is plotted in
Fig. 1(b) and (c). The rate function obtained numeri-
cally from Eq. (10) is well described by Eq. (11), with a
reduced control parameter ε = (Tc−T )/Tc. Close to the
tricritical point (µ ≳ µc), an elongated limit cycle is ob-
served, withm ∼ ε1/2 and ṁ ∼ ε. Here, the rate function
is instead well described by the nonanalytic form of f(H)
obtained in Eq. (12) (the value of c is given in [43]). For
µ > µd, a discontinuous transition from paramagnetic
to oscillating states is observed. In the hatched area of
Fig. 2(a), both the paramagnetic (H∗ = 0) and limit cy-
cle (H∗ > 0) states are local minima of f(H). The most
stable solution at large but finite N is then determined
as the global minimum of f(H), see Fig. 2(b). It dis-
continuously changes from H∗ = 0 (paramagnetic state)
to H∗ > 0 (oscillating state) when crossing the full line
inside the hatched area of Fig. 2(a). The rate function
ϕ(m, ṁ) is plotted in Fig. 2(c) and (d) for the paramag-
netic and oscillating states respectively. The metastable
(oscillating or paramagnetic) states are also visible. Note
that the validity of the perturbative framework is limited
to small (Tc − T )/Tc and to either µc < µ < µd or small
(µ− µd)/µd > 0. A detailed study of this model, includ-
ing a description of the transition between ferromagnetic
and limit cycle states, will be reported elsewhere [50].

To sum up, we have shown how the Landau theory
of phase transitions can be extended to describe phase
transitions to an oscillating phase in nonequilibrium spin
models. While previous nonequilibrium generalizations
of the Landau free energy were only based on magneti-
zation and did not address spontaneous oscillations [36–
38], we defined a generalized Landau free energy as the
rate function ϕ(m, ṁ) associated with the joint distribu-
tion of the magnetization m and its smoothed stochastic
derivative ṁ defined in Eq. (1). The order parameter of
the Landau theory is an effective Hamiltonian H, whose
nonzero value indicates the presence of oscillations. The
expression of H(m, ṁ) and of the nonequilibrium Lan-
dau free energy f(H) can be determined explicitly from
the stochastic spin dynamics. The expansion of f(H) is
singular close to a tricritical point where paramagnetic,
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ferromagnetic and oscillating phases meet. Beyond spon-
taneous breaking of time translation invariance, the os-
cillating phase is characterized by an overlap distribution
reminiscent of continuous replica symmetry breaking, al-
though no disorder is present. Consistently with previous
works [4, 26–33], we also recover that the entropy pro-
duction density becomes non-zero in the oscillating phase
[43]. Future work will notably aim at characterizing the
transition to oscillating states in finite-dimensional sys-
tems using renormalization group methods.
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Supplementary Information: Nonequilibrium phase transition to temporal oscillations
in mean-field spin models

GENERIC SPIN MODEL

Definition of the stochastic derivative of the
magnetization

We aim at defining a random variable that would play
the role of the derivative of the magnetization. We de-
note as C the microscopic configuration of the system.
We assume a Markov jump dynamics with transition rate
W (C′|C) from configuration C to configuration C′. We
introduce a stochastic derivative ṁ(C) of the magnetiza-
tion m(C) such that in average, d⟨m⟩/dt = ⟨ṁ⟩ where
the average ⟨. . . ⟩ is defined ⟨x⟩ =

∑
C x(C)P (C). Using

the master equation

dP (C)

dt
=

∑
C′ ̸=C

[
W (C|C′)P (C′)−W (C′|C)P (C)

]
, (1)

we obtain after rearranging terms that

d⟨m⟩
dt

=
∑
C

P (C)
∑
C′ ̸=C

(m(C′)−m(C))W (C′|C). (2)

From Eq. (2), we identify the stochastic derivative of the
magnetization

ṁ(C) =
∑
C′ ̸=C

(m (C′)−m (C))W (C′|C), (3)

in such a way that

d⟨m⟩
dt

=
∑
C

P (C) ṁ(C). (4)

The definition Eq. (3) of ṁ provides a smoothed expres-
sion of the time derivative of m, in the sense that it is
already averaged over possible arrival configurations C′.
Fluctuations of ṁ are thus on the same scale as that of
m, which is appropriate to define a joint probability dis-
tribution of m and ṁ and its associated large deviation
function.

