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A somatosensory computation that unifies limbs and tools 1 

Abstract 2 

It is often claimed that tools are embodied by their user, but whether the brain actually re-3 

purposes its body-based computations to perform similar tasks with tools is not known. A 4 

fundamental computation for localizing touch on the body is trilateration. Here, the location 5 

of touch on a limb is computed by integrating estimates of the distance between sensory in-6 

put and its boundaries (e.g., elbow and wrist of the forearm). As evidence of this computa-7 

tional mechanism, tactile localization on a limb is most precise near its boundaries and low-8 

est in the middle. Here we show that the brain repurposes trilateration to localize touch on a 9 

tool, despite large differences in initial sensory input compared to touch on the body. In a 10 

large sample of participants, we found that localizing touch on a tool produced the signature 11 

of trilateration, with highest precision close to the base and tip of the tool. A computational 12 

model of trilateration provided a good fit to the observed localization behavior. To further 13 

demonstrate the computational plausibility of repurposing trilateration, we implemented it in 14 

a three-layer neural network that was based on principles of probabilistic population coding. 15 

This network determined hit location in tool-centered coordinates by using a tool’s unique 16 

pattern of vibrations when contacting an object. Simulations demonstrated the expected sig-17 

nature of trilateration, in line with the behavioral patterns. Our results have important implica-18 

tions for how trilateration may be implemented by somatosensory neural populations. We 19 

conclude that trilateration is likely a fundamental spatial computation that unifies limbs and 20 

tools.  21 
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Significance statement 22 

It is often claimed that tools are embodied by the user, but computational evidence for this 23 

claim is scarce. We show that to localize touch on a tool, the brain repurposes a fundamen-24 

tal computation for localizing touch on the body, trilateration. A signature of trilateration is 25 

high localization precision near the boundaries of a limb and low precision in the middle. We 26 

find that localizing touch on a tool produces this signature of trilateration, which we charac-27 

terize using a computational model. We further demonstrate the plausibility of embodiment 28 

by implementing trilateration within a three-layer neural network that transforms a tool’s vi-29 

brations into a tool-centered spatial representation. We conclude that trilateration is a fun-30 

damental spatial computation that unifies limbs and tools.  31 
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Introduction 32 

The proposal that the brain treats a tool as if it were an extended limb (tool embodiment) 33 

was first made over a century ago (Head and Holmes, 1911). From the point of view of 34 

modern neuroscience, embodiment would entail that the brain reuses its sensorimotor com-35 

putations when performing the same task with a tool as with a limb. There is indirect evi-36 

dence that this is the case (for reviews, see Maravita and Iriki, 2004; Martel et al., 2016), 37 

such as the ability of tool-users to accurately localize where a tool has been touched (Miller 38 

et al., 2018) just as they would on their own body. Several studies have highlighted im-39 

portant similarities between tool-based and body-based tactile spatial processing 40 

(Yamamoto and Kitazawa, 2001; Kilteni and Ehrsson, 2017; Miller et al., 2018), including at 41 

the neural level in the activity of fronto-parietal regions (Miller et al., 2019; Pazen et al., 42 

2020; Fabio et al., 2021). Tool use also modulates somatosensory perception and action 43 

processes (Cardinali et al., 2009; Cardinali et al., 2011; Cardinali et al., 2012; Sposito et al., 44 

2012; Canzoneri et al., 2013; Miller et al., 2014; Garbarini et al., 2015; Cardinali et al., 2016; 45 

Miller et al., 2017; Martel et al., 2019; Romano et al., 2019; Miller et al., 2019b).  46 

The above findings are suggestive that functional similarities between tools and limbs 47 

exist. However, direct evidence that body-based computational mechanisms are repurposed 48 

to sense and act with tools is lacking. For this to be possible, the nervous system would 49 

need to resolve the differences in the sensory input following touch on the skin or a tool. Un-50 

like the skin, tools are not innervated with mechanoreceptors. Touch location is instead ini-51 

tially encoded in the tool’s mechanical response; for example, in how it vibrates when strik-52 

ing an object (Miller et al., 2018). Repurposing a body-based neural computation to perform 53 

the same function for a tool (i.e., embodiment) requires overcoming this key difference in the 54 

sensory input signal. The present study uses tool-based tactile localization (Miller et al., 55 

2018) as a case study to provide the first neurocomputational test of embodiment. 56 

Tactile localization on the body is often characterized by greater precision near body-57 

part boundaries (e.g., joints or borders), a phenomenon called perceptual anchoring 58 
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(Cholewiak and Collins, 2003; de Vignemont et al., 2009). A recent study found converging 59 

evidence that perceptual anchors are the signature of trilateration (Miller et al., 2022), a 60 

computation used by surveyors to localize an object within a map. To do so, a surveyor es-61 

timates the object’s distance from multiple landmarks of known positions. When applied to 62 

body maps (Figure 1A, bottom), a ‘neural surveyor’ localizes touch on a body part by esti-63 

mating the distance between sensory input and body-part boundaries (e.g., the wrist and 64 

elbow for the forearm). To estimate the touch location in limb-centered coordinates, these 65 

two distance estimates can be integrated to produce a Bayes-optimal location percept (Ernst 66 

and Banks, 2002; Kording and Wolpert, 2004; Clemens et al., 2011). Consistent with We-67 

ber’s Law and log-coded spatial representations (Petzschner et al., 2015), noise in each dis-68 

tance estimate increased linearly as a function of distance (Figure 1B). Integrating them re-69 

sulted in an inverted U-shaped noise profile across the surface, with the lowest noise near 70 

the boundaries and highest noise in the middle (i.e., perceptual anchoring). 71 

In the present study, we investigated whether trilateration is repurposed to localize 72 

touch a tool (Figure 1A). If this is indeed the case, localizing touch on a tool would be char-73 

acterized by an inverted U-shaped pattern of variable errors across its surface (Figure 1B). 74 

We first provide a theoretical formulation of how trilateration could be repurposed to sense 75 

with a tool, arguing that the brain uses the tool’s vibrational properties to stand-in for a rep-76 

resentation for the physical space of the tool (Miller et al., 2018). In this formulation, trilatera-77 

tion is repurposed by computing over a vibratory feature space (Figure 2), using its bounda-78 

ries as proxies for the boundaries of physical tool space. Distance estimates (Figure 1A) are 79 

then computed within a neural representation of the feature space, just like they would be for 80 

a representation of body space. Next, we characterize the ability of participants to localize 81 

touch on a tool (Figure 1C) and use computational modelling to verify the expected compu-82 

tational signature of trilateration (Figure 1B). Finally, we use neural network modelling to im-83 

plement the vibration-to-location transformation required for trilaterating touch location on a 84 

tool, providing one possible mechanism for how embodiment is implemented. In all, our find-85 
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ings solidify the plausibility of trilateration as the computation underlying tactile localization 86 

