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Abstract: The global prevalence of diabetes mellitus and Alzheimer’s disease is increasing alarmingly
with the aging of the population. Numerous epidemiological data suggest that there is a strong
association between type 2 diabetes and an increased risk of dementia. These diseases are both
degenerative and progressive and share common risk factors. The amyloid cascade plays a key role
in the pathophysiology of Alzheimer’s disease. The accumulation of amyloid beta peptides gradually
leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting
in neurodegeneration and cerebral atrophy. In Alzheimer’s disease, apart from these processes, the
alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal
loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease.
The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer’s
disease has led to the description of this disease as “type 3 diabetes”. Available animal models have
been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer’s
disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review,
we describe the main molecular mechanisms that may link these two diseases, with an emphasis on
impaired insulin and IGF-1 signaling. We also focus on GSK3β and DYRK1A, markers of Alzheimer’s
disease, which are also closely associated with pancreatic β-cell dysfunction and type 2 diabetes, and
thus may represent common therapeutic targets for both diseases.

Keywords: diabetes; Alzheimer’s disease; insulin resistance; tau; Aβ peptide; insulin deficiency;
insulin secretion; glycogen synthase kinase 3; DYRK1A

1. Introduction

Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia that
arises from the impaired secretion and/or action of insulin in its target tissues. Diabetes
is the most common metabolic disorder [1], with 537 million people affected worldwide
in 2021 according to the International Diabetes Federation (IDF), compared to 108 million
cases in 1980. This represents more than 1 in 10 adults living with diabetes. The IDF and the
World Health Organization (WHO) expect this figure to increase to 643 million diabetics by
2030, due to increasing exposure to risk factors. Thus, diabetes represents a major public
health issue [2,3].

Clinically, there are two main forms of diabetes. Type 1 diabetes, accounting for 10% of
cases [1], arises from the autoimmune destruction of pancreatic β cells, leading to a progres-
sive loss of insulin secretion [4]. Type 2 diabetes (T2D), which constitutes 90% of diabetes
cases [4], is a multifactorial disease resulting from the interaction between genetic predispo-
sitions and environmental risk factors such as a sedentary lifestyle; nutritional imbalance;
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stress; and environmental pollutants such as bisphenols, dioxin and pesticides [5,6], and air
pollution [7]. T2D results from peripheral insulin resistance in its target tissues, including
the liver, muscle, and adipose tissue. β cells attempt to compensate for insulin resistance
by increasing their number and their individual secretion. However, at some point the
compensation capacity is exceeded, and β-cell exhaustion and eventually β-cell apoptosis
occur, leading to partial insulin deficiency and subsequent hyperglycemia [8–10].

Several serious long-term complications are associated with diabetes. Most of them are
the consequence of microvascular (retinopathy and nephropathy) or macrovascular (lower
limb arteriopathy, cardiovascular accidents, and stroke) diseases. Several other co-morbid
conditions are also associated with diabetes, especially comorbidities related to the central
nervous system (CNS), including cognitive deficits, depression, and neurodegenerative
diseases, especially Alzheimer’s disease (AD) [1,4,11]. In the 1990 s, the Rotterdam study
provided the first epidemiological evidence of the doubling of the risk of dementia and
AD in people with T2D, with a relative risk of 1.9 (95% confidence interval = 1.3–2.8) [12].
Since then, many clinical and epidemiological studies have confirmed these data, showing
a strong association between T2D and AD [13–17]. Conversely, glucose intolerance and
T2D are also common in AD patients and animal models [18–20]. Thus, the relationship
between T2D and AD is likely bidirectional.

AD, the leading cause of dementia in the elderly [21], is a progressive neurodegenera-
tive disease related to neuronal loss affecting the hippocampus and neocortical areas [22].
In 2020, more than 55 million people were affected by dementia worldwide. With the aging
of the population, the number of patients is expected to almost double every 20 years to
reach 78 million by 2030 and 139 million by 2050, as estimated by WHO [23,24]. There are
two forms of AD: the familial form characterized by an early onset of symptoms, around the
age of 50, due to an autosomal dominant inheritance of mutations in the genes encoding the
amyloid precursor protein (APP) and presenilin 1 and 2 (PSEN1 and PSEN2) that affect the
production of the amyloid beta peptide (Aβ); and the sporadic form that accounts for more
than 95% of patients, and which usually develops after the age of 65 [21,25,26]. Clinically,
AD is characterized by a gradual loss of memory followed by a deeper deterioration in
cognitive function [21,25], manifesting as amnesia, aphasia, agnosia, and apraxia [27] and
associated with behavioral and personality changes [26,28]. This ultimately results in the
loss of a patient’s autonomy. Anatomically, AD is associated with two types of major le-
sions: (1) amyloid or senile plaques formed by the extracellular aggregation of insoluble Aβ

peptide fibrils and (2) the phosphorylation and destabilization of tau (tubulin-associated
unit), a microtubule-associated protein whose aggregation forms neurofibrillary tangles
(NFTs) within neurons [21,25,29,30]. According to the amyloid cascade hypothesis, toxic
levels of the Aβ peptide contribute to NFT formation [25,31,32]. Both these lesions lead to
synaptic and neuronal dysfunction, and finally to neurodegeneration [25,26,33], causing
brain atrophy in certain areas, particularly the cortex and hippocampus [21].

T2D and AD share similar etiological factors. Both conditions are degenerative, with
neuronal and β-cell loss in AD and in T2D, respectively [34], and multifactorial. The
pathogenesis of the sporadic form of AD involves genetic and environmental risk fac-
tors [21,28]. The most important factors are aging [25,28] and the ApoE4 (apolipoprotein
E4) allele [21,26,35,36], which plays a role in the clearance of the Aβ peptide [22,37]. How-
ever, the female sex [28], and cardiovascular risk factors such as stroke, poorly controlled
high blood pressure, hypercholesterolemia, obesity, and diabetes are suggested to be among
the potential predisposing factors [25,28,35]. Indeed, AD could be considered a central
metabolic disease due to glucose hypometabolism [38,39], associated with impaired insulin
and insulin-like growth factor (IGF) signaling pathways in the brain, which are physiolog-
ically involved in energy production and neuronal survival and plasticity, and therefore
play a key role in cognition and memory [40,41]. These metabolic disruptions occur years
before the onset of AD [42] and worsen with AD progression [40]. The evidence for a
relationship between insulin resistance and cognitive decline has led researchers to refer to
AD as “type 3 diabetes” [41,43–45].
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Given the alarming rise in the prevalence of T2D and the aging of the world’s pop-
ulation, the socio-economic burden of these two diseases is expected to increase in the
upcoming years [17,46,47]. Therefore, understanding the molecular mechanisms that
link T2D to AD in order to establish common preventive and ultimately curative mea-
sures to delay the onset and restrain the progression of these two pathologies is a major
research challenge.

