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Abstract

Let P be a Markov kernel on a measurable state space (X,X ) admitting some small-
set S ∈ X , that is: P (x,A) ≥ ν(1A)1S(x) for any x ∈ X, A ∈ X and for some positive
measure ν. Let π be a P−invariant probability measure such that π(1S) > 0. Using
the non-negative residual kernel R := P − ν(·)1S , we study the rate of convergence
to π, in weighted or standard total variation norms, of normalized versions of the series∑+∞

n=1 ν ◦ Rn−1. Under drift-type conditions on R, we provide geometric/polynomial
convergence bounds of the rate of convergence. Theses bounds are fully explicit and are
as simple as possible. Their proofs do not require to introduce the split chain in the
non-atomic case, the renewal theory, the coupling method, or the spectral theory.

1 Introduction

Let (Xn)n≥0 be a Markov chain on a measurable state space (X,X ) with transition kernel P .
Let M+ (resp. M+

∗ ) denote the set of finite non-negative (resp. positive) measures on (X,X ).
For any µ ∈ M+ and any µ-integrable function f : X→C, µ(f) denotes the integral

∫
fdµ.

Throughout the paper, the existence of a small-set S for P is assumed, that is

∃S ∈ X , ∃ν ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x). (S)

Under Condition (S), we introduce the substochastic kernel R, called the residual kernel,

∀x ∈ X, ∀A ∈ X , R(x,A) := P (x,A)− ν(1A)1S(x) (1)

and the following sequence (βk)k≥1 ∈ (M+)N:

β1 := ν and ∀n ≥ 2, βn := ν ◦Rn−1. (2)

Then the following statements are proved in Section 2 under the sole condition (S) (see
Proposition 2.1). First the following equivalence holds:

P has an invariant probability measure π such that π(1S) > 0 ⇐⇒
+∞∑
k=1

βk(1X) < ∞. (3)
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Moreover, if we assume that
∑+∞

k=1 βk(1X) < ∞ and we set µ :=
∑+∞

k=1 βk ∈ M+
∗ , then

µ(1S) = 1 and
π := µ(1X)

−1µ (4)

is a P−invariant probability measure on (X,X ) such that π(1S) = µ(1X)
−1 > 0. Finally, for

every n ≥ 1, consider µn ∈ M+
∗ and the probability measure µ̃n on (X,X ) defined by

µn :=
n∑

k=1

βk and µ̃n := µn(1X)
−1 µn. (5)

Then, if ∥ · ∥TV is the total variation norm, we have limn ∥π − µ̃n∥TV = 0.

Hence a natural issue is: Can we specify the error approximation ∥π − µ̃n∥TV ? The
same question is raised with respect to any weighted total variation norm (see (9)). First let
us motivate such a study. Approximating π by µ̃n is less natural than that provided by the
iterates Pn. In particular, the objective of the paper is not to present a new numerical method
to approximate π. Actually the effective computation of µ̃n may not be necessary in problems
only involving the error term ∥π− µ̃n∥TV . In particular this may be an alternative theoretical
tool in problems usually involving ∥π − Pn∥TV , provided that the control of ∥π − µ̃n∥TV is
improved. For example, if Pθ is a perturbed Markov kernel of Pθ0 , then the quantities
πθ − µ̃n,θ defined from Pθ can be used as intermediate error terms to control πθ − πθ0 , where
πθ (resp. πθ0) is the invariant probability measure for Pθ (resp. Pθ0). Note that only the error
bounds for πθ − µ̃n,θ are useful in this perturbation issue: neither µ̃n,θ nor µ̃n,θ0 need to be
computed. The resulting error bounds for πθ−πθ0 will be more accurate than those obtained
with the intermediate term πθ−Pn

θ , whenever the error bounds for πθ− µ̃n,θ are better. Such
a program is proposed in [HL22], generalizing in particular the results of [LL18, Sec. 2 and 3]
for truncation approximations of atomic discrete Markov chains to general perturbed Markov
kernels defined on a general state space.

Now let us return to the error approximation ∥π − µ̃n∥TV , starting with the geometric
case and the following contractive condition on the residual kernel R: RV ≤ δ V for some
δ ∈ (0, 1) and some measurable function V : X→[1,+∞), called a Lyapunov function. Then
it is easily deduced from (2) and (5) that ∥π− µ̃n∥TV = O(δn). More generally, if P satisfies
the above contractive condition and PV is bounded on S, then it follows from [HL24, App.
A] that there exists an explicit exponent α0 ∈ (0, 1] so that RV α0 ≤ δα0V α0 . The case α0 = 1
contains the atomic case but not only. Iterating RV α0 ≤ δα0V α0 and using (2) (see (12)), it
is easily checked that the following estimate holds

∀n ≥ 1, ∥π − µ̃n∥TV ≤ 2 ν(V α0)

1− δα0
δα0n.

This paper deals with the more difficult polynomial case, for which we use a similar
approach which consists in introducing a basic drift condition on R (see (7) below) and then
in finding appropriate procedures to return to this basic condition under more standard drift
conditions. The main idea of this paper is to modify the Lyapunov function in order to fit the
target case. In [HL24], under the standard geometric drift condition PV ≤ δV +K 1S , new
spectral properties of P are derived using such an approach. Here we show that this approach
is specially fruitful to derive simple polynomial error bounds for ∥π − µ̃n∥TV , or for some
weighted total variation norms. The central point is that all the convergence bounds are fully
explicit and are as simple as possible. Moreover the proofs can be thought of as self-contained
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in that we do not need to introduce the concepts of irreducibility, recurrence, or splitting
technique for Markov chains. Of course, the drift conditions used here are directly inspired
from that of the regeneration method (e.g. see [Num84, MT93, DMPS18, and references
therein]). Finally, the residual kernel R has been used in the perturbation analysis of general
Markov chains in [Kar81, Kar96]. We refer to [LL18, Sec. 3] for a recent contribution for
atomic discrete Markov chains, where the condition RV ≤ δV for some δ ∈ (0, 1) is used to
get bounds on the truncation approximations of π in terms of the residual matrix R.