on both limbs and tools. 87 

Material and Methods 88 

Theoretical formulation of trilateration 89 

In the present section, we provide a theoretical formulation of trilateration and how it can be 90 

applied to localizing touch within a somatosensory-derived coordinate system, be it centered 91 

on a body part or the surface of a tool (Figure 1A). The general computational goal of trilat-92 

eration is to estimate the location of an object by calculating its distance from vantage points 93 

of known position, which we will refer to as landmarks. Applied to tactile localization, this 94 

amounts to estimating the location of touch by averaging over distance estimates taken from 95 

the boundaries of the sensory surface (Figure 1A), which serve as the landmarks and are 96 

assumed to be known to the nervous system via either learning or sensory feedback (Longo 97 

et al., 2010). For a body part (e.g., forearm), the landmarks are often its joints (e.g., wrist 98 

and elbow) and lateral sides. For simple tools such as rods, the landmarks correspond to 99 

their handle and tip—previous research has shown that users can sense their positions from 100 

somatosensory feedback during wielding (Debats et al., 2012). 101 

 We will first consider the general case of localizing touch within an unspecified soma-102 

tosensory coordinate system. For simplicity, we will consider only a single dimension of the 103 

coordinate system, with localization between its two boundaries. We propose that the soma-104 

tosensory system only needs three spatial variables, ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷሽ, to derive an estimate 𝐿෨ of 105 

the actual location of touch 𝐿 in surface-centered coordinates. The variables 𝑥ଵ and 𝑥ଶ cor-106 

respond to the proximal and distal boundaries, respectively. The variable 𝑥ଷ corresponds to 107 

the sensory input. Due to noise (Faisal et al., 2008), the nervous system does not represent 108 

variables as point estimates but as probability densities over some range of values (Pouget 109 
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et al., 2013). Assuming normally-distributed noise, each variable 𝑥 can be thus thought of 110 

as a Gaussian likelihood 111 

 𝑝(𝑥|𝑋) = 𝑁൫𝑋, 𝜎ଶ൯ (1) 

where the mean 𝑋 corresponds to its true spatial position and the variance 𝜎ଶ corresponds 112 

to the uncertainty in its internal estimate. Here, 𝑋ଵ and 𝑋ଶ are the true positions of the land-113 

marks (i.e., boundaries) and 𝑋ଷ is the position of the sensory input. It is important to note 114 

here that these positions can be specified within any shared coordinate system. For exam-115 

ple, touch on the body is thought to initially be represented in skin-based coordinates 116 

(Medina and Coslett, 2010), not coordinates centered on a limb. The relationship between 117 𝑋ଷ and 𝐿 therefore remains ambiguous without the proper computation to transform it into 118 

the actual surface-centered coordinates (Longo et al., 2010). 119 

Trilateration performs the necessary computation to transform 𝑥ଷ into surface-120 

centered coordinates (Miller et al., 2022). It does so by calculating its distance from the prox-121 

imal and distal boundaries of the coordinate system (𝑥ଵ and 𝑥ଶ, respectively), producing two 122 

additional estimates: 123 

 𝑝(𝑑ଵ|𝑥ଵ, 𝑥ଷ) = 𝑁(𝑋ଷ − 𝑋ଵ, 𝜎ଵଶ(𝑑ଵ)) 

𝑝(𝑑ଶ|𝑥ଶ, 𝑥ଷ) = 𝑁(𝑋ଶ − 𝑋ଷ, 𝜎ଶଶ(𝑑ଶ)) 
(2) 

where each distance estimate 𝑑 corresponds to a Gaussian likelihood with a mean equal to 124 

the distance between 𝑋ଷ and the respective boundary and a variance that scales with dis-125 

tance. That is, localization estimates are more precise when the touch is physically closer to 126 

a boundary than when it is farther away (Figure 1B). This distance-dependent noise is con-127 

sistent with coding distance in log space (Petzschner et al., 2015) and is a consequence of 128 

how distance computation is implemented by a neural decoder (see below).  129 

Given the above distance estimates (Eq. 2), we can derive two estimates of touch lo-130 

cation 𝐿෨ that are aligned within a common coordinate system: 131 
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 𝑝൫𝐿෨ଵห𝐿൯ = 𝑝(𝑥ଵ|𝑋ଵ) + 𝑝(𝑑ଵ|𝑥ଵ, 𝑥ଷ) 

𝑝൫𝐿෨ଶห𝐿൯ = 𝑝(𝑥ଶ|𝑋ଶ) − 𝑝(𝑑ଶ|𝑥ଶ, 𝑥ଷ) 
(3) 

These two location estimates can be used to derive a final estimate. However, given the 132 

presence of distance-dependent noise, the precision of each estimate will vary across the 133 

sensory surface (Figure 1B). Assuming a flat prior for touch location, the statistically optimal 134 

solution (i.e., maximum likelihood) is to integrate both estimates:  135 

 𝑝൫𝐿ห𝐿෨ଵ, 𝐿෨ଶ൯ ∝ 𝑝൫𝐿෨ଵห𝐿൯𝑝൫𝐿෨ଶห𝐿൯ (4) 

Here, the mean (𝜇ூே்) and variance (𝜎ூே்ଶ ) of the integrated surface-centered posterior dis-136 

tribution depend on the means (𝜇ଵ and 𝜇ଶ) variances (𝜎ଵଶ and 𝜎ଶଶ) of the individual estimates:  137 

 𝜇ூே் = ቆ𝜇ଵ𝜎ଵଶ + 𝜇ଶ𝜎ଶଶ ቇ 𝜎ூே்ଶ , 𝜎ூே்ଶ = 𝜎ଵଶ𝜎ଶଶ𝜎ଵଶ + 𝜎ଶଶ (5) 

The integrated posterior 𝑝൫𝐿ห𝐿෨ଵ, 𝐿෨ଶ൯ thus reflects the maximum-likelihood estimate of touch 138 

location 𝐿. Given that the noise in each individual estimate scales linearly with distance, in-139 

tegration has the consequence of producing an inverted U-shaped pattern of variance (Fig-140 

ure 1B). This pattern of variability serves as a computational signature of trilateration, which 141 

has been observed for tactile localization on the arm and fingers (Miller et al., 2022). The 142 

present study investigates whether this is the case for localizing touch on a hand-held rod. 143 

Our computational analyses implement this probabilistic model of trilateration (see below). 144 

Computing a tool-centered spatial code with trilateration 145 
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Let us now consider the more specific case of performing trilateration for touch on a tool 146 

(Figure 1A, top). Because the tool surface is not innervated, spatial information does not 147 

arise from a distribution of receptors but must instead be inferred from sensory information 148 

during tool-object contact. However, as we will see, this information forms a feature space 149 

that can computationally stand in for the real physical space of the tool (Figure 2). Trilatera-150 

tion can be performed on this feature space, leading to a tool-centered code. 151 

