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Rate of convergence of Nummelin-type representation of the invariant distribution of a Markov chain under drift conditions on the residual kernel

Let P be a Markov kernel on a measurable state space (X, X ) admitting some smallset S ∈ X , that is: P (x, A) ≥ ν(1 A )1 S (x) for any x ∈ X, A ∈ X and for some positive measure ν. Let π be a P -invariant probability measure such that π(1 S ) > 0. Using the non-negative residual kernel R := P -ν(•)1 S , we study the rate of convergence to π, in weighted or standard total variation norms, of normalized versions of the series +∞ n=1 ν • R n-1 . Under drift-type conditions on R, we provide geometric/polynomial convergence bounds of the rate of convergence. Theses bounds are fully explicit and are as simple as possible. Their proofs do not require to introduce the split chain in the non-atomic case, the renewal theory, the coupling method, or the spectral theory.

Introduction

Let (X n ) n≥0 be a Markov chain on a measurable state space (X, X ) with transition kernel P . Let M + (resp. M + * ) denote the set of finite non-negative (resp. positive) measures on (X, X ). For any µ ∈ M + and any µ-integrable function f : X → C, µ(f ) denotes the integral f dµ. Throughout the paper, the existence of a small-set S for P is assumed, that is ∃S ∈ X , ∃ν ∈ M + * , ∀x ∈ X, ∀A ∈ X , P (x, A) ≥ ν(1 A ) 1 S (x). (S)

Under Condition (S), we introduce the substochastic kernel R, called the residual kernel, ∀x ∈ X, ∀A ∈ X , R(x, A)

:= P (x, A) -ν(1 A )1 S (x) (1) 
and the following sequence (β k ) k≥1 ∈ (M + ) N :

β 1 := ν and ∀n ≥ 2, β n := ν • R n-1 . (2) 
Then the following statements are proved in Section 2 under the sole condition (S) (see Proposition 2.1). First the following equivalence holds:

P has an invariant probability measure π such that π(1

S ) > 0 ⇐⇒ +∞ k=1 β k (1 X ) < ∞. ( 3 
)
is a P -invariant probability measure on (X, X ) such that π(1 S ) = µ(1 X ) -1 > 0. Finally, for every n ≥ 1, consider µ n ∈ M + * and the probability measure µ n on (X, X ) defined by

µ n := n k=1
β k and µ n := µ n (1 X ) -1 µ n .

(5)

Then, if ∥ • ∥ T V is the total variation norm, we have lim n ∥π -µ n ∥ T V = 0.

Hence a natural issue is: Can we specify the error approximation ∥π -µ n ∥ T V ? The same question is raised with respect to any weighted total variation norm (see ( 9)). First let us motivate such a study. Approximating π by µ n is less natural than that provided by the iterates P n . In particular, the objective of the paper is not to present a new numerical method to approximate π. Actually the effective computation of µ n may not be necessary in problems only involving the error term ∥π -µ n ∥ T V . In particular this may be an alternative theoretical tool in problems usually involving ∥π -P n ∥ T V , provided that the control of ∥π -µ n ∥ T V is improved. For example, if P θ is a perturbed Markov kernel of P θ 0 , then the quantities π θ -µ n,θ defined from P θ can be used as intermediate error terms to control π θ -π θ 0 , where π θ (resp. π θ 0 ) is the invariant probability measure for P θ (resp. P θ 0 ). Note that only the error bounds for π θ -µ n,θ are useful in this perturbation issue: neither µ n,θ nor µ n,θ 0 need to be computed. The resulting error bounds for π θ -π θ 0 will be more accurate than those obtained with the intermediate term π θ -P n θ , whenever the error bounds for π θ -µ n,θ are better. Such a program is proposed in [START_REF] Hervé | Tweedie-type stability estimates for the invariant probability measures of perturbed Markov chains under drift conditions[END_REF], generalizing in particular the results of [LL18, Sec. 2 and 3] for truncation approximations of atomic discrete Markov chains to general perturbed Markov kernels defined on a general state space. Now let us return to the error approximation ∥π -µ n ∥ T V , starting with the geometric case and the following contractive condition on the residual kernel R: RV ≤ δ V for some δ ∈ (0, 1) and some measurable function V : X →[1, +∞), called a Lyapunov function. Then it is easily deduced from (2) and (5) that ∥π -µ n ∥ T V = O(δ n ). More generally, if P satisfies the above contractive condition and P V is bounded on S, then it follows from [HL24, App. A] that there exists an explicit exponent α 0 ∈ (0, 1] so that RV α 0 ≤ δ α 0 V α 0 . The case α 0 = 1 contains the atomic case but not only. Iterating RV α 0 ≤ δ α 0 V α 0 and using (2) (see ( 12)), it is easily checked that the following estimate holds