The aim of this review is to illustrate the common cellular and molecular pathways
involved in AD and TD2, with a focus on the physiological importance of insulin/IGF-1
signaling in the brain, and its alteration during AD. We also highlight the role of the GSK3β
(glycogen synthase kinase 3β)- and DYRK1A (dual-specificity tyrosine phosphorylation-
regulated kinase 1A)-dependent pathological mechanisms that contribute to the develop-
ment of both T2D and AD. Mechanisms such as inflammation, mitochondrial dysfunction,
oxidative stress, the ApoE4 allele, and advanced glycation end-products, which are impor-
tant mediators acting synergistically to induce these pathological conditions [1,48–51], are
not discussed in this review.

2. Insulin and IGF-1: Physiological Role in the Brain

The brain uses about 25% of the total body glucose [52] to produce the energy needed to
maintain normal metabolic activity, vitality, neurotransmission [53], synaptic plasticity [4],
and neuronal ionic gradients [26,52]. Although initially considered an organ with insulin-
independent glucose metabolism [54,55] and a high expression of insulin-independent
glucose transporters GLUT1 and GLUT3 [55,56], more recently, biochemical evidence
has shown that the brain is also a target organ for insulin, and the expression of insulin,
insulin receptors, insulin-dependent GLUT4 [1,57] and GLUT8 transporters [55,58] has
been documented in specific brain regions.

2.1. The Origin of Insulin in the Brain

The origin of insulin in the brain remains controversial. The insulin levels in cere-
brospinal fluid (CSF) represent 25% of the plasma levels [59]. There is a correlation between
plasma and CSF insulin [60], since insulin levels in the CSF increase proportionally after
meals or after a peripheral insulin infusion [59], suggesting that the majority of insulin
present in the brain comes from circulating insulin synthesized by pancreatic β cells [60,61].
To reach the brain, insulin crosses the blood-brain barrier (BBB) via a saturable and selective
transporter in the vascular endothelium [51,60–62]. This hypothesis is supported by the
fact that the CSF-to-serum ratio of insulin is decreased with insulin resistance [63] as well
as with age [64] and during AD [65], due to a decrease in the expression of insulin carriers
at the BBB, which alters its transport to the brain [60].

In addition to the pancreatic origin of insulin found in the brain, there is debate regard-
ing the possibility of the local synthesis of insulin in the CNS. The expression of insulin
mRNA has been observed in various regions of the brain in animal models [59,61]. Clinical
studies in humans have also shown the production of C peptide (a short peptide part of the
proinsulin molecule, which is secreted in an equimolar fashion with insulin by pancreatic
β cells) in some areas [66], but this could also originate from the pancreas. Insulin mRNA
has been identified in the postmortem human brain with decreased expression in those
suffering from AD [43,60]. However, the cerebral origin of insulin remains controversial,
and whether the amount of insulin produced in the brain is physiologically relevant is still
a matter of debate [59].

2.2. Expression of Insulin and IGF Receptors in the Brain

Insulin receptors are expressed in neurons and glial cells [28,67], with different levels
of expression in distinct regions of the brain [60]. Their density is particularly high in the hy-
pothalamus, hippocampus, cerebral cortex, cerebellum, and olfactory bulb [15,28,55,60,67],
which are all critical areas for metabolic control and cognition [10]. Like the insulin receptor,
the IGF-1 and IGF-2 receptors are expressed in the brain, especially in the hippocampus,
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cerebral cortex, and thalamus [55,59]. Some effects of insulin may be mediated through its
binding to the IGF-1 receptor [68], and, conversely, IGF-1 and IGF-2 may also bind to the
insulin receptor but with a lower affinity [26].

2.3. Insulin and IGF Signaling and Actions in the Brain

Beyond the canonical role of insulin in the regulation of peripheral energy metabolism
primarily in the hypothalamus [61], insulin is a key neurotrophic and neuroprotective factor
in the brain [15,30], promoting neuronal growth and survival, thus making it an important
modulator of cognition and memory [61,69,70] (Figure 1). IGF-1 is also an important trophic
factor for neurogenesis, myelination [71], synaptogenesis [72], and especially for neuronal
protection and regeneration following injury [30,70].
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Figure 1. Defective insulin signaling as a major molecular mechanism linking T2D and AD. The
pathophysiology of T2D implicates peripheral insulin resistance, leading to decreased glucose uptake
by skeletal muscles and adipose tissue and increased hepatic glucose production (HGP). Because
insulin is a key neurotrophic and neuroprotective factor, brain insulin resistance would contribute to
the pathogenesis of AD. Conversely, the neurodegeneration that occurs in the hypothalamus leads
to the impaired regulation of peripheral metabolism and defective insulin secretion by pancreatic
β cells.