Under Condition (S), the following results are obtained in this paper. In Section 2 Equiva-
lence (3) is specified in Proposition 2.1. Then, restricting the discussion here to the standard
total variation norm, we prove in Theorem 2.2 that π given by Formula (4) is approximated
in total variation norm by (µ̃n)n≥1 with the following error estimates

∥π − µ̃n∥TV ≤ 2µ(1X)
−1 εn ≤ 2 εn with εn :=

+∞∑
k=n+1

βk(1X) −−−−−→
n→+∞

0. (6)

In Section 3 the following polynomial drift-type conditions on R are introduced to study the
rate of convergence of (εn)n≥1: There exists a collection {Vi}mi=0 of Lyapunov functions with
m ≥ 1 such that

∀i ∈ {0, . . . ,m− 1}, RVi ≤ Vi − Vi+1. (7)

Under Condition (7), we prove that limn n
m−1εn = 0 in Theorem 3.1. The sequence (βn(Vm))n≥1

is analyzed in Theorem 3.2 to obtain computable rates of convergence for (εn)n≥1. In partic-
ular the following property is stated in Corollary 3.4: if m ≥ 2, then

∀n ≥ 1, εn ≤ Cm ν(V0)

(m− 1)

1

nm−1
with Cm := 2

m(m+1)
2

−1. (8)

It turns out that (7) is our target polynomial drift condition, as the condition RV ≤ δ V was
in the geometric case. In Section 4 appropriate procedures to fit Condition (7) are provided
when starting with the following drift condition on R: ∃α ∈ [0, 1), ∃c > 0, RV ≤ V − c V α.
This is adapted from a standard polynomial drift condition on P introduced in [JR02]. In the
atomic case, using an iterative procedure, we prove that, under Conditions RV ≤ V − c V α

and supS PV < ∞, then the bound (8) holds with m := ⌊(1 − α)−1⌋, where ⌊·⌋ denotes the
integer part function on R (see Corollary 4.1). The key point in the atomic case is that (7)
always holds on S when Vi+1 ≤ Vi since R = 0 on S. In the non atomic case, this property is
no longer automatically satisfied. However the previous iterative procedure can be adapted
under standard polynomial drift conditions, replacing the inequality RV ≤ V − c V α by
RV̂ ≤ V̂ − ĉ V̂ α̂ with V̂ = V η0 for some explicit η0, α̂ ∈ (0, 1]. Then, if η0 ≥ 1− α and if V ,
PV are bounded on S, the bound (8) holds with m := ⌊η0(1− α)−1⌋ (Proposition 4.4).

The above error bounds actually hold in W−weighted total variation norm (see (9)) for
any W ≥ 1 such that µ(W ) < ∞ in Section 2, and for W = Vi in Sections 3-4.

2 Basic material

For any Lyapounov function W , the W -weighted total variation norm ∥λ1 − λ2∥W for any
(λ1, λ2) ∈ (M+)2 is defined by

∥λ1 − λ2∥W := sup
|f |≤W

∣∣λ1(f)− λ2(f)
∣∣. (9)

3



If W := 1X, then ∥λ1 − λ2∥1X = ∥λ1 − λ2∥TV is the standard total variation norm. When λ1

and λ2 are probability measures, ∥λ1 − λ2∥TV is their standard total variation distance.

Let P be a Markov kernel on (X,X ) satisfying Condition (S). Consider the associated
non-negative residual kernel R := P − ν(·)1S in (1) and the sequence (βk)k≥1 ∈ (M+)N

defined in (2). First we prove in Proposition 2.1 that, under the sole Condition (S), P has
an invariant probability measure π with π(1S) > 0 if, and only if,

∑+∞
k=1 βk(1X) < ∞. In

particular, the Nummelin-type representation (10) of π below is in force in this work. Such a
result is well-known under various recurrence assumptions on the Markov chain. The reader
can consult [Num84, Th. 5.2, Cor. 5.2]), [MT93, Chap. 10]) where comments on the story
of such kind of results are provided. An analytic proof of Proposition 2.1 is provided in
Appendix A and allows us to get general statements in a very efficient way. In particular,
we do not need to introduce the concepts of irreducibility, recurrence, atom or splitted chain
associated with (Xn)n∈N.

Proposition 2.1 If P satisfies Condition (S), then the following assertions are equivalent.

(i) There exists an P−invariant probability measure π on (X,X ) such that π(1S) > 0.

(ii)

+∞∑
k=1

βk(1X) < ∞.

Under any of these two conditions, the sequence (βk(1X))k is decreasing, and

π := µ(1X)
−1 µ with µ :=

+∞∑
k=1

βk ∈ M+
∗ (10)

is an P−invariant probability measure on (X,X ) with µ(1S) = 1 and π(1S) = µ(1X)
−1 > 0.