As with the body, the somatosensory system needs three variables, ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷሽ, to 152 

derive an estimate 𝐿෨ of the actual location of touch 𝐿 in tool-centered coordinates. The rep-153 

resentational nature of these variables depends on the type of sensory information that en-154 

codes where a tool was touched. We have previously argued that touch location is encoded 155 

in rod’s resonant frequencies (Miller et al., 2018). The frequencies of these modes are de-156 

termined by the physical properties of the rod, such as its length and material. However, the 157 

relative amplitude of each mode is determined by touch location (Figure 2A), a pattern that is 158 

Figure 1. Model of trilateration and tool-sensing paradigm 

(A) The trilateral computation applied to the space of the arm (bottom) a hand-held rod (top). Distance

estimates from sensory input (black) and each boundary (d1 and d2) are integrated (purple) to form a

location estimate. (B) In our model, the noise in each distance estimate (d1, d2) increases linearly

with distance. The integrated estimate forms an inverted U-shaped pattern. (C) Two tool-sensing

tasks used to characterize tactile localization on a hand-held rod. The purple arrow corresponds to the

location of touch in tool-centered space. The red square corresponds to the judgment of location with-

in the computer screen. 
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invariant across rods. The link between location and amplitude is captured by the shape of 159 

the modes.  160 

Touch location can therefore be encoded in a unique combination of modal ampli-161 

tudes, called vibratory motifs. These motifs form a multidimensional feature space that forms 162 

a vibration-to-location isomorphism (Figure 2B). Theoretically, this isomorphic mapping be-163 

tween the feature space of the vibrations and tool-centered space can computationally stand 164 

in for the physical space of the rod. We can therefore re-conceptualize the three initial spa-165 

tial variables, ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷሽ, in relation to the isomorphism. The estimates 𝑥ଵ and 𝑥ଶ encode the 166 

location of the proximal and distal boundaries within the feature space, respectively. The es-167 

timate 𝑥ଷ encodes the sensory input, which in our case is the vibration amplitude in each 168 

mode. Once the nervous system has learned the isomorphic mapping, the trilateral compu-169 

tation (Equations 2-5) can be used to derive an estimate of the tool-centered location of 170 

touch (Figure 2B). To concretely demonstrate this possibility, we implemented this isomor-171 

phic mapping in a simple neural network. 172 

Figure 2. Vibration modes and feature space 

(A) The shape of the first five modes 𝜔 for contact on a cantilever rod. The weight of each mode 

varies as a function of hit location. Each hit location is characterized by a unique combination of 

mode weights. (B) The vibration-location feature space (purple) from handle (X1) to tip (X2). This 

feature space is isomorphic with the actual physical space of the rod. 𝜔 corresponds to a reso-

nant frequency, the black dot corresponds to the hit location (as in Figure 1A) within the feature 

space, and the arrows are the gradients of distance estimation during trilateration. 
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Neural network implementation for trilateration on a tool 173 

Somatosensory regions are characterized by spatial maps of the surface of individual body 174 

parts (Penfield and Boldrey, 1937). Based on this notion, the above formulation of trilatera-175 

tion to tactile localization on the body surface was implemented in a biologically inspired two-176 

layer feedforward neural network (Miller et al., 2022). The first layer consisted of units that 177 

were broadly tuned to touch location in skin-based coordinates, as is thought to be encoded 178 

by primary somatosensory cortex. The second layer consisted of units whose tuning was 179 

characterized by distance-dependent gradients (either in peak firing rate and/or tuning width) 180 

that were anchored to one of the joints. They therefore embodied the distance computation 181 

as specified in Equations 2–3. A Bayesian decoder demonstrated that the behavior of this 182 

network matched what would be expected by optimal trilateration (Equations 2–5), display-183 

ing distance-dependent noise and an inverted U-shaped variability following integration.  184 

While this network relies on the observation that individual primary somatosensory 185 

neurons are typically tuned to individual regions of the skin (Delhaye et al., 2018), can it also 186 

be re-used for performing trilateration in vibration space? The vibratory motifs are unlikely to 187 

be spatially organized across the cortical surface. Instead, the nervous system must internal-188 

ize the isomorphic mapping between the motifs and the physical space of the tool (Figure 2). 189 

Disrupting the expected vibrations disrupts localization (Miller et al., 2018), suggesting that 190 

the user has internal models of rod dynamics (Imamizu et al., 2000). We assume that this 191 

internal model is implemented in units that are tuned to the statistics of the vibratory motifs. 192 

We implemented the trilateral computation (Equations 2–5) in a three-layer neural 193 

network with four processing stages (Figure 3): First, the amplitudes of each mode are esti-194 

mated by a population of units with subpopulations tuned to each resonant mode (Layer 1). 195 

Second, activation in each subpopulation is integrated by units tuned to the multidimensional 196 

statistics of the motifs (Layer 2). This layer effectively forms the internal model of the feature 197 

space that is isomorphic to the rod’s physical space. Next, this activation pattern is trans-198 

formed into tool-centered coordinates (Equations 2–3) via two decoding subpopulations 199 

whose units are tuned to distance from the boundaries of the feature space (Eq. 3; Layer 3). 200 
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The population activity of each decoding subpopulations reflects the likelihoods in Equa-201 

tion 4 (Jazayeri and Movshon, 2006). Lastly, the final tool-centered location estimate is de-202 

rived by a Bayesian decoder (Ma et al., 2006) that integrates the activity of both subpopula-203 

tions (Eq. 5). 204 

Figure 3. Neural network implementation of trilateration 

(A) Neural network implementation of trilateration: (lower panel) the Mode layer is composed of

subpopulations (two shown here) sensitive to the weight of individual modes (see Figure 2A),

which are location-dependent; (middle panel) the Feature layer takes input from the mode layer

and encodes the feature space (see Figure 2B), which forms the isomorphism with the physical

space of the tool; (upper panel) the Distance layer is composed of two subpopulations of neu-

rons with distance-dependent gradients in tuning properties (shown: firing rate and tuning

width). The distance of a tuning curve from its “anchor” is coded by the luminance, with darker

colors corresponding to neurons that are closer to the spatial boundary. 
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The feature space of vibrations is multidimensional, composed of a theoretically infi-205 

nite number of modes. However, only the first five modes (Figure 2A) are typically within the 206 

bandwidth of mechanoreceptors (i.e., ~10-1000 Hz; Johansson and Flanagan, 2009). The 207 

first layer of our network was therefore composed of units tuned to the amplitudes of these 208 

modes (Figure 3A, bottom). This layer was composed of five subpopulations that each en-209 

code an estimate of the amplitude of a specific mode. These units were broadly-tuned with 210 

Gaussian (bell-shaped) tuning curves 𝑓ெ of the following form: 211 

 𝑓ெ(𝜃) = 𝜅 ቆexp ቈ−(𝜃 − 𝜇)ଶ2𝜎ଶ ቇ 
(6)

where 𝜅 is the peak firing rate (i.e., gain), 𝜇 is the tuning center related to the amplitude of 212 

the specific mode, 𝜃 is the mode amplitude of the stimulus, and 𝜎ଶ is the variance of the tun-213 

ing curve. We modelled the response properties of these units for a given contact location 214 

on the rod with likelihood functions 𝑝൫𝑟ெห𝜃൯ denoting the probability that mode amplitude 𝜃 215 

caused 𝑟ா spikes in encoding unit 𝑖. The likelihood function 𝑝൫𝑟ெห𝜃൯ was modeled as a 216 