The effect of insulin on cognition could also be mediated by the regulation of brain glu-
cose metabolism in regions important for learning and memory, such as the hippocampus
and cortex [1,70,73,74]. This action is mediated by increasing the expression and transloca-
tion of GLUT4 and thereby the uptake of glucose [74,75]. In addition, insulin plays a key
role in synaptic plasticity by inducing long-term potentiation through the regulation of the
expression of the N-methyl-D-aspartate (NMDA) glutamate receptor, and by stimulating
its membrane recruitment in excitatory synapses in hippocampal neurons [59,69,76]. This
increases the neuronal calcium influx, allowing for a prolonged reinforcement of synaptic
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communication between neurons [70,77]. Insulin also promotes the internalization of the
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptor via
the PI3K/PKC pathway, which induces long-term depression essential for both memory
consolidation and flexibility [28,59,78,79]. Furthermore, insulin is implicated in the recruit-
ment of the GABA (gamma-aminobutyric acid) receptor to the postsynaptic membrane,
thus regulating inhibitory synapses [28,59,70,80,81]. It is well-established that GABAergic
signaling is decreased in AD [82]. A recent study has shown that synaptic GABA-activated
currents were reduced in hippocampal slices of an AD mouse model, while the extrasy-
naptic currents were, on the contrary, increased compared to wild-type mice. Interestingly,
the application of near-physiological concentrations of insulin (1 nmol/L) to hippocampal
slices of aged tg-APPSwe normalized both GABAergic currents to control levels, enhancing
the synaptic transmission and decreasing the extrasynaptic transmission. These results
indicate that the insulin remodeling of GABA signaling is essential to maintain normal
neural circuits and could restore the excitatory–inhibitory imbalances in AD [83]. Insulin
has been shown to modulate the levels of neurotransmitters such as acetylcholine and
norepinephrine that impact cognition [26,74], and it also regulates the expression of genes
necessary for long-term memory consolidation [1,69]. Additionally, insulin regulates the
number of synapses [84] and stimulates the formation of dendrites and the expression
of PSD95 (postsynaptic density protein 95), a protein necessary for the formation of the
postsynaptic junction [59,85]. Glial cells are also dependent on insulin, as it stimulates
glial cell proliferation as well as oligodendrocyte survival, differentiation, and myelina-
tion [59,60,86]. Importantly, insulin signaling induces cell responses to other neurotrophic
factors. Indeed, the intracerebroventricular (i.c.v) injection of insulin in adult rats increased
BDNF/TrkB (brain-derived neurotrophic factor/tropomyosin receptor kinase B) signaling
in the hippocampus and improved their spatial memory performance during the Morris
water maze test [87]. BDNF in turn plays a crucial role in synaptic maturation, connection,
and plasticity and neuronal regeneration [68,88–90]. Neuronal survival is also promoted by
insulin [60]. This occurs through the activation of Akt, which inhibits apoptosis through
the post-translational modulation of several proteins involved in cell survival [28]. Finally,
insulin protects neurons from neuroinflammation. In line with these effects, it has been
shown that i.c.v insulin administration modulates the secretion of inflammatory cytokines
by astrocytes induced by intraperitoneal lipopolysaccharide injection and reduces oxidative
stress by preserving mitochondrial function [91].

Thus, changes in insulin levels and/or signaling in the brain could lead to neuronal
loss and synaptic dysfunction associated with cognitive decline and the disruption of
peripheral metabolism [10] (Figure 1). These important effects of insulin in the brain are
supported by a number of studies in animal models of AD [15,92,93]. Further, intravenous
or intranasal insulin administration has led to memory improvement in humans and
animals [26,94–96], suggesting that impaired insulin signaling could be one of the main
defects linking AD to T2D.

3. Molecular Mechanisms Linking T2D to AD

T2D and AD share many pathophysiological features, and some factors seem to
mediate the dialogue between these two conditions.

3.1. Cerebrovascular Abnormalities in Diabetes and AD

Numerous studies support the hypothesis that an imbalance between Aβ production
and clearance initiates AD by promoting Aβ accumulation in the CNS [33,97]. Nevertheless,
while the early-onset form of AD arises from the genetic overproduction of Aβ [98,99],
the sporadic form is rather the result of impaired Aβ clearance [100]. A study has shown
that in late-onset AD, the Aβ clearance rate is 30% slower (5.3%/hour for AD patients
versus 7.6%/hour for control subjects, p = 0.03) [101]. Physiologically, Aβ efflux from the
brain is mediated by several pathways [102,103]. Aβ is transported across the endothelial
cells of the BBB through LRP1 (low-density lipoprotein receptor-related protein 1) [104]
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and ABCB1 (ATP-binding cassette subfamily B member 1) transporters into the peripheral
bloodstream [105]. Another important clearance pathway is the lymphatic-related pathway:
as there is no conventional lymphatic system in the brain, the interstitial fluid (ISF) of
the brain is drained to cervical lymph nodes along venules (glymphatic system) [106]
or via perivascular circulation alongside basement membranes in capillary and artery
walls [107,108]. The vascular-mediated clearance system is an active process driven by va-
somotion. This force is generated by vascular smooth muscle cell contraction and relaxation
cycles [109]. However, this system becomes defective with aging due to the loss of elasticity
and the stiffening of the artery walls [103]. Cerebrovascular diseases evidenced by morpho-
logical abnormalities in the cerebral capillaries [110], ischemic infarcts [111], and reduced
cerebral blood flow [112] have been documented in AD. These neurovascular alterations
lead to hypoperfusion and chronic hypoxia and finally to neurodegeneration [113,114], and
may contribute to the pathogenesis of AD, notably by impairing Aβ elimination via the
vascular pathway.

Interestingly, a growing body of literature suggests that cerebrovascular disease con-
tributes to cognitive impairment in diabetic patients [115]. In T2D, chronic hyperglycemia
and oxidative stress damage the vascular endothelium and promote atherosclerosis, lead-
ing to various vascular complications [116]. T2D is associated with an increased risk of
ischemic stroke and acute cerebral infarcts [117,118]. Moreover, chronic hyperglycemia
leads also to the remodeling of cerebral microvascularization, evidenced by the thickening
of the cerebral capillary basement membrane in diabetic animal models [119] and dia-
betic patients [120,121]. This thickening may alter the integrity of vascular smooth muscle
cells [122] and leads to increased microvascular resistance [123]. The dysregulation of
cerebrovascular function in diabetes can severely impact cerebral perfusion and function
and the removal of metabolites out of the brain. More specifically, by altering brain vessel
integrity and elasticity, T2D may impair the vascular-mediated Aβ clearance system and
thus contribute to Aβ deposition in the brain. Therefore, cerebrovascular disease could be
a common mechanism linking T2D and AD.