∀n ≥ 1, ∥π -µ n ∥ T V ≤ 2 ν(V α 0 ) 1 -δ α 0 δ α 0 n .
This paper deals with the more difficult polynomial case, for which we use a similar approach which consists in introducing a basic drift condition on R (see (7) below) and then in finding appropriate procedures to return to this basic condition under more standard drift conditions. The main idea of this paper is to modify the Lyapunov function in order to fit the target case. In [START_REF] Hervé | Explicit bounds for spectral theory of geometrically ergodic Markov kernels and applications[END_REF], under the standard geometric drift condition P V ≤ δV + K 1 S , new spectral properties of P are derived using such an approach. Here we show that this approach is specially fruitful to derive simple polynomial error bounds for ∥π -µ n ∥ T V , or for some weighted total variation norms. The central point is that all the convergence bounds are fully explicit and are as simple as possible. Moreover the proofs can be thought of as self-contained in that we do not need to introduce the concepts of irreducibility, recurrence, or splitting technique for Markov chains. Of course, the drift conditions used here are directly inspired from that of the regeneration method (e.g. see [Num84, MT93, DMPS18, and references therein]). Finally, the residual kernel R has been used in the perturbation analysis of general Markov chains in [START_REF] Kartashov | Strongly stable Markov chains[END_REF][START_REF] Kartashov | Strong stable Markov chains[END_REF]. We refer to [LL18, Sec. 3] for a recent contribution for atomic discrete Markov chains, where the condition RV ≤ δV for some δ ∈ (0, 1) is used to get bounds on the truncation approximations of π in terms of the residual matrix R.

Under Condition (S), the following results are obtained in this paper. In Section 2 Equivalence (3) is specified in Proposition 2.1. Then, restricting the discussion here to the standard total variation norm, we prove in Theorem 2.2 that π given by Formula (4) is approximated in total variation norm by ( µ n ) n≥1 with the following error estimates

∥π -µ n ∥ T V ≤ 2 µ(1 X ) -1 ε n ≤ 2 ε n with ε n := +∞ k=n+1 β k (1 X ) -----→ n→+∞ 0. ( 6 
)
In Section 3 the following polynomial drift-type conditions on R are introduced to study the rate of convergence of (ε n ) n≥1 : There exists a collection

{V i } m i=0 of Lyapunov functions with m ≥ 1 such that ∀i ∈ {0, . . . , m -1}, RV i ≤ V i -V i+1 . (7) 
Under Condition (7), we prove that lim n n m-1 ε n = 0 in Theorem 3.1. The sequence (β n (V m )) n≥1 is analyzed in Theorem 3.2 to obtain computable rates of convergence for (ε n ) n≥1 . In particular the following property is stated in Corollary 3.4: if m ≥ 2, then

∀n ≥ 1, ε n ≤ C m ν(V 0 ) (m -1) 1 n m-1 with C m := 2 m(m+1) 2 -1 . ( 8 
)
It turns out that (7) is our target polynomial drift condition, as the condition RV ≤ δ V was in the geometric case. In Section 4 appropriate procedures to fit Condition (7) are provided when starting with the following drift condition on R: ∃α ∈ [0, 1), ∃c > 0, RV ≤ V -c V α . This is adapted from a standard polynomial drift condition on P introduced in [JR02]. In the atomic case, using an iterative procedure, we prove that, under Conditions RV ≤ V -c V α and sup S P V < ∞, then the bound (8) holds with m := ⌊(1 -α) -1 ⌋, where ⌊•⌋ denotes the integer part function on R (see Corollary 4.1). The key point in the atomic case is that (7) always holds on S when V i+1 ≤ V i since R = 0 on S. In the non atomic case, this property is no longer automatically satisfied. However the previous iterative procedure can be adapted under standard polynomial drift conditions, replacing the inequality

RV ≤ V -c V α by R V ≤ V -c V α with V = V η 0 for some explicit η 0 , α ∈ (0, 1]. Then, if η 0 ≥ 1 -α and if V , P V are bounded on S, the bound (8) holds with m := ⌊η 0 (1 -α) -1 ⌋ (Proposition 4.4).
The above error bounds actually hold in W -weighted total variation norm (see ( 9)) for any W ≥ 1 such that µ(W ) < ∞ in Section 2, and for W = V i in Sections 3-4.

Basic material

For any Lyapounov function W , the W -weighted total variation norm ∥λ 1 -λ 2 ∥ W for any (λ 1 , λ 2 ) ∈ (M + ) 2 is defined by

∥λ 1 -λ 2 ∥ W := sup |f |≤W λ 1 (f ) -λ 2 (f ) . ( 9 
) If W := 1 X , then ∥λ 1 -λ 2 ∥ 1 X = ∥λ 1 -λ 2 ∥ T V
is the standard total variation norm. When λ 1 and λ 2 are probability measures, ∥λ 1 -λ 2 ∥ T V is their standard total variation distance.

Let P be a Markov kernel on (X, X ) satisfying Condition (S). Consider the associated non-negative residual kernel R := P -ν(•)1 S in (1) and the sequence (β k ) k≥1 ∈ (M + ) N defined in (2). First we prove in Proposition 2.1 that, under the sole Condition (S), P has an invariant probability measure π with π(1 S ) > 0 if, and only if, +∞ k=1 β k (1 X ) < ∞. In particular, the Nummelin-type representation (10) of π below is in force in this work. Such a result is well-known under various recurrence assumptions on the Markov chain. The reader can consult [Num84, Th. 5.2, Cor. 5.2]), [MT93, Chap. 10]) where comments on the story of such kind of results are provided. An analytic proof of Proposition 2.1 is provided in Appendix A and allows us to get general statements in a very efficient way. In particular, we do not need to introduce the concepts of irreducibility, recurrence, atom or splitted chain associated with (X n ) n∈N .