Under Assumption (S) and
∑+∞

k=1 βk(1X) < ∞, µ is the P−invariant positive measure
given in (10) and for every n ≥ 1 recall that µn :=

∑n
k=1 βk ∈ M+, µ̃n := µn(1X)

−1µn.
The next theorem gives a simple estimate of the error term π − µ̃n used throughout the
Sections 3-4.

Theorem 2.2 Assume that P satisfies Condition (S) and that W is a Lyapunov function
satisfying µ(W ) < ∞. Let π := µ/µ(1X). Then

∀n ≥ 1, ∥π − µ(1X)
−1µn∥W = µ(1X)

−1 εn,W ≤ εn,W (11a)

∀n ≥ 1, ∥π − µ̃n∥W ≤ µ(1X)
−1

(
εn,W + µn(W )µn(1X)

−1 εn
)

(11b)

with ∀n ≥ 1, εn,W :=
+∞∑

k=n+1

βk(W ) and εn := εn,1X =
+∞∑

k=n+1

βk(1X). (11c)

In (11a)-(11b) we have µ(1X)
−1 = π(1S) ≤ 1. Under the assumptions of Theorem 2.2, since

µ(1X) ≤ µ(W ) < ∞, the Estimates (11a)-(11b) can be used with W := 1X to get

∀n ≥ 1, ∥π − µ̃n∥TV ≤ 2µ(1X)
−1 εn ≤ 2 εn. (12)

Proof. We have ∥π−µ(1X)
−1µn∥W = µ(1X)

−1(µ−µn)(W ) = µ(1X)
−1εn,W since π = µ/µ(1X)

and µ− µn ∈ M+. Thus ∥µ− µn∥W = (µ− µn)(W ) = εn,W from (11c). The last inequality
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in (11a) follows from µ(1X) ≥ µ(1S) = 1 (see the last assertion of Proposition 2.1). To prove
(11b) let f : X→R measurable such that |f | ≤ W . Then∣∣π(f)− µ̃n(f)

∣∣ = ∣∣∣∣π(f)− µn(f)

µn(1X)

∣∣∣∣ ≤ ∣∣∣∣π(f)− µn(f)

µ(1X)

∣∣∣∣+ |µn(f)| ×
∣∣∣∣ 1

µ(1X)
− 1

µn(1X)

∣∣∣∣
≤

εn,W
µ(1X)

+ µn(W )

∣∣∣∣µn(1X)− µ(1X)

µ(1X)µn(1X)

∣∣∣∣
by using the triangle inequality, (11a) and |µn(f)| ≤ µn(W ). This gives Inequality (11b)
using |µn(1X)− µ(1X)| = (µ− µn)(1X) = εn from (11c). □

It is clear from Estimates (11a)-(11b) or (12) and from Definition (11c) of εn,W and εn that the
rate of convergence to 0 of ∥π− µ̃n∥W can be derived from good estimates of the convergence
of the sequences (βn(W ))n≥1 and (βn(1X))n≥1. This is the objective of Sections 3-4 for the
polynomial case.

3 Error bounds under a polynomial drift condition on R

Let P be a Markov kernel satisfying Condition (S). Any Lyapunov function V is assumed to
satisfy:

∀x ∈ X, (PV )(x) < ∞.

Introduce the following polynomial drift conditions on R: There exists a familly {Vi}mi=0 of
Lyapunov functions with m ≥ 1 such that

∀i ∈ {0, . . . ,m− 1}, RVi ≤ Vi − Vi+1. (13)

Since R ≥ 0, the sequence {Vi}mi=0 in (13) is decreasing. Moreover, since (PV0)(·) < ∞ by
hypothesis, we have under Assumption (S): ∀i ∈ {0, . . . ,m}, ν(Vi) ≤ ν(V0) < ∞.

Under Conditions (13), the convergence rate in Estimates (11a)-(11b) is shown to be poly-
nomial in Theorem 3.1. Next, more explicit rates of convergence are provided in Corollary 3.4.
Denote by (ϑj)j≥0 the following sequence of positive real numbers

ϑ0 := 1 and ∀ℓ ≥ 1, ϑℓ :=

ℓ−1∑
j=0

Cj
ℓϑj with Cj

ℓ :=
ℓ !

j !(ℓ− j) !
. (14)

Theorem 3.1 Let P be a Markov kernel satisfying Condition (S). Assume that Condi-
tions (13) hold for some collection {Vi}mi=0 of Lyapunov functions. Then we have

∀i ∈ {1, . . . ,m},
+∞∑
k=1

ki−1 βk(Vi) ≤ ϑi−1 ν(V0) < ∞. (15)

Moreover, for any i = 1, · · · ,m, we have π(Vi) ≤ µ(Vi) =
∑+∞

k=1 βk(Vi) < ∞, and Esti-
mates (11a)-(11b) hold with W := Vi and with (εn,Vi)n≥1 and (εn)n≥1 satisfying

lim
n→+∞

ni−1εn,Vi = 0 and lim
n→+∞

nm−1εn = 0. (16)

Proof. Let us prove Inequalities (15) by an induction on m. Assume that (13) holds with
m = 1, that is RV0 ≤ V0 − V1, or equivalently: V1 ≤ V0 −RV0. Then

∀k ≥ 0, RkV1 ≤ RkV0 −Rk+1V0
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where R0(x, ·) = δx is the Dirac distribution at x. Then we obtain that

∀n ≥ 1,
n∑

k=0

RkV1 ≤
n∑

k=0

[
RkV0 −Rk+1V0

]
≤ V0

and ∀n ≥ 1,
n+1∑
k=1

βk(V1) ≤ ν(V0) (from (2)).