Poisson probability distribution with a Fano factor of one according to the following equation: 217 

 𝑝൫𝑟ெห𝜃൯ = 𝑒ିಾ(ఏ)𝑓ெ(𝜃)ಾ𝑟ெ!  (7) 

where 𝑓ெ is the tuning curve of unit 𝑖. The population response of the encoding units is de-218 

noted by a vector 𝒓𝑴 ≡ ሼ𝑟ଵெ, …, 𝑟ேெሽ, where 𝑟ெ is the spike count of unit 𝑖. 219 

 The amplitude 𝜃 of each mode is tied directly to the stimulus location 𝐿 (Miller et al., 220 

2018). The function of the next layer is to integrate the estimated amplitudes of each mode, 221 

encoded in 𝒓𝑴, into a representation of the feature space that can be directly linked to 𝐿. It 222 

 (B) Activations for each layer of the network averaged over 5000 simulations when touch was

at 0.75 (space between 0 and 1). Each dot corresponds to a unit of the neural network. (lower

panel) mode layer, with three of five subpopulations shown; (middle panel) feature layer; (upper

panel) distance layer of localization for each decoding subpopulation. 
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does so via units with bell-shaped tuning curves 𝑓ௌ over the feature space (Figure 3A, mid-223 

dle). The population activity 𝒓𝑺 of this layer is a combination of (1) the synaptic input 𝑊ௌ ∙ 𝒓𝑴, 224 

where ‘∙’ is the dot product and 𝑊ௌ is the matrix of all synaptic weights; and (2) the uninher-225 

ited Poisson noise in the unit’s spiking behavior (Eq. 7). Each unit 𝑖 in the second layer was 226 

fully connected to each unit in the first layer via a vector of synaptic weights 𝒘𝒊𝑺, which was 227 

set to be proportional to 𝒓𝑴 for each touch location 𝐿. For simplicity, the input into the sec-228 

ond layer (𝒇𝑺(𝑗)) corresponded to the winner-take-all of the synaptic input (𝑗 = argmax  (𝑊ௌ ∙229 

𝒓𝑴). 230 

The function of the third layer was to estimate the location of 𝐿 in tool-centered coor-231 

dinates given the population response 𝒓𝑺 in the feature space layer. We implemented this 232 

computation in two independent decoding subpopulations, each of which was “anchored” to 233 

one of the boundaries of the feature space (Figure 3A, top). The population activity 𝒓𝑫 of 234 

each subpopulation corresponded to: 𝑟 =  𝒘𝒊𝑫 ∙ 𝒓𝒔 + 𝜖, where 𝒘𝒊𝑫 is the vector of synaptic 235 

weights connecting unit 𝑖 to the second layer and 𝜖 is the uninherited Poisson noise in the 236 

unit’s spiking behavior (Eq. 7). Each unit in the decoding layer was fully connected to each 237 

unit in the encoding layer via 𝒘𝑫. We used the Matlab function fmincon to find the positive-238 

valued weight vector that produced the decoding unit’s pre-specified tuning curve (see be-239 

low). 240 

As in the previous neural network for body-centered tactile localization (Miller et al., 241 

2022), the distance computation (Equations 2–3) was embodied by distance-dependent gra-242 

dients in the tuning of units 𝑓 in each decoding subpopulation. The gain 𝜅 of these units 243 

formed a distance-dependent gradient (close-to-far: high-to-low gain) across the length of 244 

the feature space. 245 

𝜅(𝑑) = 𝜅(1 + 𝛽𝑑)ଶ (8)

where 𝜅 corresponds to the gain of the tuning curve centered on the landmark’s location 246 

(i.e., distance zero), 𝑑 is the distance from the center of the tuning curve (𝑑 ≥ 0) and the 247 



 

 14

landmark, and 𝛽 is a scaling factor. The width 𝜎 of each tuning curve can be uniform in ei-248 

ther linear or log space. In the latter case, tuning width also forms a distance-dependent 249 

gradient (close-to-far: narrow-to-wide tuning) in linear space (Nieder and Miller, 2003), con-250 

sistent with the Weber-Fechner law. 251 

𝜎(𝑑) = (𝛾 log(𝑑 + 1) + 1) 𝜎 (9)

where 𝜎 corresponds to the width of the tuning curve centered on the landmark’s location, 𝑑 252 

is the distance from the center of the tuning curve and the landmark (𝑑 ≥ 0), and 𝛾 is a scal-253 

ing factor. It is important to note that these units 𝑓 are tuned to the feature space, not the 254 

vibrations themselves (as in the encoding layer). Given the isomorphism, we can therefore 255 

link their response properties directly to the location of touch 𝐿. 256 

When neuronal noise is Poisson-like (as in Eq. 7), the gain of a neural population re-257 

sponse reflects the precision (i.e., inverse variance) of its estimate (Ma et al., 2006). There-258 

fore, given the aforementioned distance-dependent gradient in gain, noise in each subpopu-259 

lation’s location estimate (that is, its uncertainty) will increase as a function of distance from 260 

a landmark (i.e., the handle or tip). Consistent with several studies (Jazayeri and Movshon, 261 

2006; Ma et al., 2006), we assume that the population responses encode log probabilities. 262 

We can therefore decode a maximum likelihood estimates of each subpopulation as follows: 263 

 𝑝൫𝐿෨ଵห𝐿, 𝒓𝑫𝟏൯ = exp൫𝒉𝑫𝟏(𝐿) ∙ 𝒓𝑫𝟏൯ 

𝑝൫𝐿෨ଶห𝐿, 𝒓𝑫𝟐൯ = exp൫𝒉𝑫𝟐(𝐿) ∙ 𝒓𝑫𝟐൯ 

(10) 

where 𝒉𝑫 is a kernel and 𝒓𝑫is the subpopulation response. When neural responses are 264 

characterized by independent Poisson noise (Eq. 7), 𝒉𝑫 is equivalent to the log of each sub-265 

population’s tuning curve 𝒇𝑫 at value 𝐿 (Jazayeri and Movshon, 2006; Ma et al., 2006). As-266 

suming that the population response reflects log probabilities, optimally integrating both es-267 

timates (Eq. 5) amounts to simply summing the activity of each subpopulation. 268 
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 𝑝൫𝐿෨ூே்ห𝐿, 𝒓𝑫𝟏, 𝒓𝑫𝟐൯ = exp൫𝒉𝑫𝟏(𝐿) ∙ 𝒓𝑫𝟏 + 𝒉𝑫𝟐(𝐿) ∙ 𝒓𝑫𝟐൯ (11) 

where the optimal estimate 𝐿෨ூே் on a given trial 𝑛 can be written as the location for which the 269 

log-likelihood of the summed population responses is maximal. 270 

 𝐿෨ூே்() = argmax (𝒉𝑫𝟏(𝐿) ∙ 𝒓𝑫𝟏 + 𝒉𝑫𝟐(𝐿) ∙ 𝒓𝑫𝟐) (12) 