Proposition 2.1 If P satisfies Condition (S), then the following assertions are equivalent.

(i) There exists an P -invariant probability measure π on (X, X ) such that π(1 S ) > 0.

(ii) +∞ k=1 β k (1 X ) < ∞.
Under any of these two conditions, the sequence (β k (1 X )) k is decreasing, and

π := µ(1 X ) -1 µ with µ := +∞ k=1 β k ∈ M + * (10)
is an P -invariant probability measure on (X, X ) with µ(1 S ) = 1 and π(1

S ) = µ(1 X ) -1 > 0.
Under Assumption (S) and +∞ k=1 β k (1 X ) < ∞, µ is the P -invariant positive measure given in (10) and for every n ≥ 1 recall that µ n :=

n k=1 β k ∈ M + , µ n := µ n (1 X ) -1 µ n .
The next theorem gives a simple estimate of the error term π -µ n used throughout the Sections 3-4.

Theorem 2.2 Assume that P satisfies Condition (S) and that W is a Lyapunov function satisfying

µ(W ) < ∞. Let π := µ/µ(1 X ). Then ∀n ≥ 1, ∥π -µ(1 X ) -1 µ n ∥ W = µ(1 X ) -1 ε n,W ≤ ε n,W (11a) ∀n ≥ 1, ∥π -µ n ∥ W ≤ µ(1 X ) -1 ε n,W + µ n (W ) µ n (1 X ) -1 ε n (11b) with ∀n ≥ 1, ε n,W := +∞ k=n+1 β k (W ) and ε n := ε n,1 X = +∞ k=n+1 β k (1 X ). (11c) In (11a)-(11b) we have µ(1 X ) -1 = π(1 S ) ≤ 1. Under the assumptions of Theorem 2.2, since µ(1 X ) ≤ µ(W ) < ∞, the Estimates (11a)-(11b) can be used with W := 1 X to get ∀n ≥ 1, ∥π -µ n ∥ T V ≤ 2µ(1 X ) -1 ε n ≤ 2 ε n . (12) Proof. We have ∥π -µ(1 X ) -1 µ n ∥ W = µ(1 X ) -1 (µ-µ n )(W ) = µ(1 X ) -1 ε n,W since π = µ/µ(1 X ) and µ -µ n ∈ M + . Thus ∥µ -µ n ∥ W = (µ -µ n )(W ) = ε n,W from (11c
). The last inequality in (11a) follows from µ(1 X ) ≥ µ(1 S ) = 1 (see the last assertion of Proposition 2.1). To prove (11b) let f :

X → R measurable such that |f | ≤ W . Then π(f ) -µ n (f ) = π(f ) - µ n (f ) µ n (1 X ) ≤ π(f ) - µ n (f ) µ(1 X ) + |µ n (f )| × 1 µ(1 X ) - 1 µ n (1 X ) ≤ ε n,W µ(1 X ) + µ n (W ) µ n (1 X ) -µ(1 X ) µ(1 X )µ n (1 X )
by using the triangle inequality, (11a) and |µ n (f )| ≤ µ n (W ). This gives Inequality (11b) using 12) and from Definition (11c) of ε n,W and ε n that the rate of convergence to 0 of ∥π -μn ∥ W can be derived from good estimates of the convergence of the sequences (β n (W )) n≥1 and (β n (1 X )) n≥1 . This is the objective of Sections 3-4 for the polynomial case.

|µ n (1 X ) -µ(1 X )| = (µ -µ n )(1 X ) = ε n from (11c). □ It is clear from Estimates (11a)-(11b) or (
3 Error bounds under a polynomial drift condition on R Let P be a Markov kernel satisfying Condition (S). Any Lyapunov function V is assumed to satisfy: ∀x ∈ X, (P V )(x) < ∞.

Introduce the following polynomial drift conditions on R: There exists a familly

{V i } m i=0 of Lyapunov functions with m ≥ 1 such that ∀i ∈ {0, . . . , m -1}, RV i ≤ V i -V i+1 . ( 13 
)
Since R ≥ 0, the sequence {V i } m i=0 in (13) is decreasing. Moreover, since (P V 0 )(•) < ∞ by hypothesis, we have under Assumption (S): ∀i ∈ {0, . . . , m}, ν

(V i ) ≤ ν(V 0 ) < ∞.
Under Conditions (13), the convergence rate in Estimates (11a)-(11b) is shown to be polynomial in Theorem 3.1. Next, more explicit rates of convergence are provided in Corollary 3.4. Denote by (ϑ j ) j≥0 the following sequence of positive real numbers