This proves (15) when m = 1. Now suppose that Inequalities (15) hold for some m ≥ 1 and
that (13) holds at order m+ 1. Then using Vm+1 ≤ Vm −RVm, we get

∀k ≥ 0, RkVm+1 ≤ RkVm −Rk+1Vm

so that we have for every n ≥ 1
n∑

k=0

(k + 1)mRkVm+1 ≤
n∑

k=0

(k + 1)mRkVm −
n+1∑
k=0

kmRkVm ≤
n∑

k=0

[
(k + 1)m − km

]
RkVm

≤
m−1∑
j=0

Cj
m

n∑
k=0

kj RkVm ≤
m∑
j=1

Cj−1
m

n∑
k=0

kj−1RkVj

using ∀j ∈ {1, . . . ,m}, Vm ≤ Vj for the last inequality. Inequalities (15) at order m + 1
follows from (2) and from the induction hypothesis, that is we have

+∞∑
k=1

km βk(Vm+1) ≤
m∑
j=1

Cj−1
m

+∞∑
k=0

kj−1 βk+1(Vj) ≤
m∑
j=1

Cj−1
m

+∞∑
k=1

kj−1 βk(Vj)

≤
( m∑

j=1

Cj−1
m ϑj−1

)
ν(V0) = ϑm ν(V0).

Now let us prove the last assertion of Theorem 3.1. First note that for any i = 1, · · · ,m
we get π(Vi) ≤ µ(Vi) =

∑+∞
k=1 βk(Vi) < ∞ from (10) and (15). Next we have

∀i ∈ {1, · · · ,m}, εn,Vi =
+∞∑

k=n+1

βk(Vi) ≤
1

(n+ 1)i−1

+∞∑
k=n+1

ki−1βk(Vi).

Then the first assertion in (16) follows from (15). In particular we have limn n
m−1εn,Vm = 0,

so that limn→+∞ nm−1εn = 0 since εn ≤ εn,Vm from 1X ≤ Vm. □

Under the assumptions of Theorem 3.1, the following statement specifies the asymptotic
behaviour of the sequence (βk(Vm))k≥1 assumed to be decreasing.

Theorem 3.2 Let P be a Markov kernel satisfying Condition (S). Assume Conditions (13)
for some collection {Vi}mi=0 of Lyapunov functions. Then the following assertions hold.

(i) ∀i ∈ {0, . . . ,m}, ∀k ≥ 1, βk(Vi) < ∞.

(ii) If the sequence (βk(Vm))k≥1 is decreasing, then

∀n ≥ 1, βn(Vm) ≤ Cm ν(V0)
1

nm
with Cm := 2

m(m+1)
2

−1. (17)

If moreover µ(V0) :=
∑+∞

k=1 βk(V0) < ∞, then

∀n ≥ 1, βn(Vm) ≤ Dm µ(V0)
1

nm+1
with Dm := 2

(m+1)(m+2)
2

+1. (18)
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Lemma 3.3 Assume that P satisfies Condition (S). Let V and W be two Lyapunov functions
such that

RV ≤ V −W. (19)

Then the following assertions hold.

(a) ∀k ≥ 1, βk(V ) < ∞.

(b) The sequence (βk(V ))k≥1 is decreasing.

(c) If the sequence (βk(W ))k≥1 is decreasing, then we have for every k ≥ 1 and ε ∈ {0, 1}

βk(W ) ≤ ν(V )
1

k
and β2k−ε(W ) ≤ βk(V )

1

k
.

(d) If the sequence (βk(W ))k≥1 is decreasing and µ(V ) :=
∑+∞

k=1 βk(V ) < ∞, then

∀n ≥ 1, βn(W ) ≤ 16µ(V )
1

n2
.

Proof. Note that W ≤ V from (19) and R ≥ 0. Next we deduce from (19) that we have
∀j ≥ 1, RjV ≤ Rj−1(V −W ). Then (2) gives

∀j ≥ 1, βj+1(V ) ≤ βj(V )− βj(W ) ≤ βj(V ) in [0,+∞].

Using β1(V ) = ν(V ) < ∞, Assertion (a) is obtained by induction, and Assertion (b) is then
obvious. Next rewrite the previous inequalities as

∀j ≥ 1, 0 ≤ βj(W ) ≤ βj(V )− βj+1(V ) (20)

and suppose that (βj(W ))j≥1 is decreasing. Then it follows from (20) that

∀k ≥ 1, k βk(W ) ≤
k∑

j=1

βj(W ) ≤ β1(V )− βk+1(V ) ≤ ν(V ),

from which we deduce the first inequality in Assertion (c). Moreover (20) also gives

∀k ≥ 1, ∀ε ∈ {0, 1} k β2k−ε(W ) ≤
2k−ε∑
j=k

βj(W ) ≤ βk(V )− β2k−ε+1(V ) ≤ βk(V ), (21)

from which we deduce the second inequality in Assertion (c). Finally, to prove Assertion (d),
note that for every ℓ ≥ 1 and every ε ∈ {0, 1}

ℓ β2ℓ−ε(V ) ≤
2ℓ−ε∑
j=ℓ

βj(V ) ≤ µ(V ) < ∞ (22)

since (βj(V ))j≥1 is decreasing from Assertion (b). Let n ≥ 1 and write n = 2(2ℓ − ε1) − ε2
with ℓ ≥ 1 and (ε1, ε2) ∈ {0, 1}2. Then it follows from (21) and (22) that

βn(W ) ≤ β2ℓ−ε1(V )

2ℓ− ε1
≤ µ(V )

ℓ(2ℓ− 1)
≤ µ(V )

ℓ2
=

16µ(V )

(n+ 2ε1 + ε2)2
≤ 16µ(V )

n2
.