3.2. Alteration of Insulin and IGF-1 Signaling in the Brain
3.2.1. Insulin/IGF-1 Resistance, Neurodegeneration, and Cognition

Even when vascular risk factors are controlled, the risk of developing AD in diabetic
patients remains high, suggesting that there are non-vascular mechanisms involved in the
pathogenesis of AD [30,124]. Compared to normoglycemic patients, the progression from
mild cognitive impairment to AD is greater in patients with impaired blood glucose lev-
els [125,126]. Given the importance of insulin in cognition, the deregulation of its signaling
in the brain may be responsible for cognitive defects in patients with T2D and AD [54]. A
number of postmortem studies have indicated that resistance to insulin and IGF-1, with the
aberrant activation of their signaling pathway components, as well as reduced insulin/IGF-
1 levels as neurotrophic factors, can be detected in the brains of AD patients [43,127–130],
and these abnormalities are more severe in areas involved in cognitive performance, par-
ticularly in the hippocampus [131]. In fact, the early stages of AD, potentially decades
before the development of symptoms, are characterized by deficits in cerebral carbohydrate
metabolism that worsen with disease progression [40,132,133]. Likewise, insulin-resistant
elderly people [26,134], T2D patients with mild cognitive impairment [135,136], and even
prediabetic patients with normal cognitive function [49,134] show brain hypometabolism
quantified by a decreased uptake of [18F]-FDG (18-fluorodeoxyglucose) detected by PET
(positron emission tomography) imaging. Interestingly, the central impairment of glucose
metabolism has been associated with insulin and IGF-1 resistance [40,132,133,137] and is
mostly apparent in the frontal, parietotemporal, and cingulate cortices [134], indicating
that insulin resistance affects the same regions as those affected by AD [54], and suggesting
a link between central insulin resistance and this neurodegenerative disease.

Notably, AD patients have decreased insulin receptor expression and activation in
the brain [43,59] and reduced CNS levels of total IRS (insulin receptor substrate) mR-



Int. J. Mol. Sci. 2022, 23, 15287 7 of 26

NAs [43,60] and PI3K and phospho-Akt levels [138,139]. These patients have lower insulin
levels in the CSF than healthy control subjects, while their fasting plasma insulin levels are
high [59]. The CSF/plasma ratio of insulin is therefore reduced [34,77]. Peripheral insulin
resistance is more common in patients with AD than in healthy aging subjects [10,18].
It is accompanied by chronic compensatory hyperinsulinemia in an attempt to maintain
glucose homeostasis [26]. However, hyperinsulinemia, with or without T2D, negatively
affects the availability and action of insulin at the central level by causing the compensatory
downregulation of insulin carriers at the BBB. Consequently, the amount of insulin passing
into the brain decreases [26,140]. An increase in IRS-1 inhibitory serine phosphorylation
instead of tyrosine phosphorylation is a marker of insulin resistance. This phenomenon
is also observed in AD patients [54,131,141] and in the hippocampus of transgenic mouse
models of AD, such as the APP/PS1 model [92,142]. These abnormalities are accompa-
nied by the suppression of the activation of downstream kinases and the expression of
genes regulated by insulin and IGF signaling pathways, in particular a reduction in the
choline acetyltransferase responsible for the synthesis of acetylcholine, a neurotransmitter
important for cognition, and a reduction in glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), which is involved in metabolic functions [143]. Insulin and IGF-1 resistance
in the brain activates pro-apoptotic, pro-inflammatory, and pro-APP-Aβ cascades and
affects the expression and metabolism of the tau protein by promoting oxidative stress, the
generation of reactive oxygen species (ROS), mitochondrial dysfunction, and DNA damage.
All these events contribute to neurodegeneration [40,144].

In addition, the induction of diabetes in mouse models of AD leads to the exacerbation
of memory and learning impairments and an increase in amyloid deposition [10,145].
Experimental animal models of T2D, such as HFD (high-fat diet) rodents, obese ob/ob mice,
obese and diabetic db/db mice, or Zucker rats with leptin resistance, also exhibit AD-like
alterations such as an increase in tau phosphorylation, a deficit of neuroplasticity evidenced
by an impairment in long-term potentiation, and decreased neurogenesis [126,129,146]. The
expression of the neurotrophic factor BDNF is also decreased in the hippocampus of obese
rodents [146–148]. These conditions lead to decreased synaptic plasticity, probably due to
insulin resistance [146]. In line with this, intranasal insulin administration in AD patients
slows down cognitive decline [59,96], and insulin-sensitizing antidiabetic medications such
as metformin and PPAR-γ agonists (peroxisome proliferator-activated receptors) [10], as
well as other treatments such as GLP-1 (glucagon-like peptide-1) analogues and DPP4
(dipeptidyl peptidase 4) inhibitors [126,146], prevent neurodegeneration in T2D models.

3.2.2. Bidirectional Relationship between Insulin/IGF-1 Resistance and Amyloidogenesis
in T2D and AD

(1) Impact of insulin resistance on amyloidogenesis
AD and T2D are amyloidogenic pathologies characterized by an abnormal aggregation

of the Aβ peptide and the pancreatic islet amyloid polypeptide (IAPP), also known as
amylin, in the brain and in the pancreas, respectively, both contributing to cell death and
the pathogenesis of these diseases [26,34,149–151]. Extracellular senile plaques caused
by the aggregation of insoluble amyloid fibrils are an important pathological feature of
AD and are involved in neurodegeneration [1,48,152]. Aβ peptide is a 4-kDa peptide that
results from the proteolytic cleavage of the transmembrane protein precursor APP [48].
There are two main pathways for APP cleavage: a non-amyloidogenic pathway in which
APP is cleaved by the α-secretase enzyme to produce the soluble APPα fragment (sAPPα),
which is neuroprotective and does not generate Aβ; and an amyloidogenic pathway where
APP is cleaved at multiple sites, successively by a β-secretase, the BACE-1 enzyme (β-site
APP-cleaving enzyme 1), and a γ-secretase complex formed by the presenilins, resulting in
the formation of different lengths of the Aβ peptide such as Aβ40 and Aβ42 [17,34,153].
The Aβ peptide plays a physiological role in synaptic plasticity and neuronal survival,
but an imbalance between its production and clearance promotes its accumulation and
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subsequent toxicity [1]. Being more hydrophobic, the Aβ42 peptide is more apt to aggregate
than the Aβ40 form [25,153].