Transition rates in the spin model

The microscopic configuration C is split into two
groups of binary variables having different dynamics,
C = (Ca,Cb) with Na and Nb variables respectively.
These may correspond for instance to two groups of spins
in contact with different heat baths, Ca = (s1, . . . , sNa

)
and Cb = (sNa+1, . . . , sNa+Nb

) withNa+Nb = N [1–3], or
to the spin and auxiliary field variables as in the explicit

model described in the main text, Ca = (s1, . . . , sN ) and
Cb = (h1, . . . , hM ), in which case Na = N and Nb =M .

To keep notations generic, we write Ca = (sa1 , . . . , s
a
Na

)

and Cb = (sb1, . . . , s
b
Nb

), and call ski a spin (i = 1, . . . , Nk;
k = a, b). A single-spin-flip stochastic dynamics is
assumed. For a given ski = ±1, the flipping rate
w±

k (ma,mb) is independent of i and depends only on the
group magnetizations

mk′ =
1

Nk′

Nk′∑
j=1

sk
′

j , k′ = a, b. (5)

This results from the mean-field assumption that the flip-
ping rates are invariant under arbitrary spin permuta-
tions in each group Ca and Cb.

To parametrize transition rates, we use the magneti-
zation m and its stochastic time derivative ṁ defined in
Eq. (1) of the main text, instead of (ma,mb), since the ob-
servables (m, ṁ) are better suited to detect temporal os-
cillations. We thus reexpress w±

k (ma,mb) as w̃
±
k (m, ṁ).

The coarse-grained transition rate corresponding to flip-
ping any spin ski = ±1 in a given group k = a, b, start-
ing from the configuration C ∈ S(m, ṁ), is denoted as
NW±

k (m, ṁ) in microscopic time units, with

W±
k (m, ṁ) = n±k w̃

±
k (m, ṁ), (6)

where n±k = 1
2 (1±mk) is the fraction of spins ski = ±1 in

group k = a, b, which can be reexpressed as a function of
(m, ṁ). W±

k (m, ṁ) is thus the transition rate measured
in macroscopic time units, after a rescaling of time t →
t/N .

Expression of the stochastic derivative of the
magnetization in the spin model

Starting from a configuration C with m(C) = m and
ṁ(C) = ṁ, there are Nn±

k possibilities to flip a spins
ski = ± in a given group k = a, b. By definition, we have
m(C′)−m(C) = ±d1k/N with the notations dk = (d1k, d

2
k)

and W (C ′|C) = w̃±
k (m, ṁ), so that Eq. (3) becomes

ṁ =
∑
k,σ

σd1kn
±
k w̃

±
k (m, ṁ), (7)

and from Eq. (6) above, one can identify ṁ with the term∑
k,σ σd

1
kW

σ
k (m, ṁ) as indicated in Eq. (6) of the main

text.
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Deterministic equations

As done for ⟨m⟩ in Eq. (4), one can obtain an equation
on the time derivative of ⟨ṁ⟩

d⟨ṁ⟩
dt

=
∑
C

P (C)
∑
C′ ̸=C

(ṁ(C′)− ṁ(C))W (C′|C). (8)

Using the notations introduced in the main text, the right
hand side of this equation becomes〈∑

k,σ

σd2kW
σ
k (m, ṁ)

〉
= ⟨Y (m, ṁ)⟩ . (9)

Therefore, assuming that the law of large numbers ap-
plies in the limit N → ∞, the deterministic evolution
equations on m and ṁ is

dm

dt
= ṁ,

dṁ

dt
= Y (m, ṁ). (10)

LARGE DEVIATIONS

Determination of f ′(H)

To obtain the large deviation function ϕ(m, ṁ) we
adapt to stochastic models of interacting spins a method
presented in [4] in the context of dissipative dynamical
systems weakly perturbed by noise.

From Eq. (8) of the main text, the large deviation func-
tion ϕ(m, ṁ) is expressed in terms of an unknown func-
tion f(H). To determine the function f , we consider the
contribution at order ε2 in the ε expansion of Eq. (5) of
the main text, which reads

0 = ṁ∂mϕ2 − V ′(m)∂ṁϕ2

+ ṁ2g(m, ṁ)f ′(H) +
(
∇TH ·D · ∇H

)
f ′(H)2

(11)

with D given in Eq. (6) of the main text, and

∇TH ·D · ∇H = D11V
′(m)2 + 2D12V

′(m)ṁ+D22ṁ
2.