□
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Proof of Theorem 3.2. Lemma 3.3-(a) applied with V := V0 and W := V1 proves that:
∀k ≥ 1, βk(V0) < ∞. Then Theorem 3.2-(i) holds since Vi ≤ V0. Now let us prove by
induction on m that Property (17) holds. If m = 1, then the first inequality in Lemma 3.3-
(c) applied with V := V0 and W := V1 provides

∀n ≥ 1, βn(V1) ≤
ν(V0)

n
.

Hence (17) holds with C1 = 1 when m = 1. Now suppose that (17) holds for some m ≥ 1.
Let {Vi}m+1

i=0 be a collection of Lyapunov functions such that ∀i ∈ {0, . . . ,m}, RVi ≤ Vi−Vi+1

and such that the sequence (βk(Vm+1))k≥1 is decreasing. Note that Lemma 3.3-(b) applied
with V := Vm and W := Vm+1 ensures that the sequence (βk(Vm))k≥1 is decreasing. Hence
we have from the induction hypothesis

∀k ≥ 1, βk(Vm) ≤ Cm ν(V0)

km
with Cm := 2

m(m+1)
2

−1. (23)

Next let n ≥ 1 and write n = 2k − ε with k ≥ 1 and ε ∈ {0, 1}. Then the second inequality
in Lemma 3.3-(c) applied with V := Vm and W := Vm+1 gives

βn(Vm+1) ≤
βk(Vm)

k
(24)

so that βn(Vm+1) ≤ Cmν(V0)/k
m+1 from (23). Hence

βn(Vm+1) ≤
2m+1Cm ν(V0)

(n+ ε)m+1
≤ Cm+1 ν(V0)

nm+1
with Cm+1 = 2m+1Cm = 2

(m+1)(m+2)
2

−1.

The proof of Property (17) is complete.

Property (18) follows the same induction procedure. Indeed, if m = 1, then Lemma 3.3-(d)
applied with V := V0 and W := V1 provides

∀n ≥ 1, βn(V1) ≤
16µ(V0)

n2
.

Hence (18) holds with D1 = 16 when m = 1. Now, assume that (18) is true at some order
m ≥ 1, and consider a collection {Vi}m+1

i=0 of Lyapunov functions as in the above induction
proof. Then, writing n ≥ 1 as n = 2k − ε with k ≥ 1 and ε ∈ {0, 1}, we deduce from (24)
and from the induction hypothesis that

βn(Vm+1) ≤
βk(Vm)

k
≤ Dm µ(V0)

km+2
with Dm := 2

(m+1)(m+2)
2

+1.

Hence

βn(Vm+1) ≤
2m+2Dm µ(V0)

(n+ ε)m+2
≤ Dm+1 µ(V0)

nm+2
with Dm+1 = 2m+2Dm.

This proves (18). □

Under Conditions (13), since Vm ≥ 1X, the last function Vm can be replaced by 1X. Since
the sequence (βk(1X))k is decreasing from Proposition 2.1, the following computable bounds
for εn and εn,Vi in (11a)-(11b) can be derived from Theorem 3.2.

Corollary 3.4 Let P be a Markov kernel satisfying Condition (S). Assume that Condi-
tions (13) hold for some collection {Vi}mi=0 of Lyapunov functions. Then the following asser-
tions hold with the positive constants Ci and Di defined in Theorem 3.2.
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(a) If m ≥ 2, then µ(1X) < ∞, and Estimate (12) holds with

∀n ≥ 1, εn ≤ Cm ν(V0)

m− 1

1

nm−1
. (25)

Moreover, if m ≥ 3, then for every i ∈ {2, . . . ,m − 1} we have π(Vi) ≤ µ(Vi) < ∞, and
Estimates (11a)-(11b) hold with W := Vi and

∀n ≥ 1, εn,Vi ≤
Ci ν(V0)

i− 1

1

ni−1
. (26)

(b) If m ≥ 1 and µ(V0) < ∞, then Estimate (12) holds with

∀n ≥ 1, εn ≤ Dm µ(V0)

m

1

nm
. (27)

If m ≥ 2, then for any i ∈ {1, . . . ,m− 1} Estimates (11a)-(11b) hold with W := Vi and

∀n ≥ 1, εn,Vi ≤
Di µ(V0)

i

1

ni
. (28)

Proof. As previously mentioned, the function Vm in (13) can be replaced by 1X, and the
sequence (βk(1X))k≥1 is decreasing. Hence it follows from (17) that

∀n ≥ 1, βn(1X) ≤ Cm ν(V0)
1

nm
. (29)

If m ≥ 2, then Proposition 2.1-(ii) holds from (29). Then (25) is deduced from

∀n ≥ 1, εn =
+∞∑

k=n+1

βk(1X) ≤ Cmν(V0)
+∞∑

k=n+1

1

km
≤ Cmν(V0)

∫ +∞

n

dt

tm
=

Cm ν(V0)

(m− 1)nm−1
.