Numerous in vitro studies indicate an association between altered insulin signaling
and the amyloid cascade [54,154]. This may explain why diabetic patients are more likely
to develop AD. Insulin modulates APP precursor expression and metabolism in the brain
in order to maintain the balance between Aβ production and degradation [28]. In normal
conditions, insulin and IGF-1 inhibit Aβ peptide production by inactivating the GSK3β
enzyme via its phosphorylation by Akt and by inhibiting the translation of mRNAs of
the BACE-1 enzyme and its substrate APP. Activated Akt also inhibits GSK3α, an iso-
form which stimulates the production of Aβ by γ-secretase [149,155–157]. Finally, insulin
increases the expression of α-secretase, which mediates the cleavage of APP by the non-
amyloidogenic pathway [158]. In addition, insulin and IGF-1 prevent the intracellular
accumulation of Aβ peptide by accelerating its trafficking from the Golgi/trans-Golgi
network to the plasma membrane to allow its extracellular secretion [26,141,157,159]. They
also prevent the accumulation of the Aβ peptides by stimulating the transport of Aβ-
binding carrier proteins in the brain, in particular albumin and transthyretin [157,160,161].
Insulin interferes with the extracellular proteolytic degradation of the Aβ peptide by the
insulin-degrading enzyme (IDE), a metalloprotease also responsible for the catabolism of
insulin and IGF-1 [28,48,162,163] and whose expression increases following Akt activation
by the insulin receptor, thus acting as a negative-feedback mechanism [30,164]. mRNA
levels, protein levels, and the activity of IDE are decreased in AD brains [165–167]. In
an insulin-resistance state, the decreased activation of the PI3K/Akt pathway reduces
IDE activation [30], and hyperinsulinemia competitively inhibits IDE. As a result, Aβ

degradation decreases, promoting its neurotoxic accumulation and the development of
AD [48,49,126,157,168].

Not only does Aβ peptide clearance decrease, but Aβ peptide production (1–40 and
1–42) increases when these signaling pathways are impaired [40,169], thereby promoting
the aggregation of monomers into large oligomeric fibrils, or their organization into cross-
β-sheet units that form amyloid fibrils in senile plaques [152]. Given the importance of
insulin in the regulation of amyloidogenesis, the brains of patients with T2D are more
susceptible to the toxicity of Aβ. In keeping with these observations, insulin administration
attenuates amyloid accumulation, protects synapses from Aβ toxicity, and improves cogni-
tive performance in animal models of AD and in humans, illustrating the role of insulin
signaling in amyloidogenesis [15,170,171].

(2) Impact of amyloidogenesis on insulin/IGF-1 signaling
On the other hand, APP-Aβ oligomers are toxic and can induce or exacerbate neuronal

insulin resistance by the abnormal activation of the TNF-α/JNK (tumor necrosis factor
alpha/c-Jun N-terminal kinase) pathway, leading to the serine phosphorylation of IRS-
1 [92,154,172,173], and by the induction of mitochondrial oxidative stress [174–176]. The
TNF-α/JNK pathway is also activated in T2D, leading to peripheral insulin resistance and
contributing to pancreatic β-cell apoptosis and increased oxidative stress [45,157,177,178].
APP-Aβ oligomers also disrupt insulin signaling by competitively binding to its receptor.
This reduces insulin’s affinity for its receptor, and results in desensitization [10,149,167,179].
The decreased autophosphorylation of the insulin receptor and the subsequent alteration of
its downstream cascade could lead to synaptotoxicity by altering long-term potentiation and
neuronal dysfunction, and consequently to memory impairment [26,40,149,173,180,181].
Indeed, the exposure of primary hippocampal neurons to Aβ oligomers in vitro causes
the loss of their sensitivity to insulin, the inhibitory phosphorylation of IRS-1, and the sig-
nificant removal of insulin receptors from the plasma membrane of dendrites [15,170,182].
APP/PS1 mice overexpressing Aβ also exhibit impaired insulin signaling in the hippocam-
pus, evidenced by an increase in IRS-1 phospho-serine levels [92]. Furthermore, the
hippocampal injection of Aβ oligomers in rats alters insulin signaling by decreasing Akt
phosphorylation and plasma membrane GLUT4 translocation [126,183]. Conversely, IGF-1
blocks amyloid toxicity by activating survival signaling pathways via ERK and PI3K/Akt
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and downstream phospho-BAD and transthyretin involved in Aβ clearance, explaining the
limited neurotoxicity of Aβ peptides in APP-overexpressing transgenic mice in the presence
of IGF-1 [30,184–186]. Intriguingly, the expression of the IGF-1 receptor is increased in areas
surrounding amyloid plaques in the brain. This is probably a compensatory mechanism
for insulin deficiency [10,187].

In addition to the brain, APP is expressed in key tissues involved in the regulation
of glucose metabolism, such as the liver, skeletal muscle, adipose tissue, and the pan-
creas [10,188,189]. T2D patients have amyloid deposits in their pancreas similar to the
senile plaques found in the brains of patients with AD. This is associated with the loss of
β-cell mass and function [48,149,190,191]. These deposits are formed by the aggregation
of amylin, a 37-amino acid peptide derived from the proteolytic cleavage of an 89-amino
acid precursor [190,192,193]. Amylin fibrils are similar to those of the Aβ peptide [48,194].
Physiologically, IAPP is co-secreted with insulin by pancreatic β cells [188,195] and is impli-
cated in the regulation of postprandial glycemia, gastric emptying, and food intake, and in
the inhibition of glucose-stimulated glucagon secretion [13,191]. Under normal conditions,
IAPP does not aggregate, but its structure is altered when exposed to a disturbed chemical
environment such as a high pH and low calcium concentration, conditions associated
with β-cell damage, even before the onset of T2D [34]. Interestingly, high levels of the Aβ

peptide are also present in the pancreas of type 2 diabetic patients [190]. Some studies
also show the deposition of IAPP in the brains of patients with AD, independently of
the Aβ peptide [188,196]. Similarly, amylin deposition was found in brain vessels of T2D
patients [197]. The inoculation of pancreatic IAPP aggregates into the brains of transgenic
mice with AD led to the worsening of the memory deficit compared to untreated mice.
At this level, IAPP oligomers damage the membrane permeability in neurons, induce the
production of ROS, and alter calcium homeostasis [10]. It is important to note that just
like the induction of neuronal death by Aβ oligomers, amylin aggregates induce β-cell
apoptosis [149], suggesting that both peptides have similar cytotoxic mechanisms. In
addition, the co-localization of amylin and Aβ peptides in the brain suggests that amylin
contributes to the metabolic risk of AD [26].

Together, these observations imply that insulin resistance and Aβ toxicity have a
bidirectional relationship and may constitute a vicious circle for the aggravation of dys-
metabolic and neurodegenerative processes in T2D and AD, respectively.