(12)
The first two terms of this equation depend on the contri-
bution of order ε2 of ϕ, which we note ϕ2. The last term
depends on f , the leading order contribution to ϕ(m, ṁ)
in the ε expansion.

We consider a closed trajectory of the Hamiltonian
(constant H). We introduce s, a coordinate along this
trajectory such that dm

ds = ∂H
∂ṁ and dṁ

ds = −∂H
∂m . The

choice H = V (m) + ṁ2

2 gives dm
ds = ṁ. The coordinate s

can thus be identified with time t.
We define m1 and m2 such that V (m1) = V (m2) = H,

and s0 the coordinate such that s = 0 and s = s0 both
correspond to the point (m = m1, ṁ = 0). Integrating
Eq. (11) over s, the first term vanishes,∫ s0

0

ds (ṁ∂mϕ2 − V ′(m)∂ṁϕ2) =

∫ s0

0

ds
dϕ2
ds

= 0 (13)

and using ∫ s0

0

ds = 2

∫ m2

m1

dm

|ṁ(m,H)|
(14)

the second term of Eq. (11) integrated and divided by
2f ′(H), gives

0 =

∫ m2

m1

dmṁg(m, ṁ)+f ′(H)

∫ m2

m1

dm
∇TH ·D · ∇H

ṁ
.

(15)
We thus obtain the expression for f ′(H) given in Eq.(10)
of the main text.
Note that the effective potential V (m) intervenes in

Eq. (8) [main text] in both the definition of the Hamil-
tonian H and the function f(H), through its derivative
f ′(H) given by Eq. (10)[main text]. Hence the functional
forms of H(m, ṁ) and of f(H) cannot be decoupled.

Expression of f(H) for particular cases

Elliptic limit cycle

The continuous transition from a paramagnetic phase
to an oscillating phase is well described using

V (m) =
1

2
v0m

2,

g(m, ṁ) = α0ε− α1m
2 − α2mṁ− α3ṁ

2
(16)

where α0 is defined such that ε is a dimensionless pa-
rameter. We obtain from Eq. (10) of the main text that
f(H) takes the generic form

f(H) = −εaH + bH2 (17)

where

a =
α0

D22 +D11v0
(18)

and

b =
α1 + 3α3v0

4v0(D22 +D11v0)
. (19)

The case ε < 0 corresponds to the time-independent
paramagnetic phase (H∗ = 0), whereas ε > 0 corre-
sponds to an oscillating phase with H∗ = εa

2b .

Non-elliptic limit cycle

Close to a tricritical point where the paramagnetic, fer-
romagnetic and oscillating phase meet, v0 changes sign.
For v0 = 0, we have

V (m) =
1

4
v1m

4,

g(m, ṁ) = α0ε− α1m
2 − α2mṁ− α3ṁ

2.
(20)
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In that particular case, f(H) takes the nonanalytic form

f(H) = −εaH + cH3/2 (21)

where

a =
α0

D22
(22)

and

c =
8

5π2
Γ

(
3

4

)4
α1

D22
√
v1

(23)

where Γ refers to the Euler Gamma function Γ(x) =∫∞
0
dt tx−1e−t. The limit cycle for H∗ =

(
2εa
3c

)2
has a

non-elliptic form as H = 1
4v1m

4 + 1
2ṁ

2. The scalings of

m and ṁ with ε are different m ∼ ε1/2 and ṁ ∼ ε1/4.

OVERLAP BETWEEN SPIN CONFIGURATIONS

As the spins are exchangeable random variables in
mean-field models, de Finetti’s representation theorem
[5, 6] leads for large N to

P ({si}) =
∫ 1

−1

dmP̃ (m)P({si}|m) (24)

with a factorized conditional distribution P({si}|m),

P({si}|m) =

(
1−m2

4

)N/2 N∏
i=1

(
1 +m

1−m

)si/2

(25)

and P̃ (m) =
∫
dṁP (m, ṁ).