Now assume that {Vi}mi=0 satisfies Conditions (13) with m ≥ 3. Let i ∈ {2, . . . ,m− 1}. The
sequence (βk(Vi))k≥1 is decreasing from Lemma 3.3-(b), and obviously {Vj}ij=0 also satisfies
Conditions (13). Then it follows from (17) that

∀n ≥ 1, βn(Vi) ≤ Ci ν(V0)
1

ni
with Ci := 2

i(i+1)
2

−1. (30)

Thus π(Vi) ≤ µ(Vi) < ∞ since i ≥ 2, and (26) follows from comparison sums/integrals as
above. Finally assume that µ(V0) < ∞ and m ≥ 1. We deduce from (18) that

∀n ≥ 1, βn(1X) ≤ Dm µ(V0)
1

nm+1
. (31)

Then (27) can be derived from comparison sums/integrals. Next assume that m ≥ 2, and
let i ∈ {1, . . . ,m − 1}. Then Property (28) can be established by using as above the family
{Vj}ij=0 and the fact that the sequence (βk(Vi))k≥1 is decreasing, then by applying (18) to Vi

(in place of Vm), and finally by using again comparison sums/integrals. □

4 Picking Lyapunov functions to fit the target Conditions (13)

Here we consider assumptions under which the drift conditions (13) are satisfied so that
Theorem 3.2 and Corollary 3.4 apply. Let V be a Lyapunov function and introduce the

9



following drift condition on the residual kernel R: ∃α ∈ [0, 1), ∃c > 0, RV ≤ V − c V α, or
separating the condition on S and Sc:

∃α ∈ [0, 1), ∃c > 0, ∀x ∈ S, (RV )(x) ≤ V (x)− c V (x)α (Subα,S)

∀x ∈ Sc, (PV )(x) ≤ V (x)− c V (x)α. (Subα,Sc)

When PV is bounded on S, Condition (Subα,Sc) is equivalent to ∃α ∈ [0, 1),∃c > 0,∃K > 0,
PV ≤ V − c V α +K1S . Such a condition has been used to establish polynomial ergodicity
of Markov chains (e.g. see [JR02, DFMS04, DMPS18]).

First consider the atomic case. When S is an atom and ν(·) := P (a0, ·) for a0 ∈ S in (S),
we have: ∀x ∈ S, (RV )(x) = 0 and ∀x ∈ Sc, (RV )(x) = (PV )(x). Then Conditions (13)
rewrite as follows

∀i ∈ {0, . . . ,m− 1},

{
∀x ∈ S, Vi+1(x) ≤ Vi(x)

∀x ∈ Sc, (PVi)(x) ≤ Vi(x)− Vi+1(x).
(32)

Note that the second condition in (32) ensures that Vi+1 ≤ Vi on Sc too. For any α ∈ [0, 1)
define the integer m ≡ m(α) ≥ 1 by

m :=
⌊
(1− α)−1

⌋
. (33)

Corollary 4.1 (Atomic case) Let P be a Markov kernel satisfying Conditions (S) with an
atom S and ν(·) := P (a0, ·) for a0 ∈ S. Assume that Condition (Subα,Sc) holds for some
Lyapunov function V and α ∈ [0, 1). Then all the assertions of Theorem 3.2 and Corollary 3.4
hold with the positive integer m in (33) and the functions {Vi}mi=0 specified in the proof.

To prove Corollary 4.1 we use the following lemma which is based on [JR02, Lem. 3.5].

Lemma 4.2 Let S ∈ X , and W be a Lyapunov function such that PW is bounded on S. Let
0 < θ2 < θ1 < 1 be such that

∃c > 0, ∀x ∈ Sc, (PW θ1)(x) ≤ W (x)θ1 − cW (x)θ2 .

Then

∃c′ > 0, ∀x ∈ Sc, (PW θ2)(x) ≤ W (x)θ2 − c′W (x)θ3 with θ3 := 2θ2 − θ1.

Note that the condition c′ > 0 prevents to take θ2 = 0 in Lemma 4.2.

Proof. We have supx∈S(PW )(x) < ∞ and PW θ1 ≤ W θ1 − c (W θ1)θ2/θ1 on Sc. Thus

∀η ∈ (0, 1], ∃c′ > 0, PW ηθ1 ≤ W ηθ1 − c′ (W θ1)θ2/θ1+η−1 on Sc

from [JR02, Lem. 3.5]. The claimed inequality is obtained with η := θ2/θ1 < 1. □

Proof of Corollary 4.1. If the properties (S) and (Subα,Sc) hold for an atom S, ν(·) :=
P (a0, ·) with a0 ∈ S and some Lyapunov function V , we must prove that Conditions (32)
hold for some decreasing family of Lyapunov functions {Vi}mi=0 with m given in (33).

Let α1 := 1− 1/m ∈ [0, 1) with m given in (33). Note that α1 ≤ α. Then we have

PV ≤ V − c1 V
α1 on Sc (34)

from (Subα,Sc). Note that we can choose c1 < 1.

10



� If α1 = 0, i.e.m = 1 or α ∈ [0, 1/2), then Conditions (32) hold with V0 := c−1
1 V ≥ V1 := 1X.