The above neural network, with a different encoding layer, implements trilateration 271 

for localizing touch in body-centered coordinates. Our present neural network (Equations 6–272 

12) generalizes the Bayesian formulation of trilateration (Equations 2–5) to localizing touch 273 

on a tool, using a vibratory feature space as a proxy for tool-centered space. The flow of ac-274 

tivity in this network can be visualized at Figure 3B, where the touch occurs at 75% the sur-275 

face of the tool. 276 

Table 1. Neural network parameter values 277 

 𝒇𝑴 𝒇𝑺 𝒇𝑫𝟏 𝒇𝑫𝟐 

𝝁 -1.5:.02:1.5 -40:1:140 0:1:140 -40:1:100 𝜿 or 𝜿𝟎 25 25 25 25 𝝈 or 𝝈𝟎 0.08 3.40 3.40 3.40 𝜷 — — 0.01 0.01 𝜸 — — 0.5 0.5 

To systematically investigate the behavior of this network, we simulated 5000 in-278 

stances of touch at a wide range of locations (10% to 90% of the space) on the tool surface 279 

using the above network. The input into the neural network were the mode amplitudes 𝜽 for 280 

the corresponding location 𝐿. For simplicity we did not model the actual process of mode de-281 

composition from the spiking behavior of mechanoreceptors (Miller et al., 2018), but we did 282 

assume that the process is affected by sensory noise (Faisal et al., 2008). Therefore, for 283 

each simulation, the input (𝜽[𝐿]) was corrupted by Gaussian noise with a standard deviation 284 
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of 0.5 (units: % of space). The values for the above parameters in all layers can be seen in 285 

Table 1. All units of each layer shared the same parameter values. We used a maximum 286 

log-likelihood decoder to localize touch from the overall response of each subpopulation 287 

separately or integrated. 288 

Behavioral Experiment 289 

Participants 290 

Forty right-handed participants (24 females, 23.7 ± 2.5 years of age) in total completed our 291 

behavioral experiments. Two participants were removed due to inability to follow task in-292 

structions, leaving thirty-eight in total to be analyzed. All participants had normal or correct-293 

ed-to-normal vision and no history of neurological impairment. Every participant gave in-294 

formed consent before the experiment. The study was approved by the ethics committee 295 

(CPP SUD EST IV, Lyon, France). 296 

Experimental procedure 297 

During the task, participants were seated comfortably in a cushioned chair with their torso 298 

aligned with the edge of a table and their right elbow placed in a padded arm rest. The entire 299 

arm was hidden from view with a long occluding board. A 60 cm-long rod (handle length: 12-300 

cm; cross-sectional radius: 0.75 cm) was placed in their right hand. This rod was either 301 

wooden (twenty-five participants) or PVC (thirteen participants). The arm was placed at a 302 

height necessary for a 1 cm separation between the object (see below) and the rod at a pos-303 

ture parallel with the table. On the surface of the table, an LCD screen (70 x 30 cm) lay 304 

backside down in the length-wise orientation; the edge of the LCD screen was 5 cm from the 305 

table’s edge. The center of the screen was aligned with the participant’s midline. 306 

The task of participants was to localize touches resulting from active contact between 307 

the rod and an object (foam-padded wooden block). In an experimental session, participants 308 

completed two tasks with distinct reporting methods (order counterbalanced across partici-309 

pants). In the image-based task, participants used a cursor to indicate the corresponding 310 
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location of touch on a downsized drawing of a rod (20 cm in length; handle to tip); the pur-311 

pose of using a downsized drawing was to dissociate it from the external space occupied by 312 

the real rod. The drawing began 15 cm from the edge of the table, was raised 5 cm above 313 

the table surface, and was oriented in parallel with the real rod. The red cursor (circle, 0.2 314 

cm radius) was constrained to move in the center of the screen occupied by the drawing. In 315 

the space-based task, participants used a cursor to indicate the corresponding location of 316 

touch within an empty LCD screen (white background). The cursor was constrained to move 317 

along the vertical bisection of the screen and could be moved across the entire length of the 318 

screen. It is critical to note that in this task, participants were forced to rely on somatosenso-319 

ry information about tool length and position as no other sensory cues were available to do 320 

so. 321 

The trial structure for each task was as follows: In the ‘Pre-contact phase’, partici-322 

pants sat facing the computer screen with their left hand on a trackball. A red cursor was 323 

placed at a random location within the vertical bisection of the screen. A ‘go’ cue (brief tap 324 

on the right shoulder) indicated that they should actively strike the object with the rod. In the 325 

‘Localization phase’, participants made their task-relevant judgment with the cursor, con-326 

trolled by the trackball. Participants never received feedback about their performance. To 327 

minimize auditory cues during the task, pink noise was played continuously over noise-328 

cancelling headphones. 329 

The object was placed at one of six locations, ranging from 10 cm from the handle to 330 

the tip (10–60 cm from the hand; steps of 10 cm). The number of object locations was un-331 

known to participants. In each task, there were ten trials per touch location, making 60 trials 332 

per task and 120 trials in total. The specific location for each trial was chosen pseudo-333 

randomly. The entire experimental session took approximately 45 minutes.  334 

The experiment started with a five-minute sensorimotor familiarization session. Par-335 

ticipants were told to explore, at their own pace, how the tool felt to contact the object at dif-336 

ferent locations. They were instructed to pay attention to how the vibrations varied with im-337 

pact location. Visual and auditory feedback of the tool and tool-object contact was prevented 338 
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with a blindfold and pink noise, respectively. Participants were, however, allowed to hold the 339 

object in place with their left hand while contacting it with the tool but were not allowed to 340 

haptically explore the rod. 341 

At the end of the space-based task, participants used the cursor to report where they 342 

felt the tip of the rod (aligned in-parallel to the screen). The judged location of the tip (mean: 343 

56.5 cm; SEM: 1.62 cm) was very similar to the rod’s actual length (i.e., 60 cm). It is critical 344 

to reiterate here that participants had never seen the rod prior up to this point of the experi-345 

ment, and likely relied on somatosensory feedback about its dimensions. 346 

Data Analysis 347 

Regression analysis 348 

Prior to analysis, all judgments in the image-based task were converted from pixels of draw-349 

ing space to percentage of tool space. All judgments in the space-based task were normal-350 

ized such that their estimated tip location corresponded to 100% of tool space. We then 351 

used least-squares linear regression to analyze the localization accuracy. The mean locali-352 

zation judgment for each touch location was modelled as a function of actual object location. 353 