ϑ 0 := 1 and ∀ℓ ≥ 1, ϑ ℓ := ℓ-1 j=0 C j ℓ ϑ j with C j ℓ := ℓ ! j !(ℓ -j) ! . ( 14 
)
Theorem 3.1 Let P be a Markov kernel satisfying Condition (S). Assume that Conditions (13) hold for some collection {V i } m i=0 of Lyapunov functions. Then we have ∀i ∈ {1, . . . , m},

+∞ k=1 k i-1 β k (V i ) ≤ ϑ i-1 ν(V 0 ) < ∞. (15) 
Moreover, for any

i = 1, • • • , m, we have π(V i ) ≤ µ(V i ) = +∞ k=1 β k (V i ) < ∞, and Esti- mates (11a)-(11b) hold with W := V i and with (ε n,V i ) n≥1 and (ε n ) n≥1 satisfying lim n → +∞ n i-1 ε n,V i = 0 and lim n → +∞ n m-1 ε n = 0. ( 16 
)
Proof. Let us prove Inequalities (15) by an induction on m. Assume that (13) holds with m = 1, that is

RV 0 ≤ V 0 -V 1 , or equivalently: V 1 ≤ V 0 -RV 0 . Then ∀k ≥ 0, R k V 1 ≤ R k V 0 -R k+1 V 0
where R 0 (x, •) = δ x is the Dirac distribution at x. Then we obtain that

∀n ≥ 1, n k=0 R k V 1 ≤ n k=0 R k V 0 -R k+1 V 0 ≤ V 0 and ∀n ≥ 1, n+1 k=1 β k (V 1 ) ≤ ν(V 0 ) (from (2)).
This proves (15) when m = 1. Now suppose that Inequalities (15) hold for some m ≥ 1 and that (13) holds at order m + 1. Then using

V m+1 ≤ V m -RV m , we get ∀k ≥ 0, R k V m+1 ≤ R k V m -R k+1 V m so that we have for every n ≥ 1 n k=0 (k + 1) m R k V m+1 ≤ n k=0 (k + 1) m R k V m - n+1 k=0 k m R k V m ≤ n k=0 (k + 1) m -k m R k V m ≤ m-1 j=0 C j m n k=0 k j R k V m ≤ m j=1 C j-1 m n k=0 k j-1 R k V j
using ∀j ∈ {1, . . . , m}, V m ≤ V j for the last inequality. Inequalities (15) at order m + 1 follows from (2) and from the induction hypothesis, that is we have 10) and (15). Next we have

+∞ k=1 k m β k (V m+1 ) ≤ m j=1 C j-1 m +∞ k=0 k j-1 β k+1 (V j ) ≤ m j=1 C j-1 m +∞ k=1 k j-1 β k (V j ) ≤ m j=1 C j-1 m ϑ j-1 ν(V 0 ) = ϑ m ν(V 0 ).

Now let us prove the last assertion of Theorem 3.1. First note that for any

i = 1, • • • , m we get π(V i ) ≤ µ(V i ) = +∞ k=1 β k (V i ) < ∞ from (
∀i ∈ {1, • • • , m}, ε n,V i = +∞ k=n+1 β k (V i ) ≤ 1 (n + 1) i-1 +∞ k=n+1 k i-1 β k (V i ).
Then the first assertion in (16) follows from (15). In particular we have lim

n n m-1 ε n,Vm = 0, so that lim n → +∞ n m-1 ε n = 0 since ε n ≤ ε n,Vm from 1 X ≤ V m .
□ Under the assumptions of Theorem 3.1, the following statement specifies the asymptotic behaviour of the sequence (β k (V m )) k≥1 assumed to be decreasing. Theorem 3.2 Let P be a Markov kernel satisfying Condition (S). Assume Conditions (13) for some collection {V i } m i=0 of Lyapunov functions. Then the following assertions hold.

(i) ∀i ∈ {0, . . . , m}, ∀k ≥ 1, β k (V i ) < ∞. (ii) If the sequence (β k (V m )) k≥1 is decreasing, then ∀n ≥ 1, β n (V m ) ≤ C m ν(V 0 ) 1 n m with C m := 2 m(m+1) 2 -1 . ( 17 
)
If moreover µ(V 0 ) := +∞ k=1 β k (V 0 ) < ∞, then ∀n ≥ 1, β n (V m ) ≤ D m µ(V 0 ) 1 n m+1 with D m := 2 (m+1)(m+2) 2 +1 . ( 18 
)
Lemma 3.3 Assume that P satisfies Condition (S). Let V and W be two Lyapunov functions such that

RV ≤ V -W. ( 19 
)
Then the following assertions hold.

(a) ∀k ≥ 1, β k (V ) < ∞.
(b) The sequence (β k (V )) k≥1 is decreasing.