3.2.3. Insulin and IGF-1 Resistance, GSK3β, and Tauopathy in T2D and AD

Insulin and IGF-1 demonstrate neuroprotective actions by reducing the activity of the
GSK3 enzyme and thereby the phosphorylation of tau proteins in cultured neurons [198],
thus preventing the formation of intraneuronal NFTs [30,139,154,199]. The GSK3 enzyme
is a constitutively active serine/threonine kinase that exists as two isoforms (α and β)
ubiquitously expressed in tissues, and with similar biochemical properties. They have an N-
terminal inhibitory phosphorylation site (Ser21 for α and Ser9 for β) and a phosphorylation-
facilitating site (Y279 for α and Y216 for β) in their catalytic domain. GSK3 α and β are
involved in various cellular processes such as glycogen metabolism, gene transcription,
cell apoptosis, neuronal function, and microtubule stability [158,200–202]. Their activity
can be inhibited by a variety of stimuli, including the insulin, growth factor, and Wnt
pathways [158,203,204].

GSK3 phosphorylates a large number of substrates, including several neuronal pro-
teins directly related to AD, in particular tau, involved in the regulation of microtubule
stabilization and dynamics and in axonal transport [158,202,205]. Tau mRNA undergoes
alternative splicing in the adult brain, which results in six isoforms containing either three
(3R) or four (4R) microtubule-binding repeat domains [202,206,207]. Healthy brains contain
similar levels of the 3R and 4R isoforms [202,208]; the 4R isoform binds and modulates mi-
crotubules more effectively [190,209]. Normally, the phosphorylation/dephosphorylation
of tau is a dynamic process important for its functionality. Tau phosphorylation induces
its release from microtubules to facilitate the axonal transport of vesicles, while its de-
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phosphorylation induces its re-binding to tubulins [126,202,210,211]. Insulin and IGF-1
inhibit the activation of GSK3β by phosphorylation on serine 9 via the PI3K/Akt pathway,
thus limiting its ability to phosphorylate tau and promoting the binding of tau to micro-
tubules [126,139] (Figure 2). Akt activation appears to be particularly important because
it also inactivates protein phosphatase 2A (PP2A) to keep GSK3 phosphorylated [158]. In
the case of insulin or IGF-1 resistance, as in T2D, due to impaired Akt activation, GSK3
remains dephosphorylated and constitutively active, resulting in the hyperphosphorylation
of tau [48,49,212] (Figure 2). Hyperphosphorylated tau folds abnormally and becomes
more prone to self-aggregation into insoluble paired helical filaments (PHFs) [126,201,213].
PHF-tau is the main component of NFTs. GSK3β levels are increased in the brains of AD
patients [214], and immunohistochemical studies have shown the co-localization of GSK3 in
the PHF-tau aggregates [203,215]. Apart from hyperphosphorylation, impaired insulin and
IGF signaling alters the expression of the gene encoding tau. This results in the insufficient
production of normal soluble tau proteins in favor of the accumulation of insoluble fibrils
of hyperphosphorylated tau [40]. These NFTs disturb the cytoskeletal network and axonal
transport. Eventually, the ubiquitination of hyperphosphorylated tau [216–218], associated
with the dysfunction of the ubiquitin–proteasome system [219], leads to the development
of oxidative stress. These abnormalities ultimately lead to synaptic and mitochondrial
dysfunction and progressive neurodegeneration in AD [40].
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Figure 2. DYRK1A and GSK3β enzymes: potential molecular actors implicated in pancreatic β-cell
loss and neurodegeneration. Under physiological conditions, insulin inhibits GSK3β activity by
phosphorylating it via the PI3K/Akt pathway. In the case of insulin resistance, GSK3β remains
dephosphorylated and constitutively active, resulting in the hyperphosphorylation of tau. The
aberrant activation of DYRK1A and GSK3β in the brain increases Aβ peptide production and causes
the hyperphosphorylation of tau, resulting in the formation of amyloid plaques and neurofibrillary
tangles, respectively. These aggregates cause neurodegeneration and induce the alteration of brain
insulin signaling. In the endocrine pancreas, both DYRK1A and GSK3β inhibit β-cell proliferation,
and GSK3β is associated with the inflammation of the islets of Langerhans. This leads to β-cell loss
and insulin secretion deficiency, further aggravating the impaired insulin signaling in the brain.
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In addition, GSK3 negatively regulates Wnt signaling, which is an important pathway
involved in synaptic plasticity. Thus, in cerebral insulin resistance, the hyperactivation
of GSK3 participates in the impairment of synaptic plasticity [143]. Aβ peptides can also
induce GSK3 dysregulation [158]. Indeed, since the insulin [180] and Wnt [220] signaling
pathways are targeted by Aβ peptide toxicity, amyloid accumulation also contributes to an
increased activation of GSK3β, and consequently leads to tau hyperphosphorylation, thus
establishing a link between senile plaques and NFTs in AD [158,213].

Interestingly, elevated levels of hyperphosphorylated tau have been found in the islets
of Langerhans of T2D patients, indicating that tau pathology is also a hallmark of T2D [190].
Tau is expressed in pancreatic β cells, where its phosphorylation/dephosphorylation plays
a role in insulin trafficking and secretion [221]. Our team has significantly contributed
to the establishment of the role of GSK3β as a negative regulator of β-cell growth and
function. We provided the first evidence for the implication of the Wnt/β-catenin signaling
pathway in the regulation of the physiological expansion of the β-cell mass during the
early post-natal period [222]. Moreover, GSK3β downregulation by pharmacological or
genetic modulators resulted in the stimulation of β-cell regeneration in neonatal diabetes
induced by streptozotocin [222]. Likewise, in a more recent study, we reported that the local
intrapancreatic knockdown of GSK3β in 90%-pancreatectomized rats promoted β-cell and
exocrine cell regeneration in the remnant pancreatic tissue by stimulating cell proliferation
and neogenesis [223]. Other studies have shown that transgenic mice overexpressing a
constitutively active form of GSK3β exhibit impaired glucose tolerance and insulin secretion
in response to glucose and decreased β-cell proliferation and mass compared with non-
transgenic littermates [224]. Finally, in a recent study, our team provided the first evidence
for the implication of GSK3β in diabetes-associated islet inflammation [225]. Together,
all these data designate GSK3β as a negative regulator of β-cell mass and function and
suggest that this enzyme could be a relevant target for the regenerative therapy of diabetes.
It is interesting to note that the link between GSK3 and T2D diabetes has been initially
established through its role in the insulin signaling pathway. GSK3β has been shown to
phosphorylate IRS-1 on serine and thereby inhibit downstream insulin signaling [203,226].
Increased GSK3β activity was observed in peripheral insulin-sensitive tissues, including
in the skeletal muscle of T2D patients, thus contributing to insulin resistance [224,227].
GSK3β is therefore involved in both insulin resistance and insulin deficiency, two main
defects at the origin of T2D pathogenesis. Given the central role of this enzyme in both
AD and T2D, GSK3 could be considered as a common target for the treatment of these
interconnected pathologies (Figure 2).