To describe the overlap statistics, we introduce the
probability distribution P (q) of the overlap q,

P (q) =
∑

{sai },{sbi}

P ({sai })P ({sbi}) δ
(

1

N

N∑
i=1

sai s
b
i − q

)
,

(26)
obtained by averaging over two statistically independent
spin configurations {sai } and {sbi}. Defining the Fourier
transform (i.e., the characteristic function) χ(ω) of the
overlap distribution P (q),

χ(ω) =

∫ 1

−1

dq P (q) eiωq, (27)

one finds after some algebra

χ(ω) =

∫∫
dmadmb P̃ (ma) P̃ (mb) e

iωmamb . (28)

Taking the inverse Fourier transform, one then obtains
for the overlap distribution

P (q) =

∫∫
dmadmb P̃ (ma) P̃ (mb) δ(mamb − q) . (29)

For the paramagnetic phase (ε < 0), one has for N → ∞,

P̃ (m) = δ(m) , (30)

while for the elliptic limit cycle (v0 > 0 and ε > 0), one
instead finds,

P̃ (m) =
1

π

∣∣∣∣ εabv0 −m2

∣∣∣∣−1/2

. (31)

Applying these results to the different phases and using
Eqs. (29), (30) and (31), we obtain for the paramagnetic
phase (ε < 0), P (q) = δ(q). For the elliptic limit cycle
phase (ε > 0 and v0 > 0), we have P (q) = q−1

ε ψ(q/qε),
with qε = aε/bv0 and the scaling function ψ(y) which is
independent of ε,

ψ(y) =
2

π2

∫ 1

|y|

dx√
(1− x2)(x2 − y2)

θ(1− |y|). (32)

We plot the scaling function in Fig. 1(a) of the main text.
The scaling function ψ(y) has a logarithmic divergence
for y → 0, and a non-zero limit ψ(±1) = 1/π at the
support boundaries.

SPECIFIC SPIN MODEL

Determination of the function Y (m, ṁ)

For the kinetic mean-field Ising model with ferromag-
netic interactions given in the main text, one has

d1 =
(
−2, 2− 2βJ1 + 2βJ1(m+ ṁ)2

)
, (33)

d2 = −
(
0,−2β + 2β(m+ ṁ)2

)
, (34)

and

W±
1 =

1±m

2

(
1 + exp[±2β(J1m+ h)]

)−1
, (35)

W±
2 =

1± h

2

(
1 + exp[±2β(J2h+ (1− µ)m)]

)−1
, (36)

where h(m, ṁ) = −J1m + β−1 tanh−1[m + ṁ]. From
Eq. (6) of the main text, one can get the expressions of
Y (m, ṁ), V ′(m) = −Y (m, 0) and of D11, D12 and D22,
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Y (m, ṁ) =βJ1m+ (−1 + βJ1)ṁ− tanh−1(m+ ṁ) + β tanh[J2 tanh
−1(m+ ṁ) + β(1− µ− J1J2)m]

+ (m+ ṁ)2
[
tanh−1(m+ ṁ)− β tanh[J2 tanh

−1(m+ ṁ) + β(1− µ− J1J2)m]− βJ1(m+ ṁ)
]
,

(37)

V ′(m) = −βJ1m+ βJ1m
3 + (1−m2) tanh−1(m)− β(1−m2) tanh[J2 tanh

−1(m) + β(1− µ− J1J2)m], (38)

D11 = 1−m (m+ ṁ) , (39)

D12 = (1−m(m+ ṁ))
(
−1 + βJ1 − βJ1(m+ ṁ)2

)
, (40)

D22 =β2(1− (m+ ṁ)2)
[
1−

(
β−1 tanh−1(m+ ṁ)− J1m

)
tanh

(
J2 tanh

−1(m+ ṁ) + β(1− µ− J1J2)m
)]

+ (1−m(m+ ṁ))
(
−1 + βJ1 − βJ1(m+ ṁ)2

)2
.

(41)

Values of the different coefficients

The coefficients (ε, a, b and c) of the large deviation
function of Eq. (17) and Eq. (21) are expressed in terms
of the coefficients v0 and v1 of the series expansion of
V (m),

V (m) =
v0
2
m2 +

v1
4
m4, (42)

of ε, α0, α1 and α3 of the series expansion of g(m, ṁ),

g(m, ṁ) = α0ε− α1m
2 − α2mṁ− α3ṁ

2, (43)

and of D11(0, 0) and D22(0, 0), see Eqs. (18), (19) and
(23).