(c) If the sequence (β k (W )) k≥1 is decreasing, then we have for every k ≥ 1 and ε ∈ {0, 1}

β k (W ) ≤ ν(V ) 1 k and β 2k-ε (W ) ≤ β k (V ) 1 k . (d) If the sequence (β k (W )) k≥1 is decreasing and µ(V ) := +∞ k=1 β k (V ) < ∞, then ∀n ≥ 1, β n (W ) ≤ 16 µ(V ) 1 n 2 .
Proof. Note that W ≤ V from (19) and R ≥ 0. Next we deduce from (19) that we have

∀j ≥ 1, R j V ≤ R j-1 (V -W ). Then (2) gives ∀j ≥ 1, β j+1 (V ) ≤ β j (V ) -β j (W ) ≤ β j (V ) in [0, +∞].
Using 

β 1 (V ) = ν(V ) < ∞,
∀j ≥ 1, 0 ≤ β j (W ) ≤ β j (V ) -β j+1 (V ) ( 20 
)
and suppose that (β j (W )) j≥1 is decreasing. Then it follows from (20) that

∀k ≥ 1, k β k (W ) ≤ k j=1 β j (W ) ≤ β 1 (V ) -β k+1 (V ) ≤ ν(V ),
from which we deduce the first inequality in Assertion (c). Moreover (20) also gives

∀k ≥ 1, ∀ε ∈ {0, 1} k β 2k-ε (W ) ≤ 2k-ε j=k β j (W ) ≤ β k (V ) -β 2k-ε+1 (V ) ≤ β k (V ), (21) 
from which we deduce the second inequality in Assertion (c). Finally, to prove Assertion (d), note that for every ℓ ≥ 1 and every ε ∈ {0, 1}

ℓ β 2ℓ-ε (V ) ≤ 2ℓ-ε j=ℓ β j (V ) ≤ µ(V ) < ∞ (22) 
since (β j (V )) j≥1 is decreasing from Assertion (b). Let n ≥ 1 and write n = 2(2ℓ -ε 1 ) -ε 2 with ℓ ≥ 1 and (ε 1 , ε 2 ) ∈ {0, 1} 2 . Then it follows from (21) and ( 22) that 

β n (W ) ≤ β 2ℓ-ε 1 (V ) 2ℓ -ε 1 ≤ µ(V ) ℓ(2ℓ -1) ≤ µ(V ) ℓ 2 = 16 µ(V ) (n + 2ε 1 + ε 2 ) 2 ≤ 16 µ(V ) n 2 . □ Proof of Theorem 3.2. Lemma 3.3-(a) applied with V := V 0 and W := V 1 proves that: ∀k ≥ 1, β k (V 0 ) < ∞. Then Theorem 3.2-(i) holds since V i ≤ V 0 .
:= V 1 provides ∀n ≥ 1, β n (V 1 ) ≤ ν(V 0 ) n .
Hence (17) holds with C 1 = 1 when m = 1. Now suppose that (17) holds for some m ≥ 1.

Let {V i } m+1 i=0 be a collection of Lyapunov functions such that ∀i ∈ {0, . . . , m}, RV i ≤ V i -V i+1 and such that the sequence (β k (V m+1 )) k≥1 is decreasing. Note that Lemma 3.3-(b) applied with V := V m and W := V m+1 ensures that the sequence (β k (V m )) k≥1 is decreasing. Hence we have from the induction hypothesis

∀k ≥ 1, β k (V m ) ≤ C m ν(V 0 ) k m with C m := 2 m(m+1) 2 -1 . ( 23 
)
Next let n ≥ 1 and write n = 2k -ε with k ≥ 1 and ε ∈ {0, 1}. Then the second inequality in Lemma 3.3-(c) applied with V := V m and W := V m+1 gives

β n (V m+1 ) ≤ β k (V m ) k (24) so that β n (V m+1 ) ≤ C m ν(V 0 )/k m+1 from (23). Hence β n (V m+1 ) ≤ 2 m+1 C m ν(V 0 ) (n + ε) m+1 ≤ C m+1 ν(V 0 ) n m+1 with C m+1 = 2 m+1 C m = 2 (m+1)(m+2) 2 -1 . 
The proof of Property (17) is complete.

Property (18) follows the same induction procedure. Indeed, if m = 1, then Lemma 3.3-(d) applied with V := V 0 and

W := V 1 provides ∀n ≥ 1, β n (V 1 ) ≤ 16 µ(V 0 ) n 2 .
Hence (18) holds with D 1 = 16 when m = 1. Now, assume that ( 18) is true at some order m ≥ 1, and consider a collection {V i } m+1 i=0 of Lyapunov functions as in the above induction proof. Then, writing n ≥ 1 as n = 2k -ε with k ≥ 1 and ε ∈ {0, 1}, we deduce from (24) and from the induction hypothesis that

β n (V m+1 ) ≤ β k (V m ) k ≤ D m µ(V 0 ) k m+2 with D m := 2 (m+1)(m+2) 2 +1 . Hence β n (V m+1 ) ≤ 2 m+2 D m µ(V 0 ) (n + ε) m+2 ≤ D m+1 µ(V 0 ) n m+2 with D m+1 = 2 m+2 D m .
This proves (18). □ Under Conditions (13), since V m ≥ 1 X , the last function V m can be replaced by 1 X . Since the sequence (β k (1 X )) k is decreasing from Proposition 2.1, the following computable bounds for ε n and ε n,V i in (11a)-(11b) can be derived from Theorem 3.2. Corollary 3.4 Let P be a Markov kernel satisfying Condition (S). Assume that Conditions (13) hold for some collection {V i } m i=0 of Lyapunov functions. Then the following assertions hold with the positive constants C i and D i defined in Theorem 3.2.