Accuracy was assessed by comparing the group-level confidence intervals around the slope 354 

and intercept. 355 

Trilateration model 356 

Our model of trilateration in the somatosensory system assumes that the perceived location 357 

of touch is a consequence of the optimal integration of two independent location estimates,  358 𝐿෨ଵ and 𝐿෨ଶ. This is exemplified in our formulation of trilateration (Equations 1-5). Trilateration 359 

predicts that noise in each estimate varies linearly as a function of the distance of touch from 360 

two landmarks (Equation 2; Figure 1B), corresponding to the handle and tip. For any location 361 

of touch 𝐿 along a tactile surface, the variance in each landmark-specific location estimate 𝐿෨ 362 

can therefore be written as follows: 363 
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 𝜎ଵଶ = (𝜀ଵ̂ + 𝑑ଵ𝜎ො)ଶ 

𝜎ଶଶ = (𝜀ଶ̂ + 𝑑ଶ𝜎ො)ଶ 
(13) 

in which 𝜀̂ is a landmark-specific intercept term that likely corresponds to uncertainty in the 364 

location of each landmark, 𝑑 is the distance of touch location 𝐿 from the landmark (Equa-365 

tions 2–3), and 𝜎ො is the magnitude of noise per unit of distance. We assume that the noise 366 

term 𝜎ො corresponds to a general property of the underlying neural network and therefore 367 

model it as the same value for each landmark. The distance-dependent noise for the inte-368 

grated estimate is therefore: 369 

 𝜎ூே் = ඨ 𝜎ଵଶ𝜎ଶଶ𝜎ଵଶ + 𝜎ଶଶ (14) 

The three parameters in the model (𝜎ො, 𝜀ଵ̂, and 𝜀ଶ̂) are properties of the underlying neural 370 

processes that implement trilateration and are therefore not directly observable. They must 371 

therefore be inferred using a reverse engineering approach, where they serve as free pa-372 

rameters that are fit to each participant’s variable errors. We simultaneously fit the three free 373 

parameters to the data using non-linear least squares regression. Optimal parameter values 374 

were obtained through maximum likelihood estimation using the Matlab routine fmincon. All 375 

modelling was done with the combined data from both localization tasks. R2 values for each 376 

participant in each experiment were taken as a measure of the goodness-of-fit between the 377 

observed and predicted pattern of location-dependent noise. 378 

Boundary truncation model 379 

Boundary truncation provides one alternative model to trilateration This model assumes that 380 

the estimate of location 𝐿෨ corresponds to a Gaussian likelihood whose variance is identical 381 

at all points on the rod. The inverted U-shaped variability arises because these likelihoods 382 

are truncated by a boundary, either by the range of possible responses or by a categorical 383 

boundary (e.g., between handle and tip). As in Equation 1, we can model each likelihood 384 𝑝൫𝐿෨ห𝐿൯ as a normal distribution 𝛮(𝜇, σ) where 𝜇 is the location of touch 𝐿 and σ is the 385 
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standard deviation. The posterior estimate 𝑝൫𝐿ห𝐿෨൯ then corresponds to a likelihood truncated 386 

at 𝛾ଵ and 𝛾ଶ, where 𝛾ଶ > 𝛾ଵ. Doing so will distort the mean and variance of the posterior es-387 

timate. 388 

We fit this truncation model to the participant-level variable errors in each of our ex-389 

periments. The standard deviation for each location, σ்(𝐿), was determined by truncating a 390 

normal distribution at 𝛾ଵ and 𝛾ଶ using the makedist and truncate functions in MATLAB. The 391 

model therefore had three free parameters, σ், 𝛾ଵ and 𝛾ଶ. The value of σ் was constrained 392 

between 1 and 40; 𝛾ଵ between -30 and 30; and 𝛾ଶ between 70 and 130 (units: % of rod sur-393 

face). These ranges—particularly for 𝛾ଵ and 𝛾ଶ—are quite unrealistic but were chosen to 394 

maximize a good fit with the variable errors. Fitting procedures for this model were the same 395 

as the trilateration model. 396 

Model comparisons 397 

We used the Bayesian Information Criterion (BIC) to compare the boundary and trilateration 398 

models. The difference in the BIC (ΔBIC) was used to determine a significant difference in 399 

fit. Consistent with convention, the chosen cutoff for moderate evidence was a ΔBIC of 2 and 400 

the cutoff for strong evidence was a ΔBIC of 6. 401 

Results 402 

Accurate localization of touch on a tool 403 
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In the current experiment (n=38), we investigated whether tactile localization on a 60-cm 404 

hand-held rod is characterized by the U-shaped pattern of variability (Figure 1B) that is 405 

characteristic of trilateration when localizing touch on the body. In two tasks, we measured 406 

participants’ ability to localize an object that was actively contacted with a hand-held tool. In 407 

the image-based task, participants indicated the point of touch on a downsized drawing of 408 

the tool. In the space-based task, participants indicated the point of touch in external space. 409 

The latter task ensured that localization was not truncated by boundaries in the range of 410 

possible responses. 411 

Consistent with prior results (Miller et al., 2018), we found that participants were 412 

generally quite accurate at localizing touch on the tool. Linear regressions (Figure 4A) com-413 

paring perceived and actual hit location found slopes near unity both the image-based task 414 

(mean slope: 0.93, 95% CI [0.88, 0.99]) and the space-based task (mean slope: 0.89, 95% 415 

CI [0.82, 0.95]). Analysis of the variable errors (2x6 repeated measures ANOVA) found a 416 

significant main effect of hit location (F(5,185)=36.1, p<.001) but no main effect of task 417 

(F(1,37)=0.39, p=.54) or an interaction (F(5,185)=0.21, p=.96). Crucially, the pattern of vari-418 

Figure 4. Localization and variable error for both tasks 

(A) Regressions fit to the localization judgments for both the image-based (blue) and space-based 

(orange) tasks. Error bars correspond to the group-level 95% confidence interval. (B) Group-level 

variable errors for both tasks. Error bars correspond to the group-level 95% confidence interval. 
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able errors (Figure 4B) in both tasks displayed the hypothesized inverted U-shape, which 419 

was of similar magnitude to what has been observed for touch on the arm (Cholewiak and 420 