For the kinetic mean-field Ising model with ferromag-
netic interactions given in the main text, all those coeffi-
cients can be expressed using the parameters J1, J2 con-
trolling spin-spin or field-field interactions, T the tem-
perature and µ controlling the distance to equilibrium.
We have the following relations,

ε = (Tc − T )/Tc, (44)

α0 = 2Tc/T, (45)

v0 = (µ− 1)/T 2 + (1− J1/T )(1− J2/T ), (46)

v1 = −2/3 + (2J2 + 3J1)/3T − (µ− 1 + J1J2)/T
2 − (µ− 1− J2T + J1J2)

3/3T 4, (47)

α1 = −2 + (2J2 + J3
2 + 3J1)/T − 2(1 + J2

2 )(−1 + J1J2 + µ)/T 2 + J2(−1 + J1J2 + µ)2/T 3, (48)

α3 = −2/3 + (2J2 + J3
2 + 3J1)/3T, (49)

D11(0, 0) = 1, (50)

D22(0, 0) = 1/T 2 + (J1/T − 1)2. (51)

Sections of ϕ(m, ṁ)

We plot sections at constant m or ṁ values of ϕ(m, ṁ)
showed in Fig. 2 of the main text when both the para-
magnetic and the oscillating phase are locally stable. In
Fig. 1(a) and 1(b) we plot a section at m = 0 and in
Fig. 1(c) and 1(d) a section at ṁ = 0.

ENTROPY PRODUCTION

The transition to a limit cycle may also be character-
ized thermodynamically as a transition from microscopic

to macroscopic irreversibility, by introducing the entropy
production density σ = Σ/N in the limit N → ∞, where
the steady-state entropy production Σ identifies with the
entropy flux [7, 8],

Σ =
1

2

∑
C,C′

[
W (C′|C)P (C)−W (C|C′)P (C′)

]
ln
W (C′|C)
W (C|C′)

.

(52)
One finds (see below) that in the paramagnetic phase
(ϵ < 0), σ = 0 while in the oscillating phase (ϵ > 0),
σ ∼ ϵ becomes non-zero (similar calculations have been
performed in [9, 10] in the context of chemical oscilla-
tors). Hence the entropy production density σ is also an
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FIG. 1. Sections of ϕ(m, ṁ) at m = 0 [(a) and (b)] and at
ṁ = 0 [(c) and (d)]. (a), (c) correspond to Fig. 2(c) of the
main text and (b), (d) to Fig. 2(d) of the main text.

order parameter of the phase transition to a limit cycle,
associated with a macroscopic breaking of time-reversal
invariance. The corresponding critical exponent, equal
to 1, is the same as for the order parameter ⟨ṁ2⟩ char-
acterizing the spontaneous breaking of time translation
invariance. In the nonequilibrium paramagnetic or fer-
romagnetic phases, the entropy production Σ remains
microscopic, i.e., Σ = O(N0). Note that the transi-
tion between paramagnetic and ferromagnetic nonequi-
librium phases is expected to be characterized by a cusp
of the entropy production Σ [11]. We evaluate here the
entropy production in spin models under the assump-
tions detailed in Sec. . We show that we recover results
obtained in the diffusive limit as done in [9, 10] in the
context of chemical reactions.

Spin-reversal dynamics

We consider that there are only two different types of
transitions k = a, b. Expressing Eq. (52) in the variables
m and ṁ and considering the lowest order in N, the en-
tropy production density σ = Σ/N becomes

σ =
∑
k

〈(
W+

k (m, ṁ)−W−
k (m, ṁ)

)
ln
W+

k (m, ṁ)

W−
k (m, ṁ)

〉
.