(a) If m ≥ 2, then µ(1 X ) < ∞, and Estimate (12) holds with

∀n ≥ 1, ε n ≤ C m ν(V 0 ) m -1 1 n m-1 . (25)
Moreover, if m ≥ 3, then for every i ∈ {2, . . . , m -1} we have π(V i ) ≤ µ(V i ) < ∞, and Estimates (11a)-(11b) hold with W := V i and

∀n ≥ 1, ε n,V i ≤ C i ν(V 0 ) i -1 1 n i-1 . ( 26 
) (b) If m ≥ 1 and µ(V 0 ) < ∞, then Estimate (12) holds with ∀n ≥ 1, ε n ≤ D m µ(V 0 ) m 1 n m . ( 27 
)
If m ≥ 2, then for any i ∈ {1, . . . , m -1} Estimates (11a)-(11b) hold with W := V i and

∀n ≥ 1, ε n,V i ≤ D i µ(V 0 ) i 1 n i . ( 28 
)
Proof. As previously mentioned, the function V m in (13) can be replaced by 1 X , and the sequence (β k (1 X )) k≥1 is decreasing. Hence it follows from (17) that

∀n ≥ 1, β n (1 X ) ≤ C m ν(V 0 ) 1 n m . (29) 
If m ≥ 2, then Proposition 2.1-(ii) holds from (29). Then (25) is deduced from

∀n ≥ 1, ε n = +∞ k=n+1 β k (1 X ) ≤ C m ν(V 0 ) +∞ k=n+1 1 k m ≤ C m ν(V 0 ) +∞ n dt t m = C m ν(V 0 ) (m -1) n m-1 .
Now assume that {V i } m i=0 satisfies Conditions (13) with m ≥ 3. Let i ∈ {2, . . . , m -1}. The sequence (β k (V i )) k≥1 is decreasing from Lemma 3.3-(b), and obviously {V j } i j=0 also satisfies Conditions (13). Then it follows from (17) that

∀n ≥ 1, β n (V i ) ≤ C i ν(V 0 ) 1 n i with C i := 2 i(i+1) 2 -1 . (30) 
Thus π(V i ) ≤ µ(V i ) < ∞ since i ≥ 2, and (26) follows from comparison sums/integrals as above. Finally assume that µ(V 0 ) < ∞ and m ≥ 1. We deduce from (18) that

∀n ≥ 1, β n (1 X ) ≤ D m µ(V 0 ) 1 n m+1 . (31) 
Then ( 27) can be derived from comparison sums/integrals. Next assume that m ≥ 2, and let i ∈ {1, . . . , m -1}. Then Property (28) can be established by using as above the family {V j } i j=0 and the fact that the sequence (β k (V i )) k≥1 is decreasing, then by applying (18) to V i (in place of V m ), and finally by using again comparison sums/integrals. □ 4 Picking Lyapunov functions to fit the target Conditions (13)

Here we consider assumptions under which the drift conditions (13) are satisfied so that Theorem 3.2 and Corollary 3.4 apply. Let V be a Lyapunov function and introduce the Then there exists η 0 ∈ (0, 1] such that ∀x ∈ S, (RV η 0 )(x) < V (x) η 0 (43)

and such η 0 can be used in Proposition 4.4.

Proof. The existence of η 0 ∈ (0, 1] satisfying (43) is provided in the proof of Lemma 4.3. Now observe that the proof of Proposition 4.4 is still valid when Condition (42) holds with some ε i > 0 for i ∈ {1, . . . , m} in place of ε > 0. Then c i in (41) has to be chosen such that c i M 1 η 0 ≤ ε i , and the functions V i are defined as in the previous proof from such c i . Consequently, we have to prove in the case 1. or 2. that (43) implies that ∀η ∈ (0, η 0 ], ∀x ∈ S,

(RV η )(x) < V (x) η . (44) 
Recall that, for any x ∈ S, R(x, •) ∈ M + from (S), and note that R(x, 1 X ) = 1 -ν(1 X ) does not depend on x. Set r := 1 -ν(1 X ). If r = 0, we have (RV η ) = 0 on S for any η ∈ (0, 1], so that (44) is obvious. Now assume that r > 0. Let us introduce V := V η 0 . Note that (43) reads as (R V )(x) < V (x) η 0 for any x ∈ S. Since 0 < η/η 0 ≤ 1 for any η ∈ (0, η 0 ], it easily follows from Jensen's Inequality applied to the probability measure r -1 R(x, •) that ∀η ∈ (0, η 0 ], ∀x ∈ S, (RV η )(x) = R V η/η 0 (x) ≤ r r η/η 0 (R V )(x) η/η 0 < r r η/η 0 V (x) η .