� If α1 = 1/2, i.e. m = 2 or α ∈ [1/2, 2/3), then we deduce from (34) and Lemma 4.2 with
W := V, θ1 = 1, θ2 = α1 that

∃c2 > 0, PV α1 ≤ V α1 − c2 V
α2 on Sc (35)

with α2 := 2α1− 1 = 0. Again note that we can choose c2 < 1. Then the procedure stops,
and Conditions (32) hold with V0 := c−1

1 c−1
2 V ≥ V1 := c−1

2 V α1 ≥ V2 := 1X.

� If α1 > 1/2, then Lemma 4.2 can be used recursively to provide inequalities of the form
PV αi−1 ≤ V αi−1−ci V

αi on Sc with ci < 1 and αi = 2αi−1−αi−2 = (α1−1) i+1. Actually
Lemma 4.2 can only be used until the value i = m since αm = 0 and αi < 0 for i > m.
Then Conditions (32) hold with

V0 :=
[ m∏
k=1

ck
]−1

V, 1 ≤ i ≤ m− 1 : Vi :=
[ m∏
k=i+1

ck
]−1

V αi , Vm := 1X. (36)

The proof of Corollary 4.1 is complete. □

Now consider the non-atomic case. Let P satisfying Conditions (S) and (Subα,Sc), where
S is not an atom, α ∈ [0, 1) and V is a Lyapunov function such that V and PV are bounded
on S. Contrarily to the atomic case, Condition (Subα,S) does not hold automatically here.
However, using (Subα,Sc) and combining Lemma 4.2 and the next Lemma 4.3, we can prove
that RV η0 ≤ V η0 − ĉ1 V

η0α̂1 for some η0, α̂1 ∈ (0, 1] and ĉ1 > 0, from which the procedure of
the atomic case (Corollary 4.1) can be extended.

Lemma 4.3 Let P satisfying Condition (S), and let V be a Lyapunov function such that
PV is bounded on S. Then for any ε ∈ (0, ν(1X)), there exists η0 ≡ η0(ε) ∈ (0, 1] such that

∀η ∈ (0, η0], ∀x ∈ S, (RV η)(x) ≤ V (x)η − ε. (37)

Proof of Lemma 4.3. Set MS := supx∈S(PV )(x) < ∞. We have

∀x ∈ S, (RV η)(x)− V (x)η = (PV η)(x)− ν(V η)− V (x)η ≤ MS
η − ν(1X)− 1

from Jensen’s inequality and 1X ≤ V η. Then (37) follows from the following property

∃η0 ∈ (0, 1], ∀η ∈ (0, η0], MS
η − 1 ≤ ν(1X)− ε

which holds since MS
η → 1 when η→ 0. □

Now let ε ∈ (0, ν(1X)) be fixed and η0 ≡ η0(ε) provided by Lemma 4.3. If η0 ≥ 1−α with
α ∈ [0, 1) given in (Subα,Sc), define the positive integer m ≡ m(ε, α, η0) as follows

m :=
⌊
η0 (1− α)−1

⌋
. (38)

Proposition 4.4 Assume that P satisfies Conditions (S) and (Subα,Sc) with V and PV
bounded on S. Let ε ∈ (0, ν(1X)). Assume that the real number η0(ε) given in (37) is such
that η0 ≥ 1 − α. Then all the assertions of Theorem 3.2 and Corollary 3.4 hold with the
integer m ≡ m(ε, α, η0) > 0 in (38) and the functions {Vi}mi=0 specified in the proof.
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Proof. LetM1 := supx∈S V (x) < ∞ andM2 := supx∈S(PV )(x) < ∞. For every η ∈ (0, 1], we
have sup∈S(PV η)(x) ≤ M2

η < ∞ from Jensen’s inequality. Note that Condition (Subα,S),
that is RV ≤ V − c V α on S, may fail here. To initialize the procedure under (Subα,Sc) and
M2 < ∞, choose c < 1 in (Subα,Sc) and note that PV ≤ V − cV α +M21S . Then it follows
from [JR02, Lem. 3.5] that

∃cη0 > 0, ∃b′ > 0, PV η0 ≤ V η0 − cη0 V
α+η0−1 + b′1S

with η0 given in (37). This gives (Subη0,Sc), that is:

∀x ∈ Sc, (PV η0)(x) ≤ V (x)η0 − cη0 V (x)α+η0−1. (39)

If α+η0−1 < 0, then Inequality (39) cannot be used to apply Corollary 3.4 since the function
V1 in Conditions (13) must take its values in [a,+∞) for some a > 0. Now if α+ η0 − 1 ≥ 0
then prove that Condition (Subη0,S) holds. Up to the reduction of its value, cη0 in (39) can
be chosen such that cη0M1

α+η0−1 ≤ ε, so that we have from (37)

∀x ∈ S, (RV η0)(x)− V (x)η0 + cη0 V (x)α+η0−1 ≤ −ε+ cη0 V (x)α+η0−1 ≤ 0. (40)

Next, let m defined in (38) and set

V̂ := V η0 , α̂1 := 1− 1

m
and ĉ1 := cη0 .

Note that m =
⌊
(1− α̂)−1

⌋
with α̂ = 1− (1−α)/η0, and that α̂1 ≤ α̂. We get from (39)-(40)

RV̂ ≤ V̂ − ĉ1 V̂
α̂1 .

Then, starting from this inequality and iterating Lemma 4.2, we can proceed exactly as in
the proof of Corollary 4.1, provided that Conditions (13) hold on S at each step. Namely, at
each step, Lemma 4.2 provides an inequality of the form

RV̂ α̂i−1 = PV̂ α̂i−1 ≤ V̂ α̂i−1 − ĉi V̂
α̂i on Sc (41)

with some ĉi > 0 and with α̂i = 2α̂i−1 − α̂i−2 = (α̂1 − 1) i + 1. This procedure is repeated
only until the value i = m since α̂m = 0 and α̂i < 0 for i > m. Next we must check that the
condition RV̂ α̂i−1 ≤ V̂ α̂i−1 − ĉi V̂

α̂i also holds on S. Note that α̂i−1 ≤ 1 and that

RV̂ α̂i−1 − V̂ α̂i−1 = RV ηi − V ηi with ηi := η0α̂i−1 ∈ (0, η0].