Collins, 2003; Miller et al., 2022). 421 

Computational modelling of behavior 422 

We next used computational modelling to confirm that the observed pattern of variable er-423 

rors was indeed due to trilateration. We fit each participant’s variable errors with a probabilis-424 

tic model of optimal trilateration (Figure 1A-B) that was derived from its theoretical formula-425 

tion (see Methods). We compared the trilateration model to an alternative hypothesis: The 426 

inverted U-shaped pattern is due to truncation at the boundaries of localization (Petzschner 427 

et al., 2015), which cuts off the range of possible responses and thus produces lower varia-428 

bility at these boundaries. We fit a boundary truncation model to directly compare to our tri-429 

lateration model. Given the lack of a main effect of task and to increase statistical power, we 430 

collapsed across both tasks sin this analysis. 431 

Figure 5. Trilateration model provides a good fit to localization behavior 

(A) Fit of the trilateration model to the group-level variable error (black dots). The purple line corre-

sponds to the model fit. The light gray line and squares correspond to variable errors for localization

on the arm observed in Miller et al (2022); note that this data is size adjusted to account for differ-

ences in arm and rod size. (B) Fit of the trilateration model to the variable errors of six randomly cho-

sen participants. The fit of the trilateration model for each participant’s behavior can be seen in Ex-

tended Data Figure 5-1 and 5-2. 
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Our computational model of trilateration provided a good fit to the variable errors ob-432 

served during tactile localization on a tool. This was evident at the group-level, where the 433 

magnitude of variable errors was similar to what has been found when localizing touch on 434 

the arm (Figure 5A). We further observed a high coefficient of determination at the level of 435 

individual participants (median R2: 0.75; range: 0.29–0.95); indeed, 30 out of 38 participants 436 

had an R2>0.6. The fits of the trilateration model to the data of 6 randomly chosen partici-437 

pants can be seen in Figure 5B. The fits of the trilateration model each participant’s behavior 438 

can be seen in Extended Data Figures 5-1 and 5-2. In contrast, the R2 of the boundary trun-439 

cation model was substantially lower than the trilateration model (median: 0.30; range: -440 

0.19–0.71), never showing a better fit to the data in any participant (Figure 6A). 441 

We next compared each model directly using the Bayesian Information Criteria (BIC). 442 

The BIC score for the trilateration model was lower in all 38 participants (mean±sd; Trilatera-443 

tion: 11.88±5.88; Truncation: 18.74±4.70). Statistically, 33 participants showed moderate 444 
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Figure 6. Trilateration provides a better fit to the data than boundary truncation 

(A) Participant-level goodness of fits (R2) for the trilateration` model (left, purple) and the boundary

truncation model (right, green). For each participant, trilateration was a better fit to the data. (B) His-

togram of the ΔBIC values used to adjudicate between the two models, color-coded by the strength of

the evidence in favor of trilateration. Purple corresponds to substantial evidence in favor of trilatera-

tion; pink corresponds to moderate evidence in favor of trilateration; gray corresponds to

weak/equivocal evidence in favor of trilateration. Note that in no case did the boundary truncation

model provide a better fit to the localization data (i.e., ΔBIC<0). 
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evidence (ΔBIC>2) and 20 participants showed strong evidence (ΔBIC>6) in favor of trilater-445 

ation (Figure 6B). In total, our results strongly suggest that, as with the body, localizing touch 446 

on a tool is consistent with a computation via trilateration. 447 

Neural network simulations 448 

Finally, we simulated trilateration on a tool using a biologically inspired neural network with a 449 

similar architecture as we have done previously. The goal of these simulations was to con-450 

cretely demonstrate that the feature space of vibratory motifs could stand in for the physical 451 

space of the rod. Our neural network thus took the mode amplitudes as input and trilaterated 452 

the resulting touch location in tool-centered coordinates (5000 simulations per location). 453 

Both the mode and feature space layers of the neural network (Figure 3, bottom and 454 

middle) produced unbiased sensory estimates with minimal uncertainty (Extend-455 

ed Data Figure 7-1). Crucially, both subpopulations in the distance-computing layer (Layer 3; 456 

Figure 3, top) were able to localize touch with minimal constant error (Figure 7A, upper pan-457 

el), demonstrating that each could produce unbiased estimates of location from the sensory 458 

input. However, as predicted given the gradient in tuning parameters, the noise in their esti-459 

mates rapidly increased as a function of distance from each landmark (Figure 7B upper 460 

panel), forming an X-shaped pattern across the surface of the tool. 461 
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We next examined the output of the Bayesian decoder from Equations 11–12 (Fig-462 

ure 7, lower panel). As expected, we observed the computational signature of trilateration. 463 

Integrating both estimates resulted in an inverted U-shaped pattern of decoding noise across 464 

the surface of the tool (Figure 7B, lower panel), with the lowest decoding noise near the 465 

landmarks and the highest decoding variance in the middle. Crucially, this is the exact pat-466 

tern of variability we observed in our behavioral experiments (see above) and have previous-467 

ly observed for tactile localization on the body. These simulations establish the plausibility of 468 

trilateration as a computation that can turn a vibratory code into a spatial representation. 469 

Figure 7. Neural network simulations 

(A) Localization accuracy for the estimates of each decoding subpopulation (upper panel; L1, blue; L2,

red) and after integration by the Bayesian decoder (lower panel; LINT, purple). (B) Decoding noise for

each decoding subpopulation (upper panel) increased as a function of distance from each landmark.

Note that distance estimates are made from the 10% and 90% locations for the first (blue) and sec-

ond (red) decoding subpopulations, respectively. Integration via the Bayesian decoder (lower panel)

led to an inverted U-shaped pattern across the surface. Note the differences in the y-axis range for

both panels. The results of decoding for the mode and feature space layers of the network can be

seen in Extended Data Figure 7-1. 
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Discussion 470 

If tools are embodied by the sensorimotor system, we would expect that the brain repurpos-471 

es its body-based sensorimotor computations to perform similar tasks with tools. Using tac-472 

tile localization as our case study, we uncovered multiple pieces of evidence that are con-473 

sistent with this embodied view. First, as is the case for body parts, we observed that localiz-474 

ing touch on the surface of a tool is characterized by perceptual anchors at the handle and 475 

tip (de Vignemont et al., 2009). Second, computational modeling of behavioral responses 476 

suggests that they are the result of the probabilistic computation involving trilateration. In-477 

deed, perceptual anchors are a computational signature of trilateration. Finally, using a sim-478 

ple three-layer population-based neural network, we demonstrated the possibility of trilatera-479 

tion in the vibratory feature space evoked by touches on tools. This neural network trans-480 

formed a vibration-based input into a spatial code, reproducing perceptual anchors on the 481 

tool surface. These findings go well-beyond prior research on embodiment (Martel et al., 482 

2016) by identifying a computation that functionally unifies tools and limbs. Indeed, they 483 

suggest that trilateration is a spatial computation employed by the somatosensory system to 484 

localize touch on body parts and tools alike (Miller et al., 2022). They further have important 485 

implications for how trilateration would be repurposed at a neural level for tool-extended 486 

sensing. 487 

If trilateration is a fundamental spatial computation used by the somatosensory sys-488 

tem, it should be employed to solve the same problem (i.e., localization) regardless of 489 

whether the sensory surface is the body or a tool. Previous tactile localization studies have 490 

reported increased perceptual precision near the boundaries of the hands (Elithorn et al., 491 

1953; Miller et al., 2022), arm (Cholewiak and Collins, 2003; de Vignemont et al., 2009; 492 

Miller et al., 2022), feet (Halnan and Wright, 1960), and abdomen (Cholewiak et al., 2004). 493 