Since 0 < r < 1, we obtain (44). Therefore the proof is complete. The first property follows from 0 ≤ R ≤ P . The second one is deduced from P n -T n = (P n-1 -T n-1 )(P -T ). Finally, the last one is clear for n = 1 and it holds for n ≥ 2 by an easy induction based on T n = P n-1 T + T n-1 R and (2). Now, let us prove Proposition 2.1. Assume that Assertion (i) holds. We deduce from (45) that 0 ≤ π (P n -T n )1 X = 1 -π(T n 1 X ) = 1 -π(1 S ) n k=1 β k (1 X ) from which it follows that +∞ k=1 β k (1 X ) ≤ π(1 S ) -1 < ∞ since π(1 S ) > 0 by hypothesis. This gives Assertion (ii). Conversely if Assertion (ii) holds then µ := Thus 0 = ν(1 X )µ(1 S ) -ν(1 X ), which gives µ(1 S ) = 1 since ν(1 X ) > 0. Thus µ is P -invariant, so that π := µ(1 X ) -1 µ is an P -invariant distribution such that π(1 S ) = µ(1 X ) -1 > 0.

Finally we prove that (β k (1 X )) k is decreasing. Note that R(1 X ) = 1 X -ν(1 X )1 S , so that using (2) we get β k+1 (1 X ) = β k • R(1 X ) = β k (1 X ) -ν(1 X ) β k (1 S ) for any k ≥ 1. This gives the desired statement.

  Assertion (a) is obtained by induction, and Assertion (b) is then obvious. Next rewrite the previous inequalities as

  Now let us prove by induction on m that Property (17) holds. If m = 1, then the first inequality in Lemma 3.3-(c) applied with V := V 0 and W

□A

  Proof of Proposition 2.1Let B := {f : X → R : ∥f ∥ := sup x∈X |f (x)| < ∞}. For bounded linear operators Q 1 , Q 2 on B, Q 1 ≤ Q 2 stands for: ∀f ∈ B, f ≥ 0, Q 1 f ≤ Q 2 f. Let P satisfying Condition (S) and T be the following operator on B:∀f ∈ B, T f := ν(f ) 1 S = β 1 (f ) 1 S .Consider (β k ) k≥1 ∈ (M + ) N in (2). Set T 0 := 0 and T n := P n -R n for n ≥ 1. Then ∀n ≥ 1, 0 ≤ T n ≤ P n , T n -T n-1 P = (P n-1 -T n-1 )T and T n = n k=1 β k (•)P n-k 1 S . (45)

+∞

  k=1 β k ∈ M + * since µ(1 X ) ≥ β 1 (1 X ) = ν(1 X ) > 0. Note that, for any f ∈ B, the series +∞ k=1 β k (f ) absolutely converges in C since |β k (f )| ≤ ∥f ∥ β k (1 X ). We obtain that ∀f ∈ B, µ(P f ) = +∞ k=1 ν P k f -T k-1 P f from (2) and (45) = +∞ k=1 ν P k f -T k f + +∞ k=1 ν P k-1 T f -T k-1 T f from (45) = µ(f ) + µ(T f ) -ν(f ) from(2) and β 1 (f ) = ν(f ).

following drift condition on the residual kernel R: ∃α ∈ [0, 1), ∃c > 0, RV ≤ V -c V α , or separating the condition on S and S c : ∃α ∈ [0, 1), ∃c > 0, ∀x ∈ S, (RV )(x) ≤ V (x) -c V (x) α (Sub α,S ) ∀x ∈ S c , (P V )(x) ≤ V (x) -c V (x) α .

(Sub α,S c ) When P V is bounded on S, Condition (Sub α,S c ) is equivalent to ∃α ∈ [0, 1), ∃c > 0, ∃K > 0, P V ≤ V -c V α + K1 S . Such a condition has been used to establish polynomial ergodicity of Markov chains (e.g. see [START_REF] Jarner | Polynomial convergence rates of Markov chains[END_REF][START_REF] Douc | Practical drift conditions for subgeometric rates of convergence[END_REF][START_REF] Douc | Markov chains[END_REF]).

First consider the atomic case. When S is an atom and ν(•) := P (a 0 , •) for a 0 ∈ S in (S), we have: ∀x ∈ S, (RV )(x) = 0 and ∀x ∈ S c , (RV )(x) = (P V )(x). Then Conditions (13) rewrite as follows

Note that the second condition in (32) ensures that V i+1 ≤ V i on S c too. For any α ∈ [0, 1) define the integer m ≡ m(α) ≥ 1 by

Corollary 4.1 (Atomic case) Let P be a Markov kernel satisfying Conditions (S) with an atom S and ν(•) := P (a 0 , •) for a 0 ∈ S. Assume that Condition (Sub α,S c ) holds for some Lyapunov function V and α ∈ [0, 1). Then all the assertions of Theorem 3.2 and Corollary 3.4 hold with the positive integer m in (33) and the functions {V i } m i=0 specified in the proof.

To prove Corollary 4.1 we use the following lemma which is based on [JR02, Lem. 3.5].

Lemma 4.2 Let S ∈ X , and W be a Lyapunov function such that P W is bounded on S. Let 0 < θ 2 < θ 1 < 1 be such that

Then

Note that the condition c ′ > 0 prevents to take θ 2 = 0 in Lemma 4.2.