(53)
We assume for now that 1−W−

k /W
+
k is small, such that

the entropy production can be approximated as

σ =

〈∑
k

(
W+

k (m, ṁ)−W−
k (m, ṁ)

)2
W+

k (m, ṁ)

〉
. (54)

We note A the change-of-basis matrix such that Ad1 =
(1, 0) and Ad2 = (0, 1). Using that (ṁ, Y (m, ṁ)) =

∑
k

(
W+

k −W−
k

)
dk and that D =

∑
kW

+
k dk·dT

k at first

order in 1−W−
k /W

+
k , in the new basis we have(

W+
1 (m, ṁ)−W−

1 (m, ṁ)
W+

2 (m, ṁ)−W−
2 (m, ṁ)

)
= A

(
ṁ

Y (m, ṁ)

)
(55)

and

Diag
(
W+

1 (m, ṁ),W+
2 (m, ṁ)

)
= A ·D ·AT . (56)

Hence, the entropy production density can be rewritten
as

σ =
〈
(ṁ, Y (m, ṁ))T ·D−1 · (ṁ, Y (m, ṁ))

〉
. (57)

Retaining the lowest order of Y (m, ṁ) in ε and using
that ⟨V ′(m)ṁ⟩ = 0 when ϕ(m, ṁ) = f(H) with H =

V (m) + ṁ2

2 , the entropy production density becomes

σ =
〈
(D−1)11ṁ

2 + (D−1)22V
′(m)2

〉
. (58)

In the paramagnetic phase (ε < 0), one has for finite N
the scaling σ ∼ N−1 because, as shown in the main text,

⟨ṁ2⟩ ∼ N−1, ⟨V ′(m)2⟩ ∼ N−1. (59)

Therefore in the limit N → ∞, the entropy production
density vanishes. In the oscillating phase (ε > 0), the
entropy production density σ converges to a finite value
σ ∼ ε when N → ∞, due to the fact that

⟨ṁ2⟩ ∼ ε, ⟨V ′(m)2⟩ ∼ ε. (60)

To obtain these results for the entropy production, we
assumed that 1−W−

k (m, ṁ)/W+
k (m, ṁ) was small. Un-

der the assumption that Wσ
k is of order 1 (which is veri-

fied in the specific model on spins and fields), it is equiv-
alent to assuming that W+

k −W−
k is small. One has that

W+
k (m, ṁ)−W−

k (m, ṁ) = yk where

y = (ya, yb) = A

(
ṁ

Y (m, ṁ)

)
(61)

[see Eq. (55)], and writing

x = A

(
m
ṁ

)
(62)

from Eqs. (4) and (8) one gets that

d⟨x⟩
dt

= ⟨y⟩. (63)

In a static phase ⟨y⟩ = 0 and thus we expect this value
to remain small close to the transition line for contin-
uous phase transitions. Therefore, the assumption that
W+

k −W−
k is small is valid close to transition lines, for

continuous transition from a static phase to either an-
other static phase or to an oscillating phase.



11

Generic diffusive limit

The entropy production density may also be derived
in the diffusive limit, as done by [9, 10]. The linear and
quadratic terms in ∇ϕ of Eq. (3) of the main text corre-
spond to a Fokker-Planck equation on P (m, ṁ, t)

∂tP = ∂m(ṁP ) + ∂ṁY (m, ṁ)P +
1

N

∑
i,j

∂i∂j(DijP ).

(64)
We write x = (m, ṁ) and y = (ṁ, Y (m, ṁ)). We in-
troduce the probability current density J(x) such that
Eq. (64) becomes ∂tP = −∇ · J with at the lowest order
in N

J(x, t) = −
(
y +

1

N
D · ∇

)
P (x, t) +O(N−1). (65)

We consider a trajectory x(t) = (m(t), ṁ(t)). We de-
fine an entropy along the trajectory, as done by [12],

s(t) = − lnP (x(t), t). (66)

The rate of change of the entropy along a trajectory is

ṡ = −∂tP (x, t)
P (x, t)

− 1

P (x, t)
ẋT · ∇P (x, t) . (67)

Using the probability current density J, we obtain

ṡ =

[
−∂tP

P
+

2N

P
ẋT ·D−1 · J

]
+N ẋT ·D−1 · y. (68)

The term within the square bracket in Eq. (68) denotes
the trajectory-dependent total entropy production ṡtot as
shown in [12]. We define the medium entropy production
as

ṡm = N ẋT ·D−1 · y. (69)

In the limit N → ∞, ẋ(t) = (ṁ, Y (m, ṁ)) = y. Av-
eraging over the stationary distribution, we obtain an
expression for the entropy production density

σ =
1

N
⟨ṡm⟩ = ⟨yT ·D−1 · y⟩ (70)

which is consistent with the expression Eq. (57) derived
with the spin-reversal dynamics, under the approxima-
tion Eq. (54).
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