3.3. Involvement of DYRK1A in AD and Diabetes

Another potentially important molecular actor in the pathogenesis of AD that may
be linked to diabetes is DYRK1A. DYRK1A is a serine/threonine kinase and a member of
the DYRK protein family that has five different isoforms. DYRK proteins are self-activated
by the autophosphorylation of the tyrosine residue conserved in their activation loop and
phosphorylate their substrates on serine and threonine residues [228–231]. The gene en-
coding DYRK1A is located on human chromosome 21, a critical genomic region involved
in Down syndrome (DS) [232–234]. DYRK1A is an ubiquitous enzyme whose regulated
expression from the fetal stage and in adulthood is essential for normal brain development
and function, including neurogenesis, dendritogenesis, and synaptogenesis [230,231,233].
The aberrant overexpression of DYRK1A in DS due to the third copy of its gene [235]
contributes to abnormal brain development with defective neurogenesis [236] and neu-
rodegeneration [237]. In addition, recent studies have shown that DRK1A is involved
in tau [238] and amyloid pathologies [239] associated with the early onset of AD in pa-
tients with DS [236,237,240]. Moreover, polymorphisms in DYRK1A may be associated
with an increased risk of AD [241]. DYRK1A induces the pathological features of AD
by phosphorylating substrates involved in different signaling pathways (Figure 2). In
particular, DYRK1A phosphorylates tau on threonine (Thr) 212, a hyperphosphorylated



Int. J. Mol. Sci. 2022, 23, 15287 12 of 26

residue in AD, but also on other residues. This phosphorylation primes tau for subsequent
phosphorylation by GSK3β, which promotes the formation of NFTs [236–238,242]. There
is also a co-localization of DYRK1A in these aggregates [243], similar to that reported for
GSK3β [215]. Another substrate phosphorylated by DYRK1A is the alternative splicing
factor (ASF), which controls the splicing of tau, thereby decreasing the formation of the
4R-tau isoform and increasing that of 3R-tau. The modification of the 3R-tau/4R-tau ratio
alters the neuronal cytoskeleton and also triggers neurofibrillary degeneration [237,244,245].
DYRK1A overactivity also induces the pathological amyloidogenic pathway: high levels
of Aβ are detected in the hippocampus of DYRK1A transgenic mice and in the brains
of DS patients [236,239]. DYRK1A phosphorylates APP on Thr-668 [239] and PSEN1 on
Thr-354 [236,246], which increases the proteolytic cleavage of APP by the BACE1 [247]
and γ-secretase enzymes [248] and consequently the production of Aβ peptides [237].
Thus, through this mechanism, DYRK1A is also involved in amyloid plaque formation.
Conversely, high levels of the Aβ peptide increase DYRK1A expression and consequently
the hyperphosphorylation of tau [241]. DYRK1A is therefore an important link between
Aβ and tau pathology.

Interestingly, DYRK1A is not only involved in neurodegenerative diseases but also
in the proliferation of β cells [230,249–251] (Figure 2). Several studies show that the in-
hibition of DYRK1A stimulates β-cell proliferation, increases pancreatic islet mass, and
improves glycemic control in diabetic mice transplanted with a marginal mass of human
islets [230,252]. In addition, DYRK1A has been shown to be associated with hyperhomo-
cysteinemia and reduced BDNF in AD [68,253], but also in patients with T2D [254,255]. As
mentioned earlier, DYRK1A primes some of the substrates of GSK3β by phosphorylation
on P+4 serine in the SXXXS motif, relative to the GSK3β phosphorylation site (P) [242,256].

The implication of DYRK1A in these processes points to both a direct and potentially
indirect (via GSK3) negative role of this enzyme in β-cell homeostasis and insulin sensitivity.
We present here a non-exhaustive list of studies using GSK3β (Table 1) and DYRK1A
(Table 2) inhibitors as therapeutic approaches for diabetes and AD.

Table 1. Inhibition of GSK3β as a therapeutic approach for diabetes and AD.

Molecular Target Disease Experimental Model Main Findings References

GSK3β
Inhibition Diabetes

Zucker diabetic fatty
(fa/fa) rats

• Activation of liver glycogen synthesis and
improvement in glucose disposal.

• Downregulation of key enzymes of
gluconeogenesis and attenuation of basal
endogenous glucose production.

[257]

Zucker prediabetic
fatty (fa/fa) rats

• Decreased fasting plasma insulin and free fatty
acid levels.

• Increased muscle IRS-1 dependent insulin
signaling; enhancement in insulin-stimulated
glucose transport above basal in skeletal muscle.

• Enhancement in whole-body glucose tolerance
and in sulin sensitivity index.

[258]

Neonatal
streptozotocin-

induced diabetes
in rats

• Stimulation of β-cell regeneration. [222]

90%-
pancreatectomized

Wistar rats

• Induction of β-cell proliferation and neogenesis.
• Induction of ductal and acinar cell
• proliferation.

[223]
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Table 1. Cont.

Molecular Target Disease Experimental Model Main Findings References

Diabetic
Goto–Kakizaki rats

• Improvement in insulin sensitivity.
• Reduction in islet inflammation.
• Improvement in glucose-induced insulin
• secretion.

[225]

AD

JNPL3 transgenic
mice overexpressing
mutant human tau

• Reduction in insoluble tau aggregation in
the cortex.

• Reduction in tau phosphorylation at specific
epitopes (serine 202 and serine 396/404).

• Reduction in axonal degeneration.

[259]

Patients with
amnestic mild

cognitive impairment

• Reduction in CSF p-tau levels.
• Attenuation of cognitive decline. [260]

5XFAD mouse model
of AD

• Restoration of brain lysosomal acidification,
• enabling Aβ load clearance.
• Reduction in cerebral amyloid deposits.

[261]

P301L human tau
transgenic mice

• Reduction in tau hyperphosphorylation in
thecortex and spinal cord.

[262]
Rat embryonic

hippocampal neurons
• Prevention of Aβ25–35-induced cell death.

Swiss mice injected
with Aβ25–35

Aged APP (SW)/tau
(VLW) mice

• Reversal of short-term visual episodic
memory deficit.