Proof. We have sup

The claimed inequality is obtained with η := θ 2 /θ 1 < 1. □ Proof of Corollary 4.1. If the properties (S) and (Sub α,S c ) hold for an atom S, ν(•) := P (a 0 , •) with a 0 ∈ S and some Lyapunov function V , we must prove that Conditions (32) hold for some decreasing family of Lyapunov functions {V i } m i=0 with m given in (33). Let α 1 := 1 -1/m ∈ [0, 1) with m given in (33). Note that α 1 ≤ α. Then we have

from (Sub α,S c ). Note that we can choose c 1 < 1.

If

If α 1 = 1/2, i.e. m = 2 or α ∈ [1/2, 2/3), then we deduce from (34) and Lemma 4.2 with

with α 2 := 2α 1 -1 = 0. Again note that we can choose c 2 < 1. Then the procedure stops, and Conditions (32) hold with

If α 1 > 1/2, then Lemma 4.2 can be used recursively to provide inequalities of the form

Actually Lemma 4.2 can only be used until the value i = m since α m = 0 and α i < 0 for i > m.

Then Conditions (32) hold with

The proof of Corollary 4.1 is complete. □ Now consider the non-atomic case. Let P satisfying Conditions (S) and (Sub α,S c ), where S is not an atom, α ∈ [0, 1) and V is a Lyapunov function such that V and P V are bounded on S. Contrarily to the atomic case, Condition (Sub α,S ) does not hold automatically here. However, using (Sub α,S c ) and combining Lemma 4.2 and the next Lemma 4.3, we can prove that RV η 0 ≤ V η 0 -c 1 V η 0 α 1 for some η 0 , α 1 ∈ (0, 1] and c 1 > 0, from which the procedure of the atomic case (Corollary 4.1) can be extended. Lemma 4.3 Let P satisfying Condition (S), and let V be a Lyapunov function such that P V is bounded on S. Then for any ε ∈ (0, ν(1 X )), there exists η 0 ≡ η 0 (ε) ∈ (0, 1] such that ∀η ∈ (0, η 0 ], ∀x ∈ S, (RV η )(x) ≤ V (x) η -ε.

(37)

Proof of Lemma 4.3. Set M S := sup x∈S (P V )(x) < ∞. We have

from Jensen's inequality and 1 X ≤ V η . Then (37) follows from the following property

Proposition 4.4 Assume that P satisfies Conditions (S) and (Sub α,S c ) with V and P V bounded on S. Let ε ∈ (0, ν(1 X )). Assume that the real number η 0 (ε) given in (37) is such that η 0 ≥ 1 -α. Then all the assertions of Theorem 3.2 and Corollary 3.4 hold with the integer m ≡ m(ε, α, η 0 ) > 0 in (38) and the functions {V i } m i=0 specified in the proof.

Proof. Let M 1 := sup x∈S V (x) < ∞ and M 2 := sup x∈S (P V )(x) < ∞. For every η ∈ (0, 1], we have sup ∈S (P V η )(x) ≤ M 2 η < ∞ from Jensen's inequality. Note that Condition (Sub α,S ), that is RV ≤ V -c V α on S, may fail here. To initialize the procedure under (Sub α,S c ) and M 2 < ∞, choose c < 1 in (Sub α,S c ) and note that P V ≤ V -cV α + M 2 1 S . Then it follows from [JR02, Lem. 3.5] that

with η 0 given in (37). This gives (Sub η 0 ,S c ), that is:

If α+η 0 -1 < 0, then Inequality (39) cannot be used to apply Corollary 3.4 since the function V 1 in Conditions (13) must take its values in [a, +∞) for some a > 0. Now if α + η 0 -1 ≥ 0 then prove that Condition (Sub η 0 ,S ) holds. Up to the reduction of its value, c η 0 in (39) can be chosen such that c η 0 M 1 α+η 0 -1 ≤ ε, so that we have from (37)

Next, let m defined in (38) and set

Note that m = (1 -α) -1 with α = 1 -(1 -α)/η 0 , and that α 1 ≤ α. We get from (39)-( 40)

Then, starting from this inequality and iterating Lemma 4.2, we can proceed exactly as in the proof of Corollary 4.1, provided that Conditions (13) hold on S at each step. Namely, at each step, Lemma 4.2 provides an inequality of the form

with some c i > 0 and with α i = 2 α i-1 -α i-2 = ( α 1 -1) i + 1. This procedure is repeated only until the value i = m since α m = 0 and α i < 0 for i > m. Next we must check that the condition R V α i-1 ≤ V α i-1 -c i V α i also holds on S. Note that α i-1 ≤ 1 and that

Then Conditions (13) hold with V i defined as in (36) replacing V by V , and α i , c i by α i , c i . Note that 1 X = V m ≤ • • • ≤ V 0 . Thus the proof of Corollary 4.4 is complete. □ The following proposition shows that a simpler condition than (37) in Lemma 4.3 can be used to choose η 0 for a large class of Markov chains. Proposition 4.5 Assume that any one of the two following conditions holds:

1. X is discrete and S is finite.

2. X is a metric space, S is compact and the functions V and P V η for any η ∈ (0, 1] are continuous on S.