Since ĉi in (41) can be chosen such that ĉiM1
α̂i ≤ ε, it follows from (37) that

∀x ∈ S, (RV̂ α̂i−1)(x)− V̂ α̂i−1(x) + ĉi V̂
α̂i(x) ≤ −ε+ ĉi V̂

α̂i(x) ≤ 0. (42)

Then Conditions (13) hold with Vi defined as in (36) replacing V by V̂ , and αi, ci by α̂i, ĉi.
Note that 1X = Vm ≤ · · · ≤ V0. Thus the proof of Corollary 4.4 is complete. □

The following proposition shows that a simpler condition than (37) in Lemma 4.3 can be
used to choose η0 for a large class of Markov chains.

Proposition 4.5 Assume that any one of the two following conditions holds:

1. X is discrete and S is finite.

2. X is a metric space, S is compact and the functions V and PV η for any η ∈ (0, 1] are
continuous on S.

12



Then there exists η0 ∈ (0, 1] such that

∀x ∈ S, (RV η0)(x) < V (x)η0 (43)

and such η0 can be used in Proposition 4.4.

Proof. The existence of η0 ∈ (0, 1] satisfying (43) is provided in the proof of Lemma 4.3.
Now observe that the proof of Proposition 4.4 is still valid when Condition (42) holds with
some εi > 0 for i ∈ {1, . . . ,m} in place of ε > 0. Then ĉi in (41) has to be chosen such
that ĉiM1

η0 ≤ εi, and the functions Vi are defined as in the previous proof from such ĉi.
Consequently, we have to prove in the case 1. or 2. that (43) implies that

∀η ∈ (0, η0], ∀x ∈ S, (RV η)(x) < V (x)η. (44)

Recall that, for any x ∈ S, R(x, ·) ∈ M+ from (S), and note that R(x, 1X) = 1− ν(1X) does
not depend on x. Set r := 1 − ν(1X). If r = 0, we have (RV η) = 0 on S for any η ∈ (0, 1],
so that (44) is obvious. Now assume that r > 0. Let us introduce V̂ := V η0 . Note that (43)
reads as (RV̂ )(x) < V (x)η0 for any x ∈ S. Since 0 < η/η0 ≤ 1 for any η ∈ (0, η0], it easily
follows from Jensen’s Inequality applied to the probability measure r−1R(x, ·) that

∀η ∈ (0, η0], ∀x ∈ S, (RV η)(x) =
(
RV̂ η/η0

)
(x) ≤ r

rη/η0
(RV̂ )(x)

η/η0
<

r

rη/η0
V (x)η.

Since 0 < r < 1, we obtain (44). Therefore the proof is complete. □

A Proof of Proposition 2.1

Let B := {f : X → R : ∥f∥ := supx∈X |f(x)| < ∞}. For bounded linear operators Q1, Q2 on
B, Q1 ≤ Q2 stands for: ∀f ∈ B, f ≥ 0, Q1f ≤ Q2f . Let P satisfying Condition (S) and T
be the following operator on B:

∀f ∈ B, Tf := ν(f) 1S = β1(f) 1S .

Consider (βk)k≥1 ∈ (M+)N in (2). Set T0 := 0 and Tn := Pn −Rn for n ≥ 1. Then

∀n ≥ 1, 0 ≤ Tn ≤ Pn, Tn − Tn−1P = (Pn−1 − Tn−1)T and Tn =
n∑

k=1

βk(·)Pn−k1S . (45)

The first property follows from 0 ≤ R ≤ P . The second one is deduced from Pn − Tn =
(Pn−1 − Tn−1)(P − T ). Finally, the last one is clear for n = 1 and it holds for n ≥ 2 by an
easy induction based on Tn = Pn−1T + Tn−1R and (2).

Now, let us prove Proposition 2.1. Assume that Assertion (i) holds. We deduce from (45)
that 0 ≤ π

(
(Pn − Tn)1X

)
= 1 − π(Tn1X) = 1 − π(1S)

∑n
k=1 βk(1X) from which it follows

that
∑+∞

k=1 βk(1X) ≤ π(1S)
−1 < ∞ since π(1S) > 0 by hypothesis. This gives Assertion (ii).

Conversely if Assertion (ii) holds then µ :=
∑+∞

k=1 βk ∈ M+
∗ since µ(1X) ≥ β1(1X) =

ν(1X) > 0. Note that, for any f ∈ B, the series
∑+∞

k=1 βk(f) absolutely converges in C since
|βk(f)| ≤ ∥f∥βk(1X). We obtain that

∀f ∈ B, µ(Pf) =

+∞∑
k=1

ν
(
P kf − Tk−1Pf

)
from (2) and (45)

=
+∞∑
k=1

ν
(
P kf − Tkf

)
+

+∞∑
k=1

ν
(
P k−1Tf − Tk−1Tf

)
from (45)

= µ(f) + µ(Tf)− ν(f) from (2) and β1(f) = ν(f).
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Thus 0 = ν(1X)µ(1S)−ν(1X), which gives µ(1S) = 1 since ν(1X) > 0. Thus µ is P−invariant,
so that π := µ(1X)

−1 µ is an P−invariant distribution such that π(1S) = µ(1X)
−1 > 0.

Finally we prove that (βk(1X))k is decreasing. Note that R(1X) = 1X − ν(1X)1S , so that
using (2) we get βk+1(1X) = βk ◦ R(1X) = βk(1X) − ν(1X)βk(1S) for any k ≥ 1. This gives
the desired statement.
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