These perceptual anchors are a signature of a trilateration computation (Miller et al., 2022). 494 

The results of the present study are consistent with the use of trilateration to localize touch 495 

on tools as well.  496 
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Our findings provide computational evidence that tools are embodied in the sen-497 

sorimotor system (Martel et al., 2016), an idea that was proposed over a century ago (Head 498 

and Holmes, 1911). The close functional link between tools and limbs is not just a superficial 499 

resemblance but rather a reflection of the repurposing of neurocomputational resources ded-500 

icated to sensing and acting with a limb to that with a tool (Makin et al., 2017). This repur-501 

posing may be one reason that tool use leads to measurable changes in body perception 502 

and action processes (Canzoneri et al., 2013; Cardinali et al., 2009; Miller et al., 2014; Miller 503 

et al., 2019a). 504 

Whereas the present study focused on simply-shaped tools (i.e., straight rods), tac-505 

tile localization is also possible on more complexly-shaped tools (Yamamoto et al., 2005). 506 

We propose that trilateration also underlies tactile localization on these tools. We leveraged 507 

our trilateration model to simulate patterns of tactile localization on rods with different num-508 

bers of segments (Figure 8). For multisegmented limbs (e.g., the arm), trilateration occurs 509 

locally within each segment (Cholewiak and Collins, 2003; Miller et al., 2022). That is, the 510 

signature inverted U-shaped pattern of variability is observed within each segment (e.g., up-511 

per and lower arms). Our simulations suggested that the same would be true for mul-512 

A B

Figure 8. Simulations of multisegmented rods 

We simulated how trilateration operates within rods with different numbers of segments. Here we show

the predicted patterns of variability for (A) a single-segment rod (used in present study) and, (B) two-

segment (left) and three-segment (right) rods. The magnitude of variable error is color-coded as red-to-

blue (low-to-high). The inverted U-shaped pattern of variability was observed in each segment. 
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tisegmented tools (Figure 8B). We predict that tactile localization within each segment of a 513 

rod would be characterized by the signature pattern of variability indicative of trilateration. 514 

Even though trilateration was repurposed for localizing touch on a rod, we observed 515 

a noticeable difference in the overall shape of variable error between localizing touch on a 516 

rod versus limb (e.g., the arm; Figure 5A). Whereas localization uncertainty (i.e., variable 517 

error) is typically symmetric about the center of a limb (Miller et al., 2022), uncertainty was 518 

asymmetric for the rod. Specifically, variable errors were lower near the handle than the tip, 519 

peaking away from the center of the rod and towards the tip. These patterns of variable error 520 

were also visible in the behavior of individual participants (Extended Data Figures 5-1 and 5-521 

2) and are a direct consequence of differences in the baseline uncertainty of each distance 522 

estimate (Equation 13), as demonstrated by simulations in Miller et al., (2022).  523 

There are at least two potential sources for these differences in baseline uncertainty. 524 

First, striking the rod near the tip may produce less consistent sensory information (i.e., vi-525 

brations), translating into greater sensory uncertainty of where the rod is touched. However, 526 

this explanation is unlikely since the hypothesized differences in sensory consistency were 527 

not observed in a previous study that characterized a rod’s vibratory motifs (Miller et al., 528 

2018). Instead, the source of this difference may lie in the uncertainty of where each bound-529 

ary is perceived in space via proprioceptive feedback (Equation 3). The location of the han-530 

dle is well-defined, as it corresponds to the position of the hand. The location of the tip is 531 

less well-defined, as it must be extracted indirectly from proprioceptive feedback from the 532 

forelimb (Debats et al., 2012). This likely corresponds to higher estimation uncertainty of its 533 

position in space, contributing to greater baseline uncertainty of the tip-based distance esti-534 

mate (Equation 13). Future studies should attempt to adjudicate between these two hypoth-535 

eses. 536 

Another important difference between limbs and tools is the sensory input used to 537 

derive localization estimates. While the skin is innervated with sensory receptors, the soma-538 

tosensory system must ‘tune into’ a tool’s mechanical response to extract meaningful infor-539 

mation from it. It was previously proposed that where a rod is touched is encoded by the 540 
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amplitudes of its resonant responses when contacting an object (Miller et al., 2018; Miller et 541 

al., 2019b). These resonant modes form a feature space that is isomorphic with the physical 542 

space of the tool. At a peripheral level, these resonances are re-encoded by the spiking pat-543 

terns of tactile mechanoreceptors (Johnson, 2001). Therefore, unlike for touch on the body, 544 

localizing touch on a tool requires the somatosensory system to perform a temporal-to-545 

spatial transformation. 546 

We used neural network simulations to embody the necessary transformations to im-547 

plement trilateration on a tool. Our neural network assumes that the human brain contains 548 

neural populations that encode for the full feature space of rod vibration. While very little is 549 

known about how these types of naturalistic vibrations are represented by the somatosenso-550 

ry system, our modeling results and prior research (Miller et al., 2018; Miller et al., 2019) 551 

suggest that there are neural populations that encode their properties. Previous work 552 

demonstrated that individual neurons in primary somatosensory cortex multiplex both ampli-553 

tude and frequency in their firing properties (Harvey et al., 2013). Recent evidence further 554 

suggests that human S1 is tuned to individual vibration frequencies (Wang and Yau, 2021). 555 

Our neural network modelling assumes that there are also neurons tuned to the amplitude of 556 

specific frequencies, though direct empirical evidence for this tuning is currently lacking. The 557 

existence of this coding would be consistent with the finding that S1 performs the initial 558 

stages of localization on a rod (Miller et al., 2019). Furthermore, resonant amplitudes are 559 

crucial pieces of information in the natural statistics of vibrations, making it plausible that 560 

they are encoded at some stage of processing. Our results therefore open up a new avenue 561 

for neurophysiological investigations into how naturalistic vibrations are encoded by the so-562 

matosensory system. 563 

The present study demonstrates the biological possibility that the resonant feature 564 

space can stand in for the physical space of the tool, allowing for trilateration to be per-565 

formed to localize touch in tool-centered coordinates. It is interesting to note that the present 566 

neural network had a similar structure to one we previously demonstrated could perform tri-567 

lateration on the body surface. The biggest difference is the input layer, which must first en-568 
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code the vibration information. However, once this is transformed into the representation of 569 

the feature space, the computation proceeds as it would for the body. Note that this does not 570 

necessitate that the same neural populations localize touch on limbs and tools (Schone et 571 

al., 2021), but only that the same computation is performed when localizing touch on both 572 

surfaces. Our network therefore provides a concrete demonstration of what it means to re-573 

purpose a body-based computation to localize touch on a tool. The repurposing of the neural 574 

network architecture for trilateration explains tool embodiment and the emergence of a 575 

shared spatial code between tools and skin. 576 

Data and code availability 577 

All data and code will be available in a repository upon acceptance of the manuscript. 578 

579 
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Table 1. Neural network parameter values 
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