Table 2. Inhibition of DYRK1A as a therapeutic approach for diabetes and AD.

Molecular
Therapeutic Target Disease Experimental Model Main Findings References

DYRK1A
Inhibition Diabetes

R7T1 mouse β cells and
rat and human islets • Induction of β-cell proliferation.

[249]Diabetic mice
transplanted with

human islets

• Stimulation of β-cell proliferation, increase
• in β-cell mass and insulin content.
• Enhancement in glucose tolerance

Rat and human β cells
• Stimulation of β-cell proliferation.
• Upregulation of key β-cell transcription

factors: PDX1, NKX6.1, and MAFA.

[252]Partial pancreatectomy
mouse model

• Regeneration of β-cell mass.

Diabetic NODSCID
mice transplanted with

marginal mass of
human islets

• Improvement in glycemic control.

Human β cells;
NGS mice transplanted

with human islets

• Increased human β-cell proliferation.
• Enhancement in glucose-stimulated

insulin secretion.
[250]

INS-1 cells
• Induction of cell proliferation.
• Preservation of insulin secretion functionality.

[263]

db/db mice
• Increase in β-cell proliferation.
• Reduction in fasting blood glucose levels and

im- provement in glucose tolerance.
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Table 2. Cont.

Molecular
Therapeutic Target Disease Experimental Model Main Findings References

AD

HEK293 cells, SH-SY5Y
neuroblastoma cells,

and rat primary
cortical neurons

• Reduced tau phosphorylation at several
AD-phos- phoepitopes.

[236]

Neuronal cells
• Reduction in tau hyperphosphorylation on

serine 396 and AT8 epitope induced by
soluble Aβ42 peptide.

HEK293 cells
overexpressing APP

• Normalization of Aβ production.

3xTg-AD mice

• Reduction in APP and insoluble
tau phosphorylation.

• Increase APP turnover in lysosomes, leading
to reduced insoluble Aβ40 and Aβ42 levels.

• Improvement in reference and
working memory.

[234]

Aged APP/PS1 mice

• Reduction in phospho-STAT3α levels and
inflammatory cytokine release.

• Recruitment of microglial cells involved in
Aβ clearance.

• Partial rescue of impaired synaptic plasticity
and learning and memory deficits.

[264]

AD–DS drosophila
models overexpressing
human tau, human Aβ,

or minibrain

• Reduced phosphorylation of human tau at
Serine 262

• Extension of drosophila shortened lifespan;
im– provement of locomotion performance
and rescued memory and cognition deficits

[265]

4. Conclusions
Although T2D and AD were initially considered two independent pathologies, sub-

stantial epidemiological arguments show an increased risk of developing AD in diabetic
patients, and there is now sufficient experimental evidence of a common pathophysiolog-
ical mechanism for these two diseases. Beyond its canonical role in maintaining energy
homeostasis, insulin is a neurotrophic and neuroprotective factor important for maintaining
cognitive function, prompting many researchers to consider AD as a metabolic disease
linked to insulin deficiency. Anatomical and functional abnormalities are found in the same
brain areas in T2D and AD. In this non-exhaustive review, we presented the main molecular
mechanisms of degeneration, in which T2D contributes to the development and progression
of AD. Targeting these pathways with antidiabetic therapies could be an approach to correct
defective insulin signaling in the brain and limit neurodegeneration. Notably, the intranasal
administration of insulin has been beneficial in improving memory in AD patients who
do not have the ApoE4 allele. The beneficial effects of insulin-sensitizing drugs such as
metformin, GLP-1 and its analogues, DPP-IV inhibitors, and thiazolidinediones are also
being assessed in AD.

In this review, we also emphasized the role of two enzymes, GSK3β and DYRK1A,
which have deleterious roles both in T2D and AD. The aberrant activation of these kinases
results in the hyperphosphorylation of tau and the aberrant cleavage of APP, leading
to amyloid accumulation. In turn, these products induce defective insulin signaling,
neuroinflammation, and oxidative stress, thereby establishing a vicious cycle. On the other
hand, the activation of DYRK1A and GSK3 β induces β-cell loss and dysfunction, leading
to insulin deficiency, which is not only the root-cause of T2D pathogenesis, but also an
important contributor to brain dysfunction. With the recent findings regarding the crucial
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roles of GSK3β and DYRK1A in diabetes pathogenesis, we believe that the development
of potent and selective inhibitors for these targets could be of great importance to treat
both T2D and AD. Given the alarming progression of these two pathologies in our aging
societies, it is highly recommended to decipher the pathophysiological mechanisms linking
T2D to AD, and to identify common molecular targets for their treatment.
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Abbreviations

[18F]-FDG 18-fluorodeoxyglucose
ABCB1 ATP-binding cassette subfamily B member 1
AD Alzheimer’s disease
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ApoE apolipoprotein E
APP amyloid precursor protein
ASF alternative splicing factor
Aβ amyloid beta peptide
BACE-1 β-site APP-cleaving enzyme 1
BBB blood-brain barrier
BDNF brain-derived neurotrophic factor
CNS central nervous system
CSF cerebrospinal fluid
DPP4 dipeptidyl peptidase 4
DS Down syndrome
DYRK1A dual-specificity tyrosine phosphorylation-regulated kinase 1A
GABA gamma-aminobutyric acid
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GLP-1 glucagon-like peptide-1
GLUT glucose transporter
GSK3β glycogen synthase kinase 3β
HFD high-fat diet
i.c.v intracerebroventricular
IAPP islet amyloid polypeptide
IDE insulin-degrading enzyme
IDF International Diabetes Federation
IGF insulin-like growth factor
IRS insulin receptor substrate
ISF interstitial fluid
JNK c-Jun N-terminal kinase
LRP1 low-density lipoprotein receptor-related protein 1
NFTs neurofibrillary tangles
NMDA N-methyl-D-aspartate
PET positron emission tomography
PHF paired helical filaments
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PP2A protein phosphatase 2A
PPAR peroxisome proliferator-activated receptor
PSD95 postsynaptic density protein 95
PSEN1 presenilin 1
PSEN2 presenilin 2
ROS reactive oxygen species
sAPPα soluble APPα fragment
T2D type 2 diabetes
Tau tubulin-associated unit
Thr threonin
TNF-α tumor necrosis factor alpha
TrkB tropomyosin receptor kinase B
WHO World Health Organization
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